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ABSTRACT 

Kinematic differential GPS positioning is used to achieve accurate, real-time positions 

and velocities of a moving platform on land, in the air and at sea.  In a dynamic environment, 

however, the deviations or biases from the assumed system and observation models are often 

significant.  This results in a degradation of the accuracy and reliability of the estimated positions 

and velocities.  Therefore, quality control methods are inevitably needed in a real-time 

positioning system to insure the system is functioning properly.  In this thesis, the statistical 

quality control methods for use in kinematic GPS positioning are investigated.  The general 

recursive formulas for bias influence analysis and reliability analysis in Kalman filtering are 

derived and the bias influence characteristics and the minimum detectable bias (MDB) values of 

some typical biases in differential kinematic GPS positioning are studied.  A real-time statistical 

testing and implementation  procedure for use in kinematic GPS positioning is given based on 

the state space two-stage Kalman filtering technique, hypothesis testing theory and reliability 

analysis.  This procedure is for the detection of common biases such as cycle slips in carrier 

phases and outliers in phase rates and pseudoranges, and for the elimination of their influences 

on the kinematic GPS positioning results.  All the derived formulas and algorithms were 

implemented in a software package called QUALIKIN on a 386 micro-computer.  The 

application of the statistical quality control methods and testing of the software was performed 

on two GPS data sets collected in land semi-kinematic mode over a well-controlled traverse.   

Analysis of the results indicates that, with a data rate of one second or higher, the testing 

procedure developed herein can correctly detect, identify and estimate carrier phase cycle slips 

between consecutive epochs occurring at the one cycle level on multiple satellites under low and 

medium vehicle dynamics.  The detection and adaptation of phase rate and pseudorange outliers 

is also possible.  The magnitude of the detectable outliers is dependent on the corresponding 

measurement accuracy, satellite geometry and the number of the outliers present.  Further studies 
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of quality control methods are recommended.  Among them are the extension of the testing 

procedure to incorporate the system bias detection and adaptation for high dynamic surveying 

and navigation systems, application of the theory to integrated systems such as GPS/INS, and 

investigation of the carrier phase ambiguity initialization methods in the kinematic mode. 
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NOTATION 

 

i) Symbols 

an north acceleration 

ae east acceleration 

ah up acceleration 

b bias vector 

bo minimum detectable bias vector with power 1-βo 

B, C influence matrices that determine how the bias vector b enters into the 

Kalman system and observation equations, respectively  

c speed of light 

d degree of freedom in chi-square distribution, number of biases 

e observation noise 

eiθ phasor or complex vector eiθ = cosθ + i sinθ 

H design matrix 

Ho null hypothesis 

Ha alternative hypothesis 

Hk Kalman gain matrix 

m Dimension of the innovation vector at each epoch, or 

 number of update observations at each epoch 

N carrier phase ambiguity 

N(0, Q) normal probability distribution with expectation 0 and covariance 

matrix Q 

p pseudorange observation (m) 

P Kalman state vector covariance matrix 
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Q Kalman filter process noise covariance matrix 

Qv covariance matrix of innovation vector 

R Kalman filter observation noise covariance matrix 

R earth radius 

S sensitivity matrix related to the innovation vector 

TG global model test statistic 
f
GT  global failure test statistic 

f_L
GT  local failure test statistic 
L
gt  local identification test statistic 

U sensitivity matrix related to the predicted Kalman state vector 

V sensitivity matrix related to the updated Kalman state vector 

v innovation vector, or predicted residual vector 

Vn north velocity 

Ve east velocity 

Vh up velocity 

w process noise 

x state vector 

z observation vector 

α significance level or Type I error 

α inverse of correlation time of the stochastic Markov process 

β Type II error 

1-β power of test 

λ non-centrality parameter in chi-square distribution 

λ L1 GPS carrier wavelength 

λo critical value of λ which satisfies the given power 1-βo and 

significance level αo 
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Φ Kalman filter transition matrix 

Φ carrier phase observations (m) 

χ2(d,λ) chi-square probability distribution 

φ geodetic latitude 

λ geodetic longitude 

h geodetic height 

ρ range from receiver to satellite 

∇∆ N double difference carrier phase ambiguity 

ii) Defined Operators 

(+) Kalman update 

(-) Kalman prediction 

Φ derivative with respect to time 

HT matrix transpose 

Q-1 matrix inverse 

∆ single difference between receivers 

∇ single difference between satellites 

∇ deviation in 

δ correction to 

x)  bias-free or bias-ignored Kalman filter estimated value 

x~  bias-corrected Kalman filter estimated value 

| . | norm operator 

~ distributed as 
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iii) Acronyms 

AFM Ambiguity Function Method 

AVL Automatic Vehicle Location 

C/A code Clear / Acquisition code 

DD Double Difference 

DGPS Differential GPS 

GDOP Geometry Dilution of Precision 

GPS Global Positioning System 

GMT Global Model Test 

HDOP Horizontal Dilution of Precision 

INS Inertial Navigation System 

LBNR Local Bias-to-Noise Ratio 

LMT Local Model Test 

MDB Minimum Detectable Bias 

P code Precise code 

RMS Root Mean Square 

SD Single Difference 

SV Space Vehicle 

TD Triple Difference 
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CHAPTER 1 

INTRODUCTION 

1.1 BACKGROUND 

Kinematic surveying with the Global Positioning System (GPS) plays a key role in a 

number of positioning activities, such as precise navigation, airborne gravimetry and 

gradiometry, airborne photogrammetry and Automatic Vehicle Location (AVL).  With the full 

deployment of 24 GPS satellites in the near future and the improved receiver technologies 

(e.g., all-in-view satellite receivers), kinematic GPS surveys, which include the determination 

of position, velocity or even acceleration of a moving platform, may become a routine job for 

geodesists and surveyors.  As we know from conventional geodetic surveys, the quality 

assessment of surveying results generally involves accuracy analysis, reliability analysis and 

statistical testing of the estimated quantities and adequacy of the adjustment model.  Accuracy 

analysis deals with the propagation of random errors through the geometric strength of the 

network or the adjustment model, while reliability analysis and statistical testing,which are the 

primary elements of quality control, deal with the self-check ability of the model or system to 

blunders or biases that occur in observations or in the systems.  Up to now, extensive 

investigations and tests have been done in the accuracy analysis of kinematic differential GPS 

surveys.  The results of 0.2m (standard deviation) in kinematic positioning and 0.05m/s 
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(standard deviation) in velocity estimation have been made by using both pseudorange and 

carrier phase observations (Lachapelle et al, 1989; Schwarz et al, 1989; Cannon, 1987).  The 

reliability analysis and statistical testing in kinematic GPS surveys, however, is just at its initial 

stage.  Teunissen and Salzmann (Teunissen, 1990; Salzmann and Teunissen, 1989) introduced 

the quality control concept of conventional geodetic surveys into kinematic surveying systems 

and developed the general quality control theory based on the standard state space Kalman 

filtering model and the statistical hypothesis testing.  The first application and adaptation of 

this theory to kinematic GPS positioning was given by Wei et al (Wei et al,1990) and Lu and 

Lachapelle (Lu and Lachapelle,1990). 

It is known that by using GPS pseudorange, carrier phase and phase rate (Doppler) 

observations in a Kalman filter, the instantaneous position, velocity and even acceleration of a 

moving platform can be determined (Schwarz et al,1989; Cannon,1990; Hwang and Brown, 

1990).  If the assumed dynamic and observation models are correct, the Kalman filter provides 

the optimal position and velocity estimates in a statistical sense.  In a dynamic environment, 

however, the deviations or biases from the assumed models are often significant.  For instance, 

the loss/re-lock of a carrier phase signal on a satellite will cause the corresponding integrated 

carrier phase observations to jump abruptly, which falsifies the measurement update model.  

Likewise, a pre-determined constant velocity model for vehicle motion may be invalidated due 

to high vehicle accelerations in some parts of the trajectory.  Such deviations or biases will 

certainly lead to some errors in the filtering results.  Therefore, reliability analysis and real-

time testing and adaptation for possible biases is of great importance in kinematic GPS surveys 

in order to prevent the degradation of position and velocity estimates. 
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1.2 OUTLINE OF THESIS 

The primary objective of this thesis is to apply the quality control methods to kinematic 

GPS surveys.  The general formulas and procedures for reliability analysis and bias detection 

and adaptation in Kalman filtering are derived.  A software package, QUALIKIN, that 

performs reliability analysis, real-time statistical testing and adaptation for possible biases in 

pseudo-range, carrier phase and phase rate observations along with kinematic differential GPS 

positioning and/or semi-kinematic positioning, is developed.  

Chapter 2 describes the quality control theory of the state space Kalman filtering.  

Firstly, a more general recursive bias influence formulation on filtered quantities is introduced 

by using a two-stage Kalman filter method.  Then, a real-time statistical testing procedure for 

use in the Kalman filter is given based on the hypothesis testing theory and the Minimum 

Detectable Bias (MDB) concept.  The system model and the observation model for kinematic 

positioning used in this research are outlined in Chapter 3.  Chapter 4 investigates the influence 

characteristics of different biases (e. g., cycle slips) on kinematic positioning results and the 

corresponding minimum detectable biases.  In Chapter 5, methods for carrier phase ambiguity 

initialization are reviewed.  In particular, the ambiguity function method (Mader, 1990) is 

discussed and tested for phase ambiguity resolution in kinematic mode.  The processing results 

of real data sets and the applicability of statistical methods for detecting and correcting biases 

in observations are listed in Chapter 6.  Some conclusions and recommendations are given in 

Chapter 7. 
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CHAPTER 2 

THEORY OF QUALITY CONTROL IN KALMAN FILTERING 

The quality control method, i.e. reliability analysis and statistical testing of the 

adequacy of adjustment models, has been widely used for network design and data processing 

in conventional geodesy, photogrammetry and surveying (Baarda, 1968; Li, 1986; Pelzer, 

1986).  In systems engineering, it is often called fault detection, diagnosis and adaptation 

(Basseville,1988; Frank,1990).  With the advent of the global positioning system (GPS), 

kinematic surveying is now becoming a recognized surveying method on land, in the air and on 

the sea.  Therefore, it is natural and important to introduce and apply the quality control 

method to this new kinematic surveying method to insure the correctness of the results 

obtained. 

In this chapter, the general concept of quality control in dynamic systems engineering is 

reviewed first.  Then, two-stage Kalman filter formulas are derived, which are useful for 

analyzing the bias influence on Kalman filter output quantities.  And finally, the formulation of 

testing procedures and reliability analysis is presented. 
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2.1 GENERAL DESCRIPTION 

The process of quality control or fault detection, diagnosis and adaptation in dynamic 

systems essentially consists of three stages (Basseville,1988; Teunissen,1990): residual 

generation, decision making and adaptation or estimation, as shown in Fig. 2.1. 

system 
  and 
sensor 
outputs

  residual 
generation

calculation 
       of 
  decision 
  statistics

    failure 
  decision 
      and 
identification 

 adaptation 
 measures

  final 
output

residual generation decision making adaptation  

Fig. 2.1 Process of Quality Control in Dynamic Systems 

The residual generation is based on the knowledge of the normal behaviour of the 

system and the characteristics of the failures.  For detection purposes, constructed residuals 

should significantly and quickly reflect the influences of possible failures or biases which 

occurred in the analyzed system, and remain unbiased, normally close to zero, in the absence 

of failures or biases.  In kinematic surveying systems like GPS and Inertial Navigation Systems 

(INS), Kalman filtering is widely used for data processing.  In this case, one suitable choice of 

residual generation is the filter output of innovation sequence, i.e. predicted residuals (Willsky, 

1976; Teunissen, 1990).  The generation of innovation sequence and its properties are given in 

Section 2.2. 
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Decision making is the construction of decision functions or test statistics based on the 

generated residuals.  Decision functions or statistics are then calculated using the residuals to 

determine if any failure has occurred in the system.  In some cases, failure identification or 

isolation should also be carried out.  For innovation-based detection systems like Kalman 

filters, a number of statistical tests to be performed on the innovations have been suggested.  

Among them are the Chi-square statistic and the Generalized Likelihood Ratio (GLR) test 

(Teunissen, 1990; Willsky, 1976; Mehra and Peschon, 1971).  Due to its simplicity and easy 

implementation, the real-time Chi-square test is used in this research for detecting and isolating 

the possible biases (e.g., cycle slips on some satellites) in the kinematic GPS surveying model. 

Adaptation is system reconfiguration to accommodate the failure, or to estimate the 

failure or bias and then correct its influences on system outputs.  Reconfiguration measures are 

often used in a system with a high degree of parallel hardware redundancy (e.g., voting 

system), while analytical correction methods are usually adopted in a single feedback system.  

For kinematic surveying with a single GPS system, only real-time analytical correction 

methods are possible.  For this purpose, two-stage Kalman filter techniques are derived for 

real-time bias estimation and correction. 

Another important aspect of quality control is the reliability analysis of the systems.  

This concept was mainly developed by geodetic scientists (Baarda, 1968; Teunissen, 1990) and 

has not yet been discussed in system engineering literature.  Generally speaking, reliability is 

concerned with the self-checking ability of the system model for possible biases and the effects 

of undetectable biases on the estimated results.  One of the numerical measures for reliability 

in dynamic systems is the minimum detectable bias  (MDB) (Teunissen, 1990), which is the 

minimum bias value that can be detected with a certain probability by a specified bias testing 

statistic in an α level test.  The importance of reliability analysis lies in the design stage of a 

dynamic system.  By examining the reliabilities of different design schemes, an efficient 
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system with sufficient control on the presence of certain biases can be obtained.  In kinematic 

GPS surveys, for instance, the reliability analysis can be conveniently used for investigating 

the minimal detectable cycle slips occurring on a certain satellite and the cycle slips effect on 

position and velocity determination.  This problem and the application of reliability analysis in 

kinematic differential GPS surveys will be discussed in Chapter 4. 

