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Abstract 

 

Advances in Micro-Electro-Mechanical Systems (MEMS) technology play a 

central role in the design of new generation of smartphones. Indeed MEMS sensors, 

such as accelerometers and gyroscopes, are currently embedded in most smart devices 

in order to augment their capabilities.  In the near future, it is expected that these 

sensors will be further exploited for pedestrian navigation purposes. However, the 

processing of signals from MEMS sensors cannot provide accurate navigation solutions 

without external aiding, e.g. from GNSS (Global Navigation Satellite Systems) signals, 

since their signals deteriorate due to significant errors, principally biases and drift which 

requires frequent sensor resets.  

When GNSS is not available and the sensors are mounted on the user’s foot, 

periodic zero velocity updates can be performed during the identified stance phases of 

the foot, namely the periods when the foot is flat on the ground. In the case of handheld 

devices, this approach cannot be adopted, since zero velocity periods are not present. 

Furthermore, when the sensors are held in a hand, the sensed motion can be 

decoupled from the global user’s motion rendering the situation much more complex to 

deal with. For this reason previous studies on pedestrian navigation are mainly focused 

on the body fixed sensor case. 

 In this thesis, algorithms for characterizing the gait cycle of a pedestrian holding 

an IMU (Inertial Measurement Unit) in hand are proposed but without constraining the 

user in its behaviour and thus taking into account several sensor carrying modes. In 

view of the variety and complexity of human motions, the recognition of the user’s global 
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motion from handheld devices is first thoroughly examined. A classifier able to 

recognize several different motion modes, including standing, walking, running, climbing 

and descending the stairs, is designed and implemented. Then an algorithm for 

evaluating the linear displacement of a pedestrian walking on a flat plane using only a 

handheld IMU is proposed.  The complete algorithm comprises the following three 

modules: (1) Characterization of the user's activity and recognition of the sensor 

carrying mode, (2) Step detection and (3) Step length evaluation. 

The analysis leads to a novel step length model combining the user’s height, the 

step frequency and a set of three constants. First a universal model is proposed where 

the three constants have been trained with 12 different test subjects. Then, the same 

model is used for 10 different subjects to calibrate individually the set of constants. The 

validity of both universal and calibrated models is assessed in position domain using the 

above 10 test subjects. The fitted solution achieves an error between 2.5 and 5 % of the 

travelled distance, which is comparable with the performance of models proposed in the 

literature for body fixed sensors. 

  



 

3 

Preface 

 

This thesis includes a number of figures and tables previously published in two 

conference papers (Susi et al 2011a, Susi et al 2011b) and one journal paper 

(Renaudin et al 2012). All these figures and tables have been produced by the thesis 

author on the basis of this thesis research. The co-authors’ valuable feedback on the 

above figures and tables is acknowledged. The publication of the above material in this 

thesis is allowed by co-authors and journal publishers. 

 

 

 

 

 

 

 

 

 

 



 

4 

 

Acknowledgements 

 

I would like to express my sincere gratitude to Professor Gérard Lachapelle for 

giving me the chance to conduct my studies under his supervision. His continuous 

encouragement and his generous knowledge sharing were essential during my master 

studies. Furthermore, the care with which he reviewed the chapters of this thesis really 

improved the quality of the work. His commitment to the work will be an example and an 

inspiration for my future work. 

 

I wish to also thank my co-supervisor Dr. Valérie Renaudin for believing in me 

and for her enthusiastic approach to this research work. Her detailed review of my 

thesis and useful comments enhanced the value of this dissertation. I greatly 

appreciated her help during the numerous and long data collections performed for this 

thesis. 

 

The financial support of Research In Motion (RIM), the Natural Science and 

Engineering Research Council of Canada, Alberta Advanced Education and Technology 

and Western Economic Diversification Canada is acknowledged.   

 

I am sincerely grateful to Dr. Daniele Borio for his valuable advices, helpful 

discussions and support during my first year of studies in Calgary. Thanks to Dr. Aiden 

Morrison for designing and realizing the NavCube, the sensor platform used for many 



 

5 

field tests of this thesis. This tool was essential for my research work. I also want to 

thank him and Dr. Haris Afzal because they were kindly available to help me during 

many data collections.  

 

Thanks to my friends of the PLAN group for the good time spent together and the 

discussions about my research. In particular, I would like to thank Peng Xie, Martin Ma, 

Da Wang, Anup Dhital, Billy Chan, Yuhang Jiang and Zhe He. Thanks to all of the 

PLAN group members also because almost everyone acted as test subjects for the 

experiments of this thesis. Special thanks to Martin Ma, who was available to act as a 

test subject at any time and with any temperature (even below -30°C!). I also want to 

thank many visiting students with whom I shared good moments: Sophie Damy, Leslie  

Montloin, Leila Kleiner, Rahul Godha, Antonio Angrisano, Salvatore Gaglione, Nicola 

Linty, and Cyril Pedrosa.  

 

  I owe thanks to my family and my friends in L’Aquila for their constant and 

unconditional support.  

 

Finally, I wish to express my most heartfelt gratitude to my beloved and missed 

grandmother Adalgisa and grandfather Mazzini who taught me the most important 

lesson of my life, the only one that I am sure I will never forget. Thank you because you 

made me the person I am today. 

 

 



 

6 

Dedication 

 

 

 

 

 

 

 I dedicate this thesis  

to my beloved grandmother Adalgisa and grandfather Mazzini.  

 

. 

 

 



 

7 

Table of Contents 

 

 
ABSTRACT ..................................................................................................................... 1 
PREFACE ....................................................................................................................... 3 
ACKNOWLEDGEMENTS .................................................................................................... 4 
DEDICATION ................................................................................................................... 6 
TABLE OF CONTENTS ...................................................................................................... 7 
LIST OF TABLES ........................................................................................................... 10 
LIST OF FIGURES AND ILLUSTRATIONS ............................................................................ 11 
LIST OF SYMBOLS, ABBREVIATIONS AND NOMENCLATURE ................................................ 15 

 

CHAPTER ONE: INTRODUCTION ............................................................................... 18 

1.1 PEDESTRIAN NAVIGATION: GENERAL OVERVIEW ......................................................... 19 
1.2 LIMITATIONS OF PREVIOUS WORKS ........................................................................... 21 
1.3 MAIN CONTRIBUTION ............................................................................................... 24 
1.4 THESIS ORGANIZATION ............................................................................................ 26 

 

CHAPTER TWO: HUMAN GAIT ANALYSIS BY USING INERTIAL HANDHELD 
DEVICES                                              30 

2.1 HUMAN GAIT........................................................................................................... 30 
2.2 INERTIAL SENSORS FOR DETECTING HUMAN GAIT ....................................................... 35 

2.2.1 Accelerometer ............................................................................................... 36 
2.2.2 Gyroscope ..................................................................................................... 37 

2.3 INERTIAL SENSOR ERRORS ...................................................................................... 38 
2.3.1 Noise ............................................................................................................. 38 
2.3.2 Sensor bias ................................................................................................... 38 
2.3.3 Scale factor errors ......................................................................................... 39 
2.3.4 Non-orthogonality errors ............................................................................... 39 

2.4 IMU SIGNAL MODEL AND PRE-PROCESSING ............................................................... 39 
2.5 IMU SIGNAL ANALYSIS ............................................................................................ 42 

2.5.1 Time domain analysis ................................................................................... 42 
2.5.2 Frequency domain analysis .......................................................................... 43 
2.5.3 Time-frequency domain analysis ................................................................... 49 

2.6 SUMMARY .............................................................................................................. 50 

 



 

8 

CHAPTER THREE: MOTION MODE RECOGNITION FOR NAVIGATION PURPOSES
 ...................................................................................................................................... 52 

3.1 HUMAN ACTIVITY RECOGNITION: LITERATURE REVIEW ................................................ 52 
3.2 PATTERN RECOGNITION .......................................................................................... 56 
3.2.1 STATISTICAL PATTERN RECOGNITION ..................................................................... 56 
3.2.1.1 IMU SIGNAL PRE-PROCESSING FOR MOTION MODE RECOGNITION .......................... 62 
3.3 FEATURES FOR GLOBAL MOTION MODE RECOGNITION ................................................ 63 

3.3.1 Energy related features ................................................................................. 64 
3.3.2 Correlation..................................................................................................... 68 
3.3.3 Frequency domain features .......................................................................... 71 

3.4 CLASSIFIERS FOR GLOBAL MOTION MODE RECOGNITION ............................................. 74 
3.4.1 Naïve Bayesian classifier .............................................................................. 74 
3.4.2 Decision tree classifier .................................................................................. 76 
3.4.3 K-nearest-neighbour classifier ....................................................................... 78 

3.5 SUMMARY .............................................................................................................. 80 

 

CHAPTER FOUR: STEP LENGTH ESTIMATION........................................................ 81 

4.1 PEDESTRIAN DEAD RECKONING ............................................................................... 81 
4.2 IDENTIFICATION OF SENSOR CARRYING MODE AND HAND MOTION ................................ 83 

4.2.1 Signal pre-processing ................................................................................... 84 
4.2.2 Features extraction for the walking case characterization ............................. 85 
4.2.2.1 Signal Energy ............................................................................................. 85 
4.2.2.2 Signal Variance .......................................................................................... 87 
4.2.2.3 Frequency Analysis .................................................................................... 89 

4.2.3 DECISION TREE FOR MOTION MODE IDENTIFICATION IN THE WALKING CASE ................ 91 
4.3 STEP DETECTION ALGORITHM .................................................................................. 93 
4.4 STEP LENGTH ESTIMATION: GENERAL OVERVIEW ....................................................... 96 
4.5 STEP MODEL .......................................................................................................... 98 
4.6 STEP FREQUENCY EVALUATION .............................................................................. 101 
4.7 SUMMARY ............................................................................................................ 107 

 

CHAPTER FIVE: FIELD TESTS AND EXPERIMENTAL RESULTS .......................... 108 

5.1 MOTION MODE RECOGNITION: TRAINING AND ASSESSMENT ....................................... 108 
5.1.1 Data collections set up ................................................................................ 109 
5.1.2 Data collection methodology ....................................................................... 110 
5.1.2.1 Sensor on the user foot ............................................................................ 110 
5.1.2.2 Sensor in the user trouser pocket ............................................................ 111 
5.1.2.3 Sensor in the user swinging hand ............................................................ 111 
5.1.2.4 Data collection procedure......................................................................... 111 



 

9 

5.1.3 Assessment criterion and results ................................................................ 112 
5.2 STEP LENGTH EVALUATION: TRAINING AND ASSESSMENT .......................................... 118 

5.2.1 Data collection set up .................................................................................. 118 
5.2.2 Criterion for the sensor location selection ................................................... 119 
5.2.2.1 Sensor on the foot .................................................................................... 120 
5.2.2.2 Sensor in the user hand ........................................................................... 121 
5.2.3 Sensor carrying mode identification and step detection algorithms: training 
and assessment ................................................................................................... 121 
5.2.3.1 Data collection methodology .................................................................... 121 
5.2.3.2 Sensor carrying mode classifier assessment ........................................... 123 
5.2.3.3 Step detection assessment ...................................................................... 125 
5.2.4 Step length model training .......................................................................... 126 
5.2.5 Step length model assessment ................................................................... 129 

5.3 SUMMARY ............................................................................................................ 135 

 

CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS ................................ 136 

6.1 CONCLUSIONS...................................................................................................... 136 
6.2 RECOMMENDATIONS ............................................................................................. 140 

REFERENCES ............................................................................................................ 143 

 

 

 

 

 

 

 

 

 

 

 



 

10 

List of Tables 

 

Table 5-1: Accuracy of classifiers for motion mode recognition .................................. 113 

Table 5-2: Confusion matrix-Naïve Bayes classifier (IMU in a swinging hand) ........... 114 

Table 5-3: Confusion matrix- Decision Tree classifier (IMU in a swinging hand) ......... 114 

Table 5-4: Confusion matrix- K-Nearest-Neighbour classifier (IMU in a swinging 
hand) .................................................................................................................... 115 

Table 5-5: Confusion matrix for the sensor carrying mode/hand motion classifier ...... 124 

Table 5-6: Step detection algorithm performance ....................................................... 125 

Table 5-7: Confusion matrix of the algorithm for the identification of the sensor 
carrying mode/hand motion. ................................................................................. 130 

Table 5-8: Metrics for Evaluating the Handheld Based Step Length Model ................ 132 

 



 

11 

List of Figures and Illustrations 

 

Figure 1-1: Structure of the thesis and logic interconnections among chapters ............ 29 

Figure 2-1: Human gait cycle and its phases ................................................................ 31 

Figure 2-2: Representation of the human body and the three plans defined by the 
body’s COM - adapted from Winter (2004)............................................................. 34 

Figure 2-3: (Left) Inertial measurement unit (IMU); (Right) IMU’s scheme showing 
the three accelerometers and the three gyroscopes mounted in an orthogonal 
triad (adapted from Gabaglio 2002). ...................................................................... 36 

Figure 2-4: Time domain representation of the accelerometer signal extracted from a 
sensor on the foot (upper part) and in the swinging hand (lower part) of a 
walking subject. ...................................................................................................... 43 

Figure 2-5: Relationship between time and frequency domains for a periodic signal .... 44 

Figure 2-6: Spectral Envelope computed with the LPC (order p =30) -MEMS on the 
foot of a walking subject ......................................................................................... 46 

Figure 2-7: Periodogram computed with the Welch method (MEMS sensor in the 
swinging hand of a walking subject) ....................................................................... 48 

Figure 2-8: Spectrogram of the accelerometer signal (MEMS sensor in the swinging 
hand of a walking subject) ...................................................................................... 50 

Figure 3-1: General scheme of a pattern recognition system: a hidden state is 
assigned to an input pattern by observing the feature vector and according to 
the decision rule defined by the classifier ............................................................... 57 

Figure 3-2: Model for statistical pattern recognition (adapted from Jain et al (2000)) .... 58 

Figure 3-3: Different feature distributions: (left side) optimum distribution case with 
high inter-set separability and low intra-set separability, (right side) bad 
distribution case with low inter-set separability ....................................................... 59 

Figure 3-4: Possible approaches in statistical pattern recognition (adapted from Jain 
et al (2000)) ............................................................................................................ 60 

Figure 3-5: Energy estimator implemented as a filter bank ........................................... 65 

Figure 3-7: Total energy and sub-band energies for a user with the sensors in the 
swinging hand while he is descending and climbing the stairs. .............................. 67 



 

12 

Figure 3-8: Representation of the sensor frame with respect to the body frame ........... 70 

Figure 3-9: Correlograms of the accelerometer components for the stairs case (left 
side) and the walking case (right side) ................................................................... 70 

Figure 3-10: (Left) Dominant frequencies over time for the running and the walking 
cases; (Right) Spectrograms of the accelerometer signal for the running and the 
walking cases (sensor in the user swinging hand). ................................................ 71 

Figure 3-11: Spectrogram of the accelerometer signal for a subject with the IMU in 
his swinging hand. .................................................................................................. 72 

Figure 3-12: (Upper) Norm of the accelerometer signal for different user’s speed; 
(Lower) Dominant frequencies for different user’s speed. ...................................... 73 

Figure 3-13: Sub-bands energy likelihood function for the walking and running 
modes .................................................................................................................... 75 

Figure 3-14: Decision tree for global motion mode recognition ..................................... 78 

Figure 4-1: Representation of PDR approach ............................................................... 82 

Figure 4-2: Energy of the gyroscope signal (norm) for a walking user with the IMU in 
the phoning and swinging hand. ............................................................................. 87 

Figure 4-3: Variance of the gyroscope signal (norm) for IMU in the user’s bag and in 
the user’s swinging hand. ....................................................................................... 88 

Figure 4-4:  Spectrogram of the accelerometer signal for a walking user with the IMU 
in the hand. ............................................................................................................ 89 

Figure 4-5: Dominant frequencies of the accelerometer signal over time. The IMU is 
carried in the user’s hand ....................................................................................... 90 

Figure 4-6: Spectrogram of the gyroscope signal for a walking user. The IMU is 
alternatively carried in the texting and swinging hand of the user. ......................... 91 

Figure 4-7: Decision tree for walking mode characterization ......................................... 92 

Figure 4-8: (Upper) Gyroscope signal (norm) recorded by the IMU in the swinging 
hand. The dots represent the detected step events. (Down)Accelerometer signal 
(norm) recorded by the IMU on the foot (the mean has been removed). ............... 95 

Figure 4-9: (Upper) Accelerometer signal (norm) recorded by the IMU in the texting 
hand. The dots represent the detected step events. (Down) Accelerometer 
signal (norm) recorded by the IMU on the foot (the mean has been removed). ..... 96 



 

13 

Figure 4-10: General scheme of the algorithm for the computation of the linear 
travelled distance ................................................................................................. 100 

Figure 4-11: Spectrogram of the accelerometer signal for the sensor mounted on the 
walking user’s foot. ............................................................................................... 102 

Figure 4-12: Spectrogram of the accelerometer signal for the sensor placed in the 
walking user’s swinging hand. .............................................................................. 103 

Figure 4-13: Normalized PSD of the accelerations sensed by the foot mounted 
sensor and the one in the swinging and texting hand. For both motion modes, 
the strongest frequency is coupled with the step event. ....................................... 104 

Figure 4-14: Normalized PSD for the accelerometer sensed by the user’s swinging 
hand. Here, the strongest frequency is coupled with stride events. ..................... 105 

Figure 4-15: Estimated, true step lengths and step frequencies computed with 
signals from a handheld IMU when the user is walking with his hand swinging. .. 106 

