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Abstract 
The Global Positioning System (GPS) is commonly used for pedestrian navigation.  

Unfortunately, GPS is often unable to provide the accuracy and availability in 

environments where pedestrian navigation is commonly required.  One low cost inertial 

measurement unit (IMU) is often used to increase the accuracy and improve the 

availability of the navigation solution.  This research develops several fusion methods of 

using multiple IMUs to enhance performance.  In particular, this research seeks to 

understand the benefits and detriments of each fusion method.   

 

Three fusion methods are proposed.  First, all raw IMU measurements are mapped into a 

common frame (i.e. a virtual frame) and processed in a typical combined GPS-IMU 

Kalman filter.  Second, a large stacked filter is constructed of several IMUs.  This filter 

construction allows for relative information between the IMUs to be used as updates.  

Third, a federated filter is used to process each IMU as a local filter.  The output of each 

local filter is shared with a master filter, which in turn, shares information back with the 

local filters.  The construction of each filter is discussed and improvements are made to 

the virtual IMU (VIMU) architecture, which is the most commonly used architecture in 

the literature.   

 

Since accuracy and availability are the most important characteristics of a pedestrian 

navigation system, the analysis of each filter‟s performance focuses on these two 

parameters. The various approaches are implemented in software, a hardware 

configuration is designed and actual data is collected in two environments, one where 

GPS signals are moderately attenuated and another where signals are severely attenuated, 

to a point where the standalone GPS solution is unusable.  Accuracy is shown as a 

function of architecture and the number of IMUs used.   

 

Results indicate that the stacked filter provides a linear increase in accuracy, while other 

architectures typically have less improvement with the addition of more than three IMUs.  

Areas where GPS is sufficient show little improvement with additional IMUs.  Only the 
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stacked filter decreases the minimal detectable blunder of GPS observations by a 

significant amount.  Federated filters provide a comparable, but less accurate, solution to 

that of the stacked filter at a much lower computational cost.   
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Chapter One: Introduction 

 

The Global Positioning System (GPS) is a freely available satellite constellation that is 

maintained by the United States Department of Defense (DoD).  Over the past few 

decades a multi-billion dollar industry has grown around the services made available 

through GPS.  Declining hardware costs and increasingly user friendly interfaces 

continue to propel both commercial growth and the public‟s interest in satellite borne 

positioning.  One sector that has experienced some of the fastest advancement of late has 

been pedestrian navigation, including cellular phone and first responder navigation.  

However, due to error sources that cannot be mitigated in real time, the navigation 

solution can extend beyond acceptable error limits or be completely unavailable.  Thus, 

research to improve the accuracy and availability of a personal navigation system for 

pedestrians is warranted.   

 

As GPS markets continue to expand and new applications are found every day, any new 

application must abide by a key requirement; namely, direct line-of-sight between the 

satellites and the receiver.  So stringent is this requirement that the simple occlusion of 

satellites renders many navigation systems useless or at the least highly degraded.  As 

users travel in urban canyons, parkades, indoors or in high foliage areas, the ability for 

GPS to provide a navigation solution is compromised.  Although High Sensitivity GPS 

(HSGPS) receivers can track weak signals through fading, this renders them susceptible 

to high noise and multipath errors (Lachapelle 2007).  Thus, researchers are examining 

other sensors to integrate with GPS.   

 

Inertial measurement units (IMU) are a common complement to GPS, although it is 

technically more correct to state that GPS augments an inertial navigation system (INS).  

The advantage being that the GPS and inertial sensors can provide a continuous 

navigation solution, where GPS alone cannot.  As competitive consumer markets drive 

the price of mobile navigation devices lower, an increasingly common choice for IMUs is 
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micro electro-mechanical systems (MEMS).  The size, cost, weight, and low power 

consumption make these an attractive grade of IMU; however their in-run biases, scale 

factors and high noise require the integration scheme to mitigate these errors (Titterton & 

Weston 2004). 

 

While existing INS research has involved one IMU, the purpose of this research is to 

investigate the use of multiple IMUs in tandem with GPS.  In particular, this research will 

investigate various approaches to integrate multiple IMUs with several filter architectures 

and constraints that can be used to further improve the accuracy and availability of the 

navigation solution, with emphasis on pedestrian navigation. 

 

The objectives of this thesis are to: 

1. Design, implement and test different techniques to utilize multiple IMUs and GPS 

observations for pedestrian navigation.  Estimation architectures include: 

a. Virtual IMU observation fusion 

b. Centralized filter design 

c. Federated filter design 

2. Assess fault detection capability on the IMU and GPS measurements, discussing 

any limitations. 

3. Analyze and compare the performance of the different estimation architectures 

selected and the number of IMUs used. 

4. Analyze the performance of each architecture in residential and indoor conditions. 

5. Discuss the advantages and disadvantages of each architecture. 

 

1.1 Pedestrian Navigation 

Potential pedestrian navigation users include: 

 first responders (e.g. emergency search and rescue) 

 cellular phone users (E911 and navigation) 

 health and activity monitoring 
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 recreational users (e.g. hikers, climbers, skiers) 

 self guided tourists 

 athletes and athletic trainers 

 consensual tracking (e.g. elderly, parolees, employees) 

 navigation for the visually impaired 

 military forces 

 

Each application requires a specific level of navigation accuracy which depends on 

various factors.  Table 1 shows the requirements of some instances of pedestrian 

navigation and some commercial products that address them (marked *).  In proposing a 

new technology, the proposed system should be equivalent or better in accuracy to those 

that it seeks to replace, but preferably be less expensive and have longer availability in 

GPS-compromised environments.   

 

Table 1 – Various Accuracy Requirements and Realizations 

Application Accuracy Requirement or Realization* 

Cellular Phone Users 50 m (1σ) - GPS Enabled (E911, Phase II) 

Emergency Land Applications 5-20 m (Hofmann-Wellenhof et al 2003) 

Public Transport 20-50 m (Hofmann-Wellenhof et al 2003) 

Athletic Training 0.01-50 m 

Tourism 50-100 m (CEP) (Prost et al 2008)* 

Military Ground Forces < 10.5 m (2 σ) (Rockwell Collins - DAGR Technical 
Data Sheet)* 

First Responders < 3 m (ENSCO GEO/NAV Technical Data Sheet)* 

< 30 m in 30 min GPS outage (personal discussion 
with D. Taylor of ENSCO, Inc.)* 
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A key to the success of many INS pedestrian navigation applications is the placement of 

the IMU on a foot (e.g. Mezentsev (2005)) where the IMU experiences the repetitive and 

predictable motion of the human gait during walking.  This allows for zero velocity 

updates while the foot in is contact with the ground, which plays a critical role in 

maintaining the long term accuracy of the system.  There are two typical approaches for 

pedestrian navigation involving IMUs, (i) pedestrian dead reckoning (PDR), and (ii) a 

strap down INS (Groves et al 2007). 

 

PDR uses the step length of a user and propagates the position forward using a known 

heading.  Sensors used in PDR typically include GPS, IMUs, and magnetometers.  This 

common approach is found in Gebre-Egziabher (2002), Mezentsev (2005), Stirling et al 

(2005), Beauregard (2007), Tan et al (2008), Zhao et al (2009) and Sun et al (2009).  

PDR has been successful when subjects walk normally, however it degrades quickly 

when users jog, sprint, shuffle, crawl (e.g. firefighters crawling inside a building), travel 

uphill or climb stairs.  It is noteworthy that in PDR mode, the position error is typically a 

function of distance, rather than time (Mezentsev 2005).   

 

Alternatively, an IMU is placed on the foot and treated as an INS.  Examples for this 

method include: Brand & Phillips (2003), Lachapelle et al (2003), Foxlin (2005), 

Kasameyer et al (2005), Grejner-Brzezinska et al (2006), Mather et al (2006), Beauregard 

(2007), Groves et al (2007), Bancroft et al (2008) and Godha & Lachapelle (2008).  This 

configuration reduces the necessity for magnetometers, although these can be used to aid 

with attitude determination as in Groves et al (2007).  The INS method also allows for 

direct analysis of sport and biomedical applications such as gait kinematics and posture 

analysis (Kwakkel et al 2007, Renaudin et al 2007, Kwakkel 2008, Kwakkel et al 2008).  