2.2 TWO-STAGE KALMAN FILTER 

Under the nominal conditions that the system and observation model and the statistical 

model are correct, the Kalman filter provides estimates of the state vector which are unbiased 

and of minimum variance.  Due to the dynamic environment and possible failures of some 

system components, deviations or biases from the predetermined filter model are often 

encountered in practice.  An important class of biases, which is suitable to represent cycle slips 

in carrier phase measurements and outliers in pseudorange and phase rate observations,  are the 

constant biases  with unknown magnitudes.  Usually, there are two ways to treat these kinds of 

biases when they are detected in the system dynamic model or the observation model.  Firstly, 

one can augment the state vector of the original model by adding components to represent the 

bias terms.  The filter then estimates these terms as well as the original states.  This 

mechanism, for example, is implemented in the well-known program SEMIKIN for estimating 

the cycle slips in carrier phase measurements (Cannon, 1990).  Secondly, the bias terms can be 

estimated separately from the original filter states by using the bias-free, i.e. the nominal 

Kalman filtering results.  This is the so-called two-stage Kalman filter (Friedland, 1969; 

Ignagni, 1981).  Mathematically, these two methods are equivalent.  However, the second 

method has the advantages of being computationally efficient and convenient for both bias 

influence analysis and reliability analysis of filtering results.  Therefore, it is used in this 

research for reliability analysis and processing software development. 
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2.2.1 Bias-free Kalman Filtering  

The general Kalman filter equations are well documented in Gelb (1974).  For a system 

described by the following equations 

  xk  = Φk  xk-1   +  wk  ,      wk  ~ N(0, Qk  )  (2.1) 

  zk  = Hk  xk   +  ek   ,           ek  ~ N(0, Rk  ), (2.2) 

the optimal estimate of the state vector xk  and its covariance matrix are given by 

  Prediction: xk(-) = Φk xk-1(+)  (2.3) 

  Pk(-) = Φk Pk-1(+) Φk
T  +  Qk (2.4) 

  Update: xk(+) = xk(-) + Kk [ zk - Hk xk(-) ] (2.5) 

  Pk(+) = [ I - Kk  Hk] Pk(-) (2.6) 

  Kk = Pk(-)Hk
T[ HkPk(-)Hk

T  +  Rk ]-1 (2.7) 

where    (-) denotes the predicted quantities, i.e., before update, 

   (+) denotes the updated quantities, 

   xk  is the state vector, 

   Φk  is the transition matrix, 

   Pk  is the state covariance matrix, 

   Kk  is the Kalman gain matrix, 

   Qk  is the covariance matrix of the system process noise wk  , 

   Rk  is the covariance matrix of the observation noise ek  , 

   Hk  is the design matrix, 
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and    zk  is the observation vector for updating. 

If the equations (2.1) and (2.2) correctly specify the underlying system model and 

observation model, the Kalman algorithm from equations (2.3) to (2.7) gives the minimum 

variance, unbiased estimate of the state vector x at each epoch k.  In this case, the innovations, 

i.e. the predicted residuals vk  described as 

  vk = zk - Hk xk(-)  (2.8) 

have a zero mean, Gaussian white noise sequence with covariance matrix 

  Qvk = Rk + Hk Pk(-)Hk
T
    (2.9) 

(Mehra and Peschon, 1971; Willsky, 1976; Teunissen, 1989).  Any deviation or bias arising 

from the system model (2.1) or from the observation model (2.2) may cause the innovation 

sequence (2.8) to depart from its zero mean and whiteness properties.  This makes the 

innovation sequence an ideal generated residual sequence in Kalman filtering for detecting the 

abnormal behaviours of the system.  

2.2.2 Two Step Estimation of State Vector and Bias Vector 

In the presence of constant biases with unknown magnitudes in the functional model of 

Kalman filtering, equations (2.1) and (2.2) can be reformulated as: 

  xk  = Φk  xk-1   +  Bk b  +  wk  ,      wk  ~ N(0, Qk  )  (2.10) 

  zk  = Hk  xk   +  Ck b  +  ek  ,           ek  ~ N(0, Rk  ), (2.11) 

where b is the constant bias vector.  The matrices Bk  and Ck  determine how the components 

of the bias vector b enter into the dynamics and observations respectively.  In the case when 
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only observations have biases, Bk  = 0.  Similarly, if only the dynamics have biases, Ck  = 0.  

If no biases present in the model, Bk  = Ck  = 0. 

In one step  (simultaneous) estimation, the bias vector b in (2.10) and (2.11) is 

appended to the original state vector x with the dynamics bk  = bk-1  to form a new state 

vector y = ( x, b ).  Then, the new state vector y is estimated by the conventional Kalman 

algorithm (2.3) to (2.7) based on the augmented model  

  yk  = Fk  yk-1   +  Gwk  ,      wk  ~ N(0, Qk  )  (2.12) 

  zk  = Lk  yk   +  ek  ,              ek  ~ N(0, Rk  )  (2.13) 

with the partitioned matrices 

 Fk  = 






Φk  Bk

 0  I
  , G = 







I

0
  , Lk  = ( Hk  , Ck  ) . (2.14) 

This method preserves the mathematical simplicity, but has the disadvantages that it increases 

the dimension of the state vector and is not suitable for reliability analysis and bias influence 

analysis in Kalman filtering.  

The two step estimation of states and biases overcomes the disadvantages in the above 

one step estimation procedure.  The basic idea for two step estimation of states x and biases b 

is as follows.  In the first step, we ignore the bias terms in (2.10) and (2.11), and perform the 

conventional bias-free Kalman filtering procedure.  Due to the omission of bias terms, we then 

obtain the biased state estimates,  xk(+) and xk(-) ,  and the biased innovations vk  that contain 

the information on the biases.  In the second step, the bias vector b is estimated by using the 

innovations obtained in the first step, and the biased state estimates, xk(+) and xk(-) , are 

corrected for the bias influences.  Mathematically, two step estimation of states and biases is 

equivalent to one step estimation.  The proof is given by Friedland (1969) and Ignagni (1981).  
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Here, only an intuitive derivation is given and the emphasis is placed on the computational 

aspects. 

a. Bias influences on bias-free state estimates 

If the bias vector were perfectly known, as is the case when we analyse the influence of 

a specified bias vector on the Kalman filtering results, the optimal estimates of the state vector 

x in equations (2.10) and (2.11) would be 

  xk(-) = Φkxk-1(+)  +  Bkb (2.15) 

  xk(+) = xk(-)  +  Kk( zk  -  Hkxk(-)  -  Ckb )  , (2.16) 

while the innovations with known biases would be 

  vk =  zk  -  Hkxk(-)  -  Ckb   , (2.17) 

where b is the true value of the constant bias vector, Kk  is the Kalman gain matrix defined by 

(2.7) of the bias-free model, and xk(-) and xk(+)  are the bias-corrected Kalman state estimates 

before and after update, respectively. 

Since the Kalman filter estimator is a linear estimator and the bias influence on the 

filter estimates, as reflected in (2.16) and (2.17), is also linear in nature, we can formally write 

the relationships between the bias-ignored estimates xk(-) and xk(+)  and bias-corrected 

estimates xk(-) and xk(+)  as (Friedland, 1969): 

  xk(-) = xk(-) + Ukb  (2.18) 

  xk(+) = xk(+) + Vkb  . (2.19) 

For the same reason, the relationship between the corresponding bias-ignored innovations vk  

and the bias-corrected innovations vk can be written as 
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  vk = vk + Skb ,  (2.20) 

where Uk , Vk  and Sk  are called sensitivity matrices .  Equations (2.18), (2.19) and (2.20) 

indicate that in the presence of biases, the optimal Kalman filter state (bias-corrected) 

estimates can be obtained by adding corrections to the bias-free or bias-ignored Kalman filter 

estimates. 

Substituting equations (2.15), (2.3) and (2.19) into (2.18), we obtain the recursive form 

for computing Uk  : 

  Uk  = Φk  Vk-1   +  Bk  (2.21) 

Similarly, the recursive forms for Vk  and Sk  can be derived as: 

  Vk  = Uk   - Kk Sk    (2.22) 

  Sk  = Hk Uk   + Ck  . 

 (2.23) 

The initial value for the recursive computations of Uk , Vk  and Sk  starting at epoch k is 

Vk-1  = 0 in equation (2.21).  It is noted that the computations of Uk , Vk  and Sk  are 

independent of the measurements.  They can be computed beforehand using the specified 

dynamics model, observation model and bias type.  Equations (2.21), (2.22) and (2.23) are of 

great importance in bias influence analysis.  If a bias occurs in the system, its influence on the 

bias-free Kalman filtering estimates  xk(-) , xk(+) and vk , as shown in (2.21), (2.22) and 

(2.23),  are -Uk b, -Vk b and Sk b respectively.  In kinematic GPS surveys, the most likely 

biases are carrier phase cycle slips, outliers in pseudorange and phase rate observations, and 

the deviations of the vehicle motion from the assumed dynamics.  Their influence on kinematic 

GPS position and velocity determination is to be investigated in Chapter 4. 

b. Bias estimation 
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In real data processing, the true value of the bias vector b is usually unknown.  It is 

required that the bias vector be estimated in real time in order to correct its influences on the 

filtering results.  This can be achieved by utilizing the equation (2.20).  Rewriting (2.20) in the 

form: 

  vk = Skb + vk   ,  (2.24) 

the bias-free Kalman filter innovations vk  can then be considered as a quasi-measurement 

vector, Sk  as a design matrix and vk, the bias-corrected innovations, as the quasi-measurement 

noise.  Based on the properties of Kalman filtering and equation (2.17), the bias-corrected 

innovation sequence vk is a white noise sequence with the covariance matrix at each epoch: 

  Qvk = Hk Pk(-) Hk
T  +  Rk, (2.25) 

where Pk(-)  is given by equation (2.4). 

From the above discussions, it is obvious that the bias vector b can be recursively 

estimated with a Kalman filter algorithm or an equivalent sequential least squares method 

using the measurement equation defined by (2.24) with the measurement white noise 

covariance matrix (2.25).  The Kalman filter algorithm for recursive estimation of the bias 

vector b has the form 

  b (-)(k) = b  (+)(k-1)    ( b0  =  0 )  (2.26) 

  Pb
(-)(k) = Pb

(+)(k-1)     ( Pb(0)  given ) (2.27) 

  b(+)(k) = b (-)(k)  +  Kb(k)[ vk - Skb(-)(k) ] (2.28) 

  Pb
(+)(k)  = [ I - Kb(k)Sk ] Pb

(-) (k) (2.29) 

  Kb(k)  =  Pb
(-) (k) Sk

T [ Sk Pb
(-) (k) Sk

T  +  HkPk(-)Hk
T  + Rk ]-1

 (2.30) 
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This constitutes the second stage of two-stage Kalman filtering, i.e. bias estimation. It is noted 

from equation (2.30) that we need to invert a matrix of dimension that is equal to the number 

of observations at each epoch.  In the kinematic GPS positioning model, the number of biases 

is usually smaller than the number of observations at each epoch.  Therefore, the equivalent 

Bayes form or phase expressions (Krakiwsky, 1990) are more favourable than the Kalman 

algorithm given by (2.26) through (2.30), since the Bayes form inverts a matrix of dimension 

that is equal to the number of biases. 

c. Bias influence correction and adaptation 

According to equations (2.18) and (2.19), once the bias estimates are obtained, the bias-

ignored Kalman filter estimates, xk(-) and xk(+) , and their covariance matrices can be 

recursively corrected for the bias influences by: 

  xk
c(-) = xk(-)  + Uk b(-)(k) (2.31) 

  xk
c(+) = xk(+)  + Vk b(+)(k) (2.32) 

  Pk
c(-) = Pk(-) + UkPb

(-)(k)Uk
T
 (2.33) 

  Pk
c(+) = Pk(+) + VkPb

(+)(k)Vk
T
 (2.34) 

  Pxb
(-) (k) = UkPb

(-)(k)  (2.35) 

  Pxb
(+)(k) = VkPb

(+)(k)  (2.36) 

where  xk
c(-) , xk

c(+),  Pk
c(-),  Pk

c(+) are the optimal unbiased state estimates and their 

corresponding covariance matrices, which have taken into account the influence of the biases 

in the models.  In the derivation of (2.33) to (2.36), the fact that the state vector x initially and 

at all subsequent epochs is uncorrelated with the biases b has been used. 
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2.3 TESTING PROCEDURES AND RELIABILITY MEASURES IN KALMAN 

FILTERING 

2.3.1 Testing statistics for biases 

Failure detection and identification are the most important and yet the most difficult 

aspects in the quality control of Kalman filtering.  Generally speaking, failures or 

malfunctioning of a Kalman filter may be caused by two error sources.  One is the errors 

arising from the function models, such as the unmodelled biases in the measurements and 

system dynamics. The other source is the errors arising from the stochastic models defined 

mainly by the covariance matrices of the system process noise wk  and the measurement noise 

ek . 

In differential (double difference) kinematic GPS surveying, the functional model 

errors, such as the cycle slips in carrier phases and the outliers in pseudoranges and phase rates, 

are frequent and have severe influences on position and velocity determination.  The stochastic 

model errors, relatively speaking, are much less significant than the functional model errors.  

The measurement noise in a surveying session is mainly specified by the instrumentation and 

environment and can be considered as a constant (Lachapelle, 1990).  The system process 

noise, on the other hand, is determined by the vehicle motion.  In a low or medium dynamic 

surveying system, the first-order Gaussian-Markov model of constant velocity or constant 

acceleration of the vehicle motion seems justified (Schwarz et al, 1989; Cannon, 1990).  In 

practical computations, we usually use slightly larger values for measurement variance and 

process noise spectral density to cope with the unpredictable statistical behaviors of the 

system.  Therefore, in the following the statistical models of the Kalman filter are considered 

correct and the focus is placed on the detection and isolation of biases in the function models. 
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In order to develop the statistics for bias detection, we first define a vector consisting of 

n+1 epochs of innovations of equation (2.8) 

  v  = ( vl , vl+1 , vl+2 , ......, vl+n )T  . (2.37) 

As we know from section 2.2,  under normal conditions when the Kalman filter models are 

specified correctly and no biases are present,  the innovation sequence is a zero mean, 

Gaussian white noise sequence.  In this case, vector v has a normal distribution 

  v ~ N(0, Qv  ),  (2.38)  

where Qv  is a block-diagonal matrix since the innovations are uncorrelated from epoch to 

epoch (Teunissen and Salzmann, 1989).  However, if a bias vector b of dimension d is present 

in the functional models, the zero mean of the innovations at each epoch is no longer holds.  

Instead, the innovation sequence is biased, as known from (2.20),  by a value Sk b.  This leads 

to  

  v ~ N(∇ v, Qv  )   (2.39) 

with  ∇ v = Sv  · b ,  (2.40) 

  Sv =  ( Sl
T , Sl+1

T  , ......., Sl+n
T  )T , (2.41) 

where Sv  is a  (∑
i=l

l+n
mi  )-by-d matrix and mi  is the dimension of vi . 