Figure 5-1: Test set up: the IMUs are connected to a laptop carried inside a 
backpack .............................................................................................................. 109 

Figure 5-2: Outdoor data collection: (a) the test subject is carrying the backpack with 
a small laptop and a GPS antenna used as reference. The subject carries a foot 
mounted IMU (b), an IMU in his pocket (c) and an IMU in a swinging hand (d). .. 112 

Figure 5-3: (Upper part) Total and sub-band energies; (lower part) classification 
results of the decision tree classifier for a user descending and climbing stairs 
with the sensor in a swinging hand. ..................................................................... 116 

Figure 5-4: (Left)Test subject wearing the NavCube at the waist, two IMUs are foot 
mounted and two IMUs are in the user’s hand; (Right) Zoom on the NavCube ... 119 

Figure 5-5: ADIS 16375 IMU attached on the foot and used as a reference for the 
step detection algorithm. ...................................................................................... 120 

Figure 5-6: Indoor map of the handheld data collection with two pedestrian routes. ... 122 

Figure 5-7: Outdoor data collection for testing the carrying mode/hand motion 
identification and step detection algorithms.......................................................... 123 

Figure 5-8: Data collection set up for training the parameters of the step model. The 
subject walks at different speeds with one IMU in the hand and one on the foot. 
A second person paces the test subject by using a wheel speed sensor. ............ 127 

Figure 5-9: Linear fitting of the true step lengths (blue dots) with the user’s height (h) 
and the product of the strongest dominant frequencies with the user’s height (hf) 



 

14 

at different walking speeds and hand’s motions. The outcome is the universal 
set K in the step length model. ............................................................................. 127 

Figure 5-10: (Left ) Test subject walking with the IMUs in his swinging hands; (Right) 
Test subject walking with the IMUs in his texting hands. ...................................... 129 

Figure 5-11: Minimum, mean and maximum absolute differences between ―fitted‖ 
and ―universal‖ parameters of the proposed step length model. .......................... 133 

Figure 5-12: Reference path in green and estimated trajectories: modelled step 
length with the universal parameters in red and with the calibrated parameters in 
blue for the test subject with the worst performance (M5). ................................... 134 

 

  



 

15 

List of Symbols, Abbreviations and Nomenclature 

 

 

Abbrevations 
 
AR 

Definitions 
 
  Auto-Regressive 
 

COM 
 
DFT 
 
DoF 
 
DR 
 
FFT 
 

  Centre Of Mass 
 
  Discrete Fourier Transform 
 
  Degree of Freedom 
 
  Dead Reckoning 
 
  Fast Fourier Transform 
 

GNSS                                        Global Navigation Satellite Systems 

GPS          Global Positioning System 

IMU           Inertial Measurement Unit 

INS          Inertial Navigation System  

LPC          Linear Prediction Coding 

MEMS                             Micro Electro-Mechanical Systems  

PDA                    Personal Digital Assistant 

PDR                     Pedestrian Dead Reckoning 

PSD                                                 Power Spectral Density 

RFID                     Radio-Frequency Identification 

RLS                    Recursive Least Square 

STFT                    Short Time Fourier Transform 

UWB                               Ultra Wide Band 



 

16 

  WiFi                     Wireless Fidelity 

  ZUPTs                   Zero velocity UPpdaTes  

  ZARUs                   Zero Angular Rate Updates  

 

Symbols 
 
     a 
 
     ak 

 
     ( )d  
 
     ( )E  

 
     fs 
 
     fstep 

 

       fstride 

 
     H 
      
     k 
 
      
     n 
     
     N 
 
      

p  
 
     Pdet 

 

       Pfa 

 

       Pmd 

 

     ˆ
xP  

 

Definitions 
 
acceleration vector 
 
linear predictor coefficients 
 
distance computed at the time    
 
energy of the quantity    
 
sampling frequency 
 
step frequency 
 
stride frequency 
 
design  matrix 
 
constants for the step length model/number of 
nearest neighbours 
 
time index of discrete samples 
 
analysis window length 
 
position computed at the instant    
 
probability of detection 
 
probability of false alarm 
 
probability of miss detection 
 
estimated spectrum 
  
 



 

17 

     s 
 
     sa 
 

     sω 

 

       s  

 
     0s  
 
       

 

     aη  
 
      ωη  
 
     

 
2


 

    
     ω 
 
       

T  
 
       

1
  

 
        ║•║ 

 

 

       
 

        
 
 
 
 
    
 

step length 
 
output of the tri-axis accelerometer 
 
output of the tri-axis gyroscope 
 
filtered IMU signal norm 
 
unbiased filtered IMU signal norm 
 
heading 
 
noise vector associated to the gyroscope 
output 
 
noise vector associated to the accelerometer 
output 
 
variance of the quantity    
 
angular rate vector 
 
transpose operation of the quantity    
 
inverse operation of the quantity    
 
norm of the quantity    
 

     
     
 
     
 



 

18 

Chapter One: Introduction 

 

The increasing demand for smart-phones motivates manufacturers to provide 

innovative and competitive capabilities to these mobile devices. Embedded sensors are 

foreseen to be used to track the position of a mobile phone user walking in a shopping 

centre, downtown or in other critical environments where Global Navigation Satellite 

Systems (GNSS) signals are hardly available. The possibility to track pedestrians 

indoors extends location based services not only for mobile phone applications but also 

to other domains, including search and rescue services, enhanced E-911, health 

monitoring services and many other applications (e.g. Bancroft 2010).   

Currently navigation services provided by mobile devices are mainly based on 

GNSS signals and, subsequently, are more confined to outdoor environments. Indeed 

indoors or in light indoor environments the accuracy, the availability and the continuity of 

GNSS services cannot be guaranteed since satellite signals are strongly attenuated and 

affected by multipath. This represents a major limitation for pedestrian navigation 

applications as in general, people spend the majority of their time in indoor or urban 

environments. To overcome this limitation, it is possible to use hybridisation techniques 

and for example combine GNSS receivers with an Inertial Measurement Unit (IMU). The 

latter is composed of a tri-axis accelerometer and gyroscope providing acceleration rate 

and angular rate measurements of the rigid body with respect to the navigation frame.  

These measurements have to be integrated in order to estimate body’s position and 

orientation by applying a strap-down approach (Titterton & Weston 2004). 
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However, due to the integration operation, small errors can produce a significant 

error growth that is directly proportional to the operation time. This aspect is particularly 

critical for Micro Electrical Mechanical Systems (MEMS) sensors whose signals are 

affected by large errors. Indeed, for low cost sensors the error growth is proportional to 

the cube of the operation time (Skog et al 2010). Consequently, the navigation solution 

provided by MEMS accelerometers and gyroscopes requires external constraints, for 

example, obtained from frequent GNSS updates. When the latter are not available, 

approaches alternative to the double integration of inertial data, implemented by the 

strap-down method, should be applied. In the pedestrian navigation case, the 

characteristics of human gait can be exploited in Pedestrian Dead Reckoning (PDR) 

which is presented in Section 1.1. 

 

1.1 Pedestrian navigation: general overview  

Pedestrian navigation refers to the act of guiding a person moving on foot from a 

starting point to a prefixed destination by means of diverse technologies. This 

challenging task relies on the continuous localization of pedestrians in ubiquitous 

environments and addresses a wide range of applications. Each application requires a 

specific level of accuracy that is maximum for safety related services (Bancroft 2010) 

and lower for the consumer grade market.  Due to the unpredictability of human motion 

and the variety of involved environments, the quality of pedestrian navigation services 

cannot easily be guaranteed everywhere. In open sky environments, GNSS is certainly 

the primary technology for navigation but in indoor spaces or in urban canyons the 



 

20 

situation is much more complex. Indeed buildings and manmade infrastructures are 

blocking and attenuating satellite signals, which complicates their tracking and 

processing.  

High sensitivity GNSS receivers can be used to acquire weak signals even inside 

buildings or in urban canyons but their quality is often still too low for computing a 

reliable position estimate in the above adverse environments (Lachapelle 

2007).Consequently, the integration of GNSS with other technologies is necessary. 

Radio based positioning systems using Wireless Fidelity (WiFi), UltraWide Band (UWB) 

or Radio-Frequency Identification (RFID) are possible options for tracking pedestrian 

indoors (Alonso et al 2009, Inoue et al 2009, Luimula et al 2010, Shen et al 2010). The 

main drawback of all above systems is that they are usually limited to specific areas 

because they rely on dedicated infrastructures, which are expensive.  

Another possible option is to combine GNSS with inertial sensors following a dead 

reckoning (DR) approach. This method evaluates the current position of a moving object 

starting from the previous one. It was originally applied to ship navigation and is named 

PDR when it is adapted for pedestrian navigation.   

PDR offers an interesting strategy because it uses inertial sensors by exploiting 

the kinematic of the human gait (Beauregard 2007, Renaudin et al 2007) instead of 

doubly integrating the inertial data as it is classically done in a strap-down approach.  As 

explained in the Introduction, the latter method is not recommended for pedestrian 

navigation using low cost sensors, since even if the subject is not moving the double 

integration increases the noise components proportionally to the operational time.  
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Instead the PDR allows bounding the sensor errors growth using information extracted 

through the pedestrian gait analysis.  

Human gait analysis refers to the study of human locomotion involving the 

estimation of spatial and temporal parameters (Tao et al 2012, Do & Suh 2012) such as 

step length or walking speed for several application domains, including sport, healthcare 

and entertainment applications. When PDR algorithms are applied, the gait information is 

used to propagate the user's position. The process computes the user’s position starting 

from an initial known position using the heading estimate and the user travelled distance 

or speed.  Traditionally, linear displacement is evaluated by first detecting the user’s 

steps and then determining their length.  

 

1.2 Limitations of previous works  

Published techniques for pedestrian navigation are very effective when the sensor 

is fixed on the user’s body, especially when it is located on the foot.  In this case the 

stance phase of the foot, i.e. when the foot is flat on the ground, can be identified.  

Periodic Zero velocity UPdaTes (ZUPTs) and/or Zero Angular Rate Updates (ZARUs) 

are then performed to bound the position error accumulation (Foxlin 2005, Skog et al 

2010, Godha & Lachapelle 2008, Suh & Park 2009). This approach is based on the 

biomechanical observation stating that during normal walk the user’s foot touches 

periodically the ground. The same approach is used for sensor mounted on the user’s 

ankle, since also in this case static periods can be identified. 
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Many authors have addressed the cases of sensors placed on the user belt or 

torso. These sensor locations are also very suitable for pedestrian navigation since the 

motion of the sensor reflects the motion of the subject’s Centre Of Mass (COM) and 

consequently the global user’s motion (Alvarez et al 2006, Jahn et al 2010).  However, 

body fixed locations are generally not realistic for common users that are usually carrying 

their mobile devices in their hands, trouser pockets, or handbag.  

 

For the above cases, especially when the sensor is in the hand, the situation is 

much more complex. Few authors deal with the unmounted sensor case. The majority of 

them consider sensors placed in the user’s pocket (Steinhoff & Schiele 2010, Bylemans 

et al 2009). This situation is less complex than the handheld device case. Indeed the 

patterns of the recorded IMU signals are generally undistorted and can be directly 

related to the motion of the user’s leg and consequently to the user’s foot. When the 

sensor is held in a hand, the main challenge is that the hand motion can be highly 

decoupled from the user’s motion. Consequently, the motion of the hand can mask the 

accelerations due to the user displacements. In addition, when the sensors are not body 

fixed, not only their orientation is unknown but it can rapidly change when the subject 

moves the hands. For this reason, in the case of a handheld device, a continuous 

identification of the global user’s motion mode and of the hand motion is required to 

properly tune the navigation algorithms constraining the computation of the subject’s 

trajectory to real displacements.  



 

23 

In Gusenbauer et al (2010), the case of a mobile device carried in the user’s hand 

and orientated toward the current line of sight is considered. This corresponds to the 

typical mobile phone orientation when the subject is looking at the screen to read 

navigation instructions. However the cited work is restricted to the above sensor position 

and does not consider any different carrying mode.  Another approach for handheld 

devices is based on the integration of IMU signals with a camera, which is generally 

already embedded in smart phones.  In Hide et al (2010) the case of a walking user 

carrying the mobile device in front of him and with the camera pointing toward the ground 

is considered; the paper exploits the extracted images to evaluate the translation 

between frames and consequently to bound the error accumulation due to the use of the 

inertial sensors. This approach is limited by the estimation of the orientation of the 

camera, the lightning conditions and the uniqueness of features in the frames. 

Consequently the few works dealing with the non body fixed sensor case are 

generally assuming that the sensor is relatively stable while the user is walking and are 

generally ignoring the swinging hand case. The above assumption strongly limits the 

applicability of these algorithms to real scenarios where portable devices are held 

without any constraint and are, consequently subjected to a great variety of hand 

motions. 
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1.3 Main contribution 

In view of the limitations of published works, the overall purpose of this research is to 

contribute to the development of PDR algorithms for handheld IMU devices.  It is worth 

mentioning that this thesis work does not deal with the estimation of the heading required 

for PDR algorithms, but focuses on the evaluation of the user’s linear displacement. All 

the proposed algorithms are working with sensors that are freely carried by the user, 

without any restriction on the device's orientation and considering that the sensor 

carrying mode could change suddenly. The major contributions of this work are 

summarized as follows: 

 

1. Analysis of techniques for processing the IMU signal and extracting human 

gait characteristics: Since this work proposes algorithms for pedestrian 

navigation based on gait analysis, the characteristics of IMU signals are 

extensively analyzed in the time, frequency and time-frequency domains. The 

different signal patterns produced by different sensor carrying modes are also 

examined. In particular, how human gait characteristics are reflected into IMU 

signal patterns is investigated. Finally, different signal pre-processing techniques 

are considered in order to cope with the noisy nature of low cost sensor signals.  

2. Classification of user’s global motion mode using handheld IMU devices:  

Different sensor locations are subject to different cyclic dynamics occurring during 

diverse human activities.  The knowledge of these dynamics can help tuning the 

correct propagation of the user’s position estimate. For this reason, the 



 

25 

recognition of user global motion modes is deeply analyzed herein for the case of 

handheld devices. The following motion modes are considered: standing, walking, 

running, climbing and descending stairs. The recognition of the mentioned motion 

modes is considered as a classification problem and is performed by extracting 

several features from the sensor signal. The extracted features are integrated in 

three different classifiers, namely the Naïve Bayesian, the k-nearest-neighbour 

and the decision tree classifiers. Performance of the above classifiers is 

compared through several field tests. The results of this research have been 

presented in Susi et al (2011a). 

3. Characterization of the walking case: A specific analysis of the walking case 

has been conducted. The characterization of the walking case consists in 

recognising the sensor carrying mode of a walking subject. In particular, the 

following states have been considered: walking with the sensor in the swinging, 

texting and phoning hand or keeping the sensor in a handbag. The recognition of 

irregular motions has also been studied and defines an additional state in the 

activity classification process. It represents a novel element with respect to 

existing contributions in this field. This class of motion refers to parasite motions 

that do not reflect a real variation of the user’s displacement and that have 

consequently to be removed from the navigation process. Some of this work has 

been published in Susi et al (2011b). 

4. Step detection algorithms for a walking subject using handheld IMU 

devices: Different step detection algorithms are proposed for the walking case. 
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The algorithms are adaptive, i.e. properly tuned according to the sensor carrying 

mode and are based on low pass filtering and peak detection techniques. 

Furthermore, the use of an adaptive threshold makes the peak detection 

algorithms independent of the variations of the signal energy and consequently of 

any change of the user pace.  

 

5. Step length estimation for a walking subject using handheld IMU devices: In 

order to evaluate the user step length, a model has been designed. It combines 

the user step frequency and user height with a set of three variables.  The step 

frequency is extracted directly in the frequency domain through a dedicated 

analysis of the IMU signal. In particular, the relationship between the frequencies 

extracted from handheld signals and step frequency is thoroughly investigated. A 

universal model is proposed where the three constants have been trained using 

12 subjects. A calibration of these constants has also been performed for fitting 

the model to each subject. The performance of the proposed model is assessed 

with ten subjects. This novel step length model has been published in Renaudin 

et al (2012). 

 

1.4 Thesis organization 

The structure of this dissertation is now summarized. 

Chapter 2 reviews the theoretical background of the human walking bio-

mechanic. In particular, since the case of IMU handheld sensors is the target of this 
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work, focus is made on the bio-mechanic theory describing the synchronization between 

arms and legs during the walk. An extensive analysis and comparison of different 

techniques for processing the IMU signals is proposed. Furthermore, the signal pre-

processing techniques adopted to cope with low cost sensors’ noise are described. 

 

Due to the complexity of the human motion, knowing the user’s context, in terms 

of motion, can help bounding the position errors. Since in this work the recognition of the 

user motion is considered as a classification problem, Chapter 3 recalls the basis of 

classification theory. In particular the Naïve Bayesian, the k nearest neighbours and the 

decision tree classifiers are illustrated. The implementation of the classification theory for 

recognising human motion is described.  

First of all, the cases of the user’s global motion identification are described. 

Several features, extracted from the IMU signal and for different sensor carrying modes, 

are presented. All extracted features are integrated in the three previous mentioned 

classifiers. Then, the recognition of different sensor carrying modes for a walking subject 

is investigated. A new motion mode is introduced, namely the irregular motion. The 

features extracted for the characterization of the walking case are deeply examined. 

Finally the complete decision tree classifier, which has been designed and implemented 

for recognizing the above states, is presented.  