However, a disadvantage to this approach is the time varying lever arm between the GPS 

antenna and IMU(s).  To date, this error has been ignored and thus the magnitude of the 

lever arm‟s effect has not been quantified.  Another limitation to the foot-mounted INS is 

the degraded accuracy over extended time periods.  This result is common to all low cost 

INS setups and is primarily due to heading errors (Bancroft et al 2008).   
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Magnetometers are often integrated with the IMU to provide additional heading 

information.  Often, a three axis magnetometer is mounted in conjunction with an IMU.  

In this manner the pitch and roll of the INS can be used to orient the magnetometer data 

in the local level frame.  From this, the heading can be computed and used to update the 

system (Goldenberg 2007).  The success of multisensor fusion technology has meant that 

manufacturers of MEMS IMUs are more commonly including magnetometers within the 

IMU triad (e.g. Analog Devices ADIS16405).  Magnetometers however, are susceptible 

to magnetic interference from hard and soft iron effects.  These biases can be self induced 

(from current inside the data collection apparatus), or externally induced from the 

materials in the environment.  Mitigating such magnetic disturbances is very challenging 

considering the environments that pedestrian navigation includes (Goldenberg 2007).   

 

Barometers are commonly used to mitigate temporal height variations.  This improves the 

vertical channel accuracy, as long as the bias between the true height and current pressure 

is resolved.  It is common for commercial pedestrian systems to include an IMU, 

magnetometer and barometer (Grejner-Brzezinska et al 2006, Mather et al 2006, Groves 

et al 2007). 

 

Ultra wide band measurements in pedestrian navigation are receiving more attention due 

to their “multipath free” benefits in addition to non-line-of-sight requirements (Chui & 

O'Keefe 2008, Renaudin et al 2008, Chui & O'Keefe 2009).  While this approach requires 

additional infrastructure, the potential use in first responders and other pedestrian 

applications is promising. 

 

1.2 Multiple IMU Integration 

GPS and IMUs have been successfully integrated since the formal introduction of GPS.  

More recently, attention has been placed on integration with MEMS IMUs to reduce cost, 

but still provide robust navigation solutions.  A natural progression is to use more IMU 

sensors, and thus capitalize on the decreasing cost of MEMS sensors, in order to improve 

overall accuracy.  As such, researchers commonly fuse multiple IMU measurements in 
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the raw observation (i.e. specific force and angular velocity) domain, but have not 

pursued any other fusion methods.  Thus, multi-IMU fusion can either occur in two 

categorical domains: the observation or estimation domain.  The following sections 

explain these concepts in detail. 

 

1.2.1 Raw IMU Observation Fusion 

Numerous studies have taken an observation domain approach to redundant IMU 

(RIMU) integration whereby the observations of several IMUs are fused, generating a 

single virtual IMU measurement (Sturza 1988, Brown & Sturza 1990, Sukkarieh et al 

2000, Allerton & Jia 2002, Colomina et al 2004, Giroux et al 2004, Pittelkau 2005, 

Osman et al 2006, Pittelkau 2006, Waegli et al 2008).  The term virtual IMU (VIMU) 

will be used herein to describe fusion architectures in the observation domain.  RIMU is 

more commonly used in the literature and can be confused with reduced IMU which has 

the same acronym.  

 

In the development of VIMU theory, optimizing the configuration of the IMU sensor 

axes is an important consideration.  Pejsa (1974) mathematically determined the optimal 

configuration for sensor axes; with sensors in a skewed formation rather than an 

orthogonal one (although the ideal 3 axis sensor is orthogonal).  This work named this 

optimal setup the Skew Redundant IMU (SRIMU).  Further work derived the GDOP 

(Geometric Dilution of Precision) for a multi-sensor cluster to provide theoretical 

estimations, incorporating correct weighting schemes and providing fault detection 

through statistical misclosure testing (Sturza 1988, Brown & Sturza 1990).  

 

The prominent method of RIMU fusion fuses raw IMU observations using least squares 

estimation, mapping each IMU observation to a virtual IMU frame (which requires a 

priori knowledge of the transformation into the virtual fame).  The estimation is 

described in Allerton & Jia (2002), Colomina et al (2004), and Waegli et al (2008).  This 

methodology is fundamentally flawed in that the IMU observations contain un-modeled 

errors prior to fault testing thus negating fundamental rules of input/output covariance 
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estimation.  The work described in one paper (Waegli et al 2008) of the ten referred to in 

this section (1.2.1) report an actual improvement in performance (approximately 30% to 

45%), rather than theoretical derivations of what could be done.   

 

Figure 1 shows the VIMU observation fusion and integration with GPS. 

 

 
Figure 1 – IMU Observation Fusion Architecture 

 

Often, the purpose of virtual IMU integration is not to improve the accuracy (although 

this is a desirable outcome), but to facilitate the detection and exclusion of faulty 

observations (Sturza 1988, Sukkarieh et al 2000).  Of the papers listed in this section 

(1.2.1), only Waegli et al (2008) provides the actual statistical thresholds for fault 

detection as well as the quantity of the observations actually rejected.  It therefore is 

prudent that more analysis be performed on the behaviour of the distribution of the raw 

observations since the true impact of faults in the data remains unexplored.  It is unclear 

whether or not any faults even occur within the IMU data. 
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1.2.2 Architectural Filter Fusion 

The fusion of GPS and a single IMU is typically implemented in a Kalman filter (Groves 

2008).  Other estimation techniques such as particle and sigma point filters are gaining 

popularity (e.g. Kubo & Wang (2008), Li et al (2008)), but go beyond the scope of this 

thesis.   

 

Several architectures have been proposed for the integration of multisensor systems 

(Allerton & Jia 2005).  While the literature is not consistent in terms of nomenclature, 

Figure 2 represents a selection of different architectures.  For simplicity, the architectures 

discussed within this thesis are either centralized or decentralized, although Mutambara 

(1998) categorizes architectures into three categories.  “Full” decentralization 

architectures provide random inter-communication between filters and do not provide one 

“final” solution making this filter unsuitable for navigation purposes and therefore will 

not be discussed further.  Subsets of the decentralized architecture include the federated 

filter and sensor observation fusion.  The bottom three architectures in Figure 2 represent 

the architectures that will be considered in this thesis; namely the stacked and federated 

filters as well as the VIMU.   
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1.2.2.1 Centralized Filter Fusion 

This multi-IMU approach uses a centralized filter that is composed of several individual 

block filters (e.g. Brand & Phillips (2003), Colomina et al (2004), Bancroft et al (2008), 

(Bancroft 2009)).  The technique allows for the inclusion of relative geometry 

constraints, such as relative position, velocity and attitude between IMUs.  The use of 

these constraints represent an advantage over the VIMU estimation techniques since 

VIMU architectures fail to utilize for this useful information.   

 

The process of fault detection has not been investigated thoroughly for the centralized 

approach.  The filter has shown promise with a 58 to 71% accuracy improvement in 

position, velocity and attitude relative to a truth solution (Bancroft et al 2008, Bancroft 

2009).  The centralization architecture is depicted in Figure 3. 

 

 
Figure 3 – Centralized Data Fusion Architecture 

 

Also not discussed thoroughly in the current literature is the numerical stability of such a 

large filter (noting that a five IMU filter can consists of 105 states).   
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1.2.2.2 Federated Filter Fusion 

To the author‟s knowledge, there has been no published work in the domain of 

decentralized filters incorporating multiple IMUs.  Federated filters were introduced in 

the late 1980‟s and early 90‟s for GPS and INS integration (e.g. Carlson (1990) and Wei 

& Schwarz (1990)), but have not been extended to the multi-IMU case.  Federated filters 

utilizing several other navigation systems such as radar altimeters, terrain aided 

navigation systems and synthetic aperture radar have been discussed, but not restricted to 

IMUs (Carlson 2002, Allerton & Jia 2005).  

 

Figure 4 shows a decentralized federated filter, where n individual “local” filters provide 

the input to a master filter (Mutambara 1998, Allerton & Jia 2005).  Federated filters use 

an information sharing algorithm between the master and local filters (Gao et al 1993).  

Carlson and Berarducci (1994) discuss variations of the sharing principles, essentially 

tuning the configuration.  The decentralized architecture, and like derivatives, are 

conducive to a multi-IMU scenario where each IMU represents its own local INS filter.  