Thus, the problem of detection of the bias vector b can be formulated as the testing of 

the null hypothesis Ho  against the alternative hypothesis Ha  : 

  H0 :      v ~ N(0, Qv)     versus    Ha :      v ~ N(∇ v, Qv) . (2.42) 
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The testing statistic for the above problem (2.42) is well documented in a number of 

publications (Teunissen, 1986, 1990; Rao,1973 ) and is given by 

  TG = vT Qv
-1 Sv (Sv

T Qv
-1 Sv)-1 Sv

T Qv
-1 v   . (2.43) 

Since the matrix Qv  is block diagonal, (2.43) can be further reduced to the summation form 

based on (2.37), (2.41): 

  ∑∑∑
+

=

−+

=

−−+

=

−=
n1

1i
i

1
v

T
i

n1

1i

1
i

1
v

T
i

n1

1i

T
i

1
v

T
iG )vQS()SQS()vQS(T

iii
 . (2.44) 

Under the null hypothesis Ho , TG  has a central χ2 -distribution, i.e.  

   TG   ~  χ2( d, 0 )       under Ho  , (2.45) 

while under the alternative hypothesis Ha  , TG  has a non-central χ2 -distribution, i.e. 

   TG   ~  χ2( d, λ )       under Ha  , (2.46) 

where d is the degrees of freedom which is equal to the number of biases and λ is the non-

centrality parameter which is defined by 

   ∑
+

=

−=λ
n1

1i
i

1
v

T
i

T )SQS(
i

bb  (2.47) 

The null hypothesis that there are no such biases b present in the model is accepted if TG  is 

less than the upper α-percentage point of the central χ2 -square probability distribution 

χ2( d, 0 ) , i.e. 

  Ho  is accepted  if TG  ≤ χ
2
α( d, 0 ) . (2.48) 

Otherwise, Ho  is rejected in favour of Ha , meaning that the specified bias vector b is 

statistically significant under the significance level or risk level α. 
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The test statistic of (2.44) can be sub-divided into two cases.  They are the so-called 

local model test (LMT) and global model test  (GMT) (Teunissen and Salzmann, 1989).  If 

only the current one epoch innovation is used to form the statistic (2.44), it is called a local 

test.  This corresponds to n=0 in (2.44).  Otherwise, it is a global test which means that more 

than one epoch of innovations have been included in the computation of the statistic TG .  The 

main advantage of the global test is the better detection power for systematic model bias trend 

(Teunissen and Salzmann, 1989; Lu and Lachapelle, 1990).  But we pay for it with increased 

computational complexity and time. 

In real-time data processing, once a bias vector b is detected and estimated, its effects 

on the bias-free Kalman filter results should be immediately corrected in order to prevent 

further deterioration in subsequent epochs.  This can be done by the algorithms of the two-

stage Kalman filter given in the previous subsection 2.2.2. 

2.3.2 Reliability measures in Kalman filtering 

When applying the statistical testing for certain postulated biases, we are likely to make 

two types of errors.  A Type I error is the rejection of the null hypothesis Ho  when it is true.  

The probability of making this type of error (false alarm) is the test significance level or risk 

level α.  A Type II error is the acceptance of Ho  when the alternative hypothesis  Ha  is 

actually true.  The probability of making type II errors is denoted by β, which is related to the 

non-centrality parameter λ of the alternative test distribution and the given significance level 

α.  Unfortunately, type I and type II errors can not be minimized at the same time.  They are 

related through the non-centrality parameter of the alternative test distribution.  By fixing any 

two of α, β and λ, the third one can be computed.  Generally, the larger the non-centrality 

parameter of the alternative test distribution, the smaller the probability β of type II error or the 
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larger the power  1-β of the statistical test.  In this case, we may ask a question on how large 

the non-centrality parameter λ should be in order to satisfy a pre-determined power 1-βo  of the 

statistical test associated with a significance level αo .  This readily brings us to the important 

concept of reliability in geodetic science (Baarda, 1968; Pelzer, 1988, Teunissen, 1990). 

Reliability is mainly concerned with the effects of possible biases in the model on the 

estimated results and the ability of the redundant information in the model to check against the 

model biases or misspecifications.  In Kalman filtering, the influences of fixed biases on the 

filtering results can be easily investigated by using two-stage Kalman filter equations (2.18), 

(2.19) and (2.20), while the ability to detect the individual bias in the system, which is usually 

termed internal reliability  in surveying, is measured with the quantity of minimum detectable 

bias (MDB). 

Suppose λo  is the minimum value of the non-centrality parameter which satisfies the 

given test power 1-βo  and significance level αo .  From (2.47), we immediately obtain the 

minimum detectable bias (MDB) vector bo  as: 

   ∑
+

=

−=λ
n1

1i
0i

1
v

T
i

T
00 )SQS(

i
bb

  
. (2.49)

 

For a single bias, bo  is reduced to a scale and (2.49) can be written as 

   
∑
+

=

−

λ
=

n1

1i
i

1
v

T
i

0
0

)SQS
i

b    . (2.50) 

Equation (2.50) shows that the magnitude of a single bias should at least reach bo  in order to 

be detected with the power 1-βo  in an αo  significance level test.  This property is utilized in 

the testing procedures to be described in the next subsection. 
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The minimum detectable bias vectors corresponding to the Local Model Test and the 

Global Model Test are referred to as Local MDB and Global MDB vectors respectively.  For 

multiple biases, the quadratic form (2.49) describes a hyper-ellipsoid if λo  is held to a constant 

value.  The axes of this hyper-ellipsoid are the inverses of the square roots of the eigenvalues 

of the matrix  ∑
+

=

−n1

1i
i

1
v

T
i )SQS(

i
 which has a dimension equal to the number of biases . 

A number of tables have been provided for calculation of the non-centrality parameter 

λo (Caspary,1987; Baarda,1968) .  For example, in a one-dimensional alternative hypothesis 

test (2.46) with the degrees of freedom equal to one,  λo  is equal to (4.13)2  when we set βo 

= 20% and αo  = 0.1% .  The computation of Si  and Qvi
-1 , as known from the two-stage 

Kalman filter algorithm, is independent of the actual measurements.  Hence, the MDB of a 

specified bias can be computed before the filter is actually implemented.  This makes the MDB 

a useful tool in Kalman filter design.  An efficient filter design with required reliability control 

on the postulated biases can be achieved by examining the different filter operation schemes. 

2.3.3 Testing procedures 

The test statistic (2.43) or (2.44) is aimed at detecting a specified bias vector b of 

dimension d through the sensitivity matrix Si .  In a particular application, however, we are 

usually not sure beforehand when and what kind of biases will occur in the system.  It is 

therefore necessary to establish testing statistics to detect first whether there is a failure or 

malfunctioning in the underlying filter operations or not.  This can be realized by leaving the 

bias vector b completely unspecified, that is, letting the dimension of the bias vector b equal to 

the dimension of the innovations vector v (Teunissen and Salzmann, 1989).  In this case, the 

matrix Sv  in (2.41) becomes a square invertable matrix.  Thus, it can be eliminated from the 

test statistic (2.43), which results in 
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Equation (2.51) is basically a failure or alarm test  that tells us whether there is anything 

wrong in the system or not.  If n = 0 in (2.51), i.e. only the current one epoch innovations are 

used, it is called a Local failure or Local alarm test, which has the form: 

  TG
 L-f = vvi

T Qvi
-1 vi  ~ χ2(mi, 0)  under H0  . (2.52) 

Once the failure test (2.51) or (2.52) signifies a failure present in the system, the 

diagnosis of the failure sources, i.e. bias identification or isolation process, is conducted.  For 

this purpose, an approach similar to data-snooping (Baarda,1968) is employed in this research.  

That is, each individual postulated bias source is tested separately until all the possible bias 

sources are examined.  This corresponds to the case when  the dimension of the bias vector b 

in (2.40) is chosen equal to one at each time.  Thus the test statistic (2.43) reduces to a one-

dimensional identification or slippage test (Teunissen and Salzmann, 1989): 
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   , (2.53) 

where si  is a one dimensional vector and computed by equation (2.23).  For instance, if one 

suspects sensor failures or outliers in the Kalman filter measurement model, one can chooses 

Ck  in (2.11) or (2.23) as  

  C
j
k  = ( 0, ..., 0,  1,  0, ...,  0 )T  (2.54) 

   1 j  mk 
 

for j = 1, 2, .... mk .  This means that each observation is tested in turn to search biases. 
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If n is set to zero in (2.53), i.e. only the current epoch innovations are used for bias 

identification, it is called a Local identification and has the form: 

  
tg L  =  (si

TQvi
-1vi)2

si
TQvi

-1si
   ~  χ2(1, 0)   under H0

  
.
 

(2.55) 

Research experiences (Lu and Lachapelle, 1990; Wei et al, 1990) have shown that the 

local failure test (2.52) and the local identification test (2.55) are suitable for bias detection and 

identification in differential kinematic GPS surveying, since the most common and severe 

biases are cycle slips which are multiples of the carrier wavelength (19.02 cm).  Therefore, the 

local test statistics (2.52) and (2.55) are used in the developed testing procedures. 

Unfortunately in some cases, especially in large or multiple bias situations, the 

identification test (2.55) is too sensitive and may lead to many false bias alarms, signifying 

more biases than there are actually present.  To overcome or alleviate this problem, a new step  

is introduced in the testing procedure by using the concept of minimum detectable bias (MDB).  

That is, for a bias signified by (2.55), its estimation value is compared against its 

corresponding MDB value.  If the estimated value of the bias is larger than its corresponding 

MDB value, then this bias is considered an actual bias present in the Kalman filter models, 

otherwise it is considered as a false bias alarm and eliminated from the bias vector b.  By using 

this method, only the biases with more than the detection power 1-βo  are retained and 

estimated. 

Summarizing the above discussions, we arrive at the following testing procedures as 

depicted in Figure 2.2, which can be executed in parallel with the real-time Kalman filter 

algorithm.  
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Innovation 
 sequence

Recursive
computation quantities

from the last epoch

Failure detection 
  by alarm test 
      Failure ?

yes

Bias identification

Bias confirmation by MDB 
                  and  
          re-estimation

  Adaptation or correction 
                   for  
         bias influences  
                   on  
       filtering results and  
          measurements

   Bias estimation by 
two-stage Kalman filter

no

 Biases
from the last

 epoch
yes

no

Next epoch
 

Fig. 2.2 Flowchart of the Testing Procedure for Use in Kalman Filters 
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CHAPTER 3 

KINEMATIC DIFFERENTIAL GPS POSITION AND  

VELOCITY ESTIMATION MODEL 

Generally speaking, there are two kinds of models used for combined processing of 

pseudo-range, carrier phase and Doppler frequency (phase rate) observations in precise 

kinematic differential GPS (DGPS) surveys.  One is the complementary filter  or batch-

solution  (Seeber et al, 1986; Hwang and Brown , 1990), in which one type of observable (e.g. 

pseudorange) is used for correcting the positions derived by another type of observable (e.g. 

carrier phase).  The advantage of this type of modelling is that it does not require assumptions 

on the motion behaviour of the moving platform.  However, this type of model cannot directly 

output the velocity and acceleration estimates.  The second type of model is the integrated 

filter  or state space Kalman filter model (Schwarz et al, 1989; Hwang and Brown, 1990), in 

which all available observations are processed simultaneously through a Kalman filter that 

describes the kinematic surveying system.  This type of model has been widely tested under 

different environments and has yielded very good position and velocity estimation results in 

kinematic and semi-kinematic surveying (Schwarz et al, 1989; Cannon et al, 1990; Cannon, 

1990; Cannon, 1991).  Therefore, the integrated filter or state space Kalman filter model is 

used in this research for kinematic GPS data processing. 
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3.1 SYSTEM MODELS 

In kinematic GPS surveying, if the satellite positions are considered fixed, the status of 

a moving vehicle can be described by the vehicle's position, velocity and acceleration in three-

dimensional space, through the use of kinematic motion equations in physics (Schwarz et al, 

1989).  Usually, the constant velocity  or constant acceleration  model is adopted in surveying 

practice.  The adequacy and accuracy of these models depends on the dynamics of the vehicle 

motion and the measurement update interval ∆t.  A detailed investigation and comparison of 

the model behaviours is given in Schwarz et al (1989).  Experiences in this research show that 

a one second or higher data output rate is preferred for bias detection purposes when the 

constant velocity model or the constant acceleration model is used as the system model for 

land vehicle kinematic surveying systems.  With the improvement of GPS receiver technology, 

most of the new receivers, such as,.the department's Ashtech LD-XII, have a one Hz or higher 

data output rate.  With such a short time interval between epochs, the constant velocity model 

or the constant acceleration model seems accurate enough for most of the kinematic land 

surveying tasks. 

3.1.1 Constant Velocity Model 

Using the satellite-receiver double difference observables of the GPS system as the 

update measurements, the constant velocity model describing the vehicle motion consists of 

three position states (δφ, δλ, δh) and three velocity states (δVn , δVe , δVh ).  Thus, the state 

vector x6  of the constant velocity model reads 

  x6  = ( δφ, δλ, δh, δVn , δVe , δVh  )T  , (3.1) 
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where φ is the latitude, λ the longitude, h the height, Vn  the north velocity, Ve  the east 

velocity, and Vh  the up velocity.  Here we assume that before the kinematic run begins, the 

carrier phase ambiguity parameters have been resolved correctly by some common method, 

such as antenna swapping or occupying the initial baseline for about 10~15 minutes to allow 

for a static solution.  Therefore, the ambiguity parameters are held fixed and do not appear in 

the state vector. 

The states δVn , δVe , δVh  in (3.1) can be assumed to behave as a random walk or a 

first-order Gauss-Markov process, according to the vehicle motion.  If the first-order Gauss-

Markov process is used to describe the behaviour of the three velocity states, the transition 
matrix Φx6

  of the state vector x6  has the form: 

  Φx6
(∆t)  = 







I  CD

0  T
  , (3.2) 

where all submatrices are diagonal and of dimension (3x3), which can be expressed as: 

  
C(∆t)3x3  = diag( ci  ) with  ci = 1

α i
( 1 - exp(-α i∆t ) )

 
, (3.3) 

  T(∆t)3x3  = diag( ti  ) with   ti = exp( -α i∆t ) , (3.4) 

  D3x3  = diag( 1/R, 1/R cosφ, 1 ). (3.5) 

where αi  is the inverse of the correlation time of the stochastic Markov process, ∆t is the 

update interval and R is the earth radius. 

The covariance matrix Qk  of the system process noise related to x6  can be computed 

by simple numerical integration when the spectral density matrix of the system noise Q(t) is 

specified (Gelb, 1974), i.e. 
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Qk = Φx6(τ)Q(τ)Φx6

T (τ) dτ
τ=0

∆t

  
.
 

(3.6) 

In the constant velocity model,  Q(t) usually has the form 

  Q(t) =  






0  0

0  Q2(t)   ,(3.7) 

where Q2(t)  = diag( qvn
(t) , qve

(t) , qvh
(t)  ) are spectral densities of the three velocity states. 