 

Chapter 4 is focusing on the evaluation of the pedestrian linear displacement that 

traditionally consists of two elements: first detecting the user’s steps and then evaluating 



 

28 

their length. A general overview of existing step detection techniques using body 

mounted sensor is reported. Furthermore, algorithms to detect step events by using IMU 

handheld devices are proposed.  

Specifically, two different algorithms are presented: one for users carrying the 

device in a swinging hand and one for users texting, phoning or carrying the device in a 

bag. It is shown that the latter cases can be grouped in a unique class, since the signal 

patterns produced in these cases are comparable with the ones obtained for body fixed 

sensors. Then, the novel step length model for handheld IMU devices is proposed. The 

derivation of both the universal model and the model fitted to each test subject is 

described.  

 

Chapter 5 describes the field tests performed for training and assessing all 

proposed algorithms. Finally Chapter 6 draws some conclusions and proposes research 

directions for future work. In Figure 1-1 a scheme representing the thesis structure is 

shown. In particular, the interconnections (in red) among conceptual subsections of 

different chapters and the interconnections (in blue) among subsections of the same 

chapter are represented. 

 



 

29 

 

 

Figure 1-1: Structure of the thesis and logic interconnections among chapters 
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Chapter Two: Human gait analysis by using inertial handheld devices 

 

This chapter introduces the main characteristics of human gait that can be 

exploited for navigation purposes in PDR algorithms. The IMU that is used to detect 

human gait and design the proposed algorithms is first described. In particular, the error 

sources affecting the IMU signals are presented. Since these errors can degrade the 

performance of the navigation algorithms, a dedicated signal pre-processing phase is 

required and described. Finally, different signal processing techniques, in the time, 

frequency and time frequency domains, are proposed to extract relevant information 

from the IMU signals. 

 

2.1 Human gait 

Human gait analysis refers to the study of human locomotion through the 

evaluation of kinematic, kinetic and spatial/temporal parameters (Do & Suh 2012). This 

field of study finds application in a large variety of domains, including entertainment, 

healthcare and pedestrian navigation.  

The act of walking involves the coordination of different human body parts, such 

as the skeleton, the muscle and the neural systems. Various factors can affect the 

complex interaction between the body parts, for example any pathological nature will 

require a distinction between ―normal gait‖ and ―pathological gait‖.  ―Normal gait‖ refers 

to the naturalistic and general human walking parameters without differentiating the age, 

sex or individual physical parameters. Conversely, ―pathological gait‖ refers to an 
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abnormal gait, for example affected by pathologies such as muscle weakness or 

skeleton deformities (Rose & Gamble 2006). 

 In this thesis, only the normal gait case is considered. Indeed it has been shown 

that a normal gait is characterized by a fundamental pattern that is not subjected to inter 

and intra individual variations. Specifically the normal human gait is marked by the 

periodic repetition of two main phases, the stance phase, when the foot is in contact 

with the ground, and the swing phase, when the foot is in the air. These two phases are 

represented in Figure 2-1.  The stance phase occurs between two events: the foot strike 

and the ipsilateral (same foot) foot off. Complementary, the swing phase starts with the 

foot off event and ends when the second ipsilateral foot strike (Rose & Gamble 2006). 

   

 

Figure 2-1: Human gait cycle and its phases 

 

As shown in Figure 2-1, in the case of normal gait, the stance and swing phases 

can be further divided in eight sub phases as follows:  

 Initial contact: refers to the precise instant when the foot touches the ground. The 

initial contact marks the beginning of the stance phase. 
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 Loading responses: corresponds to about 10% of a gait cycle. During this phase 

the foot comes in full contact with the ground and the stance limb supports all the 

body’s weight. 

 Mid-stance: starts when the foot leaves the ground and ends when the body 

advances over the stance limb. 

 Terminal stance: starts when the heel leaves the ground and ends when the 

contra-lateral foot touches the ground. 

 Pre-swing: in this phase the knee flexes before the swing phase and the body’s 

weight is loaded to the opposite limb. 

 Initial swing: represents the first third of the swing period. It starts when the foot 

leaves the ground and ends when the maximum knee flexion occurs. 

 Mid swing: is the middle third of the swing period. It starts with the maximum knee 

flexion and ends when the tibia is vertical. 

 Terminal swing: is the third swing period during which the knee fully extends 

before the heel’s contact. 

 

The repetition of the same event for the same foot marks the occurrence of the stride 

event. The repetition of the same event for different feet marks step events. In general, 

the period when the foot is flat on the ground is assumed as reference event since it is 

the most easy to be identified. 
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The running gait shows some differences with respect to the walking gait. While in 

the walking case there is at least one foot that touches the ground, in the running case, 

aerial phases, when both feet are in the air, can be identified. For this reason, in the 

running mode, the vertical component of the ground reaction assumes bigger values 

than in the walking mode. More specifically, during running the stance phase decreases 

by 35% while the peak ground reaction force increases by 50% (Rose et al 2006). These 

different values of the stance phase and the ground reaction force are reflected in 

different patterns of the Centre Of Mass (COM), which is the point of the body where the 

entire mass can be considered concentrated (Rose & Gamble 2006). In walking mode 

the centre of mass assumes its biggest value at the middle of the stance phase. 

Conversely, during the running mode, the centre of mass reaches its lowest values at the 

middle of the stance phase. Indeed the different profile drawn by the centre of mass 

during motion can be used to distinguish running and walking modes (Rose & Gamble 

2006).  

 

However, this approach will not be used in this thesis. The COM plays an 

important role in gait analysis. In Winter (2004), the COM is considered as the 

intersection of the sagittal, the transverse and the frontal plans cutting the human body 

as shown in Figure 2-2.  Although the COM varies dynamically according to the 

performed motion, when the subject is static, it can be considered placed close to the 

hip. Indeed, since the COM’s motion reflects the global motion, it is common to place the 

sensor used for gait analysis close to the hip. However, this location is not suitable for 

mobile devices. Indeed mobile devices are generally held in hand. In order to track the 
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global user’s motion even if the sensor is held in the hand, it is necessary to analyze how 

the motion of the body’s upper and lower parts are related. Generally, human gait 

analyses are focused on the motion of the body’s lower part. For this reason, gait models 

are generally designed excluding the subject’s arm contribution. A few studies have 

analyzed the arms’ swing in conjunction with the foot’s vertical moment.  

 

 

Figure 2-2: Representation of the human body and the three plans defined by the 
body’s COM - adapted from Winter (2004) 

 

Specifically, it has been observed that during normal walk, coordination between 

upper and lower parts of the human body exists. Indeed, the arms’ swing has the 

purpose of decreasing the reaction momentum of the vertical axis of the foot (Park 
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2008). For example, when the left foot is on the ground (during the stance phase), a 

positive torque induced by the arm swing allows advancement of the right leg. The same 

event happens for the right leg. Consequently, this coordination can be exploited to track 

the lower part motion even if the sensor is handheld.  

 

2.2 Inertial sensors for detecting human gait 

In this thesis, gait analysis is performed using data from a MEMS IMU.  MEMS 

technology is based on the integration of mechanical micro structures, sensors, 

actuators and electronics on a single chip realized with micro fabrication techniques used 

in the semiconductor industry (Park & Gao 2008).  

The term IMU indicates a device including three accelerometers and three 

gyroscopes fixed in orthogonal triads. In Figure 2-3 an IMU (left side) and the scheme of 

its internal structure (right side) are shown. The use of one or more IMUs to characterize 

human gait is a very common approach (Sabatini et al 2005, Mathie 2003). Indeed an 

accelerometer and a gyroscope allow providing the body’s angular rate and acceleration, 

which can be processed for tracking motions.  

MEMS IMUs are particularly appealing for consumer grade applications thanks to 

their advantageous properties. They are low cost, low power consumption, small size 

and light weight.  All these characteristics allow these sensors to be embedded in 

unobtrusive devices, such as smart phones or Personal Digital Assistants (PDAs). 

Conversely, the main drawback is that their signal is affected by various noises and 

biases degrading the IMU’s performance. In this section, first of all the accelerometer 
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and gyroscope sensors are described. Then the error sources affecting their signals are 

detailed. Finally, various techniques to process the IMU signal, and subsequently cope 

with their noisy nature, are illustrated. 

  
Figure 2-3: (Left) Inertial measurement unit (IMU); (Right) IMU’s scheme showing 

the three accelerometers and the three gyroscopes mounted in an orthogonal 
triad (adapted from Gabaglio 2002). 

 

2.2.1 Accelerometer 

An accelerometer is a sensor able to provide the acceleration of a body, whose 

mass is known, by exploiting Newton’s second law (F = ma).  Different types of 

accelerometers can be implemented (Titterton & Weston 2004). The pendulum 

accelerometer is the most commonly implemented using MEMS technology and is 

composed of a proof mass suspended by springs and constrained to move only along a 

predefined axis. Furthermore, the mass is placed in the middle of two electrodes. When 

acceleration occurs along the predefined axis, the proof mass is moving from its 

equilibrium position.  The displacement’s change can be evaluated by measuring the 
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capacitance’s change. The latter is then used to evaluate the amplitude of the force 

inducing the proof mass’s displacement (Kraft 1997). 

 

2.2.2  Gyroscope 

Gyroscopes are sensors able to provide the angular rate of a body with respect to 

a reference frame. There are different varieties of gyroscopes, namely mechanical, 

optical and vibrating gyroscopes.  An extensive survey can be found in (Titterton & 

Weston 2004). While the realization of mechanical and optical gyroscopes is still 

expensive, vibrating gyroscopes can also be low cost if manufactured with MEMS 

technology. Gyroscopes exploit the Coriolis effect according to which an object with 

velocity v and angular rate Ω will experience an acceleration acor. The Coriolis 

acceleration can be expressed by  

cor = 2 ×a v Ω .                                                                    (2.1) 
  
The vibrating gyroscope impresses a velocity to a proof mass by inducing a vibration on 

the above mass. Due to the Coriolis principle, if an angular rotation is induced along a 

direction perpendicular to the velocity’s plane, a Coriolis acceleration is produced. The 

resulting acceleration vector, lying on the plane perpendicular to the velocity and angular 

rate vectors, modifies the motion of the proof mass.  The Coriolis acceleration can be 

sensed by electrical circuits able to detect a variation of the electrical capacitance. 

Subsequently, the angular rate can be computed by using the equation (2.1). 
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2.3 Inertial sensor errors 

MEMS Inertial sensor signals are affected by various errors requiring specific pre-

processing. These errors can be classified in two main classes: deterministic and non-

deterministic or stochastic errors. Calibration techniques can be applied to remove the 

first type of errors while non deterministic errors require stochastic modelling. In this 

section more details about the main type of errors characterizing inertial sensors are 

given. 

 

2.3.1 Noise 

Noise refers to random errors in the sensor measurement that can be intrinsic, 

namely produced by the sensors itself, or external, that is induced by electronic external 

device’s interference. Due to the non systematic nature of the noise, deterministic 

modelling cannot be applied and stochastic modelling is required (El-Sheimy 2004).  

 

2.3.2 Sensor bias 

A bias is composed of two parts, a deterministic one, indicated as bias offset, and 

a stochastic one indicated as bias drift. The bias offset is the component generated 

directly by the sensors and, in light of its deterministic nature can be evaluated through 

calibration processes. This component is particularly significant for low cost sensors, for 

which frequent calibration is necessary. The bias drift, that is the error accumulated over 

time, is random and requires stochastic modelling (El-Sheimy 2004). 
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2.3.3 Scale factor errors 

The ratio between the sensor’s signal output and the sensor’s input to be 

measured is indicated as scale factor error. This error is deterministic and can be 

removed with specific calibration techniques (El-Sheimy 2004). 

 

2.3.4 Non-orthogonality errors 

This error is produced by an imperfect mounting of the sensors, usually due to 

non-orthogonality of the axes. Consequently, the measurements along each axis are 

affected by those of the other two axes in the body frame (El-Sheimy 2004). This type of 

error can be modelled in the INS error equation or calibrated  

 

2.4 IMU signal model and pre-processing 

As introduced in Section 2.2, a six degree freedom (6DoF) IMU is composed of a 

tri-axis accelerometer and a tri-axis gyroscope sensing respectively acceleration and 

angular rate of the body frame. Consequently, the digital output of the IMU can be 

modelled as a six-dimensional vector given by the response to the experienced inertial 

force and a noise term (Skog et al 2010) as 
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where 

 n  ℕ is the temporal index of the signal with sampling frequency fs = 1/Ts. For 
the experiments conducted in this thesis, fs is equal to 100 Hz.  
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  a ns  ℝ3 is the digital output of the tri-axis accelerometer composed by the 

acceleration vector a[n] and the related noise vector  a nη . 

  nsω   ℝ 3 is the digital output of the tri-axis gyroscope composed by the 

angular rate vector  nω and the related noise vector  ω nη . 

 

Human walking gait is a low-frequency activity and the most useful information is 

contained in the frequencies below 15 Hz (Mathie 2003). For this reason, the raw IMU 

data has been low pass-filtered by using a Butterworth filter with a cut-off frequency of 15 

Hz. This type of filter has been selected in view of its simplicity and maximally flat 

magnitude response in the pass band. 

The following notation is used to denote the filtered acceleration components: 

x y z[n], [n], [n]s ss         (2.3) 

Since accelerations and angular rates are defined in an arbitrary system of axes, two 

main approaches can be adopted for processing, namely: 

 The measurements can be projected in a local frame where an axis, generally 

indicated as the z axis, is parallel to the gravity vector and the other two axes, 

parallel and perpendicular with respect to the motion’s direction, lie in the 

horizontal plane. 

 Computation can be performed on the signal norm (Kwakkel 2008).  

The first approach is suitable when the sensor is body fixed (Karantonis et al 2006, 

Veltink et al 1996). In this case, the orientation of the sensor in the local level frame is 

solved by alignment techniques.   
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When the orientation of the sensor cannot be easily determined or is changing 

over time, like with handheld sensors, the signal’s norm is usually preferred and is used 

in this thesis.  

The signal norm is expressed as  

 

2 2 2

x y zs[n] s [n]+s [n= ]+s [n]                                             (2.4)  

                       

Furthermore, the presence of a non-zero DC component, which is present in the 

signal, can hide important information and reduce the effectiveness of the frequency 

domain estimation techniques described in Section 2.5.2. Thus, the DC component is 

removed as follows: 

 

   
L-1

0

l=0

1
s [n] s[n] - s[n-= l]

L
                                                                                             (2.5) 

 

The second term of (2.5) is the signal mean computed using a moving average 

filter and L represents the length of the analysis window. The criterion to select the 

length of the analysis window will be detailed in Sections 3-2.  
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2.5 IMU signal analysis 

In this thesis the analysis of IMU signals is performed in the time, frequency and 

time-frequency domains. Indeed, as detailed in this section, the above domains offer 

different points of view to study the signal properties. 

 

2.5.1 Time domain analysis 

The analysis in the time domain is the most intuitive and direct approach to study 

the properties of a signal. As described in Section 2.1, when the inertial unit is placed on 

the foot and the user is performing a cyclic activity, such as walking and running, it is 

possible to distinguish several motion phases (Mathie 2003, Kwakkel 2008).  

This enables different approaches for improving the accuracy of the user location, 

including the determination of the stance phase, i.e., when the foot is leaning on the 

ground. Indeed, this gait event can be exploited bounding the error growth of inertial 

sensors as introduced in Section 1.2.  

Figure 2-4 shows the norm of the accelerations measured by two synchronised 

MEMS accelerometers placed on the foot (upper part) and in the hand (lower part) of 

a user walking at normal speed. The two signals show clear periodicities reflecting the 

cyclic nature of the walking motion performed by the user. For the foot mounted sensor, 

the periods when the acceleration is close to the value of gravity (g) correspond to the 

stance phases of the foot. When the sensor is foot mounted the signal dominant 

component is produced by the cyclic repetition of the stride events. When the sensor is 

in the user hand, the periodicity of the signal is due to the combined effect of the lower 
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body motion and the arm swing. However, from the time domain analysis it is not 

possible to extract all the signal’s different components. In order to analyze the 

contribution of these components, a frequency analysis is required and detailed in 

Section 2.5.2. 

 

 

Figure 2-4: Time domain representation of the accelerometer signal extracted 
from a sensor on the foot (upper part) and in the swinging hand (lower part) of a 

walking subject. 
 

2.5.2 Frequency domain analysis 

As shown by J.B. Fourier almost two hundred years ago, any real waveform can 

be considered the sum of a unique combination of different sine waves. These different 

contributes can be analyzed in the frequency domain by evaluating the signal spectrum. 

The latter indicates how the signal energy is distributed among different frequencies. For 
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periodic signals the spectrum is discrete while for a-periodic signals the spectrum is a 

continuous function of the frequency. In Figure 2-5 the relationship between a periodic 

signal and its frequency representation is illustrated. 

 

. 

 

Figure 2-5: Relationship between time and frequency domains for a periodic 
signal 

 

In order to analyze the different components constituting the IMU signal, and 

consequently extract the signal ―hidden periodicities‖, when the sensor is handheld the 

frequency domain analysis can be adopted.  

The spectrum of a signal can be estimated by applying two main methods: 

parametric and non-parametric techniques. Parametric techniques are based upon 

the mathematical properties of the signal while non parametric techniques, which are 

implemented in this thesis, rely on the direct analysis of empirical data.  
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2.5.2.1 Parametric techniques for spectrum estimation: the Linear Predicti Coding 
(LPC) technique 

An example of parametric technique is given by the LPC. The latter method 

models the signal as the output of a linear system driven by white noise. In particular, the 

version of the LPC based on a AutoRegressive (AR) model represents the signal as a 

linear combination of its p past values. Such model can be used to represent the quasi 

periodic signal recorded by an accelerometer during cyclic activities.  