An attractive by-product of the decentralized filter is a decrease in processing time, 

relative to its centralized counterpart (Gao et al 1993).  Processing time is an important 

consideration in real-time applications where the use of multiple inertial units requires 

increased matrix computations and lengthy inversions. 
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Figure 4 – Federated Data Fusion Architecture 
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VIMU, stacked filter and the federated filters.  The chapter provides the construction and 

theory behind each proposed filter, in addition to several advantages and disadvantages 

for each architecture.  Chapter Six provides results of two data sets in typical pedestrian 

environments.  Chapter Seven concludes with several recommendations and conclusions.  
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Chapter Two: Satellite Based Navigation 

 

2.1 GNSS Terminology 

Global Navigation Satellite System (GNSS) is a generic term referring to worldwide 

radio-navigation satellite systems.  The United States GPS was the first GNSS, declared 

operational in April 1995.  The term was not used with respect to the U.S. Navy‟s Transit 

(GPS‟s predecessor), although arguably it was the first true GNSS, having started 

operating in 1964.  Today, many GNSS systems are either operational, under 

replenishment, or under deployment.  The Russian Global Navigation Satellite System 

(GLONASS) was developed simultaneously with GPS, operating with a full 24 satellite 

constellation in 1996, although the number of satellites has at times been reduced due to 

political and financial strife.  In 1999, the European Union decided to proceed with its 

own GNSS, Galileo, although it will be managed by the public and private sectors rather 

than from within a military jurisdiction.  Japan, under government and industry 

management, has developed Quasi-Zenith Satellite System (QZSS), a localized 

augmentation to GPS and future GNSSs.  China has developed its own GNSS, called 

BeiDou (or Compass), which anticipates usage of a full 30 satellite constellation and 

satellite based augmentation operations.  The Indian Regional Navigation Satellite 

System (IRNSS) is also under implementation with anticipation for both SBAS and 

global capabilities.  Thus, it is clear that the term GNSS widely refers to available 

radionavigation satellite systems extending beyond only GPS.   

 

2.2 The Global Positioning System 

The Navigation System by Timing and Ranging (NAVSTAR) GNSS, now referred to 

simply as GPS, provides Radio Frequency (RF) ranging capabilities enabling military and 

civilian users to compute precise position, velocity, and time (PVT) through trilateration.  

The complete system was conceived during the 1960‟s after the success of Transit, and in 

1969 the U.S. Office of the Secretary of Defense organized the Defense Navigation 
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Satellite System to consolidate the development of the system.  The Joint Program Office 

(JPO) was instituted in 1973 to facilitate the construction, ground control management 

and receiver development for NAVSTAR, and currently still operates in that capacity 

today (Kaplan & Hegarty 2006).   

 

GPS consists of three major segments: the space, control and user segments.  The space 

segment manages the construction and launching of replacement satellites.  The control 

segment monitors the health of the satellites and arranges satellite navigation data 

uploads.  The user segment includes all military and civilian users and the manufactures 

that produce GPS receivers.  

 

2.2.1 GPS Space Segment 

The GPS satellite constellation is nominally at least 24 satellites set in 6 orbital planes, 

each orbital plane consisting of four or five satellites.  Every orbital plane is earth 

centered, separated by 60 longitudinal degrees, and elevated 55 degrees from the 

equatorial plane (Lachapelle 2007).  Each satellite orbit is slightly elliptical with 

eccentricities typically near 0.01, has an 11 hours 58 minutes period (one-half sidereal 

day) and are medium earth orbits (MEO), approximately 20,200 km from the mean 

surface of the earth.  At the time of writing the GPS constellation consisted of 31 active 

satellites (United States Naval Observatory 2010).  On 24 March 2009, Satellite Vehicle 

Number (SVN) 49, a GPS IIR-M satellite, was launched, beginning a new era of L5 

signal transmission.  SVN 49 was retrofitted with an L5 transmitter to fulfill requirements 

under the International Telecommunication Union Radiocommunication Sector and 

therefore avoided any foreign claim to the L5 frequency band. 

 

2.2.2 GPS Control Segment 

The control segment consists of several satellite tracking stations around the world 

including monitoring stations and master control stations, used to determine the position, 

velocity and time (PVT) of each satellite.  It is the control segment‟s responsibility to 
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precisely determine the PVT of each satellite, upload ephemeris parameters and provide a 

predicted clock model of the satellite.  These predicted ephemeris and time models are 

broadcast for use by the user segment.  

 

Timing upon each satellite is maintained by an atomic clock.  GPS Block I, II, and some 

IIA satellites used Caesium clocks, but all subsequent satellites contain stable Rubidium 

clocks.   

 

The U.S. Naval Observatory maintains GPS time to be within 1µs of Coordinated 

Universal Time (UTC) modulo 1 integer second (IS-GPS-200E 2010), although GPS 

time is typically within 50 ns (Kaplan & Hegarty 2006).  This time dissemination is a 

product of both the ground control stations, using International Atomic Time Standards, 

and GPS satellite measurements.  GPS time and UTC time were set coincident at 0h 

January 6, 1980.  GPS time is a continuous time scale and is not adjusted for leap 

seconds, which results in GPS time being biased by integer seconds (hence the modulo 1 

integer second adjustment).   

 

2.2.3 GPS User Segment 

GPS (and in general GNSS) users use Time of Arrival (TOA) transmission observations, 

attempting to directly measure the travel time between the user and satellite.  In order to 

measure the travel time, GPS uses three ultra high radio frequencies, namely: L1 

(1575.42 MHz), L2 (1227.60 MHz), and L5 (1176.45 MHz).  Pseudorandom noise (PRN) 

code sequences and the navigation message are modulated onto each satellites carrier, 

thus utilizing Code Division Multiple Access (CDMA) spread spectrum methods.  Gold 

PRN codes were selected to provide minimal self and cross correlation between satellite 

PRN codes (Gold 1967).   

 

Two positioning services are currently supported by GPS: Standard Positioning Service 

(SPS) and Precise Positioning Service (PPS).  SPS is available to all users while PPS is 

restricted for the U.S. military and other authorized users.  Currently, Anti Spoofing (AS) 
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encrypts the Y code restricting use of the Y code to PPS users.  The encrypted Y code is 

referred to as the P(Y) code and is modulated onto the L1 and L2 frequencies.  Selective 

Availability (SA) was also used to segregate SPS and PPS users prior to 2000.  SA 

degraded the accuracy of the measurements by introducing satellite clock dithering and 

degraded ephemeris parameters providing false satellite positions.  SA reduced the 

accuracy of single point GPS receivers by up to 100 m.  SA was officially turned to zero 

on May 2, 2000 by U.S. presidential order and the capability for SA on Block III 

satellites was later removed (GPS World Staff 2007).  With SA off, the benefit of the PPS 

service over the SPS is: (1) access to the codes sequences on L2 providing dual frequency 

ionosphere corrections, (2) longer P(Y) code lengths and higher chipping rates providing 

higher range measurement precision and (3) lower multipath effects.  With the addition of 

L5, SPS users will be able to achieve similar precision to those of PPS, although with less 

ability to mitigate interference and jamming. 

 

2.3 GPS Signal Structure 

Each GPS satellite transmits three components: the carrier, the ranging code and the 

navigation data message.  The PRN code is modulated onto the carrier phase and the 

navigation data message is added via modulo-2, forming the Binary Phase Shift Keyed 

(BPSK) digital modulation.  Mathematically, the transmitted signal on L1 is represented 

as 

1 1 1cos 2 sin 2jj j
L i L q LS AP Y t D t f t AC t D t f t  (2.1) 

where:  

1
j

LS  is the signal transmitted on L1 of the jth satellite, 

,i qA A  are the in-phase and quadrature amplitude, 

jP Y t  is the encrypted version of the Y code, known as the P(Y) code of the jth 

satellite, 

D t  is the navigation data message, 
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jC t  is the C/A PRN code of the jth satellite, and 

1Lf  is the L1 frequency (1575.42 MHz).   

The  symbol refers to the modulo-2 addition and is commonly referred to as the XOR 

operator.   

 

The code modulation yields a spread spectrum proportional to the chipping rate of the 

code.  The main lobe of the spread spectrum for the C/A code is 2 MHz (1.023 MHz 

chipping rate), and 20 MHz for P(Y) code (10.23 chipping rate).   