3.1.2 Constant Acceleration Model 

Similar to the constant velocity modelling of the vehicle motion, the constant 

acceleration model uses the position states (δφ, δλ, δh), velocity states (δVn , δVe , δVh ) and 

acceleration states (δan , δae , δah ) to describe the motion of the vehicle in 3-dimensional 

space.  This leads to the following filter state vector 

  x9  = ( δφ, δλ, δh, δVn , δVe , δVh , δan , δae , δah  )T  , (3.8) 

where the three additional acceleration states δan , δae , δah , corresponding to north, east and 

up accelerations respectively, are added.  In this model, the three acceleration states are 

considered to be driven by Gaussian noise and to behave as a random walk or a Gauss-Markov 

process depending on the vehicle dynamics.  If the first-order Gaussian-Markov process is used 

to describe the acceleration states, the transition matrix of state vector (3.8) reads 

  Φx9
(∆t)  = 







I  D∆t  FD

0  I  C
0  0  T

  , (3.9) 
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where submatrices C, T and D are defined as in (3.3), (3.4) and (3.5). The submatrix F has the 

form 

  
F(∆t)3x3  = diag( fi  ) with  fi = 1

α i
2

(exp(-α i∆t) + α i∆t - 1)
 
. (3.10) 

The covariance matrix of the system noise is computed by simple numerical integration 

  
Qk = Φx9(τ)Q(τ)Φx9

T (τ) dτ
τ=0

∆t

 
(3.11) 

with the spectral densities 

  Q(t) =  






0  0  0

0  0  0
0  0  Q3(t)

  , (3.12) 

where Q3(t)  = diag( qan
(t) ,  qae

(t) ,  qah
(t)  ) are  spectral densities of the three acceleration 

states. 

The models described above are similar to those in Schwarz et al (1989) with one 

difference.  In Schwarz et al (1989), a carrier phase cycle slip is treated as a random state and 

estimated by the augmented Kalman filter algorithm, whereas in our approach, a cycle slip 

occurring on a satellite is treated as a constant bias to be recursively estimated and corrected by 

a two-stage Kalman filter. 

3.2 OBSERVATION MODEL 

Observations are used for updating and correcting the Kalman filter states predicted by 

the system model.  Basically, the GPS system provides two fundamental observables for 

geodetic surveying purposes.  They are the code pseudo-range observable and the carrier phase 
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observable.  For most of the navigation/geodetic GPS receivers, another type of observable, the 

instantaneous phase rate (Doppler frequency) is also output for instantaneous velocity 

determination of the moving vehicle. 

The basic observation equation for raw pseudorange observations, p, is (Lachapelle, 

1990): 

  p = ρ + c(dt - dT) + dρ + dion  + dtrop + ε(p) (3.13) 

where ρ is the geometric range between the receiver antenna and a satellite, 

 c is the speed of light, 

 dt, dT are the satellite and receiver clock errors respectively, 

 dρ is the range error resulted from satellite orbital errors, 

 dion , dtrop  are the ionospheric and tropospheric corrections, respectively, 

and ε(p) is the pseudo-range measurement noise. 

The pseudorange measurements are instantaneous and unambiguous, but their high 

measurement noise level limits their use in practice for precise positioning.  The typical 

measurement noise of pseudoranges is in the order of 1 to 4 metres for C/A code and within 

the submetre level for P code.  Furthermore, pseudo-range observables are vulnerable to 

multipath influences which can often result in errors up to 20 m level in C/A code 

measurements (Lachapelle, 1990). 

The observation equation for raw carrier phase observations,Φ, is (Wells et al, 1986;  

Lachapelle, 1990) 

  Φ = ρ + c(dt - dT) +λN + dρ - dion  + dtrop  + ε(Φ) (3.14) 
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where Φ =   -λφmeasured cycles    (Φ in meters) , 

 N   is the initial carrier phase cycle ambiguity, 

 ε(Φ)  is the carrier phase measurement noise, 

and λ  is the wavelength of the carrier signal (metre). 

The main advantages of the carrier phase observable are its low measurement noise 

level (usually about 2 mm) and its low sensitivity to multipath effects (usually not exceeding 

0.25λ).  But, in order to use carrier phase observables to obtain precise and reliable kinematic 

positioning results, the initial carrier phase ambiguity N should be correctly resolved before 

kinematic data collection begins.  Also, the lock on carrier signals of the satellites should be 

maintained during data collection unless the cycle slip problem can be effectively solved by 

some methods or external sources.  A cycle slip is a discontinuity in the received carrier phase 

observations, which results in a change in the integer ambiguity N. 

Phase rate or Doppler frequency is the time derivative of the phase.  The observation 

equation of phase rate can be expressed as: 

  )(ddd)Tdtd(c tropion Φε++−ρ+−+ρ=Φ &&&&&&&&   . (3.15) 

where ( 
. ) denotes the derivative with respect to time.  The linearizd form of (3.15) in the 

geodetic coordinate system (φ, λ, h) is given by (Lu et al, 1990) 
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The above raw observables are severely affected by different error sources, such as 

orbital errors, satellite clock and receiver clock errors and atmospheric errors.  One effective 

way to eliminate or reduce these error terms is to form the differenced observables from the 

raw ones.  Differencing of simultaneous observations usually cancels the common error terms.  

In GPS data processing, the widely used differencing modes are the single difference(SD), 

double difference(DD) and triple difference(TD) (Remondi, 1984; Wells et al, 1986).  In this 

research, the (receiver-satellite) double difference (DD) observables of pseudo-range, carrier 

phase and phase rate are used as the measurement updates in the Kalman filter for kinematic 

GPS position and velocity estimation.  Thus, the observation model reads: 

  ∇∆ p = ∇∆ρ  + ∇∆ dion  + ∇∆ dtrop  + ∇∆ε (p) (3.17) 

  ∇∆Φ  = ∇∆ρ  + λ∇∆ N + ∇∆ dion  + ∇∆ dtrop  + ∇∆ε (Φ) (3.18) 

  )(dd tropion Φε∆∇+∆∇+∆∇−ρ∆∇=Φ∆∇ &&&&& . (3.19) 

where ∇∆ is the double difference operator between two stations and two satellites (Wells et 

al, 1986). 

It is noted that double difference observations cancel out the satellite clock errors and 

receiver clock errors, and reduce the orbital and atmospheric errors.  Another advantage of the 

double difference GPS observable is that the integer nature of cycle ambiguity ∇∆ N in (3.18) 
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can be exploited.  Once the integer ambiguity is resolved, it can be held fixed in kinematic 

surveys.  Unfortunately, if cycle slips occur in carrier phase observations, which is often the 

case in real kinematic surveys, the phase measurement update equation (3.18) is no longer 

valid but biased by a constant value, which in turn results in erroneous position and velocity 

estimates in the filter.  Therefore, it is necessary to have some ways to check and correct cycle 

slips in the observation model.  And this is one of the main problems to be dealt with in the 

quality control of precise kinematic GPS surveying. 
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CHAPTER 4 

RELIABILITY ANALYSIS IN KINEMATIC  

DIFFERENTIAL GPS SURVEYS 

Reliability analysis in kinematic GPS surveys includes two aspects, the minimum 

detectable bias (MDB) in the filter models and the influences of the undetectable bias on the 

filtering results.  In this Chapter, the bias influence characteristics on position and velocity 

estimation are investigated and the MDB values of some common biases in kinematic GPS 

surveys are examined.  All these analyses can be done prior to the actual survey campaign, 

based on the theoretical formulas given in Chapter 2 and the assumed surveying conditions.  

Familiarity with the bias influence behaviors and the MDB values of some common biases as 

well as their correlation with the satellite number and satellite geometry is very helpful in the 

planning stage of kinematic GPS surveying. 

4.1 BIAS INFLUENCES ON POSITION AND VELOCITY ESTIMATION IN 

KINEMATIC DIFFERENTIAL GPS SURVEYS 

This section investigates the theoretical influences of different kinds of biases on the 

position and velocity estimation by using two-stage Kalman filter formulation.  In kinematic 

GPS surveys, the most common biases in the observation (double difference) model are cycle 
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slips in carrier phases, outliers in pseudoranges and outliers in phase rates.  The likely biases 

when using the system model are the acceleration errors in the constant velocity model and the 

acceleration disturbances in the constant acceleration model.  In the following sub-sections, the 

bias influence for each kind of bias is developed.  The total influence of biases are then the 

summation  of the influences of each kind of bias, since the bias influences on Kalman filtering 

results are linear in nature.  These theoretical bias influences, based on the adopted models and 

assumed  surveying environments, lead to a better understanding of the problems and concerns 

in kinematic GPS positioning. 

In order to inter-compare the magnitude of the different bias influences on position 

states and velocity states, we define a scalar term as follows: 

Local Bias-to-Noise Ratio in states (LBNR) is the ratio between the bias ∇ xi  in a 

given Kalman state xi , caused by a bias vector b, and its standard deviation σxi  , i.e. 

LBNR = ∇ xi  / σxi  . 

In the following computations, we used a part of the trajectory of the semi-kinematic 

GPS surveying run carried out in Kananaskis Country on Julian day 222, 1990.  This part of 

the trajectory consisted of 59 epochs (4 minutes duration) and started at 494132 seconds.  Six 

satellites were available above an elevation angle of 150  in this part of trajectory.  The 

dilutions of precision for latitude, longitude and height within the adopted trajectory are given 

in Figure 4.1.  The height dilution of precision is good but relatively poorer than the latitude 

and longitude dilutions of precision.  The maximum speed of the vehicle reached 80km/h.  The 

standard deviations assumed for the pseudorange, carrier phase and phase rate observations 

were 4 m, 2 cm and 5 cm s-1 .  The output data rate was 4 seconds.  All the computations were 

done using the program package QUALIKIN described in Chapter 6 and the constant velocity 

model was employed as the system model of the Kalman filter for bias influence analysis. 
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Fig. 4.1 Dilution of Precision for Part of the Trajectory of Day 222, 1990 

(a) Influences of Cycle Slips in Carrier Phase Observations 

In double difference (receiver-satellite) carrier phase observations, cycle slips can be 

modelled as constant biases following the epoch at which they occur.  Figure 4.2 shows one 

example of the influence of carrier phase cycle slips on the estimated positions and velocities.  

Here we assume that one cycle slip 19.02 cm occurs on SV 11 starting from 494132 seconds.  

The pseudorange and phase rate observations as well as the system model are assumed bias-

free.  In Figure 4.2, ∇φ , ∇λ  and ∇ h denote the scalar errors (LBNR) in latitude, longitude and 

height respectively, caused by the assumed one cycle slip.  ∇ Vn , ∇ Ve  and ∇ Vh  are the scalar 

errors (LBNR) in north velocity, east velocity and up velocity, respectively.  Figure 4.3 shows 

another example where two satellites, instead of one, are assumed to have cycle slips. 
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 Fig. 4.2 Cycle slips influences on positions and velocities. Six satellites (SVs 
2,6,9,11,13,18 ) are available simultaneously.  SV 11 is assumed to have one 
cycle slip (19.02cm) starting from 494132 seconds.  The data interval is 4 
seconds. 
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Fig. 4.3 Cycle slip influences on positions and velocities.  Six satellites (SVs 2,6,9,11,13,18 ) 
are available simultaneously.  Two satellites (SVs 11,18) are assumed to have two 
cycles slip starting from 494132 seconds.  The data interval is 4 seconds. 
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From the above examples, we note that carrier phase cycle slips mostly affect the 

estimated positions as opposed to the estimated instantaneous velocities.  For one cycle slip 

occurring on one satellite, the maximum influence on latitude estimates, as shown in Fig. 

4.2(a), reached about 8 times their standard deviations, or about 10 cm in absolute magnitude.  

The more satellites affected by cycle slips, the more severe the influences.  The total influences 

of multiple cycle slips are the summation of the individual cycle slip infulence because of the 

linear property of the bias effects on the Kalman filtering results.  Figures 4.2 and 4.3 also 

show that the cycle slips have a permanent or long-term effect on the estimated positions.  

Their influences on the estimated positions are not constant but slowly drifting in time with the 

changing satellite geometry.  Since the time span in these examples was short (4 minutes), the 

drift effect was not very significant.  Cannon (1991) has shown one example in which the drift 

in height component reached ahout 14 cm for a one hour duration, when one cycle slip was 

introduced in the carrier phase observations.  Therefore, real-time correction and adaptation of 

the cycle slips in double difference observations are important to assure the correctness of the 

kinematic positioning results. 

(b) Influences of Outliers in Pseudorange Observations 

We define an outlier herein as an instantaneous bias that only affects the epoch at 

which it occurs.  Fig. 4.4 shows the influence of a pseudorange outlier of 20 m on SV 9 at 

494132 seconds where six satellites were in view and the vehicle was moving at a speed of 36 

km h-1 . 
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Fig. 4.4 Pseudorange outlier influences on positions and velocities.  Six satellites (SVs 
2,6,9,11,13,18) are in view simultaneously.  A single outlier of 20 m is assumed 
in the pseudorange of SV 11 at 494132 seconds.  The data interval is 4 seconds. 
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From the single outlier case shown in Fig. 4.4 and other test computations, we notice 

that the magnitude (LBNR) of the influences of pseudorange outliers on positions and 

velocities is much smaller than that due to cycle slips and practically can be neglected.  This is 

caused by the lower a priori standard deviation of pseudorange observations.  The pseudorange 

outliers mainly affect the positions as opposed to the velocities.  Furthermore, such effects are 

only limited to the current and subsequent few epochs when no bias occurs on the phase and 

phase rate measurements.  This means that the Kalman filter can reduce the outlier influence 

on the estimated states after a few epochs of measurement updates.  Here we assume that the 

system model is correct. 
 

(c) Influences of Outliers in Phase Rate Observations 

Unlike the carrier phase observation which is the accumulated cycles of the receiveed 

carrier signal, phase rate (Doppler) is an instantaneous observation that reflects the changing 

range rate from the receiver to the observed satellite.  The likely biases in phase rate 

observations are outliers present on each single measurement.  Fig. 4.5 shows the influences on 

the estimated positions and velocities for an outlier of 0.5m s-1  occurring at time 494132 in 

the phase rate observation of SV 11. 
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Fig. 4.5 Phase rate outlier influences on positions and velocities.  Six satellites (SVs 
2,6,9,11,13,18) are available simultaneously.  A single outlier of 0.5m s-1  in the 
phase rate occurs on SV 11 at 494132 seconds.  The data interval is 4 seconds. 