Indeed, an example of accelerometer signal LPC frequency analysis for motion 

mode detection applied to pedestrian navigation can be found in (Chowdary et al 2009). 

This approach allows predicting a digital signal x[n] by using a linear predictor of order p 

(Proakis & Manolakis 1996) so represented 

 

     
p

k

k=1

x n = - a x n-k +e n
         (2.6)

 

 

where  

-ak are the linear predictor coefficients 

-e[n] is the approximation error at the instant n 

 

A unique set of linear predictor coefficients can be computed, for example, by minimizing 

the sum square of the prediction error as detailed in (Proakis & Manolakis 1996). Finally, 

taking the z transform of the (2.6) the spectral envelope of the signal can be found as 
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p

-k

k=1

E z
H z =

1+ a k z
                                                                                                     (2.7) 

Then the signal spectrum can be estimated as 

   ˆ 2

xP z = H z
           (2.8) 

 

In Figure 2-6 the spectrum of the accelerometer signal, estimated by applying the LPC, 

is reported for the case of a subject walking with the sensor in a swinging hand. MS 

 

Figure 2-6: Spectral Envelope computed with the LPC (order p =30) -MEMS on the 
foot of a walking subject 

 

 

Parametric models allow achieving a superior frequency resolution than non 

parametric techniques. However, since parametric techniques are based on a 

mathematical model, if the model does not fit well the data, the obtained results can be 
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inaccurate or misleading. For example, if the choice of the order of the interpolation p is 

not appropriate false peaks could be detected in the signal spectrum.  

 

2.5.2.2 Non parametric techniques for spectrum estimation: the periodogram  

 

Non-parametric methods rely on the direct use of the available data. A classical non 

parametric spectrum estimator is the periodogram. It estimates the Power Spectral 

Density (PSD) of a finite sequence   
N-1

n=0
x n  by applying the following: 

  
 ˆ

2

k

x k

X ω
P ω =

N
                                                                                                     (2.9)   

where  jωX e is the Discrete Fourier Transform of   
N-1

n=0
x n  given by 

   
N-1

- jω n

k

n=0

X ω = x n  e k                                                                                                 (2.10) 

where  k

2π
ω =

N

k
, with k = 0,1,…N – 1. 

The Discrete Fourier Transform is generally computed by using the Fast Fourier 

Transform (FFT) in order to reduce the computational complexity from O(N2) to 

O(Nlog2N) with N representing the length of the analysis window. Specifically, to apply 

the FFT technique a window N = 2n is required.  

The windowing process implies that the estimated spectrum is the convolution of 

the true spectrum and the spectrum of the window function. The convolution operation is 

responsible of an effect indicated as leakage that spreads the energy in the main lobe of 

a spectral response into the side lobes. This effect can be reduced by using windows 
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with non uniform weighting. On the other side, these types of windows will decrease the 

spectral resolution. 

 In this thesis the analysis of the IMU signal is performed using a specific type of 

periodogram indicated as Welch periodogram. This technique is applied by using an 

Hamming window (Proakis & Manolakis 1996) to divide the signal  x n  in overlapped 

blocks and by averaging the squared magnitude FFTs  of the signal blocks. The main 

advantage of this approach is the reduction of the variance when compared with the 

standard periodogram. In Figure 2-7, the Welch periodogram is represented for the case 

of an IMU placed in the swinging hand of a walking subject. Three main peaks are 

clearly visible in the periodogram. The relationship of these peaks with different gait 

events will be analyzed later in this thesis. 

 

 

Figure 2-7: Periodogram computed with the Welch method (MEMS sensor in the 
swinging hand of a walking subject) 
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However, since the IMU signal is non stationary, i.e. the signal’s first order 

statistics change over time, it is necessary to observe how the frequency components 

change over time too.  Subsequently, an analysis in the time-frequency domain, 

described in Section 2.5.3, is required. 

 

2.5.3 Time-frequency domain analysis 

 

For non-stationary signals the representation in the frequency domain is unable to 

capture signal changes over time. A standard method to analyze a non-stationary signal 

is the Short Time Fourier Transform (STFT) whose underlying basic assumption is that 

the signal can be regarded as stationary for short durations (Cohen 1995). In particular 

for a a finite sequence   
N-1

n=0
x n , the STFT is defined by 

     
N-1

-j ω n

n=0

STFT ω,τ = x n w n- τ e                                                                                (2.11) 

where  w  is the analysis window.  

Despite the poor time-frequency localization properties of the STFT, this 

transform has two main advantages, namely its low computational requirement and the 

non-parametric nature. By computing the square modulus of the STFT, the signal’s 

spectrogram is further obtained. The properties of the spectrogram are strictly related to 

the analysis window.  

The window should be long enough to obtain a good frequency resolution but 

without capturing significant signal components that would belong to transient periods. 

Subsequently a trade off between time and frequency resolution is imposed. In 
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Figure 2-8 the spectrogram of the accelerometer signal is reported for the case of a user 

walking with the sensor in a swinging hand. It can be seen that this method is able to 

clearly show the dominant frequencies and their variations over time.  

 

 

 

 
Figure 2-8: Spectrogram of the accelerometer signal (MEMS sensor in the 

swinging hand of a walking subject) 
 

 

2.6 Summary 

In this chapter it has been shown that inertial sensors are effective tools for gait analysis. 

However, due to the low cost nature of the inertial sensors considered in this thesis, a 

specific processing of their signals is required. Different signal processing techniques 
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have been presented in order to thoroughly analyze the IMU signal in different domains 

and extract useful information for gait analysis. In particular, these techniques will be 

exploited in Chapter 3 in order to extract meaningful signal features for the user’s global 

motion mode recognition.  
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Chapter Three: Motion mode recognition for navigation purposes 

 

When GNSS is not available, information about the user context, such as his 

motion mode, can be very useful to reduce the uncertainty about his location. Indeed the 

pedestrian navigation algorithm should be adapted to the specific user’s motion mode. 

The advantages of constraining the PDR solution by exploiting the user motion 

knowledge have been showed for the case of body fixed sensors (e.g. Pei et al 2011). 

Similar results are expected with handheld sensors. However, the identification of the 

user’s motion mode with handheld inertial sensors introduces new issues requiring 

specific processing. 

 In this chapter, algorithms for identifying the user’s global motion from signals 

sensed by a handheld IMU are proposed. The user motion mode identification is 

considered as a classification/pattern recognition problem, where the 

classes/patterns correspond to different human activities. To render this chapter self-

contained, first a general overview of classification theory is proposed. Then, the 

features used for identifying different user’s activities, such as standing, walking, 

running, climbing/descending stairs are presented. Finally, the mentioned classifiers 

for motion mode recognition are detailed.  

 

3.1 Human activity recognition: literature review 

Human activity recognition using inertial sensors is a rich and proliferating 

research field, especially for clinical analysis (Nijsen et al 2010, Yin et al 2008). Indeed 
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the identification of human activity is exploited in biomechanics (Sabatini, 2006), medical 

diagnosis, rehabilitation, sport science (Ermes et al 2008), and the monitoring of 

physically and mentally impaired people.  An example of such application is given by the 

implementation of systems alerting if the monitored subject shows reduced activity signs 

or unusual behaviours such as a fall. In the context of indoor positioning and navigation, 

the human activity identification can help to constrain the user position or to adapt the 

navigation algorithms according to the user’s activity.   

However, according to the type of application for which activity recognition is 

performed, different issues arise. They strongly depend on diverse features. 

 

 The number of available sensors: activity recognition using multiple inertial 

sensors is a common approach for medical applications because the latter 

guarantees higher performance and increased reliability of the identification 

process. However, the processing of multiple sensors requires higher 

computational cost, which may not be compatible with real time applications. 

Moreover, the use of multiple sensors is not suitable for smartphone/mobile 

devices based applications, which is the target of this thesis. 

 

 The sensors position: sensor signal patterns strongly depend on the sensor’s 

mounting location. Indeed, the sensor output can be very different for different 

sensor positions, even if the monitored subject is performing the same activity. A 

common assumption for human activity recognition is that the sensor is rigidly 

attached to the user’s body. In many studies, the sensor is located close to the 
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COM, for example near the pelvic region or mounted on the user’s belt. In fact, as 

explained in Section 2.1, the forces experienced by a sensor close to the COM 

reflect the global user motion mode. However, handheld devices are freely carried 

and, consequently, the sensor orientation and position can change suddenly 

rendering the activity recognition complex. 

 

 

 The activities to be recognized: the complexity of the activity to be identified can 

be very different. Human activities can be classified as primary activities, such as 

walking, standing, running and complex activities, generally involving the 

manipulation of objects. In the case of handheld devices, the user can interact in 

different ways with the smartphone, i.e. phoning, texting, or reading navigation 

instructions on the screen’s device. As underlined in Chapter 4, for pedestrian 

navigation applications, these kinds of activities should be identified and 

distinguished from the user’s primary activity. It is obvious that the complexity of 

the classification algorithm is positively correlated with the complexity of the 

activity to be recognized. 

 

Most of existing studies have explored the use of multiple inertial sensors, especially 

accelerometers, to perform motion recognition. One of the most complete studies 

involving multiple accelerometers was performed by Bao & Intille (2004).  Five bi-axial 

accelerometers were placed in five different locations on the user’s body and their 

algorithm was able to recognize 20 different human activities, including walking, running, 
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watching TV and eating. In order to detect various activities, different classifiers, such as 

a decision tree, Nave Bayes and nearest neighbour algorithm, were used to compare 

their performance. The results of this study showed that the decision tree classifier 

achieved the best performance. A smaller number of studies use single accelerometers 

for context detection.  

For example, Ravi et al. (2005) used a single tri-axial accelerometer located near 

the pelvic region, comparing the performances of various classifiers. Eight human 

activities are analyzed, namely standing, walking, running, climbing/descending stairs, 

sit-ups, vacuuming and brushing teeth. A few research studies exploit gyroscopes’ 

capabilities for motion modes recognition. In Tuncel et al. (2009), two single axis 

gyroscopes are mounted on the test subjects’ leg to identify different leg’s motions for 

rehabilitation purposes. In Bourke & Lyons (2006) a dual axis gyroscope mounted on the 

user torso is used to discriminate normal activities from falls by applying a threshold 

algorithm to the peaks in the angular rate signal, angular acceleration and torso angle 

change.   

A survey of recent studies in the area of activity recognition by using inertial 

sensors can be found in (Lara & Labrador 2012). Although the literature shows that 

inertial sensors are effective tools for recognizing human activities, the case of handheld 

sensors has been only marginally examined. Principally because the handheld situation 

is much more complex than the body fixed one.  Indeed a mobile device held in hand 

is subjected to various types of motions that are uncorrelated with the global 

locomotion. Therefore the pattern of the sensor signal is hardly predictable, which 

renders the classification process a difficult task. In light of these limitations, this thesis 
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analyses the recognition of different human activities by using handheld devices and 

considering real life-scenarios typical for mobile device users. 

 

3.2 Pattern recognition 

A system able to automatically identify different motion modes can be modeled as 

a pattern recognition system. In general, the goal of pattern recognition systems 

(Fukunaga 1972) is to automatically assign a given input pattern to a known class of 

objects, according to specific decision rules. Given an input pattern, that is a set of initial 

measurements, it is necessary to select significant features able to characterize the 

observed samples in an unambiguous way.  

By extracting the above features, a mapping process is performed from the input 

m-dimensional space of the measurements to the n (with n < m) dimensional space of 

the features. In this way, since the input to the classifier becomes smaller, the design of 

the pattern recognition system becomes simpler. In this study the design and the 

implementation of classifiers for human activities recognition has been performed using 

different statistical approaches. For this reason, Section 3.2.1 recalls the theory of 

statistical pattern recognition. 

 

3.2.1 Statistical pattern recognition 

Statistical pattern recognition is based on the underlying statistical model of 

pattern and pattern classes (Jain et al 2000). In the statistical approach, the selected 

features can be represented by a vector,  1 2 n= x ,x ,..,xx , in the n-dimensional space 
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where n is the number of input features. If the features are properly selected, the feature 

space should be divided into disjointed regions corresponding to different pattern 

classes. Then, by analyzing the input feature vector, the classification process assigns 

each vector to one among the c possible pattern classes,  ω 1 2 c= ω ,ω ,...,ω .  

In Figure 3-1, the conceptual scheme of a pattern recognition system is reported 

and, as shown below, a mapping process is performed from the input pattern to a hidden 

state by observing the feature vector and according to a specific decision rule 

characterizing the classifier. 

 

 

 

Figure 3-1: General scheme of a pattern recognition system: a hidden state is 
assigned to an input pattern by observing the feature vector and according to the 

decision rule defined by the classifier 
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Figure 3-2 illustrates the general model of a statistical pattern recognition system. 

A pattern recognition system (or classifier) is composed of two phases: the training (or 

learning) phase (represented in yellow) and the classification (or testing) phase 

(represented in green). 

 

 

CHAPTER  SEVEN:   

Figure 3-2: Model for statistical pattern recognition (adapted from Jain et al 
(2000)) 

 

In the pre-processing phase, the acquired data are used to obtain a compact 

representation of the pattern, reducing the impact of noise, and making the feature 

extraction (second phase) possible. The features extraction plays a key role in the 

design of a classifier. An ideal feature extraction process should be able to minimize the 

intra-set distance (distance among different features in the same class) and to maximize 
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the inter-set distance (distance among different features in different classes, as shown in 

Figure 3-3 (Jain 2000). 

 

 

 

.  

Figure 3-3: Different feature distributions: (left side) optimum distribution case 
with high inter-set separability and low intra-set separability, (right side) bad 

distribution case with low inter-set separability 
 

 

In this way, the classification can be performed (third step) with a reduced error 

probability due to a good inter-class separability. As shown in Figure 3-2 the general 

model of a pattern recognition system includes also a feedback loop allowing 

optimization of the pre-processing and the feature extraction methods in the design 

phase. In statistical approaches, given the input vector,  1 2 n= x ,x ,..,xx , and the c 

possible classes  1 2 c= ω ,ω ,...,ωω , the probability that the vector belongs to the ith class 
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is defined by the class-conditional probability function p(x ωi). Several decision rules can 

be used to limit the decision regions, as shown in Figure 3-4.  

The choice of the approach depends on the knowledge about the class 

conditional probability densities (Jain et al 2000). By traversing the tree in Figure 3-4 

from left to right, the available information decreases and the design of the classifier 

becomes more difficult. 

 

 

 
Figure 3-4: Possible approaches in statistical pattern recognition (adapted from 

Jain et al (2000)) 
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If all the class conditional densities are known, the classifier can be designed by 

exploiting the Bayes rule that assigns the class with the highest a posteriori probability to 

the input pattern.  Equivalently, it chooses the class that minimizes the conditional risk 

that is the conditional probability of making a wrong decision, defined by the following 

expression: 

 

     x x
c

i i j j

j=1

R ω = L ω ,ω P ω

,                                                                                   (3.1)
 

 

where  i jL ω ,ω is the loss incurred in deciding iω  when the true class is 
jω . The Bayes 

decision rule is defined as the optimum rule (Jain et al 2000) since it is, among all the 

possible rules, the one with the minimum probability of error. The weak point of this 

approach is that usually the class conditional densities are unknown and so this rule 

cannot be applied. Indeed if the class conditional densities are unknown, it is necessary 

to distinguish them on the basis of the kind of training samples available. The training 

samples can belong to labelled classes (supervised learning) or to unlabelled classes 

(unsupervised learning). 

 

 In the case of unsupervised learning, since the knowledge about the training data 

is lower, the classification process is more difficult. Concerning the supervised learning, if 

the distribution of the class conditional densities are known, but their statistical 

parameters, such as the mean or the variance, are not available, it is necessary to use a 

parametric approach. Conversely, if the form of the distributions is not available, a non-
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parametric approach has to be used. In this case, two alternatives are possible: to 

estimate the form of the distributions or to use the training data to define the decision 

regions. By observing the tree diagram in Figure 3-4, it emerges that another distinction 

is made regarding the method used to define the decision regions. Two different 

approaches are possible: probabilistic and geometric. The former refers to the estimation 

of the probability density functions whereas in the latter, decision boundaries are 

determined by optimizing specific cost functions. The k-nearest-neighbour and the 

decision tree that will be described in the following sections, belongs to the second kind 

of techniques. 

 

3.2.1.1 IMU signal pre-processing for motion mode recognition 

Activity recognition requires the extraction of meaningful attributes indicated as 

features to univocally characterize each activity. These features are used as input to the 

classification scheme (Jain 2000). High performance of a pattern recognition system 

strongly depends on a good selection of these attributes. The feature extraction phase 

can be performed only after that the raw data have been represented in a compact form. 

With this aim a pre-processing phase able to reduce the noisy components has to be 

implemented. As explained in Section 2.4, since gait is a low-frequency activity, all the 

frequencies above 15 Hz have been removed by low-pass filtering the raw data with a 

10th order Butterworth filter whose frequency cut-off equals 15 Hz. The feature extraction 

is performed by dividing the filtered inertial data in windows of N samples.  
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Specifically, for our sampling frequency of 100 Hz, N was chosen equal to 128 

corresponding to 1.28 seconds with 50% of overlap. In addition, this size allows the fast 

computation of the FFT, used for the frequency analysis of the examined signals. The 

selection of a suitable window is a critical phase. Long windows cannot capture a sudden 

change of motion. Instead, narrow windows are not suitable for the analysis in frequency 

domain performed by FFT.  The features selected for the user’s global motion mode 

recognition are illustrated in Section 3.3. 