 

GPS signals are broadcasted right hand circularly polarized (RHCP).  This counters the 

change in polarization, resultant from Faraday rotation that would otherwise occur on a 

linearly polarized signal.  The RHCP signal can provide improved multipath rejection 

(i.e. rejecting LHCP signals) at the antenna level for high precision applications.   

 

A satellites navigation data message consists of five 300 bit subframes.  Each subframe 

consists of ten 30 bit words.  Because the bit rate of the navigation message is 50 bps, it 

takes 750 seconds (12.5 min) to completely observe the navigation message, although 

subframes 1 to 3 repeat the same information.  Subframe 1 contains the current GPS 

week number, satellite accuracy and health, clock correction terms and differential group 

delay information.  Subframe 2 and 3 contain ephemeris parameters.  Subframes 4 and 5 

contain almanac data, special messages, satellite configuration flags, ionospheric model 

parameters, and UTC offset data.  Subframes 4 and 5 contain 25 pages and are 

sequentially broadcasted (Lachapelle 2007).   

 

The GPS signal structure is intricate and will not be further reviewed herein.  Further 

information on the structure of the signal can be found in Misra & Enge (2001), Kaplan 

& Hegarty (2006), and IS-GPS-200E (2010).   
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2.4 GPS Observables 

Three main observations are typically provided by GPS receivers: pseudorange, carrier 

phase, and Doppler frequency.   

 

2.4.1 Code Pseudorange Observation 

The apparent time shift between the receiver‟s replicated code and the code received at 

the antenna yields a function of the travel time between satellite transmission and antenna 

recipient (Kaplan & Hegarty 2006).  The transmission is referenced to the satellites time 

and the reception is referenced to the receiver time, thus actually not measuring the time 

of travel between satellite and antenna, but the apparent time of travel.  Multiplying this 

time difference by the speed of light yields a biased range; hence the range is called a 

pseudorange.  The pseudorange observation equation of the jth satellite is given as  

,
j j j j j j j j

ion trop P m PP c dt dT d d  (2.2) 

where:  
j  is the geometric range between satellite and receiver antenna [m], 

j  is the satellite position error (broadcast ephemeris) [m] , 

c  is the speed of light [m/s], 
jdt  is the satellite clock error with respect to GPS time [s], 

dT  is the receiver clock error with respect to GPS time [s],  

j
iond  is the ionospheric error [m], 

j
tropd  is the tropospheric error [m], 

,
j

P m  is the code multipath [m], and 

j
P  are the other code errors (considered to be stochastic) [m]. 
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2.4.2 Carrier Phase Observation 

The carrier phase observation is the most precise range measurement a GPS receiver can 

provide.  While the carrier phase observation still contains the same satellite based 

propagation errors as that of the pseudorange, the carrier phase typically provides much 

better precision in terms of noise and multipath.  The cost of the better precision however 

comes at the expense of an unknown integer ambiguity term and is to be resolved by the 

processing software.   

 

The ionospheric delay term for the carrier phase has the same magnitude, but opposite 

sign to the pseudorange.  This effect is a result of carrier phase advancement versus code 

delay experienced by the signal during propagation through the atmosphere.  

 

The phase observation equation of the jth satellite is given as  

,
j j j j j j j j j

ion trop mc dt dT d d N  (2.3) 

where:  

 is the carrier phase wavelength [m] and 
jN  is the integer ambiguity  

,
j

m  is the carrier phase multipath [m], and 

j
 are the other carrier phase errors (considered to be stochastic) [m]. 

 

Due to the difficulty in resolving the ambiguity in single point mode (which most 

pedestrian navigation applications are) and the inability to maintain carrier phase lock in 

attenuated environments, the carrier phase observation is not used and therefore will not 

be further discussed.   
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2.4.3 Doppler Frequency Observation 

The relative motion between the satellite and user antenna results in an apparent 

frequency shift called the Doppler frequency.  The Doppler frequency is an instantaneous 

measurement made on the carrier phase tracking loop and since it is a time derivative of 

the phase observation it is impervious to the carrier phase ambiguity.  The Doppler can be 

scaled by the wavelength to provide a relative velocity between the satellite and antenna.  

Since the satellites velocity can be precisely calculated, multiple Doppler observations 

can provide the absolute velocity determination of a receiver.   

 

The Doppler observation equation of the jth satellite is given as 

,
j j j j j j j

ion trop mc dt dT d d  (2.4) 

where:  
j  is the geometric range rate between satellite and receiver antenna [m/s], 

j  is the satellite velocity error (broadcast ephemeris) [m/s] , 

jdt  is the satellite clock drift error [s/s], 

dT  is the receiver clock drift error [s/s],  

j
iond  is the ionospheric error drift [m/s], 

j
tropd  is the tropospheric error drift [m/s], 

,
j

m  is the Doppler multipath rate of change [m/s], and 

j  are the other Doppler errors (considered to be stochastic) [m/s]. 

 

2.5 GPS Error Sources 

The errors in observation Equations (2.2), (2.3), and (2.4) can be categorized into three 

sources: satellite based, propagation, and receiver based.  Satellite based errors include 

the satellite clock and ephemeris errors (i.e. satellite position and velocity errors).  

Propagation errors include the effects resultant from the ionosphere, troposphere, 
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surrounding environment, and interference.  Receiver-based errors are a function of the 

receiver clock, antenna type, noise characteristics and inter-channel biases.  All GPS 

error sources discussed within this thesis are considered either stochastic or systematic.  

In some cases, systematic errors will be represented as stochastic processes, thus creating 

the inability to correct, solve or remove the error, but enabling some form of error 

mitigation.   

 

2.5.1 Satellite Based Errors 

Satellite based errors include the broadcast ephemeris errors and the satellite clock error.  

These errors are ultimately controlled by the GPS control segment.  The satellite 

ephemeris parameters and clock are reverse computed using known control stations 

around the world.  The control segment then predicts ephemeris parameters and clock 

corrections, uploading them to the satellite approximately every two hours.  The longer 

the delay between updates the more error present in the broadcast parameters.  In post 

mission applications, these parameters can be estimated with very high precision, 

reducing the final GPS satellite orbital error to 5 cm and satellite clock time to 0.5 ns (i.e. 

~15 cm) (Kaplan & Hegarty 2006).   

 

2.5.1.1 Broadcast Ephemeris Errors 

GPS satellites serve as control points used in determining a user‟s PVT, and thus any 

error in the control points are observed in the observations.  As part of the satellite 

navigation message, subframes 2 and 3 contain the necessary parameters to compute the 

satellite position and velocity.  These broadcasted parameters contain a residual error, 

introducing an error into the PVT estimation of the satellite.  A total of 16 ephemeris 

parameters are sent by the satellite, six of which represent the fundamental Keplarian 

elements describing an orbit.  The remaining parameters provide the perturbations of the 

Keplarian orbit, which account for the gravitational effects of the earth, moon and sun, 

solar radiation pressure and varying gravitation effects around the earth (Misra & Enge 

2001).   



22 

 

The satellite trajectory can be defined in terms of a space vehicle body frame, consisting 

of the three orthogonal axes, pointing along track, across track and radially from the user.  

The magnitude of the ephemeris error is dominated by the along and across track errors 

of the satellite (resulting from weak geometry in estimating the PVT of a satellite from 

multiple stations on earth).  It is common for satellites to have a 1 to 6 m residual position 

error (3D); however the effective range error is only typically 0.8 m (1σ)(Kaplan & 

Hegarty 2006).  The broadcast satellite velocity error is around 0.6 mm/s (1σ) (Olynik 

2002). 

 

2.5.1.2 Satellite Clock Errors 

Aboard all GPS satellites are atomic clocks which maintain the onboard timing 

operations, signal generation and broadcasting.  While the clocks are extremely stable, 

absolute timing of the satellite clock drifts with respect to GPS time.  The control 

segment approximates the clock errors using a second order polynomial fit and uploads 

the coefficients of the polynomial to the satellite to include in the broadcasted navigation 

message.  The satellite clock correction is represented as 

0 1 2

2j
f f oc f oc r gddt a a t t a t t t t  (2.5) 

where:  

0 1 2
, ,f f fa a a  are the broadcast clock correction coefficients [s, s/s, s/s2], 

t  is current epoch time [s], 

oct  is the referenced epoch [s],  

rt  is the correction due to relativistic effects [s], and 

gdt  
is the group delay [s]. 