We note two points from Figure 4.5.  Firstly, the outlier in phase rate observations 

mainly affects the estimated velocities.  This is different from the cycle slip influences which 

mainly affect the estimated positions.  Secondly, the phase rate outlier influences on velocities 

are limited to the epoch at which the outlier occurs and the following few epochs.  The Kalman 

filter can effectively reduce the outlier influences on the filtering states after a few epochs of 

observation updates.  This is due to the nature of an outlier, which, by its definition, only 

affects one observation at a single epoch. 
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(d) Influences of the Bias in the System Kinematic Model 

Besides the biases in the observation model, biases in the system model may exist due 

to deviations between the assumed and the actual vehicle motion.  According to the Kalman 

filter algorithm, system model biases mainly affect the prediction or time propagation of the 

filter state vector xk(-) , which in turn influences the computation of the innovation sequence 

or predicted residuals.  If the measurements are correct (bias-free), then the inaccurately 

predicted states xk(-) can be corrected by the measurement updates through the Kalman gain 

matrix Kk . 

Fig. 4.6 shows one example of the system bias influences on the predicted states xk(-), 

i.e. the predicted positions and velocities.  Here we assume that within a constant velocity 

model (3.1), a single acceleration bias of 2 m s-2  occurs on the system state Vn , the main 

direction of the trajectory, for 6 consecutive epochs from time 494132 to 494152.  The data 

rate is 4 seconds.  The local bias-to-noise ratio (LBNR) in this example is defined by 

∇φ (-)/σφ(-) . 
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Fig. 4.6 System bias influences on predicted positions and velocities.  An acceleration bias of 
2 m s-2  occurs on the system state Vn  at 6 consecutive epochs from time 494132 

to 494152.  Six satellites (SVs 2,6,9,11,13,18) are available simultaneously.  The 
data interval is 4 seconds. 

From Fig. 4.6, one can see that the acceleration bias in the system model severely 

affects the corresponding predicted  states δΦk(-)  and δVn(-) .  The absolute magnitudes of 

influences reach 16 metres in latitude and 8 m s-1  in northing velocity.  These influences are 

limited to the epochs at which the system bias occurs.  The shorter the update or data rate 

interval, the smaller the magnitude of influence.  For instance, under the same conditions but at 

an update interval of 1 second, the magnitudes of influence reduce to 1 metre in latitude and 1 

m s-1  in northing velocity.  In order to limit the system bias influences on the innovation 

sequence and facilitate the detection of observation biases, a high data update rate (e.g. 1 

second or higher), is recommended. 
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4.2 MDB IN KINEMATIC DIFFERENTIAL GPS SURVEYING MODEL 

Minimum Detectable Bias (MDB) analysis is an important tool for Kalman filter 

design.  It tells us about the filter's theoretical ability to detect the concerned biases under the 

assumed surveying conditions.  Based on the formulas given in Section 2.3.1 of Chapter 2, the 

MDB values of some typical biases in the kinematic GPS position and velocity estimation 

models are investigated in this section.  These biases include the carrier phase cycle slips, 

outliers in pseudoranges and outliers in phase rate measurements. 

In all the following computations, the same trajectory from Julian Day 222, 1990 

described in Section 4.1 was used.  The non-centrality parameter for MDB computations is set 

to λo  = (4.13)2 , which corresponds to 0.1%  and 20% probabilities of Type I and Type II 

errors, respectively, in a one-dimensional hypothesis test.  Corresponding to the testing 

statistics and the testing procedure used in the bias detection and identification in kinematic 

GPS surveying, the local MDB (or the instantaneous MDB at each epoch) for a single  bias 

case is of great importance, which, from equation (2.50), is given by 

  
b0 i = λ0

 Si
T Qvi

-1 Si   
,
 

(4.1)
 

where i is the index for epochs.  Here we define the single  bias case as the case where no 

biases other than the specified one are presented in the processing models.  The relationship 

between the local MDB values and the satellite geometry is also examined. 
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(a) MDB for Carrier Phase Cycle Slips 

Cycle slips are common biases occurring during carrier phase measurements.  They can 

be treated as constant biases in the receiver-satellite double difference observables if the initial 

carrier phase ambiguities are resolved and held fixed during the kinematic survey. 

Fig. 4.7 shows the improvements in minimum detectable bias values at each epoch in 

double difference carrier phase observations of SV 02 with different satellite coverages.  Fig. 

4.8 shows the corresponding GDOP values of different satellite coverages.  The four, five and 

six satellite coverages used for comparisons are (SVs 6, 2, 9, 11), (SVs 6, 2, 9, 11, 13) and 

(SVs 6, 2, 9, 11, 13, 18).  Here we assume that only the concerned biases, i.e. cycle slips, are 

presented in the observations and the system model is errorless. 
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Fig. 4.7 Local MDB Improvement in Double Difference Carrier Phase Observations on SV 

02 with the Different Satellite Coverages. 
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 Fig. 4.8 GDOP improvements with the different satellite coverages 

Figures 4.7 and 4.8 show that the MDB values at each epoch in the double difference 

carrier phase observations of SV 02 with the 4 satellite coverage, where the GDOP values 

reach approximately 10, are about 1 metre (i.e. 5 cycles of L1 frequency).  With the 5 and 6 

satellite coverages, where the GDOP values are around 3.2, the corresponding MDB values 

drop to about 0.1 metre (i.e. 0.5 cycle of L1 frequency).  These MDB values reflect the best or 

theoretical values that the statistical testing can detect with a given testing power for a single 

bias present in the carrier phase observations, under the assumed surveying conditions.  

Comparing Fig. 4.7 with Fig. 4.8, we can see a correlation exists between the local (or 

instantaneous) MDB value and the satellite geometry.  The stronger the geometry, the better 

the ability to detect a bias in the carrier phase observations.  For reliable cycle slip detection on 

any individual satellite, GDOP ≤ 4 or coverage with five or more satellites is recommended. 

 

(b) MDB for Outliers in Phase Rate Observations 

An outlier can be modelled as an instantaneous bias appearing at a specific epoch.  

Outliers in phase rate measurements mainly affect the instantaneous velocity estimation.  Fig. 

4.9  shows the improvements in the minimum detectable outlier at each epoch in double 
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difference phase rate observations of SV 02 with the different satellite coverages.  The GDOP 

values corresponding to each satellite coverage are the same as those shown in Fig. 4.8. 
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Fig. 4.9 Local MDB Improvements in Double Difference Phase Rate Observations on SV 02 

with the Different Satellite Coverages. 

It is noted that in the 4 satellite coverage, the minimum detectable outlier on SV 02 in 

phase rate observations at each epoch is about 0.5 m s-1 .  If the available satellites increase to 

5 or 6, the corresponding MDB values at each epoch for a single phase rate outlier drop to 0.3 

m s-1   This also means that the stronger the geometry, the better the detectability for phase 

rate outliers on each satellite. 

(c) MDB for Outliers in Pseudorange observations 

Pseudorange outlier detection is one of the main concerns of GPS integrity monitoring.  

Using the reliability analysis method given in this research, the minimum detectable 

pseudorange outlier can be easily obtained.  The following example shows the local MDB 

value at each epoch for the single outlier case in the pseudoranges of SV 02. 
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Fig. 4.10 Local MDB Improvements in Double Difference Pseudorange Observations on 

SV 02 with the Different Satellite Coverages. 

Fig. 4.10 indicates that the minimum detectable pseudorange outlier at each epoch on 

SV 02 is about 18 m with the given testing parameters in the estimation filter.  This means that 

if a single outlier occurs in the pseudoranges on SV 02, it can be detected with 80% probability 

only when this outlier is larger than 18 m.  This value is approximately 4.5 times the 

pseudorange standard deviation.  Furthermore, the MDB values does not improve much with 

the increase in the number of satellites.  This is due to the much lower precision of the 

pseudoranges as compared to those of the carrier phase and phase rate observations in the 

filter. 

The MDBs of the system biases can also be investigated as above.  The numerical 

results are not given here.  Generally, the minimum detectable acceleration bias in the constant 

velocity model, based on the trajectory and parameters given in Section 4.1, is about 2 m s-2 . 

Summarizing the discussions in this Chapter, we conclude that reliability analysis is a 

useful tool in Kalman filter design.  It is able to provide us some insights about the bias 

influence characteristics and the minimum detectable bias values for the concerned biases in 

the designed filters.  Thus, a reliable filter operation scheme and a better understanding of the 

estimated results can be achieved. 
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CHAPTER 5 

CARRIER PHASE AMBIGUITY INITIALIZATION FOR  

DIFFERENTIAL KINEMATIC GPS SURVEYING 

In order to obtain cm-level accuracy with differential kinematic GPS positioning, the 

carrier phase ambiguities ∇∆Ν in the measurement update eqn. (3.18) have to be resolved over 

the initial baseline before the vehicle goes into the kinematic mode and phase lock should be 

maintained on a minimum number of satellites thereafter (e.g. 4 satellites in a good geometry).  

However, during the period of kinematic GPS surveys, cycle slips on all or most of the 

available satellites may occur due to carrier signal obstruction by objects or other tracking 

problems.  In such a situation, the initially resolved carrier phase ambiguities ∇∆ N of all the 

corresponding satellites, which are held fixed in equation (3.18), will change by an arbitrary 

integer number of cycles.  Therefore, the new carrier phase ambiguities ∇∆ N of all or most of 

the satellites have to be resolved again or re-initialized during the kinematic surveying mode in 

order to maintain the cm-level positioning accuracy.  This is a really difficult task that has not 

yet been fully solved.  In this chapter, existing methods that have been currently used for 

carrier phase initialization in differential kinematic and semi-kinematic GPS data processing 

are discussed. 
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5.1 PHASE AMBIGUITY INITIALIZATION IN STATIC MODE 

Carrier phase ambiguity initialization in static mode may be carried out at the 

beginning of a kinematic or semi-kinematic GPS surveying session to obtain the initial double 

difference phase ambiguities of each satellite.  Once the initial phase ambiguities are resolved, 

they are held fixed and used as constant corrections to the carrier phase observables in the 

subsequent kinematic or semi-kinematic survey unless the ambiguities are affected by cycle 

slips.  Currently, there are several ways used for the carrier phase initial ambiguity resolution 

in a kinematic or semi-kinematic survey.  Among them are (1) surveying over a known 

baseline that has sufficient accuracy, (2) performing an antenna swapping manoeuvre 

(Hofmann-Wellenhof and Remondi, 1988), (3) occupying an initial unknown baseline 

sufficiently long to allow for a static solution of the initial baseline vector and the carrier phase 

ambiguities and (4) searching by the ambiguity function method (Remondi, 1990; Mader, 

1990).  All of these methods require that the initial baseline be relatively short to limit the 

orbital and atmospheric effects on the double difference observables.  The fourth method, i.e. 

the. ambiguity function method, can also be used in the phase ambiguity initialization in 

kinematic mode and therefore is discussed in the next section. 

Surveying over a known  initial baseline is the simplest method for initial phase 

ambiguity resolution.  In this case, the initial baseline vector is held fixed and only the 

unknown ambiguity parameters ∇∆ N are solved for by using the collected static differential 

GPS phase data.  The application of this method in practice, however, may be limited because 

we may not always have a known baseline available in the surveying area. 

Antenna swapping is a time saving phase initialization method that does not require the 

a priori knowledge of the initial baseline.  This method is well described in Hofmann-

Wellenhof and Remondi (1988).  Suppose that a pair of GPS receivers are placed at the two 
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ends of an initial baseline. After collecting GPS data for a few epochs, the two GPS receiver 

antennas are then swapped or exchanged and a few more epochs of observations are collected.  

During the process of antenna exchange and data collection, phase lock on at least 4 GPS 

satellites should be maintained.  The effect of the swap is to produce a reversal of the satellite-

receiver geometry while keeping the initial carrier phase ambiguities unchanged.  By utilizing 

the information of the geometry change embodied in the data collected before and after  

antenna swapping, the initial baseline vector can be determined and hence the initial carrier 

phase ambiguities can be resolved.  From the antenna swap procedures described above, we 

may note that the length of the initial baseline should be no more than a few metres in order to 

make the antenna swap easy and practical. 

Occupying an initial baseline for a period sufficiently long to allow for a static batch 

least squares solution of the baseline vector and the initial phase ambiguities is the most widely 

used method for phase ambiguity initialization at the beginning of a kinematic or semi-

kinematic GPS survey.  This method can be applied to a baseline up to a few kilometres in 

length and also does not require the prior knowledge of the baseline except that one point of 

the baseline is held fixed and used as a master station for differential data processing.  But we 

pay for these advantages with a sufficiently long  static occupation time on the baseline, which 

is to allow for the satellites to "move appreciably" in order to accumulate sufficient geometry 

information for baseline vector and phase ambiguity determination.  The required occupation 

time mainly depends on the satellite geometry and the carrier phase measurement noise, 

provided the atmospheric (ionospheric and tropospheric) effects can be neglected.  In the field 

tests of this research with Ashtech LD-XII GPS receivers, 8 minutes of continuously static 

tracking data (4 second data rate) seemed sufficient to resolve the initial baseline vector and 

the initial phase ambiguities over a baseline less than 1 kilometre in length, when five or more 

satellites were available simultaneously with a GDOP value ≤ 3.5.  For reliable ambiguity 
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resolution for baselines up to a few kilometres in length, 10-30 minutes of static occupation is 

usually required. 

5.2 PHASE AMBIGUITY INITIALIZATION IN KINEMATIC MODE 

When cycle slips are detected or present on all or most of the available satellites in 

kinematic mode and when the testing procedure together with the Kalman filter cannot resolve 

the correct integer ambiguities, some other carrier phase ambiguity initialization methods are 

then needed.  Currently, there are several techniques used for the ambiguity resolution in 

kinematic GPS surveying or the "on the fly" ambiguity resolution.  Among them are the 

extrawide-laning technique (Wubbena, 1989), the least squares ambiguity search technique 

(Hatch, 1990)  and  the  ambiguity  function  method  (Counselman et al 1981; Remondi, 1984; 

Mader, 1990).  Each of them has its own advantages and limitations.  The extrawide-laning can 

be performed very quickly on individual satellites but it requires dual-frequency P-code GPS 

measurements.  The least squares ambiguity search technique is a little faster computationally 

than the ambiguity function method (Hatch, 1990), but its theoretical foundation is not clear at 

this time and still under development.  It requires more than 7 GPS satellites in view 

simultaneously for instantaneous ambiguity resolution.  The ambiguity function method, on the 

other hand, is more involved computationally but has a good theoretical foundation and can be 

used in static  mode or kinematic  mode with multiple epochs of observations.  For 

instantaneous ambiguity resolution in kinematic mode, it also requires 7 to 8 visible satellites 

(Mader, 1990).  In this research, the ambiguity function method is tested and employed as an 

optional method for carrier phase ambiguity initialization in kinematic mode as well as in static 

mode. 
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5.2.1 Ambiguity Function Method (AFM) 

The ambiguity function was first introduced by Counselman and Gourevitch (1981) and 

later by Remondi (1984) for static GPS carrier phase data processing.  Its application in 

kinematic GPS surveying was recently discussed and tested by Mader (1990).  Simply, the 

ambiguity function can be written as: 

  ∑
−
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where K is the number of observation epochs, N the number of satellites at each epoch, |⋅|  is 

 the norm operator, eiθ   is the complex vector or phasor defined by eiθ =cosθ+i sinθ, 

∇∆Φ j (xo, yo, zo)obs   is the observed  double  difference observation in cycles at the correct 

position (xo , yo , zo ) and ∇∆Φ j (x, y, z)comp  is the corresponding computed  double 

difference observation in cycles at the trial position (x,y,z). 