 

3.3 Features for global motion mode recognition 

In this section the features used to identify different user’s activities, namely 

standing, descending/ascending stairs, walking and running, are introduced. The use of 

accelerometers is the most widespread (Mannini & Sabatini 2010) approach for human 

activity recognition using wearable sensors. This method is here used for the 

identification of the user global motion mode. Indeed, in order to extract information 

useful for human activity recognition, the accelerometer signal has been thoroughly 

analyzed in the time, frequency and time-frequency domains using the techniques 

described in Section 2.5.  

The identified accelerometer features allows recognizing the mentioned activities 

with high accuracy as detailed in Chapter 5 where the performances of the classifiers 

here presented are assessed. However, as detailed in Chapter 4, the capabilities of a 

gyroscope have been also exploited to better characterize the walking mode through the 

identification of the sensor carrying mode/hand motion.  
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3.3.1 Energy related features 

The analysis of the energy over time is a traditional approach to perform activity 

recognition since this is the most direct parameter to evaluate the characteristics of the 

motion mode.  In fact, it is obvious that activities such as running are characterized by 

higher energy values than walking. Conversely, sedentary activities, such as sitting or 

standing, are characterized by a decrease of the energy. In this thesis, the total energy 

is computed by squaring the magnitude of the pre-processed accelerometer data and 

integrating it according to the following expression:  

 

 a 0
0

2N-1
a

s
n=0

1
E = s n

N
          (3.2) 

 

where  0

a

s n  is referring to the filtered norm of the accelerometer signal after the pre-

processing phase, as expressed in Section 2.4, and N is the length of the analysis 

window. The weakness of this approach is that different subjects can perform the same 

activity with very different values of energy.  

Furthermore, this feature can assume different values according to the sensor 

position. For example, a sensor in the user swinging hand experiences higher energies 

than a sensor in the user pocket. To overcome this limitation, the sub-band energy 

ratios distribution is also considered. This approach is based on the consideration that 

faster motion mode induce higher energy frequency values.   
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To obtain the energy in four different sub-bands an energy estimator has been 

implemented according to the scheme of Figure 3-5. The energy estimator evaluates 

the energy after that the signal has been filtered by a Butterworth filter-bank. Each filter 

has a different cut-off frequency with the aim of obtaining the energy in the following 

frequency sub-bands. 

 

 0-2 Hz 

 2-6 Hz 

 6-10 Hz 

 >10 Hz 

 

 

 

Figure 3-5: Energy estimator implemented as a filter bank 
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The choice of the above sub-bands is motivated by the empirical observation that 

in the running case the energy values in the sub-band between 2-6 Hz are significantly 

larger than the ones related to the first sub-band (0-2 Hz). This is clearly shown in 

Figure3-6 reporting the total energy and the sub-band energies for the case of the IMU 

in a swinging hand. This feature has the advantage of being less sensitive to variations 

of sensor locations or motion style than the total energy defined in (3.2). 

Similar results have been obtained for the other examined sensor locations, i.e. 

pocket and foot, for all subjects used for the field tests described in Section 5.1.  

 

 

Figure 3-6: Total energy and sub-band energies for a user with the sensors 
in the swinging hand. 
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However, similar values of the sub-band energy ratios are also obtained for the 

stair case. In fact when the user is descending the stairs, as in the walking case, the 

energy values in the sub-band between 2-6 Hz are larger than the ones related to the 

first sub-band (0-2 Hz). Conversely, for a user climbing the stairs the energy sub-band 

ratio values are similar to the ones obtained for the running case. By comparing Figure 

3-6 and Figure 3-7 it is clear that the use of the energy ratio can provide ambiguous 

results for the running and going down the stairs cases and for walking and going up the 

stairs cases even if the total energy is different for these two situations.  For this reason, 

in order to increase the separability among the mentioned activities in Section 3.7.2 the 

correlation feature is also introduced  

 

 

Figure 3-7: Total energy and sub-band energies for a user with the sensors in the 
swinging hand while he is descending and climbing the stairs. 
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3.3.2 Correlation 

 

The correlation has been evaluated by applying the Pearson’s correlation 

definition for each possible pair of accelerometer components defined as (Good 2009): 

 

     

     





N

n=1
xy

N
2 2

n=1

x n - x y n - y

r =

x n - x y n - y

                                                                                (3.3) 

 

 

Where  x n and  y n  for n in range (1, N) are the samples of the two selected signals 

components and  x  and y are the sample means of the two components. The three 

accelerometer components in the sensor frame are indicated as x, y and z and are 

represented in Figure 3-8.  As shown in Figure 3-8, since the sensor is freely carried, 

the sensor frame is different from the body frame which is associated with the 

pedestrian. The body frame, represented in figure 3-8, has its X’ axis pointing along  the 

walking direction, the Z’ axis parallel to the gravity vector and the Y’ axis directed so to 

constitute a right handed orthogonal triad. 

Since the correlation measures the similarity among components it assumes larger 

values in the stair case for the vertical and the forward direction. The reason is that the 

motion in the stair case is mainly due to the combination of the motions of the forward 

and the vertical directions. In Figure 3-9 (left side), the plots of the correlation over time 

(correlogram) in the stairs case are reported when the sensor is in the user swinging 
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hand. By observing the following plots we can see that the largest values are related to 

the components indicated as z and y.  

Even if do not know the sensor orientation with respect to the body frame, it is likely the 

named components are the vertical and the forward directions. Indeed, as mentioned, 

the motion on the stairs is due mainly to these components. It is interesting to observe 

that the correlation between the components indicated as x and y assumes lowest 

values but show some periodic peaks. This can be explained considering that between 

different flights on the stairs there is a small landing where the test subject has to transit 

before going on the next flight of stairs. So the user has to change orientation, splitting 

acceleration in the two horizontal components. Consequently, the periodic increase of 

the values in this graph is due to turns between different flights of the stairs.  

If we consider the same kind of plots for the walking case on a flat surface, as 

reported in Figure 3-9 (right side) the correlation values are found to be lower than in 

the stairs case. This can be easily explained by the fact that in this case the motion is 

mainly along one direction (forward). Consequently, the level of the correlation values 

can be used to distinguish walking on a flat plane and walking on the stairs. However, 

this feature relies on the single components of the accelerometer signal and, 

consequently, its effectiveness is related to the sensor orientation. This is a critical 

aspect for freely carried whose orientation is a priori unknown. Indeed, as shown in 

Chapter 5, the performance of motion identification using this feature are higher for the 

foot and pocket case than for the sensor in a swinging hand case. 

 



 

70 

 

Figure 3-8: Representation of the sensor frame with respect to the body frame 

 

Figure 3-9: Correlograms of the accelerometer components for the stairs case 
(left side) and the walking case (right side) 
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3.3.3 Frequency domain features 

As introduced in Section 2.5, by analyzing the accelerometer signal in the time 

domain, if the sensor is on the foot, it is possible to identify single stride events. On the 

other side, it has been shown (Susi et al 2010) that if the sensor is in the hand, the 

situation is more ambiguous and the motion mode requires the analysis of the IMU 

signals in different domains.  For this reason, a frequency domain analysis has been 

performed following the approach described in Section 2.5. Since the signal is not 

stationary, the first three dominant frequencies, i.e. maxima in the spectrogram, are 

analysed over time. In Figure 3-10, the plots of the dominant frequencies over time are 

reported for the running and the walking cases.  

 

 

Figure 3-10: (Left) Dominant frequencies over time for the running and the 
walking cases; (Right) Spectrograms of the accelerometer signal for the running 

and the walking cases (sensor in the user swinging hand). 
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Comparing the plots in Figure 3-10, it is possible to see how in the running mode 

(Figure 3-10, lower part) the frequency peaks appear at higher frequency values than in 

the walking mode (Figure 3-10, upper part). By observing Figure 3-11, which reports the 

spectrogram of the accelerometer signal for a subject alternating running and walking 

with the IMU in the swinging hand, it is clear that faster motion modes force the 

signal energy to migrate towards higher frequencies. 

 

 

 

 

Figure 3-11: Spectrogram of the accelerometer signal for a subject with the IMU in 
his swinging hand. 
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In order to further investigate the relationship between dominant frequencies and 

user’s speed, a test has been performed on a treadmill. Indeed, the treadmill allowed 

monitoring of how the dominant frequency values change by setting different controlled 

velocities. In Figure 3-12 (upper) the norm of the accelerometer signal and (lower) the 

dominant frequencies are reported for the sensor in the swinging hand. 

 Observing the plot of the dominant frequencies, it is clear that the increase of 

their values is directly proportional to the increase of user’s speed. The first two 

frequencies (in blue and in red) assume constant values over time for fixed velocities. 

Instead, for the third frequency, a larger dispersion is visible. However, it should be 

noticed that the treadmill could affect the user’s walking style making it unnatural. In 

view of this consideration, the relationship between dominant frequencies and gait 

events, i.e. user’s step and stride, is more thoroughly examined in Chapter 5. 

 

 
 
Figure 3-12: (Upper) Norm of the accelerometer signal for different user’s speed; 

(Lower) Dominant frequencies for different user’s speed. 
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3.4 Classifiers for global motion mode recognition 

In this thesis, in order to compare the performance of different classifiers, the 

features presented in Section 3.3 have been integrated into three different classifiers, 

namely a Naive Bayesian classifier, a decision tree algorithm and a k-nearest-

neighbour technique. A comparison of the classifier’s performance is reported in 

Chapter 5. The considered algorithms are briefly described in the following. More details 

on these techniques can be found in (Jain 2000, Webb 2002). 

 

3.4.1 Naïve Bayesian classifier 

The Naive Bayesian classifier is a parametric technique relying on the hypothesis 

that all features used for the classification process are statistically independent (Jain 

2000).  

Consequently, the probability of observing a specific feature vector conditionally 

to its assignation to the j-th class is computed by multiplying the marginal conditional 

feature probabilities as   

   

   
d

1 2 d j i j

i=1

p x ,x ,...,x | ω = p x | ω  .                                                                              (3.4) 

 

where x represents the feature vector and  ωj indicates one of the possible c classes as 

defined in Section 3.2.1. The final class is selected according to the Maximum A 

Posteriori (MAP) decision rule expressed as 
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j

d

1 2 d i j j
ω

i=1

ω x ,x ,...,x = argmax p x ω p ω

.
       (3.5) 

Here the different activities are considered equally likely so that the term  jp ω  can be 

neglected.  

The estimation of the likelihood function  i jp x ω  is performed by the training data 

analysis and by applying a Kernel Density Estimation (KDE) method with Gaussian 

kernel (Silverman 1996).  In Figure 3-13, the sub-bands energy likelihood functions are 

shown for a data set collected for a subject walking and running with the sensor is in a 

swinging hand. 

 

 

Figure 3-13: Sub-bands energy likelihood function for the walking and running 
modes 
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The distribution is a Gaussian mixture with modes related to walking and running 

activities. Each motion mode has a Gaussian distribution whose first order statistics, i.e. 

mean and variance, are estimated by fitting the mixture model with the empirical data.  

A multivariate Gaussian likelihood function is used to describe jointly the cross-

correlation features. Thus, the correlation among these features has been taken into 

account through the cross–correlation terms included in the covariance matrix of the 

multivariate distribution function. Finally, the feature joint conditional probability has 

been computed multiplying the single conditional distributions. 

 

 

3.4.2 Decision tree classifier 

The decision tree is a direct acyclic graph with the structure of a tree. The latter 

can be included in the class of non-parametric classifiers (Webb 2002). All classes that 

can be assigned to the input observations are represented by the leaves of the tree. 

Corresponding to each node, a test about one or more features is specified. 

Consequently, the full classification problem is divided in simpler classification tasks. 

Then, for each input, it is possible to assign a specific class by traversing the decision 

tree from the root to the leaves. 

 

 In order to identify the various motion modes a decision tree, valid for different 

sensor locations (e.g. hand, pocket and foot), has been designed and implemented 

according to the scheme in Figure 3-14. The total energy is the first feature evaluated, 

with the purpose to distinguish dynamic and static activities. If the total energy value is 
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higher than a trained threshold the activity is considered dynamic otherwise is classified 

as static.  In the case of dynamic activities four instances are possible: walking, running, 

climbing down the stairs and climbing up the stairs. In order to recognize different types 

of dynamic activities further testes, involving multiple features, are necessary. First of 

all, the energy ratios between first and second sub-bands are evaluated.  

 

To reduce the ambiguity between walking and climbing up the stairs and running 

and climbing down the stairs the cross-correlation terms are then computed. As 

explained in Section 3.3, usually this attribute assumes higher values when the user is 

walking down/up the stairs, since in that case the motion involves more dimensions. 

However, when the sensor is in the hand, its orientation can rapidly changes and the 

correlation terms can be split along the three axis of the sensor reference system. Thus, 

to make the classifier more robust also dominant frequencies and the total energy are 

evaluated and compared with trained thresholds. 
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Figure 3-14: Decision tree for global motion mode recognition 

 

3.4.3 K-nearest-neighbour classifier 

The k-nearest-neighbour is a  non-parametric classifiers. Starting from a unlabeled 

feature vector x  and a set of labelled feature vectors this classifier searches for the k 

nearest neighbours of the input vector. Thus, it assigns to x  the most frequent class 

among the classes of his neighbours. The k-nearest-neighbour decision does not 

require any knowledge about the class conditional probability distributions. Moreover, 

the classifier performance is related to the choice of the two following parameters: 

1. the value of k (number of considered neighbours) 

2. the distance metric (used to find the k nearest neighbours) 
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Higher values of k are less sensitive to noise but can reduce the separability among 

decision regions. The best value of k is generally selected empirically.  

Concerning the distance metric, several distance metrics can be used but according 

to Weinberger et al (2005), ―the metric has to be optimized with the goal that the k 

nearest neighbours always belong to the same class while examples from different 

classes are separated by a large margin‖.  

It is possible to use a ―weighted‖ version of this algorithm where the distance 

measurements are modified by weights selected according to the influence of each 

instance. 

 In this thesis, the selection of the k nearest neighbours is performed using the 

Euclidean distance, which is the most frequently used technique. It evaluates the root of 

square differences between coordinates of a couple of sample vectors,  1 2 n= x ,x ,...,xx  

and   1, 2 n= y y ,...,yy  , according to the following definition:    

     

   
n

2

i i

i=1

d x,y = x - y                                                                                           (3.6) 

 

For simplicity the k value adopted for this thesis has been chosen equal to one.  
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3.5 Summary 

In this chapter different IMU signal features for motion mode recognition have been 

presented. Feature selection has been performed with the purpose to extract attributes 

able to characterize the different states regardless of the considered subject and sensor 

location. The above features have been integrated in three different classifiers. The 

main goal of this analysis was to compare the performance of these classifiers to select 

the most effective for motion mode recognition by using handheld devices. Results of 

such comparison can be found in Chapter 5. Finally, the approach used in this chapter 

to identify different human activities will also be adopted for the recognition of the 

sensor carrying mode and the user’s hand motion presented in the next chapter. Thus, 

the knowledge of the sensor carrying mode will be exploited to adapt the pedestrian 

navigation algorithms proposed in Chapter 4. 
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Chapter Four: Step length estimation  

 

PDR mechanization is an effective approach to propagate the user position and 

is commonly exploited with body fixed inertial sensors. However, the use of the PDR 

technique with handheld devices has been only marginally examined in the literature 

mainly due to the decoupling between hand and COM displacements. This chapter 

investigates the estimation of step lengths with handheld inertial sensors and proposes 

an algorithm for evaluating the travelled linear distance. In conjunction with the heading 

knowledge, this algorithm can be used to propagate the position of a pedestrian walking 

on a flat surface. Firstly, the chapter introduces the mathematical formulation of PDR 

mechanization. Then, the derivation of the algorithm for step length evaluation with 

handheld devices is given. 

 

4.1 Pedestrian Dead Reckoning 

PDR mechanization exploits human gait characteristics to propagate the user’s 

position from the previous epoch to the current one.  Specifically, starting from a known 

position, the PDR algorithm estimates the pedestrian’s coordinates by combining the 

walking direction and the linear travelled distance between two epochs. The latter is 

generally computed by first detecting pedestrian’s steps and then evaluating their 

length. The PDR mechanization is given by 
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t
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t t-1 t t t

end-1

t t-1

t=0

= +s cosθ sinθ

= -

p p

d p p
 (4.1)  

 

where st is the step length, θt is the walking direction over one step, pt the user’s 

position at epoch t and dt the travelled distance.. Figure 4-1 illustrates the PDR 

approach and its recursive nature where the computation of the actual user’s position 

results from the previous displacements.  

 

 

Figure 4-1: Representation of PDR approach 

 

In order to apply the PDR approach, a novel step length model for handheld device, 

introduced in Section 5.2, is applied. The model requires the: 

 

1. Identification of the sensor carrying mode and the hand motion, 

2. Detection of step events, 

3. Estimation of t step length. 
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The above stages are detailed in Sections 4-2-4-6. 

 

4.2 Identification of sensor carrying mode and hand motion 

A handheld IMU experiences different types of motions produced by the 

combination of the body’s lower and upper parts. Furthermore, since the sensor is not 

rigidly fixed to the body, its position can suddenly change rendering the IMU signal 

pattern hardly predictable. For this reason the knowledge of the sensor carrying mode 

and hand motion can be exploited to adapt the navigation algorithms according to the 

detected mode and, consequently, to the IMU signal characteristics. 