 

The clock correction parameters are predicted by the control segment and therefore still 

contain residual errors.  The magnitudes of the residual errors are typically 0.3 to 4 m, 

and vary as a function of satellite clock type and time since the last control segment 

upload (Kaplan & Hegarty 2006).  The magnitude of the residual clock drift typically 
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resides around 0.084 mm/s (1σ) for Block II, 0.070 mm/s (1σ) for Block IIA, and 0.052 

mm/s (1σ) for Block II R (Olynik 2002). 

 

Since the satellite experiences high velocities and travels through varying gravitational 

potentials the clock corrections also include a relativistic correction.  When the satellites 

are at perigee (i.e. closest to earth) the velocity reaches a maximum and the gravitational 

potential reaches a minimum (and vice versa).  This change in speed and gravitational 

potential causes the satellite clock to run more slowly and when the satellite is at apogee 

the clock will run more quickly relative to earth.  This effect, shown mathematically 

below, can have a maximum magnitude of 21 m (70 ns) and is computed as (IS-GPS-

200E 2010) 

sinr kt Fe a E  (2.6) 

where:  

F  is the a predetermined constant, -4.442807633 e-10 [s/m1/2], 

e  is the satellite orbit eccentricity, 

a  is the satellite orbit semi-major axis [m], and 

kE  is the satellite orbit the eccentric anomaly. 

 

The average time it takes the signal to travel from the satellite to earth can reach 75 ms.  

During this time, the earth rotates resulting in a relativistic error, resulting in a small 

discrepancy between the broadcast and received time.  The error is commonly referred to 

as the Sagnac effect and the correction is simply referred to as the earth rotation 

correction.   

 

Prior to launch, the satellite clock frequency is adjusted from 10.23 MHz to 

10.22999999543 MHz so that GPS users do not have to correct for this portion of 

relativity theory.   

 



24 

 

2.5.2 Propagation Based Errors 

Electro-magnetic waves experience effects resulting from the medium they travel in, thus 

GPS signals experience errors resulting from the atmosphere and surrounding 

environment.  The medium and local environments are categorized as propagation-based 

errors.   

 

2.5.2.1 The Ionosphere and Ionospheric Errors 

The ionosphere is a portion of the atmosphere extending 50 to 1,000 km above the 

surface of the earth.  For GNSS L band EM waves, this portion of the atmosphere is 

dispersive, meaning that different frequencies propagate differently.  The dispersive 

nature of the ionosphere is a result of the free electrons present in it.  Free electrons are 

created by the ionization of gas molecules by ultraviolet cosmic rays.  The ionospheric 

effect on group velocity and phase velocity are equal, but of opposite sign (see Equations 

(2.2) and (2.3)).  The magnitude of the delay is proportional to the electron density and 

inversely proportional to the square of the frequency.  Total Electron Content (TEC) is a 

value used to represent the density and refers to the number of free electrons in a 1 m2 

cylinder cross section extending from satellite to antenna.  Mathematically, the 

ionospheric error is represented as 

2
40.3

ion
TECd

f
 (2.7) 

where  

TEC  is the total electron density [electrons/m2] and 

f  is the carrier wave frequency (e.g. L1) [Hz] 

 

The TEC is diurnal, but is also a function of antenna location, season, satellite elevation 

angle, ionizing flux, magnetic activity, sun spot cycle and scintillation (Kaplan & 

Hegarty 2006).   
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The signal path of each satellite-to-user observation will have a different ionospheric 

delays and therefore has to be corrected.  A common approach to determine this error is 

to define the user‟s zenith ionospheric delay ( z
iond ) and multiply it by an obliquity factor.  

Figure 5 shows a cross sectional diagram of the situation. 

 

 
Figure 5 – Obliquity Factor of the zenith Angle 

 

Mathematically, the process can be modeled as 
1

2 2sin
1

j

E jj z
ion ion

E I

OF

R
d d

R h
 (2.8) 

where:  

ER  is an approximation of the earth‟s radius [km], 

j  is the zenith angle of the jth satellite [°], 

Ih  is the approximate mean height of the ionosphere (nominally 350 km) [km], and 

j
OF  is the obliquity factor of the jth satellite. 



26 

 

Mitigating the ionospheric error is done in a variety of ways.  Satellite navigation users 

capable of making multiple frequency observations can remove the first order effect of 

the ionospheric error.  The first order effects account for 99% of the ionosphere error 

magnitude (Lachapelle 2007).  Users capable of differential GPS can determine and 

mitigate the ionosphere error, although the accuracy is a function of the distance between 

receivers.  Unfortunately, the use of multiple receivers and multiple frequencies adds cost 

to hardware and is thus typically too expensive for pedestrian navigation applications.   

 

The Klobuchar model (also known as the broadcast model) approximates the zenith 

ionospheric error with a constant value during the night and a half cosine function during 

the day.  The model is a function of user time as follows 

4
1 3

3
1 2

4

,  if ,otherwise
4

2 ( )cos

z
ion

AcA t A
d

t Ac A A
A

 (2.9) 

where:  

1A  is the constant bias (5e-9 s) [s] 

2A  is the amplitude of the cosine function [s] 

3A  is the corresponding peak of the cosine function (50,400 s or 1400 h local time) 

[s], and  

4A  is the period of the cosine function [s]. 

 

Parameters 2A and 4A are determined by the control segment and broadcast in the fourth 

subframe of the navigation message.  It has been estimated that the model only accounts 

for 50 % of the true ionospheric error (Misra & Enge 2001). 

 

Other methods of mitigating the ionosphere error include using 2D and 3D wide area 

models, grid and spherical harmonic global ionospheric models, such as IONosphere map 
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Exchange (IONEX) and Bernese ION format, Voxel (box) approach and radio 

occultation from low earth orbiting satellites.   

 

The zenith ionosphere error typically ranges between 3 and 45 m (Kaplan & Hegarty 

2006), although in times of high ionospheric activity can be much greater.  The rate of 

change in ionospheric error is on the order of 1.4 mm/s (1σ) (Olynik 2002), but is a 

function of the level of ionospheric activity. 

 

2.5.2.2 Tropospheric Errors 

The troposphere extends from the surface of the earth to approximately 50 km and 

consists of mostly nitrogen, oxygen gas and water vapour.  About 75 % of all the dry gas 

atmosphere of the earth is contained within the troposphere.  The majority of water 

vapour is within 4 km of mean sea level and all of the water vapour is within 12 km.  The 

troposphere is non dispersive and its refractive index is typically 0.03 % of unity.  The 

troposphere error consists of two categorized sources: the dry and wet components.  

Since the dry and wet components behave very differently they are modeled differently, 

but ultimately the sum of the dry and wet troposphere errors equals the total tropospheric 

error.   

 

Errors of the dry and wet components are computed by integrating the refractivity over 

the entire path length.  Thus, determining refractivity throughout the troposphere can 

provide estimates of the troposphere error.  Refractivity is a function of temperature, 

pressure and water vapour.  Mathematically the dry component refractivity can be 

computed as 

1dry
PN a
T

 (2.10) 

where:  

1a  is an empirically determined constant (~77.624 K/mbar) 

P  is the total pressure [mbar], and 
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T  is the temperature [K]. 

 

Moreover, refractivity for the wet component can be computed as 

2 3 2wet
e eN a a
T T

 (2.11) 

where  

2a  and 3a  are empirically determined constants (approximately -12.92 K/mbar and 

3.719 ·105 K2/mbar, respectively), and  

e  is the partial pressure of water vapour [mbar]. 

 

The troposphere error is then represented as 
6 610 10trop dry wetd N dl N dl.

 (2.12) 

 

Unfortunately, determining temperature, pressure and humidity along the entire travel 

path is unrealistic in most geomatics applications, including pedestrian navigation.  Thus, 

several models to approximate the troposphere error have been developed.  Most, at 

present, provide the zenith troposphere delay as a function of temperature, pressure, 

humidity and latitude, and require an additional obliquity factor to map the error to the 

satellite zenith.  The obliquity factor of the ionosphere and troposphere errors are 

typically not the same.   