An important characteristic of the phasor within the ambiguity function is that it is 

invariant   under integer cycle changes (full revolutions), i.e.  ei(θ + 2π n)  = eiθ  . Therefore, 

the initial integer ambiguities and (static data) cycle slips in the double difference carrier phase 

observations will have no influence on the value of the ambiguity function.  The magnitude of 

the ambiguity function is then solely determined by the fraction of cycles. This is why the 

ambiguity function can be used for resolving the baseline vector and the ambiguities based on 

the ambiguous carrier phase data. 

Apparently, if the trial position (x,y,z) equals the correct position (xo ,yo ,zo ) and if we 

further assume the observed and computed observations are error-free (which is not realistic but 

makes the illustration simple), the observed double difference observation ∇∆Φ j (xo, yo, zo)obs  of 

each satellite will exactly equal its  corresponding computed  double  difference  observation  
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∇∆Φ j (x, y, z)comp  upon a difference of a constant integer of cycles that have no influence on the 

value of the ambiguity function or phasors.  Under such a situation, the ambiguity function (5.1) will 

reach its maximum value of N-1 (i.e. A(xo ,yo ,zo ) = N-1) for a single epoch of observations with N 

observed satellites because in this case each phasor in (5.1) is identical, having the form ei0 = 1.  For 

other trial positions (x,y,z) ≠ (xo,yo,zo), A(x,y,z) < N-1.  If the observation errors or other kinds of 

errors are taken into account, the maximum value of the ambiguity function at (xo,yo,zo) will be a 

little smaller than N-1, i.e. A(xo,yo,zo) ≈ N-1.  Unfortunately, in the neighborhood around the 

correct position there may be some other trial positions at which the ambiguity function reaches a 

relative maxima.  For example, a single phasor ))z,y,x()z,y,x((2i comp
j

obs000
j

e ∆Φ∇−∆Φ∇π may have 

the same value at the correct position (xo,yo,zo) as it has at all other positions where the difference 

in the calculated distance between the jth satellite and the base satellite used in the double 

differencing changes by an integer number of wavelengths.  To overcome this problem, the phase 

observations from different satellites, different epochs and even different carrier frequencies are 

combined together to compute the value of the ambiguity function at a certain trial position.  When 

enough measurements from different satellites and epochs are combined, all the relative maximas 

will be suppressed except the one at the correct position (xo,yo,zo). 

According to the above explanations, the ambiguity function method works as follows.  

Select a volume of space around the approximate estimate of the correct point.  For example, 

the volume could be a cube with 2 metre sides or 1 metre sides depending on the accuracy of 

the approximate estimate of the position.  The defined search cube must include the correct 

position or the technique will fail.  This cube is then divided into a grid of points separated in 

all directions by 0.1 to 0.25 cycles of L1 frequency.  At each trial point or grid point, the value 

of the ambiguity function is computed for all the measurements included in the computation.  

Note that each measurement could increment the value of the ambiguity function by at most 

unity.  If at a trial point the contribution of one of the measurements is less than a 
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predetermined minimally acceptable value, e.g. 0.7, then this trial position cannot be the 

correct position and the next trial position is tested.  The trial position at which the ambiguity 

function obtains the maximum value will almost certainly be the correct position if enough 

measurements are included in the computation.  Mader (1990) has shown that for reliable 

instantaneous phase ambiguity resolution by using only one epoch of observations, 

simultaneous measurements from 7 to 8 satellites should be available in order to suppress all 

the false maximas of the ambiguity function.  Once the correct position is obtained, the carrier 

phase ambiguities can then be calculated by using the corresponding measured carrier phase 

observations. 

The determination of the search volume or the initial estimate of the correct position is 

important for the successful application of the ambiguity function method.  Since the 

computation time impractically increases with the increase of the search volume, the initial 

estimate of the correct position should be as accurate as possible.  In the static mode, the initial 

estimate of the position can be calculated by triple difference or double difference (floating 

ambiguity) least squares method based on the available phase observations.  The obtained 

accuracy may be well below the 1 metre level for short baselines (Remondi, 1990).  If the 

receiver is in motion, the approximate position at a kinematic epoch can be provided by the 

filter running with floating carrier phase ambiguities based on the updates of measured pseudo-

ranges and carrier phase observations.  A more accurate estimate (below 1.5 m at 1σ) is 

achievable when the phase-filtered pseudorange model or sequentially adjusted phase and 

pseudo-range model is used to compute the kinematic positions (Cannon, 1987). 
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5.2.2 Results of Phase Initialization by Ambiguity Function 

Semi-kinematic data sets collected over a well-established traverse in the Kananaskis 

region near Calgary (e.g. Cannon et al, 1990) were used to test the ambiguity function method 

for carrier phase ambiguity initialization.  The detailed description of the field tests are given 

in Chapter 6.  The first field test was carried out on Day 222, 1990 and the second on Day 121, 

1991. 

In the data set of Day 121, 1991, there were 10 data gaps within the initial 8 minute 

static positioning session over the initial short baseline (32 metres).  This was due to receiver 

malfunctioning at the master station.  These data gaps caused discontinuities or cycle slips in 

the carrier phase observations of all the available satellites.  Because there were too many cycle 

slips in the short observation span, the static batch least squares method was unable to resolve 

the correct initial double difference integer ambiguities.  In this case, the ambiguity function 

method was chosen for the initial ambiguity determination since this method is not affected by 

cycle slips.  Because only five satellites were visible and only L1 carrier frequency data was 

collected, 5 epochs of observations evenly distributed among the initial 8 minutes of static 

positioning data were used in the computation of the ambiguity function.  The one metre cube 

around the initial position was searched with a grid step of 0.1 cycles of the L1 wavelength.  

This resulted in 125,000 trial positions to be tested.  The computation time was surprisingly 

long.  It took 1233 seconds or 21 minutes on a 386 micro-computer with 33 MHz clock speed 

and a 387 math-coprocessor.  The resolved ∇∆  carrier phase ambiguities over the initial 

baseline are given in Table 5.1.  When the search volume was decreased to a 0.5 metre cube, 

which brought 15625 trial positions to be tested, the corresponding computation time then 

dropped to only 154 seconds or 2.5 minutes. 
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SV No. ( Base sat. SV 11)
Resolved phase ambiguities (L1 cycles)

SV 02 738688.9269

SV 16 1001841.9916
SV 18 1108864.9352
SV 19 1064656.9996

 

Table 5.1 Resolved Initial Phase Ambiguities by the Ambiguity Function Method Using 5 
Epochs of Observations from the Data Set on Day 121, 1991. 

It can be seen that the estimated phase ambiguities in Table 5.1 are very close to 

integers.  By rounding them to their nearest integers, we then attain the correct integer carrier 

phase ambiguities which are held fixed in the following kinematic GPS positioning unless they 

are affected by cycle slips. 

The ambiguity function method can also be used for the carrier phase ambiguity 

initialization in the kinematic mode.  For reliable instantaneous phase ambiguity resolution, 

simultaneous observations from 7 to 8 satellites at a single epoch should be available and 

included in the computation of the ambiguity function in order to suppress all the false 

maximum peaks of the function.  Table 5.2 shows one example of phase ambiguity 

determination in kinematic mode.  One epoch of L1 observations at 494792 seconds from the 

data set of Day 222, 1990 was used, where 7 satellites were available simultaneously with a 

GDOP value around 3.  The vehicle was moving at a speed of 60 km/h.  The distance between 

the roving and the master receivers was 1.7 km.  The searching was carried out within a one 

metre cube around the approximate position of the roving receiver with a grid step 0.1 cycle 

(0.02 m ).  This also brought 125,000 trial positions to be tested.  However, when compared 

with the first example where five epochs of observations were combined, the computation time 
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was dramatically decreased in this single epoch search.  It only took 154 seconds or 2.5 

minutes on a 386 micro-computer with 33 MHz clock speed and a 387 math-coprocessor. 
 

SV No. ( Base sat. SV 06)
Resolved phase ambiguities (L1 cycles)

SV 02
SV 12
SV 09
SV 11
SV 13
SV 18

- 596929.9804
411736.9784
662742.9918

- 541409.9890

116458.9419

- 398648.9204
 

Table 5.2 Resolved Phase Ambiguities by the Ambiguity Function Method in Kinematic 
Mode Using One Epoch of Observations on Day 222, 1990 

The correct carrier phase integer ambiguities at this kinematic epoch were then 

obtained by rounding the estimated phase ambiguities in Table 5.2 to their nearest integers.  

Since no cycle slips occurred from the beginning to the present epoch (494792 seconds), the 

ambiguities obtained by the ambiguity function method were the same as the initial phase 

ambiguities resolved by the static batch least squares method at the beginning. 

If less than 7 or 8 satellites are available simultaneously at a single epoch, multiple 

epochs of measurements from the moving receiver can be used together in the ambiguity 

function computation to suppress the false maximas.  In this case, the change in observed 

phase between the epochs selected will be used to calculate the change in position of the 

moving receiver.  These position changes will then be used for each position in the search 

volume at the first epoch to predict the position to be used for the ambiguity function 
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computation at the second and any subsequent epochs.  Unlike the static case, no cycle slips 

are allowed between these kinematic epochs. 

Table 5.3 shows one example where two epochs of measurements from kinematic 

mode were used in the computation of the ambiguity function to search the phase ambiguities.  

In the field test on Day 121, 1991, only five satellites were in view at the beginning of the 

session.  This made the instantaneous phase ambiguity search by ambiguity function method 

unreliable due to the few measurements available at a single epoch.  Therefore, observations 

from two epochs (330453 seconds and 330473 seconds) were combined in the computation of 

the ambiguity function.  The distance between these two kinematic epochs was 251 metres.  

The search volume was a one metre cube with a grid of 0.02 m, which resulted in 125,000 trial 

positions. The computation time was 1326 seconds or 22 minutes.  When the search volume 

was decreased to a 0.5 metre cube, the computation time was reduced dramatically to 165 

seconds or 2.7 minutes. 

SV No. ( Base sat. SV 11)
Resolved phase ambiguities (L1 cycles)

SV 02 738688.9997

SV 16 1001841.9943
SV 18 1108864.9872
SV 19 1064657.0003

 

Table 5.3 Resolved Phase Ambiguities by the Ambiguity Function Method in Kinematic 
Mode Using Two Epochs of Observations on Day 121, 1991 

It can be seen that after rounding the ambiguities in Table 5.3 to their nearest integers, 

they are equal to the results given in Table 5.1.  Since no cycle slips were found from the 

beginning of the kinematic mode to the present epochs, the carrier phase ambiguities should 
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remain unchanged.  This is another proof that we have resolved the correct initial phase 

ambiguities in this surveying session. 

From the above examples and test computations, we may conclude that the ambiguity 

function method is an accurate method for resolving carrier phase ambiguities, but the long 

computation time prohibits the use of this method in real-time applications.  The computation 

time is mainly affected by two factors, the size of the search volume and the number of 

measurement epochs used in the function computation.  In kinematic GPS surveys, it is 

difficult to obtain a search volume that is smaller than a one metre cube when cycle slips occur 

on all or most of the available satellites.  If a large search volume has to be used at the 

beginning of the computations, we may first carry out the searching with a coarse grid (e.g., 

0.25λ ~ 0.5λ spacing step) over the volume.  Once a more accurate approximate position is 

obtained and thus a smaller search volume can be defined, a second search with a fine grid 

(e.g., 0.1λ spacing) can be conducted.  Using this method, the computation time can be greatly 

reduced (Remondi, 1984).  The number of measurement epochs used in the ambiguity function 

computations is another factor affecting the computation time.  From a computational point of 

view, the single epoch case takes the least computing time, but 7 to 8 satellites in view 

simultaneously are needed for reliable phase ambiguity resolution.  When the full 24 GPS 

satellites are in orbit by 1993, this requirement will be met at about 80% of the time each day.  

With the current available computing facilities, it seems that the ambiguity function method 

can only be used in the post kinematic GPS data processing stage. 
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CHAPTER 6 

TESTING AND RESULTS 

The computer program QUALIKIN has been developed by the author as part of this 

thesis.  This program can perform the described reliability analysis, statistical testing and 

adaptation methods along with kinematic differential GPS position and velocity estimation.  

The implementation and structure of the program is first presented in this chapter.  Its 

applicability for field data processing is then tested using the data collected over the traverse in 

Kananaskis Country with two Ashtech L-XII GPS receivers.  The suitability as well as the 

limitations of the proposed testing and adaptation procedures for bias detection and correction 

in kinematic GPS surveying are also investigated in this chapter. 

6.1 DESCRIPTION OF THE PROGRAM QUALIKIN 

Based on the theories and algorithms given in the previous chapters, the post-mission 

program QUALIKIN for QUALIty control analysis in KINematic GPS positioning has been 

developed.  It runs on a micro-PC 386 computer and needs about 400K RAM.  Most of the 

program was written in FORTRAN 77.  The decoding and pre-processing segments were 

written in C-Languge.  The whole program package consists of about 8000 code lines 

including the explanations and can be divided into two parts, the pre-processor and the main 
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processor.  The function of the pre-processor is to decode the raw GPS binary data and create 

the standard input observation and ephemeris files required by the main processor.  The main 

processor then processes the GPS data and outputs the desired quantities, such as the vehicle's 

position and velocity and the detected bias values.  Generally speaking, the pre-processor is 

receiver-dependent.  Different kinds of receivers need different pre-processors due to the 

different raw data structures coded in the receivers.  The main processor, on the other hand, 

can process the data collected by different kinds of receivers as long as the pre-processor 

provides the observation and ephemeris data files with the required standard input formats of 

the main processor.  Fig. 6.1 shows the flowchart of the main processor of the program 

QUALIKIN. 