Moreover, all hand motions that are uncorrelated with the subject’s global motion 

should be identified and removed in the PDR mechanization. These movements 

typically occur when the user is standing and looking for his/her phone in the bag or 

consulting the phone instructions. In these situations the subject is not changing his 

geographical position but is inducing a significant inertial force sensed by the IMU.  In 

view of these considerations, the following six different modes have been identified and 

considered typical for mobile device users:  

 -Static:  a subject is considered static if his/her location does not change during the 

analysis temporal window. This class includes also the case when the 

subject is slightly moving without changing his position. This is the case, for 

example, when the user is stepping on the spot while making a phone call. 

 - Hand texting: this class includes the situation when a user is walking while texting or 

reading a message on the phone or watching the mobile phone screen to 
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follow navigation instructions. In this case the device’s motion is almost only 

due to the global motion of the user, while the user hand is quasi-stationary. 

This is why these cases can be considered very similar to the body fixed 

case, and subsequently, dealt with similar approaches. 

 -Hand phoning: the walking user is making or receiving a call. 

 -Bag carrying: the walking user is carrying the mobile device in a bag.  

 -Hand swinging: the walking user is holding the mobile device in a swinging hand.  

 -Irregular motion: this class refers to the motions that a subject performs without 

changing his position. This is the case when a subject is looking for the 

phone in a bag without walking.  

Similarly to the recognition of the user global motion mode, the identification of 

the above states has been considered as a classification problem. As seen in Chapter 

3, any classification algorithm requires three phases, namely data pre-processing, 

feature selection/extraction and decision making. These three steps are detailed in 

Sections 4.2.1- 4.2.3 for the states here defined. 

 

4.2.1 Signal pre-processing 

In order to evaluate the linear travelled distance the IMU signal is pre-processed 

as described in Section 3.2. However, in this case the analysis window has been 

selected equal to 256 with 50% of overlap. The above size, for a sampling frequency of 

100 Hz, corresponds to 2.56 seconds instead of the length of 1.28 seconds used for 
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global motion mode recognition. Indeed a larger window allows achieving higher 

resolution for evaluating the FFT. In this case a better resolution is preferable since the 

frequency analysis will be exploited for extracting the step frequency as detailed in 

Section 4.6. 

 

 

4.2.2 Features extraction for the walking case characterization 

 

This section introduces the features that have been selected to recognize the 

different carrying modes and hand motions mentioned previously. These features are 

extracted by analyzing the IMU signal in the time, frequency and time-frequency domains 

applying the techniques presented in Section 2.5. 

 

 

4.2.2.1 Signal Energy 

The energy is computed here by squaring the norm of the accelerometer and 

gyroscope data and summing and normalizing them over a moving window as in (3.2). 

For completeness, the expressions of accelerometer and gyroscope energies are 

reported herein: 
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This feature can be exploited to recognize different sensors’ carrying modes. In 

fact, when a subject is walking with the IMU in the swinging hand, the angular rate and 

acceleration energies are much bigger than the ones experienced in the case of a 

sensor carried in the texting/phoning hand or in a bag.  

 

This is clearly visible in Figure 2 where the gyroscope energies are reported for a 

sensor in the phoning and swinging hand of a subject walking along a straight line.  In 

fact, when the sensor is in the user’s texting hand, the inertial force is mainly due to the 

motion of the body’s lower part, while the hand is not significantly moving. These 

considerations are also true for phoning and bag carrying cases. Indeed, all mentioned 

states are characterized by signal patterns similar to the body fixed case and, 

consequently, can be grouped as a unique class. 
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Figure 4-2: Energy of the gyroscope signal (norm) for a walking user with the IMU 
in the phoning and swinging hand. 

 

 

4.2.2.2 Signal Variance 

To increase the separability among different classes, the variance of the IMU 

signal has also been examined. The variance of a signal is a statistical measurement 

computed by averaging the squared differences of the signal from its mean. The 

variances of the accelerometer and the gyroscope signals are expressed as 

 

   0 , 
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.
 

 

Both gyroscope and accelerometer variances produce bigger values in the 

swinging case than in the texting, phoning and bag cases. This is observed in Figure 4-

3 where the gyroscope variance is shown for a subject walking first with the sensors 

carried in the bag and then in a swinging hand. Furthermore, this feature allows 

identifying irregular motions.  

In fact, the latter state generally corresponds to a sudden increase of the 

variance signal without any periodicity in the signals. To render the classification 

process more robust an analysis in the frequency domain is also performed and further 

detailed in Section 4.2.2.3. 

 

 

Figure 4-3: Variance of the gyroscope signal (norm) for IMU in the user’s bag and 
in the user’s swinging hand. 
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4.2.2.3 Frequency Analysis 

 

As explained in Section 2.5, the frequency analysis of the IMU signal allows 

capturing the periodicity of signals produced by cyclic activities. However, non-

stationary signals require also a time-frequency analysis that is able to catch the signal 

frequency variations over time. The frequency and time-frequency analyses are 

conducted using the Welch periodogram and signal spectrogram as described in 

Section 2-5. In Figure 4-4, the spectrogram of the accelerometer for a subject walking 

with the IMU in the hand is reported. The user is walking carrying the IMU first in texting 

mode and then in his swinging hand. A strongest frequency peak in the accelerometer 

spectrogram is showing the periodicity of the walking mode.  

 

 

Figure 4-4:  Spectrogram of the accelerometer signal for a walking user with the 
IMU in the hand. 
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For the swinging hand case, the three dominant frequencies are also analyzed 

over time and reported in Figure 4-5. 

 

 

Figure 4-5: Dominant frequencies of the accelerometer signal over time. The IMU 
is carried in the user’s hand 

 

When the user is walking, the first two frequencies are almost stationary since 

the user is not significantly changing speed. If the user is performing an irregular 

motion, the two main frequencies follow a very irregular pattern. Finally, when the user 

is static the dominant frequencies assume values close to zero.  A similar analysis has 

also been performed on the gyroscope’s signal for a user walking with the sensors is a 

swinging hand.  

The justification of this approach lies in the periodicity of the rotation of the arm, which is 

experienced in the swinging mode, and is reflected in the gyroscope signal producing 
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peaks in the frequency domain. This is shown in Figure 4-6, where the spectrogram of 

the gyroscope signal is reported. When the user is walking with the sensor in texting 

mode no peak is visible. Conversely, in the swinging case the peak produced by the 

arm’s rotation is clearly observable.  

 

 

Figure 4-6: Spectrogram of the gyroscope signal for a walking user. The IMU is 
alternatively carried in the texting and swinging hand of the user. 

 

 

4.2.3 Decision tree for motion mode identification in the walking case 

In the next chapter it is shown that, for the recognition of the user’s global motion, 

the decision tree classifier achieves the best results. In view of these results the 

features described in Section 4-2 have been integrated in a multivariate decision tree 

classifier whose structure is shown in Figure 4-7. 
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Figure 4-7: Decision tree for walking mode characterization 

 

First of all the classifier distinguishes static and dynamic activities by comparing 

the energies and variances of gyroscope and accelerometer signals (Susi et al 2011b). 

Then, the gyroscope signals are evaluated to recognize walking with a swinging hand. 

In fact, as shown in Section 4-2, due to the periodic rotation of the arm during the 

swinging mode, the gyroscope signal shows frequency peaks that are not present when 

the arm is almost stationary. In addition, high values of the gyroscope and 
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accelerometer variance, induced by the motion of the arm, characterize the swinging 

mode.  

Conversely, when the user is texting, phoning or walking with the  mobile device 

in the bag the arm is not moving significantly and the IMU experiences low energies and 

variances. The latter cases show a similar pattern for both accelerometer and 

gyroscope signals. Consequently, they are considered as a unique class, as shown in 

Figure 4-7. Finally, irregular motion modes are characterized by very high values of the 

gyroscope and accelerometer variances in short temporal periods. Texting, phoning and 

bag carrying do not show substantial difference between each other in the inertial 

signals patterns when dealing with step event detection. For this reason, the named 

activities are grouped into a unique class. 

 

4.3 Step detection algorithm 

After identifying the motion mode, next step for tracking the user’s position 

consists in identifying user’s step events. If the sensor is foot mounted, step events can 

be extracted by identifying the foot’s stance phases corresponding to zero velocity 

periods. When the sensor is in the hand, this method cannot be applied anymore 

since zero-velocity periods do not exists.  

However, the synchronization between upper and lower parts, confirmed by bio-

mechanic studies (Park 2008), can be exploited to detect step events by analyzing the 

arm swinging. Indeed, a clear sinusoidal pattern is produced in the gyroscope signal by 

the cyclic rotation of the swinging arm. Consequently, identifying the peaks of the 
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gyroscope signal, the up and forward motions of the user’s arm can be detected and 

used to mark the stance phases of the user’s foot.  

The gyroscope signal pattern changes for the case of a user walking on a 

straight line while texting a message, phoning or carrying the mobile phone in the bag. 

In fact, for the mentioned cases the signal provided by the gyroscope is mainly due to 

the noise components and to random motions of the hand. Consequently, in these 

situations gyroscope signals cannot be used for step events extraction. However, the 

torso’s up and down motion still produces a sinusoidal pattern in the accelerometer 

signal which can be used for step detection. In both situations, step identification can be 

dealt as a peak detection problem.  

In this thesis, signal peak detection is performed by recognizing a local maximum or 

minimum within the sliding window. The algorithm uses an adaptive threshold for being 

independent on variations of the signal energy, for example due to any change of the 

user’s pace. To increase the robustness of the algorithm, a dedicated pre-processing 

phase of IMU signals is also performed.  

Specifically, accelerometer and gyroscope signals are low-pass filtered using a 10th 

order Butterworth filter with a 3 Hz cut-off frequency. The aim of this pre-processing 

phase is to obtain an undistorted signal by extracting the signal’s fundamental 

frequency that is induced by step events. After this pre-processing phase the algorithm 

evaluates the maximum value within the sliding window and uses this value as a 

threshold for the peak detection. Consequently, if a sample in the window assumes a 

bigger value than the computed maximum, a peak is detected. In the upper part of 

Figure 4-8, the norm of the gyroscope signal recorded by the IMU in the swinging hand 
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of the user is reported and the bottom part shows the norm of the acceleration signals 

recorded on the foot. Signals recorded in the hand and on the foot are synchronised.  

 

Figure 4-8: (Upper) Gyroscope signal (norm) recorded by the IMU in the swinging 
hand. The dots represent the detected step events. (Down)Accelerometer signal 

(norm) recorded by the IMU on the foot (the mean has been removed). 
 

 

The magenta dots mark the minima extracted from the signal. By comparing the 

signals recorded in the hand and on the foot, the relationship between the above 

minima and stride events is assessed. 

Indeed each minimum can be associated to a step event and subsequently for each 

couple of minimum points a stride can be identified. In Figure 4-9 (upper part), the norm 

of accelerometer signals recorded by the IMU in the texting hand is reported. Again in 
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this case, the magenta dots identify the minimum values of the signal that are related to 

the step events in the same way as for the swinging case.  

 

 

Figure 4-9: (Upper) Accelerometer signal (norm) recorded by the IMU in the 
texting hand. The dots represent the detected step events. (Down) Accelerometer 

signal (norm) recorded by the IMU on the foot (the mean has been removed). 
 

4.4 Step length estimation: general overview 

After detecting step events, the final stage for tracking user displacements 

consists in the estimation of step lengths. The evaluation of steps can be performed 

by using different approaches, which are strongly related to the sensor’s position. 

 Most of the algorithms proposed in the literature are based on the assumption 

that the sensor is firmly attached to the user’s body, generally mounted on the foot, or 
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close to COM, e.g., along the backbone, or distributed on the leg (Renaudin et al 

2007,Tien et al 2010, Myazaky 1997, Jahn et al 2010). As pointed out in Chapter 1 

these locations are particularly indicated for navigation purposes since in these cases 

the inertial force experienced by the sensor is directly produced by the gait cycle. More 

specifically, two main categories of step length models can be used for step length 

evaluation from a body fixed sensor: biomechanical and parametric models.  

Usually biomechanical models assume that the sensor is attached close to the 

user’s COM and model the user’s leg as an inverted pendulum (Jahn et al 2010, 

Alvarez et al 2006). This model allows applying a simple geometric relationship between 

the COM’s vertical displacement and the step length. Alternative geometric based 

approaches are also proposed in (Zijlstra et al 2008, Kim et al 2004).  

Parametric models compute step length by exploiting parameters, such as the 

step frequency and the accelerometers variance (or their combination) (Shin et al 2007, 

Sun et al 2008). However, also in these cases, the sensor is generally mounted on the 

belt. As already pointed out, body fixed locations are not realistic for handheld devices 

applications. However, only a few studies consider the case of non-body fixed sensors 

for step length modeling. 

Furthermore, even if the sensor is not body fixed its location is generally 

constrained to a body position where the device is relatively stable while the user is 

walking. A classical example is when devices are carried in the user’s trouser pocket 

(Steinhoff et al 2010) or constrained close to the ear while phoning or pointing toward 

the walking direction. The reason is that in these cases the IMU signal patterns of the 

device are similar to the ones produced by body fixed sensors and subsequently similar 
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approaches can be adopted. Conversely, the cases of the sensor held in a swinging 

hand and when the sensor’s location can change while the user is walking are generally 

ignored. In (Ayub et al 2012) different sensor carrying modes are analyzed, including 

carrying the sensor in the swinging hand. However, in this work traditional techniques,  

generally adopted for body fixed sensors, are applied. These techniques, designed for 

body fixed sensors, achieve lower performance if applied to the handheld case. In view 

of the limitation of the method proposed in the literature to evaluate step lengths by 

handheld devices a dedicated and extensive analysis of the hand case has been 

performed herein.  

 

 
4.5 Step model 

The linear relationship existing between step length and step frequency is often 

exploited to estimate step length (Shin et al 2007). Indeed if a subject walks faster, both 

step’s length and step frequency will increase. After a dedicated analysis, it was found 

that this approach can also be extended for the handheld case.  

Finally another physiological element has been considered. Biomechanical studies 

have demonstrated that generally the user’s step length is proportional to the length of 

the user’s leg and subsequently to the user’s height (Rose & Gamble 2006). Using both 

elements, a novel step length model for handheld devices has been both theoretically 

and experimentally developed herein. It is based on the combination of the step 

frequency and the user’s height.  
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Experimentally tests, reported in Chapter 5, have shown that the best linear 

relationship between frequency and step length is the one weighted by the user’s height 

and is given by:  

 

s = h∙(a∙fstep+b) + c                                                                                       (4.6) 

with k={a,b,c} ℝ 

 

where h is the user’s height, fstep is the step frequency and k is a set of parameters. In 

Figure 4-10 the three phases, namely sensor carrying mode/hand motion identification, 

step detection and step length estimation necessary to model the step length, are also 

represented.  

The sensor carrying mode/hand motion identification is used to select the step detection 

algorithm, which is based on the peak detection of the gyroscope or the accelerometer 

signal respectively, for the swinging case and for the texting, phoning, carrying the bag 

cases. Then, as shown, In Figure 4-9 the step event is sent to the step length evaluation 

block. The latter combines the step frequency, evaluated as described in Section 4.6, 

and the user’s height with the set of constants k, as in (4.5).  

These constants can be trained rendering the model universal, since the set of 

parameters k is the same for any subject. Alternatively the model can be calibrated 

fitting the constants for each single person. 
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Figure 4-10: General scheme of the algorithm for the computation of the linear 
travelled distance 

 

In this thesis both universal and calibrated models are proposed. The universal 

model could be exploited as an initial solution for any filter that would provide adaptive 

capabilities. As detailed in Chapter 5 the universal model relies on a set of constants 

trained using 12 test subjects while the calibrated model fits the set of constants to the 

single user by applying a Recursive Least-Squares (RLS) (Teunissen 2003) technique.  

The latter consists on the iterative evaluation of the optimum parameters by minimizing 

the sum of squared residuals between the true step length and the foreseen step length.  
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The initial solution x0 is given by the universal set of parameters k as. 
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- s includes the true step lengths computed for all subjects  

- the matrix H comprises the step frequencies and users’ heights for n test subjects over 

t epochs. The set of fitted parameters is determined when the convergence criteria over 

 ˆ ˆx xk+1 k-  is achieved. True step lengths are evaluated following a specific procedure 

described in Chapter 5, while predicted step lengths are obtained using the model in 

(4.6).  

 

4.6 Step frequency evaluation 

The proposed step length requires the extraction of the user’s step frequency with the 

IMU handheld device. For this purpose an analysis has been conducted to investigate 

the relationship between hand and foot frequencies. The spectrograms of the 

accelerometer signals have been evaluated for a sensor placed in a hand and on the 
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foot of a walking subject. In Figure 4-11, where the spectrogram of the accelerometer is 

reported for the foot mounted IMU case, three dominant frequencies can be identified.  

 

 
Figure 4-11: Spectrogram of the accelerometer signal for the sensor mounted on 

the walking user’s foot. 
 

As shown in Figure 4-12, when the sensor is held in the hand, three dominant 

frequencies are also identifiable in the spectrogram of the accelerometer signal for a 

subject walking alternatively with the sensor in the swinging and in the texting modes 
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Figure 4-12: Spectrogram of the accelerometer signal for the sensor placed in the 
walking user’s swinging hand. 