 

Numerous troposphere models have been developed including the Saastamoinen, 

Hopfield, modified Hopfield and Black and Eisner, which assume different atmospheric 

characteristics and models.  The magnitude of the zenith troposphere error is 

approximately 2.4 m, and typically the accuracy of these models is about 80 to 90 %, 

leaving residuals on the order of 25 to 50 cm (Misra & Enge 2001).  The rate of change in 

the residual error is approximately 1 mm/s at the zenith and 2 mm/s at the horizon 

(Olynik 2002).   
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2.5.2.3 Multipath Errors 

Multipath errors, or simply multipath, are created when antennas receive non line of sight 

signals which interfere with the transmitted line of sight signal.  In some cases, such as 

indoors and in urban canyons, there may not be line of sight signals received by the 

antenna.   

 

Multipath is categorized into two categories: specular and diffuse (Lachapelle 2007).  

Specular multipath is created when the transmitted signal is reflected in a particular 

direction and follows Snell‟s law.  Diffuse multipath is created when the signal is 

reflected in multiple ways.  Materials that are smooth (e.g. glass buildings and cars) 

typically produce specular multipath and normally contain equivalent signal strengths, 

while rough materials (e.g. trees or ocean surfaces) produce diffuse multipath with 

reduced power levels.   

 

Multipath is a systematic error that is very difficult to quantify in real time and thus 

difficult to correct.  However, there are a few characteristics which are important to 

consider (Kuusniemi 2005):  

1. Multipath decorrelates both temporally and spatially very rapidly. 

2. Line of Sight (LOS) signals are always RHCP and all LHCP are multipath 

signals. 

3. Multipath is observable and repeatable and is a function of the satellite and user 

position and surrounding environment. 

4. Multipath signals can have seemingly normal power levels, but generally are 

lower in power. 

5. Multipath is unbounded for Non-LOS (NLOS) signals.  

There is very little that can be done to mitigate multipath at the pseudorange level.  Most 

mitigation is performed internally in the receiver and antenna.  HSGPS receivers are 

particular susceptible to multipath, but have the advantage of providing users with more 

observation availability. 
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Multipath signals always arrive after the LOS signal; however the change in the phase of 

the reflected signal can result in estimated ranges that are less than the true distance 

(ignoring other ranging errors).  Multipath on the pseudorange is limited to one half chip 

length (~150 m on L1 C/A code), provided LOS signals are present.  However, in some 

environments such as indoors, only NLOS signals are available and therefore multipath 

can theoretically be unbounded.   

 

Multipath is mitigated by appropriate site selection, receiver design, antenna selection 

and use of an antenna ground place (choke ring).  Unfortunately, none of these attributes 

are conducive to pedestrian navigation, thus making multipath one of the largest error 

sources in pedestrian navigation applications. 

 

2.5.3 Receiver Based Range Errors 

2.5.3.1 Receiver Clock Errors 

Inherent to all GNSS receivers is a time bias between GPS time and the receiver‟s 

internal time.  Since the receiver estimates the range based on the transmit time 

(referenced to GPS time) and the received time (referenced to the receiver‟s time), all 

measured ranges will contain a bias known as the receiver clock error.  The error is 

estimated within the estimation process as a fourth parameter (in addition to three 

position parameters).  This pattern also follows with the receiver‟s clock drift, which is 

also estimated as part of the navigation solution if Doppler observations are used.   

 

Typically a GNSS receiver will incorporate a relatively low cost quartz clock, although 

some high end geodetic receivers will use a temperature compensated crystal oscillator 

(TCXO).  These high-end clocks are typically more expensive, require more power and 

are physically larger thus limiting their applications.  
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The receiver clock error is a systematic quantity.  The clock error can also be predicted 

from apriori information contained in the clock drift, thus in a filter, the receiver clock 

drift is typically estimated as a random walk or Gauss-Markov process.   

 

2.5.3.2 Noise 

Random noise is inherent in all GNSS observations, albeit it may have different 

magnitudes.  Noise defined herein is a stochastic error.  Noise results from amplifiers, 

antenna, cables, inter-channel biases, thermal noise jitter (receiver clock), dynamic stress 

on the oscillator and simple resolution of the observed code.  The L1 C/A code has a 

noise standard deviation of about 0.8 m (1σ), although this value varies between receiver 

types.  A 6 cm/s (1σ) noise standard deviation on the Doppler observation is commonly 

used.  Noise error magnitude is also fundamentally based on the strength of the received 

signal power.   

 

Noise can be determined through a zero baseline test as discussed in Lachapelle (2007).  

To provide context, a 10 hour zero baseline test was conducted in open skies and in a 

residential house.  In the latter case the signal attenuation reached 17 dB, but was 

commonly about 10 dB.  Since zero baselines remove all systematic errors, the residual 

error is stochastic.  It is commonly assumed that these errors are normally distributed, 

however as shown in Figure 6 and Figure 7 the errors are not completely Gaussian.  For 

the purposes of this thesis, the pseudorange and Doppler observations are however 

assumed to be Gaussian.   
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Figure 6 – Zero Baseline Pseudorange Errors (u-blox 10 Hours @ 1 Hz)1 

 

 

Figure 7 – Zero Baseline Doppler Errors (u-blox 10 Hours @ 1 Hz)1 

1Note - σ is the standard deviation and shown in the figure with a black line, γ1 is the skewness of the data, 
γ2 is the Kurtosis of the data and Ho is the spectral density of the data.   
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2.5.4 Received Signal Power 

Carrier to Noise density (C/No) is a measure of the relative signal strength compared to 

the surrounding noise environment.  This metric provides a concise measurement of the 

integrity of the signal received at the antenna.  C/No (in units of db-Hz) is computed by 

/ s
o

o dB

PC N
N

 (2.13) 

where  

sP  is the signal power [W] and 

oN  is the noise power with respect to a 1 Hz bandwidth [W/Hz]. 

 

Typical C/No values for direct LOS signals are greater than 35 dB-Hz.  Signals between 

28 and 35 dB-Hz are marginal and any signal less than 28 dB-Hz is poor.  Signals less 

than 28 dB-Hz are likely reflected signals or signals with severe attenuation and usually 

occur indoors.   

 

The Signal-to-Noise Ratio (SNR) alternatively provides an indication on the receiver 

performance given the observed signal.  This metric accounts for the receivers processing 

bandwidth, nominally 2 MHz, and is computed by 

s

o dB

PSNR
BN

 (2.14) 

where  

B  is the receiver‟s processing bandwidth [Hz]. 

 

The signal power is weakened by several factors including free space loss, ionospheric 

and tropospheric loss, depolarization loss, and antenna location.  Power gains include the 

SV Effective Isotropically Radiated Power (EIRP).  These power levels typically sum to 

a nominal value of -160 dB and may vary depending on latitude, satellite elevation angle, 

atmospheric conditions and local environment.  Figure 8 graphically shows the 
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magnitude of each power loss and gain, free space loss accounting for 97 % of power loss 

(Lachapelle 2007). 

 

 
Figure 8 – Power Losses and Gains 

 

Goldhirsh & Vogel (1998) indicate that tree canopies can reduce power levels by 11 dB 

with approximately 5 dB RMS variation at 1.6 GHz (L1).  The study also indicates that 

indoors the L1 signal power can be reduced by up to 25 dB and that the human body 

shielding can reduce power levels between 6 to 10 dB.   

 

Figure 9 shows the cumulative probability distribution of the 10 hour data set presented 

in Section 2.5.4.  This distribution shows that indoors, the availability of untainted signals 

is reduced dramatically.  This particular data set shows that 41 % of the C/No are lower 

than what would be observed in open sky conditions.   
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Figure 9 – Cumulative Distribution of C/No (u-blox 10 Hours @ 1 Hz) 
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Chapter Three: Inertial Navigation 

 

Inertial navigation derives relative navigation parameters from a self contained 

autonomous sensor system (i.e. an IMU).  An IMU contains an accelerometer triad, that 

measures the specific force exerted on the IMU, as well as a gyroscope triad, that 

measures the angular velocity of the IMU.  Once earth rotation and gravity effects are 

removed from the IMU observations, the integration of the angular velocity over a finite 

period yields the rotation over the interval and the double integration of the specific force 

yields the change in position (e.g. Farrell & Barth (1998)).  