In addition to performing the reliability analysis, statistical testing and bias adaptation 

in kinematic GPS surveying, QUALIKIN can also process various kinds of differential GPS 

positioning data, such as static positioning data, semi-kinematic positioning data and kinematic 

positioning data.  The batch least squares approach is utilized to process the static GPS data, 

while the Kalman filter given in Chapter 3, along with the statistical testing and adaptation 

procedures, is employed to process the kinematic GPS data.  The mathematical correlations 

among the double difference observations are taken into account both in the batch least squares 

and in the Kalman filter measurement updates.  The initial carrier phase ambiguities can be 

resolved in this program by any one of the following techniques: (1) surveying over a known 

baseline, (2) occupying an unknown initial baseline for 10-15 minutes to allow for a static 

solution , or (3) searching by the ambiguity function method. 
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Fig. 6.1     Flowchart of the main processor of the program QUALIKIN
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64

In the statistical testing and bias estimation and adaptation modules, only the statistics 

for testing observation biases, such as cycle slips in carrier phase, outliers in pseudorange and 

outliers in the phase rate measurement, are implemented in this program system because for 

most of the kinematic GPS surveying tasks, the constant velocity or constant acceleration 

model seems adequate with high data rate (≥ 1 Hz) GPS receivers now available.  The testing 

procedures coded in these modules are already given in Fig. 2.2 of Chapter 2.  If biases in the 

GPS observations are detected and identified, the bias estimation and adaptation steps are then 

carried out.  If a loss of lock on all satellites occurs or cycle slips are found on most of the 

available satellites and the filter itself cannot resolve the correct phase ambiguities, an 

ambiguity search by ambiguity function method (AFM) is then invoked within the program. 

A final remark should be made about the detection and estimation of carrier phase 

cycle slips in kinematic GPS observations.  Generally speaking, a cycle slip may occur under 

two situations:  (i) a cycle slip between two consecutive epochs, which does not result in a lost 

measurement to that satellite (i.e. relock again before the second epoch); and (ii) a cycle slip 

between measurement gaps, which means that we lose track (no measurements) on a satellite 

for several epochs and resume track again afterwards.  For the first situation, we have to first 

detect and then estimate the cycle slips.  But for the second situation, the detection step is not 

necessary because we are almost sure that a gap in the collected data set suggests a cycle slip 

has occurred on the corresponding satellite.  In this case, only the estimation step for cycle 

slips (or new phase ambiguity) is needed upon relocking on the satellite.  Once the cycle slip or 

the new ambiguity is estimated and resolved, its correctness, or its internal consistency with 

other observations, is tested by the given statistics in the following epochs. 

6.2 DESCRIPTION OF THE FIELD TESTS 
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The University of Calgary traverse located along Highway 40 in the Kananaskis region 

was used to test the testing procedures and the program.  Eight control points, about 1 km apart 

within this traverse, had been previously established with a relative accuracy 2-5 cm using 

static differential GPS techniques (Cannon et al, 1990).  Offset points from the known traverse 

points were also established on both sides of the Highway to provide easy access for a vehicle.  

The sketch of the offset points is shown in Fig. 6.2.  These known control points were utilized 

for comparison with the positioning results obtained by the program QUALIKIN. 

Banff

Calgary

Kananaskis centre

16AW
16AE

16BW

17W

17AW

17BW

17CW

17DW

    N

Trans-Canada Hwy

Hwy 40

Fig. 6.2   Sketch of the Test  Traverse Control Points  

Field tests were carried out on Day 222, summer 1990 and Day 121, spring 1991 in 

differential semi-kinematic  (stop/go) surveying mode.  Two Ashtech LD-XII receivers, owned 

by the Department of Surveying Engineering, were used to collect data.  These up-to-date 

receivers have 12 tracking channels and a maximum of 2 Hz data rate.  Therefore, all-in-view 

GPS satellites could be tracked simultaneously.  During the tests, the initial baseline, which is 

about 30 m long from point 16AW (as master station) to 16AE, was first occupied for about 10 

minutes to allow for the baseline vector and carrier phase ambiguity resolution.  The antenna 
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of the moving receiver was then hand carried from the starting control point, mounted on the 

car roof and driven to the next control point.  On arrival at the next control point, the antenna 

was moved from the car roof onto the control point performing 2-3 minute static positioning.  

This procedure was repeated until all the control points were visited.  When the vehicle 

travelled from one point to another point, the receiver kept on tracking the satellites and 

collecting the data so that the vehicle's position and velocity in kinematic mode could be 

determined.  In both tests, the maximum vehicle speed reached about 80 km h-1 .  On Day 222, 

1990, L1 data were collected at a 4 second interval, while on Day 121,1991, the data logging 

interval was changed to 1 second.  The detailed observation information of these field tests is 

given in Table 6.1. 

Day

  222 
(1990)

  121 
(1991)

Data Rate

4 sec.

1 sec.

Satellites Observed

SVs  2, 6, 9, 11, 12, 
        13, 18 

Duration  
 of Test

62 min.

48 min.SVs  2, 6, 11, 16, 18, 
        19

Table  6.1    Observation Information for the Semi-Kinematic Tests

Dilution of Precision

HDOP VDOP

2.46~1.60

2.25~2.87

1.35~1.01

1.42~1.45

 

6.3 POSITIONING RESULTS 

The differential GPS data sets collected in the field tests were processed using the 

developed program system QUALIKIN with the statistical testing functions performed.  The 

differences between the obtained coordinates of the control points and the known ground truth 

provide a first check and evaluation of the proposed processing techniques and the written 

program.  The independent assessment of the kinematic positioning results between the control 

points is however impossible in this case, since no other kinematic positioning systems with 
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compatible accuracy could be used during the tests.  But in order to provide some kind of 

check and comparison for the kinematic positioning results obtained by QUALIKIN with the 

statistical testing method performed, the same data sets were processed using the program 

KINSRVY which comes with the Ashtech GPPS suite of programs.  The outputs of the 

kinematic positioning results from both QUALIKIN and KINSRVY were compared to give an 

internal performance evaluation of the developed program and the testing algorithms as done 

previously between SEMIKIN and KINSRVY (Cannon et al , 1990). 

6.3.1 Day 222 Results 

The data set collected on Day 222, 1990 was considered very good. The average HDOP 

and VDOP values were about 1.35 and 2.5, respectively.  Up to 7 satellites were in view most 

of the time during the session.  The double difference initial phase ambiguities were correctly 

resolved by batch least squares method using the 10 minute static data over the initial baseline 

which was held unfixed.  SV 06 was chosen as the base satellite for double differencing.  The 

constant acceleration model was adopted as the system model in the kinematic data processing 

with the spectral densities 0.05 m2  s-5  for all three acceleration states (δan , δae , δah ).  Fig. 

6.3 shows the agreement at the control points. 
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  Fig. 6.3 Position Differences with the Control Points for Day 222 

Differences with the known control points were generally less than 5 cm except in 

height on two points, 17W and 17DW.  The root mean squares (rms) computed using the 

differences with the known control points were 2.82 cm in latitude, 3.44 cm in longitude and 

6.73 cm in height. 

The accuracy of kinematic position and velocity estimation could not be checked 

independently due to the lack of extra positioning systems in this project.  The internal 

accuracy output from the Kalman filter were good.  The standard deviations were about 1.5 cm 

in latitude, 1.2 cm in longitude and 3.6 cm in height.  For velocity estimation, the standard 

deviations were about 5 cm s-1  in northing, 4 cm s-1  in easting and 11 cm s-1  in up direction.  

The comparison of the kinematic positions obtained by QUALIKIN and KINSRVY at each 

epoch is plotted in Fig. 6.4.  The agreement of the results is within 7 cm in all three 

dimensions, which is the same level as between KINSRVY and SEMIKIN (Cannon et al, 

1990). 
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For statistical testing, only two outliers in pseudorange observations were detected and 

estimated.  One outlier was 23.60 m on SV 02 at 493976 seconds.  The other was 25.34 m on 

SV 12 at 495796 seconds.  Since the MDB value for pseudoranges was about 18 metres in this 

surveying session, only the outliers or multipath effects that were larger than 18 metres on 

pseudoranges could be detected as biases.  In this data set, SV 02 and SV 12 did have 

numerous phase losses (data gaps) due to the lower satellite elevation and forest shadow.  But 

their new phase ambiguities upon relock of the satellites were resolved correctly in the 

program using the redundant satellites.  No other cycle slips in the carrier phases were found. 
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Fig. 6.4 Differences Between QUALIKIN and Ashtech KINSRVY for Kinematic Results of 
Day 222, 1990 

6.3.2 Day 121 Results 

There were 12 occasions in the data set collected on day 121, 1991 that all satellites 

simultaneously lost phase lock for 5 to 15 seconds due to receiver malfunctioning at the master 

station.  This made the data processing very difficult.  As described in Chapter 5, the initial 

carrier phase ambiguities were resolved by ambiguity function method (AFM), since there 

were 10 data gaps within the initial 8 minutes of static positioning.  During the following 

kinematic and semi-kinematic data processing, the ambiguity re-initialization by AFM was 

performed twice at control points 16BW and 17CW due to the occurrences of phase losses on 

all the satellites.  Since the data rate was 1 second, the constant velocity model was used as the 

system model in the kinematic data processing with the spectral densities 0.2 m2  s-3 , 0.2 m2  

s-3  and 0.1 m2  s-3  for three velocity states δVn , δVe  and δVh  respectively.  Fig. 6.5 shows 

the agreement at the control points. 
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  Fig. 6.5 Position Differences with the Control Points for Day 121 

It can be seen that the differences with the known control points are generally within 5 

cm except in the height component.  The rms are 3.1 cm in latitude, 3.6 cm in longitude and 

7.4 cm in height.  The results from these two field tests provided a good check of the 

positioning repeatability of the suggested processing method and the GPS system. 

In this data set, one outlier in pseudorange observations was found at 332227 seconds 

on SV 18 with the bias value 21.3 metres.  No other cycle slips were found other than the data 

gaps in the carrier phase observations.  The internal accuracy of the kinematic positions was 

about 1.5 cm, 1.2 cm and 3.5 cm for latitude, longitude and height respectively.  The 

comparison of the kinematic positioning results with the output of KINSRVY was not given 

here due to the frequent restarts in the KINSRVY execution caused by the frequent carrier 

phase losses. 

6.4 DETECTION AND ADAPTATION FOR SIMULATED BIASES 
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In this section, different observation biases, such as cycle slips in carrier phases 

between consecutive epochs, outliers in pseudoranges, and outliers in phase rates, are 

deliberately introduced in the real data sets collected in the field experiments in order to 

evaluate the bias detection ability of the proposed statistical testing procedures coded in the 

program system QUALIKIN.  Cycle slips in carrier phases, which is one of the limiting factors 

in high precision kinematic GPS positioning, sometimes can be easily detected.  For instance, 

in the data gap situation or loss-relock on a satellite case, a simple data editing method like 

phase prediction, which is to compare the predicted carrier phase with the measured one 

(Cannon, 1987), would be able to detect the cycle slip because in this case the cycle slip may 

amount to hundreds or even thousands of cycles.  In real data processing, we always detect and 

correct the large  part of a cycle slip by some simple data editing methods.  The purpose of 

statistical testing is then to detect and correct the remaining small  part of the cycle slip or the 

other small cycle slips in the observations.  Once the cycle slip or the new ambiguity on a 

satellite is estimated and applied on the following carrier phase observations, its correctness or 

its internal consistency with the observations of other satellites is checked by monitoring the 

filter performance using the testing statistics.  This is the reason why statistical testing is 

considered to be a quality control method in kinematic GPS positioning. 

6.4.1 Detection and Adaptation for Simulated Cycle Slips 

In the following computations, cycle slips on a single  satellite and on multiple  

satellites were simulated at the kinematic  epochs between the control points 16AE and 16BW, 

where the vehicle was accelerating.  The simulated cycle slips on the corresponding satellites 

were at the one cycle level (19.02 cm). 
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Table 6.2 summarizes the detection and estimation results for simulated cycle slips in 

the data set of Day 121, 1991.  The MDB analysis shows that the minimum detectable cycle 

slips in a single satellite case is about 0.5 cycle.  Therefore, one cycle slip was added to the 

carrier phase observations on the corresponding satellites starting at the epoch time 330456  

(GMT seconds),   where the vehicle was moving at a speed of 36  km h-1  and with an 

acceleration of about 1 m s-2 .  Five satellites ( SVs 02, 11, 16, 18, 19) were simultaneously 

tracked and the data rate was 1 second.  SV 11 was used as the base satellite in double 

differencing.  The system model adopted in processing was the constant velocity model. 

Satellites with 
  cycle slips Detect Identify

  Final estimated bias values(Cycles)

Estimated 
   value

True 
value

SV No.
SV No.

Single  
  sat. SV 02 yes yes SV 02 - 0.964 - 1.00

Two sat.
SV 02
SV 18

yes yes
SV 02
SV 18

- 1.265
+ 0.801

- 1.00
+1.00

Three sat.

SV 02
SV 18
SV 16

yes yes
SV 02
SV 18
SV 16

- 1.078
0.883
0.785

- 1.00
+1.00
+1.00

All sat.

SV 02
SV 18
SV 16
SV 19

yes yes

SV 02
SV 18
SV 16
SV 19

- 1.115
  0.748
  0.865
  1.055

- 1.00
+1.00
+1.00
+1.00

  No. of  
satellites

Case

1

2

3

4

 

Table 6.2 Results of Cycle Slip Detection and Estimation for Simulated Cycle Slips in the 
Data Set of Day 121, 1991 (1 Second Data Rate). 
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From Table 6.2, we can see that in all cases the one cycle level slips in carrier phase 

observations could be correctly detected, identified and estimated.  After rounding the 

estimated cycle slips to their nearest integer, we arrived at the exact simulated cycle slip values 

in the data set.  These results indicate that the proposed statistical testing procedure is effective 

in carrier phase cycle slip detection and identification with data sets of one second data rate or 

higher, when a constant velocity model is used.  In this case, the acceleration disturbance in the 

system model, i.e. constant velocity model, can be allowed to reach 1~ 2 m s-2 , which are the 

usual accelerations in the land vehicle case. 

Unfortunately, the above conclusions do not always hold for data sets with slower data 

rate intervals (e.g. 4 second data rate), especially when the vehicle is accelerating.  This is due 

to the influences of system biases that are not modelled in the constant velocity model or 

constant acceleration model.  The longer the data rate interval, the poorer the applicability of 

these system models. 