 

A specific study has been conducted to relate the hand frequencies to gait events, 

such as user’s step and stride. In Figure 4-13, the PSDs are shown for the 

accelerometers of both IMUs in the swinging and texting cases. Dominant frequency 

peaks are centered on the same values for both sensors showing that the step 

frequency can be evaluated even if the sensor is not foot mounted or non-body fixed. It 

has also been observed that the strongest frequency of the accelerometer signal, i.e., 

the frequency with the maximum power, is not always coupled with the same event of 

the walking gait cycle. Sometimes it is coupled with the step event (Figure 4-12) and 

sometimes, especially for faster speeds, with the stride event.  
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Figure 4-13: Normalized PSD of the accelerations sensed by the foot mounted 

sensor and the one in the swinging and texting hand. For both motion modes, the 
strongest frequency is coupled with the step event. 

 

 

This is further illustrated in Figure 4-14 where the PSD extracted from the signal of a 

sensor in the user’s swinging hand is reported. The PSD is estimated using the Welch 

periodogram technique, detailed in Section 2.5. The spectrum analysis shows that 

increasing the users speed, it is more likely that the strongest frequency and stride 

event are coupled 
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Figure 4-14: Normalized PSD for the accelerometer sensed by the user’s swinging 

hand. Here, the strongest frequency is coupled with stride events. 
 

To mitigate this coupling problem and to achieve robust evaluation of the step frequency 

from the hand frequency, a binary classifier has been designed. The classifier first of all 

extracts the strongest frequency and then applies the following decision rules: 

 





strongest strongest step

strongest strongest stride

if   f > τ ⇒ f = f

if   f < τ ⇒ f = f
         (4.9) 

 

A 1.4 Hz threshold τ has been selected considering that in the normal walking case 

the step frequency was above 1.6 Hz for all test subjects. However, further investigation 

should be performed to understand how the user age affects the step frequency. If the 

detected frequency corresponds to a stride frequency, the classifier computes the final 
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step frequency by multiplying the strongest frequency value by two. In Figure 4-15 the 

step frequencies, extracted after applying the binary classifier, true step lengths and the 

estimated ones using the step length model and the universal set of parameters are 

reported for a subject walking with the sensor in his swinging hand.  

 

 

 

Figure 4-15: Estimated, true step lengths and step frequencies computed with 
signals from a handheld IMU when the user is walking with his hand swinging. 
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4.7 Summary 

In this chapter an algorithm to evaluate the linear distance travelled by a walking 

subject has been presented. The algorithm is composed of the following three stages 

 Sensor carrying mode/hand motion identification 

 Step detection 

 Step length estimation 

The step length estimator combines the step frequency and user’s height by using a 

set of three constants. In order to evaluate the step frequency even if the sensor is in 

the hand a dedicated analysis is proposed to relate step and hand frequencies. In 

particular, it has been observed that the step frequency is sometimes coupled with the 

stride and sometimes with the step events. A dedicated binary classifier has been 

developed to mitigate this ambiguity. In Chapter 5, performances of the proposed 

algorithms are assessed in the position domain. 
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Chapter Five: Field tests and experimental results  

 

This chapter presents the results obtained from the assessment of the algorithms 

introduced in Chapter 3 and Chapter 4. Specifically, in Section 5.1 the field tests 

performed to train and test the classifiers for global motion mode recognition, proposed 

in Chapter 3, are described. Then, the performances of the above classifiers are 

compared and discussed. Section 5.2 describes the training and testing phases of the 

step length model introduced in Chapter 4. Since the step length model is based on 

three modules, namely carrying mode/hand motion identification, step detection and 

step length estimation, the assessment of each module has been carried out with 

dedicated field tests. A detailed description of these tests and related results is reported. 

Finally, overall performances of the step length model are evaluated in the position 

domain using ten test subjects. 

 

5.1 Motion mode recognition: training and assessment 

This section describes the equipment set up used for training and testing the 

motion mode recognition algorithms proposed in Chapter 3.  Then, the methodology 

adopted to perform the test fields is detailed. In particular, since different IMU locations 

produce different signal patterns, the classifiers are tested for different sensor locations.  

The criterion used for the sensor position selection is explained herein. Finally, the 

results obtained from the classifiers’ assessment phase are discussed and compared. 
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5.1.1 Data collections set up 

In order to collect enough data for training and testing the motion mode classifier 

proposed in Chapter 3, different data collections have been carried out by seven 

subjects, two females and five males, of ages ranging between 20 and 35. For the field 

tests, Crysta MEMS IMUs (Bancroft 2010), produced by Cloud Cap technology, have 

been used. The sensors were connected via cables to a small laptop storing the IMU 

data. Then, the laptop and the battery to power all the equipment were carried by the 

user in a backpack, as shown in Figure 5-1.  All cables connecting the IMUs to the 

laptop were firmly fixed to the user’s body in order not to affect the user walking style 

and consequently the classifiers’ performance.  

 

Figure 5-1: Test set up: the IMUs are connected to a laptop carried inside a 
backpack 



 

110 

5.1.2 Data collection methodology 

The proposed classifiers for motion mode recognition have been designed to 

identify five activities, namely standing, walking, running, climbing and descending 

stairs. During each data collection the subjects were asked to perform the mentioned 

activities carrying three IMUs placed in three different locations of the user body: on the 

foot, in the pocket and in a swinging hand. The impact of the above sensor locations on 

the human activity recognition is explained herein. Then, the procedure followed to 

collect the data is described. 

 

5.1.2.1 Sensor on the user foot 

The inertial force experienced by a foot mounted sensor reflects the subject’s leg 

and, consequently, the user’s global motion. Indeed, in this case the IMU signal is 

generally undistorted rendering the identification of the mentioned activity easier. 

Moreover, since the sensor is body fixed its orientation does not change over time. This 

aspect is particularly relevant for the identification of the stair case. In fact, climbing and 

descending stairs are identified, also exploiting the correlation between acceleration 

components. As detailed in Section 3.5.2, this feature depends on the sensor 

orientation and, consequently, its effectiveness could decrease if the sensor orientation 

changes, which is likely to happen for unconstrained devices. In view of the above 

observations, this foot sensor location was selected for producing the reference data 

used to assess the performances of the developed algorithms. 
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5.1.2.2 Sensor in the user trouser pocket  

Conversely to the foot situation, the trouser pocket represents a typical 

placement for mobile devices. Furthermore, although a sensor in the user’s pocket is 

not body fixed, it is mainly subject to the user’s global motion and consequently, this 

location induces IMU signal patterns similar to the body fixed case. This explains why 

the published studies dealing with non body fixed sensors generally assume that the 

sensor is located in the user’s pocket. 

 

5.1.2.3 Sensor in the user swinging hand  

Human activity recognition by using a sensor in the user swinging hand 

represents the most complicated case to be analyzed. Indeed, the hand motion can 

hide the global user’s motion, thereby producing distorted signal patterns. Moreover, the 

hand motion can be decoupled from the global user’s motion rendering the activity 

identification complex. However, this is the most interesting case for portable device 

applications. 

 

5.1.2.4 Data collection procedure 

During the test fields, the subjects were required to perform the examined 

activities, in a sequential way, without receiving any instruction about the sensor 

orientation. Furthermore, they were also allowed to stop or change direction.  While the 

users were performing the activity they were time tagged and the performed activity was 

recorded by a second person as in (Ravi et al 2005). Figure 5-2 shows an outdoor data 
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collection and the different sensor locations. In this case, the test subject is walking at 

different speeds carrying the backpack with the equipment described in Section 5.1. 

 

 

Figure 5-2: Outdoor data collection: (a) the test subject is carrying the backpack 
with a small laptop and a GPS antenna used as reference. The subject carries a 

foot mounted IMU (b), an IMU in his pocket (c) and an IMU in a swinging hand (d). 
 

5.1.3 Assessment criterion and results 

The collected data have been divided in two subsets: training and testing data. 

The choice of the dimension of the above two data sets is a critical point in pattern 

recognition.  A common rule of thumb is to use 70% of the database for training and 

30% for testing (Fukanaga 1990). This rule is applied for the analysis described here.  

Different algorithms have been designed and implemented to recognize the user 

activities, namely the k nearest neighbour, the decision tree and the Naïve Bayes, all 

detailed in Chapter 3. The performances of the mentioned classifiers have been 

compared by computing their probability of correct identification, i.e. accuracy that is the 

number of correctly identified test samples normalized by the total number of test 

samples. For each sensor location, the latter results have been averaged over the 
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different motion modes encountered by the pedestrians leading to a ―mean accuracy‖ 

indicator. The results are reported in Table 5-1. 

 

Table 5-1: Accuracy of classifiers for motion mode recognition 

 

Furthermore, to have a better insight into the classifiers’ performance, in Tables 

5-2, 5-3, and 5-4 the confusion matrices are also provided for the sensor in a swinging 

hand representing the most critical case. The use of confusion matrices is a common 

approach for evaluating classifier performance. The rows of the confusion matrix show 

the actual classes while the columns report the predicted classes. Consequently, the 

principal diagonal of the confusion matrix reports the classifier accuracy or probability of 

detection (Pdet) for each state.  The off diagonal elements report the percentages of 

misclassification (Pmd). These evaluation metrics will be adopted also for the 

assessment of the sensor carrying mode classifier and the step detection algorithm 

presented in Section 5.2.3 

 Naïve Bayes Decision Tree K Nearest Neigbour 

Sensor 
Location 

Swinging 
Hand 

Pocket Foot Swinging 
Hand 

Pocket Foot Swinging 
Hand 

Pocket Foot 

Static/ 
Standing 95% 97% 98% 99% 100% 100% 97% 97% 100% 

Walking 89% 94% 95% 96% 98% 98% 93% 95% 98% 

Running 93% 87% 94% 94% 96% 97% 91% 94% 98% 
Descending 

stairs 72% 90% 85% 92% 94% 95% 84% 90% 95% 

Ascending 
stairs 68% 88% 90% 82% 90% 93% 80% 88% 92% 

Mean 
Accuracy   83.4 %  91.2% 92.4% 92.6%  95.6% 96.6% 89% 92.8% 96.4% 
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 In Tables 5-2-5-4, the colors key is based on the percentage of correct state 

prediction. Specifically, the green color along the principal diagonal refers to high 

percentages of accuracy. Conversely, the blue color in correspondence of the off 

diagonal elements is indicating a low level of miss classification.  

 

Table 5-2: Confusion matrix-Naïve Bayes classifier (IMU in a swinging hand) 

 

Table 5-3: Confusion matrix- Decision Tree classifier (IMU in a swinging hand) 

 



 

115 

Table 5-4: Confusion matrix- K-Nearest-Neighbour classifier (IMU in a swinging 

hand) 

 

 

By analysing the above results, it is clear that the decision tree achieves the 

highest performances regardless of the activity. For the case of freely carried 

sensors, the results obtained with the decision tree are comparable with the ones 

achieved in the literature for body fixed sensors (Yang 2009, Frank et al 2011).  

For all classifiers the lowest identification accuracy is achieved in the stair cases. 

In particular, a higher miss classification between descending the stairs and running and 

between climbing the stairs and walking on a flat plane has been observed. The latter 

can be attributed to similar values of the sub-band energy ratios for the mentioned 

activities. In order to reduce the ambiguity in the recognition of the mentioned classes 

the total energy has also been evaluated. The total and sub-band energies for the stair 

case are reported in 
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Figure 5-3 (upper part) where the automatic classification performed by the decision 

tree is also showed. 

 

Figure 5-3: (Upper part) Total and sub-band energies; (lower part) classification 
results of the decision tree classifier for a user descending and climbing stairs 

with the sensor in a swinging hand. 
 

 

A certain ambiguity persists between climbing up the stairs and walking when the 

total energy is similar for the two modes. The latter situation can occur, for example, in 

the slow walking case. With the proposed algorithm, after the energy evaluation, the 

dominant frequencies are also analyzed. But this feature does not allow all uncertainty 

to be totally removed, therefore the correlations between accelerometer components 

have been also evaluated. This is the most effective feature to identify the stair cases. 

However, it is worth pointing out that the stair case is particularly hard to identify when 

the sensor is in the hand and the user is frequently changing the sensor’s orientation.  
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As explained in Section 3.5.2, the reason is that when the sensor orientation varies the 

cross-correlation terms can be less effective since they relies on the signal’ single 

components.  

Despite these limitations, in general, even for the stair cases, the decision tree 

provides a good accuracy, as shown in Figure 5-3. It is worth pointing out that for the 

staircase the use of additional sensors, such as a barometer, could remove any 

ambiguity in the recognition process. In fact, despite of its sensitivity to weather pattern 

and pressurization level of building ventilation systems (Morrison et al 2012), a 

barometer can be useful to sense altitude variations such as those due to a change of 

floor.  

Moreover, by comparing the results of the three classifiers, it can be observed 

that the Naïve Bayesian achieves the lowest performance. This is likely due to the weak 

assumption of independent features as explained in Section 3.6.1.  

The performance of the k-nearest-neighbour classifier is strictly related to the k 

parameter value. As reported in Section 3.6.3, for simplicity in the algorithm 

implemented in this thesis, k has been selected as 1. Further analyses are required to 

evaluate how the classifier performance changes for different values of k. Finally, as 

expected, all classifiers achieve the worst performance when the sensor is in the user’s 

swinging hand. Conversely, the best performances are obtained for the body fixed 

sensor, namely the foot mounted sensor. 
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5.2 Step length evaluation: training and assessment 

As shown in Figure 4.9, the algorithm for the evaluation of the user’s step length 

requires the identification of the sensor carrying mode/hand motion and step events 

performed through dedicated modules. The present section describes the tests 

conducted for training and testing each single module. Then, the assessment of the 

step length model in the position domain is described and related results are discussed.  

 

5.2.1 Data collection set up 

 

All data collections described in this section were performed using the NavCube, a 

multi-sensor navigation platform described in (Morrison et al 2012). The NavCube 

includes a Novatel receiver and is able to support up to 10 six-degree of freedom 

Analog Devices ADIS16375 inertial sensors. Each sensor weighs 100 grams and offers 

a very good compromise in terms of size/weight and performance. 

 All collected data are synchronized with GPS time and consequently can be used for 

comparison purposes.  A shown in Figure 5-4, the system can be worn on the user’s 

waist without changing a natural walk mainly thanks to its low weight of 2.7 kg.  
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Figure 5-4: (Left)Test subject wearing the NavCube at the waist, two IMUs are foot 
mounted and two IMUs are in the user’s hand; (Right) Zoom on the NavCube 

 

5.2.2 Criterion for the sensor location selection 

As for the global motion recognition case, different tests have been carried out to 

collect sufficient data for training and testing the step length model. During the data 

collections each subject was carrying at least one IMU in the hand and one mounted on 

the foot. Similarly to the data collections described in Section 5-1, the wires connecting 

the NavCube to the IMUs were rigidly fixed to the user’s body for keeping the natural 

walking style. Details about the selection criterion of the sensor locations are provided 

herein.  
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5.2.2.1 Sensor on the foot 

The foot mounted sensor was used as a reference. The true pedestrian’s gait 

cycle was identified by using moving variances on the norm of the foot mounted 

accelerometer’s signal. This is a consolidated approach used in the literature for 

detecting step events with foot mounted sensors (Skog et al 2010). Even if the process 

of detecting stance phases with foot mounted sensors is not error free, when test 

subjects are walking at a normal speed on a flat plane, which is the situation considered 

here, this error can be neglected with good approximation. In Figure 5-5 the IMU 

mounted on the user’s foot during one of the test fields is shown. 

 

 

 

Figure 5-5: ADIS 16375 IMU attached on the foot and used as a reference for the 
step detection algorithm. 
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5.2.2.2 Sensor in the user hand 

The sensor in the hand was used to test the algorithm for the hand swinging and 

texting cases. As explained in Section 4-2, during the texting mode, the sensor is quite 

stable while the user is walking. Texting mode is also representative of the other states 

considered in the design of the carrying mode classifier, namely phoning and bag 

carrying. In fact all these modes have been included in a unique class. Furthermore, 

empirical tests have shown that also the trouser pocket case can be included in the 

above class since, as the previously mentioned states, it induces IMU signal patterns 

similar to the body fixed case. 

 

5.2.3 Sensor carrying mode identification and step detection algorithms: training 
and assessment 

 

In this section the data collections performed to train and assess the carrying 

mode/hand motion classifiers and the step detection algorithms are described. Then, 

the performances of these algorithms are reported and discussed. 

 

5.2.3.1 Data collection methodology 

A first series of data collections were performed for training the sensor carrying 

mode/hand motion classifier. Two women and two men were required to walk along 

two routes of about 50 and 120 metres carrying the NavCube. During the first run the 

subjects walked with the IMU in their swinging hands.  During the second and third 

runs the users walked pretending to type a message on the smart-phone (IMU) and 
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phoning. For the fourth run, the pedestrian was carrying the IMU in a backpack (for 

the men) or in a purse (for the women).  During the fifth run, a phone call was 

simulated.  Specifically, the user started walking with the IMU in the bag, answered a 

phone call while walking and then put the IMU back in the bag.  The first five runs 

were conducted over the shortest path, illustrated in black in Figure 5-6. The last run, 

illustrated in red in the same figure, consisted of a free motion.  The subjects started 

at the location marked with the flag ―Start‖ in Figure 5-6 and walked back to the initial 

point performing a ―U turn‖ in the middle of the path. All motions were time tagged 

and annotated similar as in Section 5-1. 

 

 

Figure 5-6: Indoor map of the handheld data collection with two pedestrian 

routes. 

 

As shown in Figure 5-7, a second series of data collections was performed in a 

parking lot for assessing both algorithms, namely for motion recognition and step 

detection. Four different subjects, two men and two women were asked to perform a 
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free motion walk in a parking lot, which is an open sky environment. The users were 

walking for about 300 metres carrying the IMU in their hands and without receiving 

instruction about the sensors orientation. The users were required to perform all 

mentioned motions but they could choose the sequence of occurrence. Also this time, 

the time of occurrence of each activity was carefully annotated.   