 

The measurement errors in IMUs are a chief concern, since they accumulate with 

successive integrations and vary with time, making them hard to quantify over a single 

interval.  In order to estimate the IMU errors, measurements are checked against other 

navigation information.  The fusion of GPS and IMU measurements is attractive since 

satellite measurements do not accumulate like those of inertial units.  GPS therefore 

provides absolute positions (and velocity) to the system, in addition to providing essential 

information to estimate IMU errors.  Other updates to the INS can provide enhanced IMU 

error estimation including zero velocity updates (Godha & Lachapelle 2008), speed 

updates (i.e. observations from wheel speed sensors) (Gao 2007), coordinate updates and 

non-holonomic constraints (Godha 2006). 

 

3.1 Coordinate Frames 

Four major coordinate frames are often used in inertial navigation.  Since each plays a 

critical role in the INS, a brief description of these frames is necessary.  The four 

coordinate frames discussed are: the inertial frame (i frame), Earth Centered Earth Fixed 

(ECEF), local level (LL) frame and the body frame (b frame).  The inertial frame, which 

is a non-rotating, non-accelerating frame, is fixed with respect to celestial objects (e.g. 
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stars).  Table 2 shows the definition (and convention) of the frames used within this 

thesis.   

 

Table 2 – Coordinate Frame Convention 

Frame Origin X Axis Y Axis Z Axis 

Inertial (i) Earth‟s Centre of 
Mass 

Toward 
Vernal 

Equinox 

Orthogonal to X 
and Z Forming a 

Right Handed 
Frame 

Earth Rotation 
Axis (mean) 

Earth 
Centered 

Earth Fixed 
(ECEF) (e) 

Earth‟s Center of 
Mass 

Mean 
Meridian of 
Greenwich 

Orthogonal to X 
and Z axis 

Forming a Right 
Handed Frame 

Earth Rotation 
Axis (mean) 

Local Level 
(LL) Frame 

(l) 
IMU Vertex Geodetic 

East Geodetic North 

Orthogonal to 
the Reference 

Ellipsoid, 
Upward 

Body Frame 
(b) IMU Vertex Across Track 

of IMU 
Along Track of 

IMU 

Orthogonal to X 
and Y Axis 

Forming a Tight 
Handed System 

 

 

3.2 Attitude Representation 

Transformations between coordinate frames are very common in an INS.  IMU 

observations are made in the body frame, the user typically desires output navigation 

information in the ECEF or LL frame and the earth rotation vector is easiest to determine 

in the inertial frame.   

 

This work will make use of three types of attitude representations: direction cosine matrix 

(or rotation matrix), quaternion, and Euler angles.  Each representation has its own 

advantages and disadvantages, and typically a combination of all three is used in 

software.  Schleppe (1996) provides an excellent review of the various attitude 

representations and their respective conversions.   
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3.2.1 Direction Cosine Matrix 

The direction cosine matrix represents a rotation between two arbitrary frames (e.g. 

rotation between frames a and b).  An element within the direction cosine matrix 

(represented by row r and column c) contains the cosine of the angle between the c axis 

of the a frame and the r axis of the b frame (Savage 2007).  Direction cosine matrices are 

unambiguous and contain no singularities.  The direction cosine matrix however does 

have an inherent weakness because each element within the matrix does require the use 

of trigonometric processing, a large processing burden.   

 

3.2.2 Quaternion 

Quaternions are based on Euler‟s theorem stating that between two coordinate systems 

one single invariant axis exists with one rotation about that axis.  The four parameter 

quaternion is defined by a scalar rotation angle and a unit vector, which is commonly 

called the Euler axis.  Mathematically, the quaternion can be expressed as  

cos
2

sin
2

q
e

 (3.1) 

where  

 is the rotation about the Euler axis and 

e  is the unit vector of the Euler axis 

 

When two coordinate systems are equivalent (e.g. parallel), the Euler axis vector is zero 

and the scalar quantity is 1.  Opposite rotations are created by multiplying the unit vector 

by -1.  This moves the Euler axis to the opposite quadrant, thereby allowing for inverted 

rotations.  Quaternion parameters are dependent upon each other and satisfy the 

constraint that their sum of squares is unity (Schleppe 1996).  This latter characteristic is 

why many applications favour the use of quaternions over direction cosine matrices. 
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3.2.3 Euler Angles 

Euler angles are three sequential rotations that represent the difference in orientation 

between two coordinate frames.  Euler angles are ambiguous and contain singularities, 

but are commonly preferred because they can provide a conceptually simple 

understanding of the attitude in 3D Euclidean space.  The Euler angle ambiguity arises 

because no restriction is placed on the order of the sequential rotations, thus there are 

several potential rotations sequences that could be performed.  Since Euler angles provide 

no ability to directly rotate a vector, they are commonly converted to a rotation matrix.  

Each Euler angles is used to compute a rotation matrix however the sequential order must 

be known.  The three Euler angles (α, β, χ) are represented as their equivalent direction 

cosine matrices as follows: 

1

1 0 0
R 0 cos sin

0 sin cos
 (3.2) 

2

cos 0 sin
R 0 1 0

sin 0 cos
 (3.3) 

3

cos sin 0
R sin cos 0

0 0 1
 (3.4) 

where:  

 is the rotation about the X axis, 

 is the rotation about the Y axis, and 

 is the rotation about the Z axis. 

 

Euler angles therefore are not commonly used within software to store the rotation 

between frames, but are used for simple user input and output.  The three parameters are 

also easily interpolated which makes them ideal candidates for Kalman filter states, 

whereas the other rotation representations are not as conformal.   
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3.2.4 Rotation between Frames 

For the general purpose of this review, rotations will be shown using the direction cosine 

(rotation) matrix.  Rotation from the inertial frame to the ECEF frame is a function of the 

earth‟s rotation rate and the interval over which to integrate the rotation.  The rotation is 

given as 
e
i 3 ieR R tω  (3.5) 

where:  

ie  is earth‟s rotation rate vector [rad/s],  

t  is the interval of the integration time [s], and 

jR  
is the rotation matrix about the jth axis 

 

The ECEF to LL rotation matrix is given as 
l
e 1 3R R 90 R 90  (3.6) 

where  

 is the longitude [deg] and 

 is the latitude [deg]. 

 

The rotation from the body frame to the local level frame is (convention specific) 
l
b 3 2 1R R R R  (3.7) 

where:  
 is the yaw (rad), 

 is the roll (rad), and 

 is the pitch (rad). 

 

The rotation from the body frame to the ECEF frame is commonly computed in the 

following manner 
e e l
b l bR R R  (3.8) 
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Using a, b and c as arbitrary frames, there are a few properties of rotation matrices that 

are noteworthy, explicitly:  
Ta b

b aR R  (3.9) 

a a c
b c bR R R  (3.10) 

a b
3x3 b aI R R  (3.11) 

 

Equation (3.9) shows that a reverse rotation can be performed by transposing the matrix.  

Equation (3.10) shows that subsequent rotations can be combined into one rotation matrix 

and that rotation matrices themselves can be rotated.  Equation (3.11) shows that a 

rotation matrix to one frame and back to the original frame is in fact no rotation. 

 

3.3 MEMS IMU Sensor Design 

The past few decades has seen increased attention on MEMS IMU sensor design 

resulting from the following (Titterton & Weston 2004): 

 a broad market 

 low cost 

 small size and weight 

 extensive longevity 

 no maintenance 

 low power consumption 

 low part number 

 mass production capabilities 

 “simple” construction procedures relative to the higher end IMUs 

 manufactures are not required to calibrate each unit 

 

However, the benefits come at the cost of obtaining high quality (and integrity) 

measurements.  While this is apparent in today‟s market, Titterton & Weston (2004) 
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claim that MEMS IMU quality may rival the current tactical grade IMU and eventually 

the navigation grade sensors.   

 

3.3.1 MEMS Gyroscope Technology 

Vibratory gyros are the most common type of MEMS gyro technology.  MEMS vibratory 

gyros are based on the Coriolis force resulting from vibrating proof masses experiencing 

a velocity.  The Coriolis force is computed as 

2ca v Ω (3.12) 

where:  

ca  is the Coriolis force, 

v  is the velocity of the object, and 

Ω  is the angular velocity. 

 

The premise for a vibratory MEMS gyro is to provide a proof mass with a predetermined 

velocity (from vibrations), observe the Coriolis force via a change in electrical 

capacitance and mathematically compute the angular velocity of the proof mass.  There 

are several components of a MEMS gyro including proof mass, motor, sensing electrodes 

and A/D conversion.  Each component is discussed next. 