Table 6.3 shows the results of cycle slip detection and estimation for simulated cycle 

slips in the Day 222, 1990  data set.  Six satellites were observed at a 4 second data rate.  The 

system model was the constant acceleration  model.  One cycle level slips were added to the 

carrier phase observations of the corresponding satellites starting at the time 494144 seconds,  

when the vehicle was moving with an acceleration of about 0.33 m s-2 . 

From Table 6.3 and other testing runs, we observe that under small accelerations, 

usually less than 0.3 m s-2 , the statistical testing procedure can correctly detect, identify and 

estimate the one cycle level slip occurring on a single satellite in a data set with a 4 second data 

rate.  When the number of satellites with simultaneous cycle slips increases to four or the 

number of satellites without slips decreases to 3 , the statistical testing procedure can detect 

that there are some problems in the data set, but sometimes cannot identify the satellites which 

have one cycle level slips, as shown in Case 4 and Case 5 of Table 6.3.  This is caused by the 
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influences of the unmodelled system biases, and also by the corresponding increase of the 

MDB values on each satellite as the number of biases increases.  With more satellites having 

cycle slips and with longer measurement update intervals, the system bias effects and the 

observation bias effects are interwoven in a complicated manner.  This makes the identification 

or isolation of small cycle slips on different satellites a very difficult task in kinematic data 

processing. 
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Satellites with 
  cycle slips

Detect Identify
  Final estimated bias values(Cycles)

Estimated 
   value

True 
value

SV No.
 SV No.

Single  
  sat. SV 02 yes yes SV 02   1.001 +1.00

Two sat.
SV 02
SV 18

yes yes
SV 02
SV 18

  1.012
  0.968

+1.00
+1.00

 Three sat.

SV 02

SV 18
SV 13

yes yes
SV 02
SV 18
SV 13

  1.012 

- 0.940

+1.00
+1.00
- 1.00

Four sat.

SV 02
SV 18
SV 13
SV 09

yes

no

+1.00
- 1.00
- 1.00

  1.040

+1.00

All sat.

SV 02
SV 18
SV 13
SV 09
 SV 11 

yes

no
+1.00
- 1.00
- 1.00

+1.00

 +1.00

(only 3 sat. 
   2,9,13  
  signified  
 with cycle 
    slips) 

(Correctly identified 
  when cycle slips  
  increase to 5 cycle 
          level )

(Correctly identified 
  when cycle slips  
  increase to 5 cycle 
          level )

 (only 3 sat. 
   2,9,13  
  signified  
 with cycle 
    slips) 

Num. of 
satellites

Case

1

2

3

4

5

 

Table 6.3 Results of Cycle Slip Detection and Estimation for Simulated Cycle Slips in the 
Data Set of Day 222, 1990 (4 Second Data Rate). 

The situation is much improved when the cycle slips on each corresponding satellite is 

increased to the 5 cycle level.  In this case, all cycle slips in Case 4 and Case 5 defined in Table 

6.3 can be correctly detected and identified.  But the estimated cycle slips on some satellites, 

when rounded to their nearest integer values, may differ within the one cycle level from their 

true values.  In some extreme situations, when the acceleration changes between epochs 
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exceeds 1 m s-2 , we may even fail to correctly identify the one cycle level slip on a single 

satellite case in the data set with 4 second data rate.  Therefore, the high data rate (e.g. 1 

second or higher) is required for cycle slip detection and identification at the one-cycle level in 

a highly dynamic environment. 

Once the biases are detected, identified and estimated at a certain epoch, the adaptation 

or correction of the bias influences on the corresponding Kalman filtering results can be 

immediately carried out by the given two-stage Kalman filter algorithm. 

Figure 6.6 shows part of the results of cycle slip adaptation for the single satellite case, 

i.e. Case 1 given in Table 6.2.  In this figure, the cycle slip free positioning results were used as 

a reference.  The differences between the results with  and without   cycle slips adaptation by 

the two-stage Kalman filter method are plotted separately in order to show the effectiveness of 

the adaptation procedure.  Only 21 epochs of kinematic results are plotted in this figure. 
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Fig. 6.6 Comparison of the Results with and without Cycle Slip Adaptation for the Single 
Cycle Slip Case 

Fig. 6.6 clearly shows that the bias adaptation method eliminates the cycle slip 

influences on the positioning results output by the Kalman filter.  Also, from the results 

without detection and adaptation for the simulated bias, it can be seen that the position errors 

caused by the cycle slips change very little from epoch to epoch within this short (21 seconds) 

observation span.  This is due to the little change and nearly constant satellite geometry within 

this short time.  The magnitudes of the influence at the first epoch with the cycle slips present 

were -10.2 cm, 7.0 cm and -7.3 cm for latitude, longitude and height respectively.  These 

magnitudes of the cycle slip influences well match the theoretical influence values of -10.4 cm, 
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7.1 cm and -7.2 cm in latitude, longitude and height respectively, which are computed by the 

influence analysis formulas given in Chapter 2.  The cycle slips influences on the velocity 

states are practically zero and thus not plotted. 

6.4.2 Detection and Adaptation for Simulated Outliers in Phase Rate Observations 

Outliers in phase rate observations mainly affect the velocity determination in 

kinematic GPS surveys.  In order to access the ability of the testing procedure to detect the 

phase rate outliers, different situations were simulated with the data set of Day 121, 1991.  In 

this data set, the worst minimum detectable outlier (MDB) on a single satellite was about 0.5 

m s-1 .  Therefore, the phase rate outliers at the level of 0.95 m s-1  were simulated on a single 

satellite as well as on multiple satellites at the epoch time 330456, where the vehicle travelled 

with an acceleration of about 1 m s-2 .  Table 6.4 shows the results of the phase rate outlier 

detection, identification and estimation.  The system model used is the constant velocity 

model. 
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Satellites with 
   phase rate        
     outliers Detect Identify

  Final estimated bias values (m/s)

Estimated 
   value

True 
value

SV No.
SV No.

Single  
  sat. SV 02 yes yes SV 02 - 0.957 - 0.95

Two sat.
SV 02

SV 18
yes yes

SV 02
SV 18

- 1.080
+ 0.858

- 0.95
+0.95

Three sat.

SV 02
SV 18
SV 16

yes yes
SV 02
SV 18
SV 16

- 1.036
0.857
1.023

+0.95
+0.95

All sat.

SV 02

SV 18
SV 16
SV 19

yes yes

SV 02
SV 18
SV 16
SV 19

- 0.886
  0.915
  1.234
  1.082

- 0.95
+0.95
+0.95
+0.95

- 0.95

Num. of 
satellites

Case

1

2

3

4

 

Table 6.4 Results of Bias Detection and Estimation for Simulated Phase Rate Outliers in the 
Data Set of Day 121, 1991 (1 Second Data Rate). 

Table 6.4 shows that in all cases the outliers in phase rate observations can be correctly 

detected and identified.  The estimated outliers are very close to the true values.  Therefore, the 

phase rate outlier influences on the velocity determination can be well eliminated by the testing 

and adaptation procedure in a data set with a high data rate. 

6.4.3 Detection and Adaptation for Simulated Outliers in Pseudorange Observations 

Pseudorange outliers are likely to occur in a multipath environment.  They mainly 

affect the position determination in GPS kinematic surveys.  Fortunately, their influence on the 



 

 

 

81

estimated positions are practically negligible in the combined processing of carrier phase and 

pseudorange observations.  This is due to the much lower observation precision of 

pseudoranges as compared to carrier phases.  Table 6.5 gives the results of detection and 

estimation for the simulated pseudorange outliers in the data set of Day 121, 1990.  The MDB 

value for individual pseudorange outliers in this data set is about 18 m when using a standard 

deviation of 4 metres for single difference pseudorange observables.  Therefore, 30 m outliers 

were added on the corresponding observations at epoch time 330456 seconds. 

Table 6.5 and the other simulated runs show that the testing procedure can correctly 

detect and identify the single pseudorange outlier case if the pseudorange bias is greater than 

its corresponding MDB value.  However, as the number of satellites with outliers increases, the 

detectability for multiple outliers becomes poorer.  This is because the rapid increase of the 

MDB values in a multiple outlier situation due to the much lower observation precision of 

pseudoranges.  In Case 4 of Table 6.5, only if the outliers on all the satellites increase to 80 m, 

can the testing procedure correctly detect, identify and estimate all the simulated biases.  

However, even with the 80 m pseudorange outliers on all the satellites left uncorrected, the 

influence on the estimated kinematic position is only about 0.136 cm. 
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Satellites with 
  pseudorange        
    outliers Detect Identify

  Final estimated bias values (m)

Estimated 
   value

True 
value

  SV No.
SV No.

Single  
  sat. SV 16 yes yes SV 16

  Two sat.
SV 16
SV 18

yes yes
SV 16
SV 18

 Three sat.
SV 02
SV 18
SV 16

yes

no

All sat.

SV 02
SV 18
SV 16
SV 19

no

24.903 30.00

24.933
30.120

30.00
30.00

(Only two 
sat. iden- 
tified 2,18)

30.00
30.00
30.00

no
(Correctly detect 
and identify when 
biases increase to 
           80 m )

30.00

30.00
30.00
30.00

Case

1

2

3

4

 

Table 6.5 Results of Bias Detection and Estimation for Simulated Pseudorange Outliers in 
the Data Set of Day 121, 1991 (1 Second Data Rate). 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

In precise kinematic GPS surveys, a quality control method is inevitably needed for 

real-time data processing because of the possibility of biases like carrier phase cycle slips and 

outliers in phase rate and pseudorange measurements.  In this thesis, the statistical quality 

control method for use in kinematic GPS positioning based on the state space models was 

investigated.  Firstly, the general recursive formulas for bias influence analysis and reliability 

analysis (MDB) were derived for the Kalman filter design.  Then a real-time statistical testing 

and adaptation procedure was developed based on the two-stage Kalman filtering technique, 

hypothesis testing theory and reliability analysis concept.  This procedure introduced a new 

step of bias confirmation by using the concept of minimum detectable bias (MDB) and aimed 

to automatically detect the common observation biases and eliminate their influences on GPS 

kinematic positioning results.  All the derived formulas and algorithms were implemented in a 

software package QUALIKIN and tested using real GPS data sets collected in the field tests. 

The bias influence analyses show that carrier phase cycle slips affect mainly the 

estimated positions, while the phase rate outliers affect mainly the estimated velocities. Cycle 

slips in double difference observables have a severe long-term influence on position 

estimation.  Therefore, real-time correction and adaptation for this kind of bias is necessary to 

assure the correctness of the kinematic positioning results. Instantaneous outliers in the 
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observation and system models, on the other hand, only affect the current and the following 

few epochs of the filtering results.  This means that the Kalman filter can reduce automatically 

the effects of instantaneous outliers after a few epochs of measurement updates.  In the 

combined processing of carrier phase, pseudorange and phase rate observations, the influence 

of outliers in C/A code pseudoranges on GPS positioning results is negligible due to the much 

lower measurement precision of pseudoranges.  However, the proposed testing procedure can 

still detect pseudorange outliers of the order of 18 m present on a single satellite (assuming 4 

m observation precision assigned to single difference pseudoranges ).  This provides some 

control on large multipath effects along a surveying trajectory. 

The minimum detectable bias (MDB) analysis of kinematic GPS surveys indicates that 

the observation biases detectable by statistical testing is basically a function of the satellite 

geometry and the measurement precision.  The MDB shows the minimum bias value that  the 

statistical testing method can detect with a predetermined probability for an individual bias, 

under the assumption that no other bias except the concerned one is present in the system and 

observation models.  In this sense, the MDB analysis together with the bias influence formulas 

in the Kalman filtering provides a useful tool for kinematic and dynamic system design. 

The implementation and testing of the developed statistical quality control method in 

kinematic GPS positioning software was an essential part of this research.  The program 

package QUALIKIN developed by the author can perform the reliability (MDB) analysis and 

real-time statistical testing and bias adaptation in kinematic differential GPS surveying.  It can 

also process static and semi-kinematic differential GPS data.  The successful processing of the 

real semi-kinematic data sets collected from two field tests shows the suitability and the 

applicability of the developed program system and the derived testing procedure. 

The investigation of the detection of simulated biases between consecutive epochs 

indicates that, with a data rate of one second or higher, the testing procedure can correctly 
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detect, identify and estimate cycle slips occurring at the one cycle level on multiple satellites 

under normal land vehicle motion scenarios.  Also, under the same assumption, the testing 

procedure can effectively detect outliers at the 1 m s-1  level in phase rate observations on 

multiple satellites and eliminate their effects on the filtering results.  However, the above 

conclusions are not always true for data sets with slower data rate intervals (e.g. 0.25 Hz), 

especially when the vehicle is accelerating.  This is due to the influence of the system biases 

that are unmodelled in the constant velocity model or constant acceleration model.  The longer 

the data rate interval, the poorer the applicability of these system models.  Therefore, a high 

data output rate, e.g. 1 second or higher, is recommended for the detection and identification of 

small cycle slips in a high dynamic environment of land vehicle motion. 

Since it is the first time that statistical quality control methods have been used and 

tested in the kinematic GPS data processing, there are a number of problems left to be studied 

further.  The first would be the incorporation of detection and adaptation of system model 

biases in the proposed testing procedure for high dynamic surveying and navigation 

environments.  Based on the theoretical formulas developed herein, it is easy to do this in the 

testing procedure but it requires an elaborate and complicated bias search algorithm to 

distinguish between the observation bias and system bias.  The extension of the statistical 

testing method to the smoothing algorithm would be useful for kinematic GPS data post-

processing and thus needs investigation.  The other problem of interest would be the 

application of the quality control methods to some other integrated systems such as GPS/INS.  

In this kind of systems, the system model could be more accurately described than that of a 

sole GPS positioning system and we would have more redundant measurements available.  

Thus, the results of statistical testing would be more accurate and reliable.  The third problem 

to be investigated further is the carrier phase ambiguity resolution in kinematic mode, i.e. "on 

the fly" ambiguity resolution.  In cases where long data gaps are present on all available 

satellites in kinematic mode, no methods up to now can satisfactorily resolve the new phase 
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ambiguities by using GPS alone.  Some promising and efficient techniques to handle this 

problem are to use precise integrated systems (Cannon, 1991 ) or to use the P-code GPS 

receivers.  More tests with the high data rates (e.g., 2 ~ 4 Hz) are needed in order to fully 

evaluate the ability of the statistical quality control methods.  With the improvement of GPS 

technology, the enhancement of the processing methods and the full deployment of the GPS 

constellation in the near future, kinematic GPS positioning is expected to achieve reliable and 

accurate results and find wider applications. 
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