 

Figure 5-6: Outdoor data collection for testing the carrying mode/hand motion 
identification and step detection algorithms 

 

5.2.3.2 Sensor carrying mode classifier assessment  

The data collected during the outdoor test fields described in Section 5.3 were 

used to assess the performance of the algorithm for the sensor carrying mode/hand 
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motion identification. The outcomes of such analysis are summarized in the confusion 

matrix given in Table 5-5.   

The proposed algorithm was able to identify the performed activities with 

accuracy higher than 94%. The worst performance was obtained for the identification 

of irregular motion where the activity was misclassified 6% of the time.  This result is 

due to similar features characterizing swinging and irregular motions. Thus, if an 

irregular motion occurs during hand swing it can be easily miss detected. 

 However by analyzing the periodicities of the gyroscope signal for both states, 

the above ambiguity decreases in most of the analyzed cases. Indeed walking with 

swinging hands is a periodic activity while irregular motions are random by definition. 

For texting/phoning/bag cases, most of misclassifications occur when the subject is 

changing his direction.  

 

Table 5-5: Confusion matrix for the sensor carrying mode/hand motion classifier 
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5.2.3.3 Step detection assessment  

The data used for testing the algorithm for sensor carrying mode/hand motion 

identification has also been used to assess the step detection algorithm proposed in 

Chapter 4. For this purpose, the step events detected from handheld device have been 

compared with the ones identified for the foot mounted IMU case.  

The results of this analysis are summarized in Table 5-6 where the Pdet and the 

Pmd, defined in Section 5.1.3, are reported. In particular, in this context the probability of 

detection corresponds to the percentage of correctly identified samples with respect to 

the ones identified with the sensor on the foot.   

In addition, the probability of false alarm (Pfa) representing the percentage of 

incorrectly identified samples is also reported. It can be seen that for each motion mode 

the step detection accuracy is higher than 98%. Finally, it is worth pointing out that the 

performance of the algorithm is high regardless of the type of activity performed by the 

pedestrian. 

 

Table 5-6: Step detection algorithm performance 
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5.2.4 Step length model training 

The last stage to evaluate the travelled distance is to estimate the user’s step 

length. In Chapter 4 a step length model for handheld device has been proposed. The 

model is based on the combination of user’ height and step frequency by using a set of 

three constants. As detailed in Chapter 4 both universal and calibrated models are 

proposed. 

The set of universal parameters k defined in (4.5) has been found using the data 

collected by 12 subjects, six men and six women between twenty and forty years old.  

The test subjects were required to walk along a 200 m straight line on a parking lot, at 

three different speeds, for a total length of approximately 600 m. As shown in Figure 5-

8, a second person was pacing the subject using a wheel speed sensor, which was also 

used for measuring true step lengths. This wheel encoder provides the pedestrian’s 

walking speed with an accuracy of ±4×10-3 m/s. 

The records were time tagged with GPS time. The test subjects walked at 

different speeds, namely at slow speed (about 0.8 km/h), intermediate speed (about 1.8 

km/h) and fast speed (about 4 km/h) with the hand in texting and in the swinging motion 

mode. Universal parameters for k were found by fitting the handheld MEMS based step 

length model to all datasets. The optimum fitting of the step length model as function of 

the product of the user’s height with the step frequency is shown in Figure 5-9.  
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Figure 5-7: Data collection set up for training the parameters of the step model. 
The subject walks at different speeds with one IMU in the hand and one on the 
foot. A second person paces the test subject by using a wheel speed sensor. 

 

Figure 5-8: Linear fitting of the true step lengths (blue dots) with the user’s height 
(h) and the product of the strongest dominant frequencies with the user’s height 

(hf) at different walking speeds and hand’s motions. The outcome is the universal 
set K in the step length model. 
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The performance of the proposed step length model has been computed in the 

position domain. For this purpose new data collections were conducted with 10 

subjects: 5 men and 5 women different from the ones that participated to the training 

phase.  The same number of male and female subjects was selected in order to test the 

validity of the algorithm regardless the subject’s sex. Furthermore, the use of 10 

subjects allowed extensively assessing the model. 

 

The test subject age varied between 20 and 35. Test fields were carried out in an 

open sky soccer field and the data were collected with the NavCube. This location was 

selected to guarantee the availability of GPS data, used for heading determination, as 

detailed herein.  

The subjects were asked to walk twice along the curved route of the soccer field. 

Each route corresponds to about 300 metres for a total length of 600 meters. As shown 

in Figure 5-10 for one subject, during the first run, the test subjects walked with the IMU 

in their swinging hand while in the second run they walked carrying the sensor in texting 

mode. Pedestrians observed no break between the two runs and changed the carrying 

mode while walking. 
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Figure 5-9: (Left ) Test subject walking with the IMUs in his swinging hands; 

(Right) Test subject walking with the IMUs in his texting hands. 
 

The subjects were also asked to perform two straight paths for the purpose of finding 

individual calibrated set k. ―True‖ step lengths were computed by interpolating post-

processed differential GPS positions over each detected step. Then, a Recursive Least 

Square (RLS) technique was performed to find the calibrated set kn, with a convergence 

achieved at the nth iteration.  

 

5.2.5 Step length model assessment  

In order to evaluate the step length model, the sensor carrying mode/hand motion 

and step events must first be identified. To investigate the contribution of these two 

modules to the overall error budget, their performances are evaluated individually for 

these data sets. The results of the classifier assessment are reported in the confusion 
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matrix shown in Table 5-7. It can be observed that the classifier achieves high accuracy 

for both analyzed modes, i.e. texting and swinging.  

 
Table 5-7: Confusion matrix of the algorithm for the identification of the sensor 

carrying mode/hand motion. 
 

 

 

In Table 5-8 the percentage of correct detection (Pdet) for each motion mode 

performed by the 10 test subjects and the percentages of correct step detection are 

shown. In order to assess the step length estimation model, the percentage of error 

over the travelled distance has been evaluated for all subjects by applying the following: 

handheld

GPS

d
ε =

d  
(5.1) 

where  

 dhandheld is the  travelled distance obtained by applying the equation (4.1) and  

using the proposed step length model.  
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 dGPS is the reference distance computed by using post-processed GPS carrier 

phase signals in a differential mode. The accuracy of the post-processed solution 

with a 1 km baseline under open sky was better than 1 cm. 

A PDR technique has been applied to obtain the total travelled distance. As seen in 

(4.1) the latter is based on the recursive sum of each step displacement combined with 

the walking direction over each step. The heading is here obtained from the GPS 

trajectory post-processed in differential mode. This approach allows mapping the 

estimated displacement in position domain. Furthermore, the use of these post-

processed headings does not affect the computation of the distance travelled error, as it 

can be seen in equations (4.1) and (5.1). In Table 5-8 the error percentages over the 

travelled distance are shown for all test users for the universal and the fitted set of 

parameters. Men are indicated with ―M‖ and women with ―W‖. The table reports also the 

number of iterations necessary to achieve RLS convergence in the calibration phase.  

From the results we can see that both universal and calibrated models achieve 

travelled distance errors between 4 and 6% for the majority of subjects. The larger 

errors correspond to the male subjects M4 and M5 achieving errors of 8 and 9% for the 

universal model. However, by applying the calibrated model the errors significantly 

decrease and the highest percentage is then 5%. The results obtained are 

comparable with the ones reported in the literature for the body fixed case. The 

number of iterations required for estimating the fitted solution can also be used for 

assessing the effectiveness of the model. By observing Table 5-5, where the number of 

iterations required for each subject is reported, it can be observed that the mean 
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number of iterations necessary to converge to the calibrated solution is equal to four. 

These results further confirm the validity of the model. 

 

 Table 5-8: Metrics for Evaluating the Handheld Based Step Length Model 

Subject %Pdet 

(motion) 

%Pdet 

(steps) 

%DistanceTravelled 
Convergence 

Iterations Universal 
Model 

Fitted 
Model 

M1 100 99 5.8 5 4 
M2 100 100 4.8 4.3 3 
M3 99 100 5 4.5 3 
M4 100 99 8 4.2 6 
M5 100 100 9 3.8 7 
W1 98 97 5.2 4.3 4 
W2 100 100 3.2 2.5 3 
W3 98 99 4.5 4 3 
W4 100 98 5.6 5 3 
W5 100 100 5.8 5 4 

Mean 99.6 99.2 5.7 4.2 4 
 

 

To further assess the quality of the model the absolute differences between fitted 

and universal parameters have been evaluated for all subjects. The results of such 

analysis are shown in Figure 5-11 reporting the minimum, maximum and mean values 

of the differences between fitted and universal parameters.  
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Figure 5-10: Minimum, mean and maximum absolute differences between “fitted” 
and “universal” parameters of the proposed step length model. 

 

Figure 5-12 shows the three travelled paths for the worst results case (M5). We can 

see that the path is overestimated by the universal model. However, the fitted model 

significantly increases performance. 
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\ 

Figure 5-11: Reference path in green and estimated trajectories: modelled step 
length with the universal parameters in red and with the calibrated parameters in 

blue for the test subject with the worst performance (M5). 
 

A possible reason for the worst performance obtained by M5 is likely to be the 

height of this test subject, who is significantly taller than the other test subjects. 

Consequently, by increasing the number and the typology of the test subjects, higher 

performance would be expected. 
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5.3 Summary 

This chapter described the training and assessing phases of the algorithms proposed 

in Chapter 3 and Chapter 4. Three different classifiers, namely a decision tree, a k 

nearest neighbour and a Naive Bayesian classifier have been proposed to identify 

different motion modes, i.e. standing, walking, running, and climbing/descending stairs. 

The decision tree achieved the best performance with an accuracy higher than 90% for 

all examined states also when the sensor is handheld, which is the most critical case. 

Then the performances of the step length model described in Chapter 5 have been 

assessed. Before evaluating the distance walked over a step, the sensor carrying 

mode/hand motion is identified in order to adapt the step detection algorithm to the 

specific case. Experimental tests showed a classification accuracy above 94% for all 

states and a percentage of correct step event detection above 97% irrespective of the 

sensor carrying mode. Then, the step length model proposed in Chapter 4 has been 

assessed in the position domain. The model achieves error percentages over the 

travelled distance between 2.5% and 5%. These percentages are similar to the ones 

obtained in the literature for the body fixed case. Thus, these results show that an 

inertial sensor can be exploited for autonomous navigation and tracking of pedestrians 

using handheld devices, i.e. for smart phones applications. In addition, the proposed 

algorithms analyze the signals in windows between 1.2 to 2.5 seconds, which is also 

compatible with real time implementation.  
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Chapter Six: Conclusions and Recommendations 

 

This thesis investigated the use of low cost MEMS handheld inertial sensors for 

pedestrian navigation. In particular, the research work focused on the characterization 

of user’s motion mode and evaluation of the linear travelled distance of a subject 

walking on a flat ground. The present chapter summarizes the main contribution of this 

research work. Finally recommendations for further enhancing the proposed algorithms 

and integrating these in a complete pedestrian navigation system are made.  

 

6.1 Conclusions 

On the basis of the analysis and outcomes presented in this thesis the following 

conclusions can be drawn: 

 

1. The literature review of pedestrian navigation techniques based on MEMS inertial 

sensors has highlighted that the existing research works are mainly focusing on 

the use of body fixed sensors. The few published documents exploiting non-body 

fixed sensors for pedestrian navigation are generally assuming sensor locations 

where the device is quasi-stable while the user is walking, for example a trouser 

pocket. A complete characterization of the handheld case was therefore 

proposed herein through the analysis of different sensor carrying modes that are 

typical of handheld devices applications. In particular, the case of sensors carried 
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in a user’s swinging hand is also examined whereas it had been generally 

ignored in the previous literature. 

2. A specific IMU signal pre-processing was found to be necessary for coping with 

the consumer grade nature of the inertial sensors used in smartphones. In 

Chapter 2, details were provided about the signal processing techniques used for 

denoising the signal. Furthermore the use of the pre-processed IMU signal norm 

was found to be effective for removing any dependence on the sensor 

orientation.  

3. The recognition of the global user motion mode, performed with handheld 

devices, requires the selection and extraction of features irrespective of the 

sensor carrying mode. Indeed, when the sensor is freely carried, its position can 

quickly change. Features able to characterize the global user motion mode with 

high accuracy regardless not only of the sensor position but also of the user 

walking style have been extracted and presented in Chapter 3.  

4. By exploiting the above features, three classifiers, namely the k nearest 

neighbour, the decision tree and the Naïve Bayes have been designed and 

implemented in order to identify the following global motion modes, namely 

standing, walking, running and climbing/descending stairs. As reported in 

Chapter 5, the decision tree classifier showed the highest accuracy. 

5. Knowledge about the sensor carrying mode has been exploited to better 

characterize gait cycle and, consequently, detecting step events. This knowledge 
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has been achieved through the design of a dedicated classifier, described in 

Chapter 4, which is able to distinguish different sensor carrying modes/hand 

motions. In particular, the situation of the sensor carried in a swinging hand has 

been distinguished from the case when the user is interacting with the mobile 

device.  The latter is, for example, the situation of a subject walking while 

phoning or texting a message on his/her mobile device. In these cases the 

patterns induced in the IMU signal have been found similar to the ones produced 

by body fixed sensors. Consequently, in these situations the human gait cycle 

can be analyzed by using techniques designed for the body fixed sensor case. 

Conversely, these techniques are a suboptimum choice for the swinging hand 

case. 

6. The identification of ―irregular motions‖ has been found necessary in order to 

discard parasite motions in the navigation process. This class includes all 

motions inducing an inertial force on the sensor that does not reflect a real 

change of user’s position. The identification of this type of motion is usually 

neglected in PDR algorithms but it is essential for avoiding faulty propagation of 

the user position in time. 

7. After detecting steps, the step length needs to be evaluated. A step length model 

for handheld inertial sensors was established and detailed in Chapter 4. The 

model combines the user step frequency and the user height with a set of three 

constants. 
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8. In order to evaluate the user step frequency with handheld devices, a dedicated 

analysis was carried out to relate hand and foot frequencies. This analysis 

showed that the strongest hand frequency, i.e. the frequency with maximum 

power, can be coupled with the stride frequency or with the step frequency. In 

particular, it has been observed that the strongest hand frequency is likely 

coupled with the stride frequency for higher user’s speed, especially if the sensor 

is carried in the user swinging hand. Following these outcomes, a specific step 

frequency detector has been implemented to evaluate the step frequency even if 

the sensor is in the user hand. 

9. A universal and a calibrated version of the step length model are proposed. The 

universal model has been designed by training the set of constants using twelve 

subjects while the calibrated model is based on fitting the constants for each 

single test subject. The model has been assessed in the position domain with 10 

persons, different from the ones that participated to the training phase. The 

percentage of error over the travelled distance is between 2.5% and 5% which is 

comparable with the results achieved in the literature using body fixed sensors. 

These results show that the proposed algorithms can be applied to autonomous 

navigation and tracking of pedestrians using smartphones. Finally, the analysis 

windows used to analyze the IMU signals are between 1.2 and 2.5 seconds, 

which render the algorithms suitable for real time applications. 
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6.2 Recommendations 

In view of the above conclusions, the following recommendations are suggested for 

future work: 

 

1. The classifier for the global motion mode identification relies only on 

accelerometer measurements. To achieve higher performance, especially for 

climbing and descending stairs mode identification, the use of additional sensors 

is suggested. Specifically, for the identification of the two mentioned states the 

use of a barometer, able to sense the change of pressure between floors, is 

expected to increase the classifier accuracy. 

 

2. The algorithm for the evaluation of the travelled linear distance exploits the 

sensor carrying mode knowledge for identifying step events. For characterizing 

the human gait cycle the distinction between the swinging case and situations 

similar to the body fixed case, as described in Point 6 of Section 6.1, was found 

to be relevant. However for heading determination purposes, it could be of 

interest to increase the classification levels by assigning activities such as 

phoning and texting to different classes. In fact, the orientation of the device’s 

compass depends greatly on how the user is holding the device. Texting and 

phoning, for example, usually cause significant differences in the orientation. 

 



 

141 

3. The step length model is based on the evaluation of the user step frequency by a 

dedicated binary classifier. The latter uses a trained threshold to distinguish step 

and stride events. However the age of the test subjects used was between 20 

and 35. Further analysis should be carried out to investigate as the subject age 

could affect the value of this threshold. The use of younger and older subjects 

could complete the analysis. 

 

4. The algorithm for the linear distance evaluation was designed for the normal 

walking case. Further studies should be performed to adapt such algorithms to 

other situations, such as running, climbing and descending stairs. Then, the 

knowledge of the global motion mode, acquired through the classifier presented 

in Chapter 3, could be exploited to adapt the algorithm for the travelled distance 

estimation to the specific case. 

 

5. The universal step length model could be used as first approximation for any 

navigation filter that would offer tuning functionalities. Further enhancement of 

the universal model performance could be achieved by increasing the typology of 

subjects used in the training phase. Finally, as pointed out at in the ninth 

conclusion, the algorithm for computing the linear distance evaluation has been 

designed for real time application. Thus, real time implementation of such 

algorithm should be tested. 
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6. Finally, in order to implement a self-contained pedestrian navigation system for 

GNSS denied environments, the algorithm for the evaluation of the linear 

travelled distance should be integrated with an algorithm for heading 

determination, for example based on gyroscopes and/or magnetometers. 
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