 

3.3.1.1 Proof Masses 

Proof masses are generally divided into three categories based on their design: simple 

beam, balanced beam and cylindrical shell oscillators.  Simple beams are susceptible to 

external vibrations yielding incorrect observations, thus the more effective balanced 

beams are typically used and are commonly referred to as tuning fork gyros.  

Manufacturers also use a cylinder shell based proof mass, which yields even better 

performance parameters than the balanced beam.  Proof masses are made of silicon or 

quartz and are typically on the order of 20 to 100 µm thick.  The thickness of the mass 

typically translates into the stability of the gyro.   



43 

 

 
Figure 10 – MEMS GYRO Test Masses (Titterton & Weston 2004) 

 

3.3.1.2 Motor 

The proof mass requires velocity in order for a perpendicular Coriolis reaction to be 

measured.  The motor design, shown in Figure 11, is an electrostatic comb drive which 

vibrates when an alternating current is applied.  The proof mass commonly vibrates 

consistently at about 12 kHz with a consistent amplitude of about 10 µm (Titterton & 

Weston 2004).   

 
Figure 11 – Comb Drive Motor Schematics (Apostolyuk 2006) 

 

3.3.1.3 Sensing Electrodes  

As rotation (from user motion) is experienced by the vibrating mass, the Coriolis force 

pushes the mass out of the vibrating plane.  The magnitude of this movement is measured 

by the change in capacitance.  The capacitance variation is extremely sensitive, 
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measuring changes near 1 aF (10-18 Farads).  Because gyro capacitors must be so 

sensitive robust manufacturing techniques are used to enhance their ability.  The 

capacitance sensitivity typically translates linearly into the gyros resolution and noise 

parameters (Titterton & Weston 2004).   

 

3.3.2 MEMS Accelerometers Technology 

Two general categories exist for MEMS accelerometers: pendulous and vibrating beam.   

 

3.3.2.1 Pendulous Accelerometers 

A pendulous accelerometer uses a similar proof mass as the gyros proof mass described 

in Section 3.3.1.1.  The objective of the accelerometer is to measure the mass‟s deflection 

based on a change in capacitance and convert the magnitude of the deflection into a 

specific force.  Just as in the MEMS gyro case, this capacitance must be extremely 

sensitive to changes on the order of 12 fF (10-15 F).  The capacitor‟s sensitivity similarly 

dictates the resolution and noise parameters of the accelerometer.   

 

3.3.2.2 Vibrating Beam Accelerometers 

The vibrating beam accelerometer uses an electrostatic comb drive as described in 

Section 3.3.1.2.  The comb drive is set to vibrate at a consistent frequency (approximately 

20 kHz) and when a force is applied, a change in resonant frequency is measured (rather 

than an actual displacement via capacitance change).   

 

3.4 IMU Observation Equations 

The observations that an IMU provides are contaminated with both stochastic and 

systematic errors.  The accuracy of any INS is directly related to the mitigation of these 

errors and therefore identification of the errors in an observation equation is critical.   

 

The accelerometer observation equation, after calibration, is given as 
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b b
ib a a ib aSf b f η  (3.13) 

where:  
b
ibf  is the true specific force vector, 

ab  is the bias vector of the accelerometers, 

aS  
is the scale factor and cross coupling error matrix, and 

aη  is noise (assumed to be white Gaussian). 

 

The observation is in vector form, each axis containing a specific force measurement.  

 

Similarly, the gyro observation equation after calibration is given as 

b b b
ib g g ib g ib gS Gω b ω f η  (3.14) 

where:  
b
ibω  is the true angular velocity, 

gb  
is the bias vector of the gyros, 

gG  
specific force dependent bias matrix, 

gS  is the scale factor and cross coupling error matrix, and 

gη  is white Gaussian noise. 

 

3.5 IMU Error Sources 

Accelerometer and gyro (gyroscope) errors typically include biases, scale factors, triad 

non-orthogonalities and noise.  The magnitude of the noise and the stability of biases are 

the two common attributes that usually determine the quality of the sensor.  The quality 

of an IMU is typically reflected in its cost.  Considering that this research is for 

pedestrian navigation, system cost becomes a major factor in the development of a 

marketable product.  MEMS provide the IMU of choice for pedestrian applications. 
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3.5.1 Biases 

Biases are errors independent and uncorrelated of the specific force and angular velocity 

experienced by the unit (IEEE 2001).  The bias of a MEMS grade IMU consists of two 

parts, the turn-on bias and the time variant bias.  The biases are typically estimated in a 

filter, in addition to the position, velocity, attitude and other sensor errors.  Godha (2006), 

for example, models both the turn on bias and the time variant bias in a Kalman filter.  

The turn on bias commonly contains 90 % of the bias (Groves 2008), however MEMS 

IMU‟s are more prone to temperature based biases which can often have similar 

magnitudes as the turn on bias.  Table 3 shows the magnitude of the biases for several 

grades of IMUs.   

 

Table 3 – Typical IMU Grade Bias Specifications (Titterton & Weston 2004, Groves 

2008) 

IMU Grade Gyro Bias (°/hr) Accelerometer Bias (mg) 
(1 mg ~ 0.009807m/s2) 

Strategic 0.0001 0.01 
Navigation 0.01 0.1 

Tactical 0.1-10 1-10 
Automotive/Pedestrian >10 >10 

 

3.5.2 Scale Factor Errors 

A scale factor error is a ratio of change in the output of the sensor with respect to true 

intended measurement (IEEE 2001).  Scale factors describe the first order trend of the 

bias.  The scale factor can be estimated in the filter, alongside the biases.  Table 4 provide 

typical scale factor specifications for varying grades of IMUs. 

 

Table 4 –Typical IMU Grade Scale Factor Specifications 

IMU Grade Gyro Scale Factor (ppm) Accelerometer Scale 
Factor (ppm) 

Strategic Nil Nil 
Navigation 5 100 
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Tactical 150 300 
Automotive/Pedestrian 10,000 10,000 

 

3.5.3 Cross Coupling Errors 

Cross coupling or misalignment errors result from the non-orthogonality of the sensor 

triad making the observing axis sensitive to input from the adjoining normal axes (Groves 

2008).  The errors can be quantified by coefficients, which occupy the off-diagonal terms 

of the a,gS matrix and as such can also be expressed in PPM.  These errors are most 

commonly estimated through calibration.  The measurements are then corrected prior to 

being used in the navigation filter or estimation process.   

 

3.5.4 Gyro Specific Force Errors  

Gyros that use a spinning or vibratory mass incur additional errors because of imbalances 

in the proof mass.  These errors are a function of the amount of specific force applied to 

the gyro triad and commonly have magnitudes between 1 and 100 °/hr/g.  Thus, an 

inertial unit located on a foot, which can experience 4 g of acceleration during heel strike, 

could produce a 400 °/hr error.   

 

3.5.5 Random Noise  

Electrical limitations and mechanical instabilities generate noise in all IMU observations.  

MEMS IMUs suffer from significant noise because their signals are extremely weak and 

the ability to measure minute fluctuations is challenging.  Figure 12 and Figure 13 show 

the histogram of 15 hours of static data of a MEMS grade IMU (Cloudcap‟s Crista IMU 

at 100 Hz).  A visual inspection shows that the errors follow a Gaussian distribution.  

This test required that the mean be removed to account for levelling errors and systematic 

IMU errors.  The mean was estimated by using a 100 epoch mean filter. 
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Figure 12 – Accelerometer Noise Characteristics of a Static MEMS Grade IMU (15 

hours @ 100 Hz)1 

 

Figure 13 – Gyroscope Noise Characteristics of a Static MEMS Grade IMU (15 

hours @ 100 Hz) 
                                                 

1 σ is the standard deviation and shown in the figure with a black line, γ1 is the skewness 
of the data, γ2 is the Kurtosis of the data and Ho is the spectral density of the data.   
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3.6 Mechanization Equations 

The mechanization of the raw IMU measurements converts the specific force ( b
ibf ) and 

angular velocity ( b
ibω ) to an incremental change in position, velocity and attitude over a 

time interval.  Mechanization only provides relative information and consequently can 

only provide the accumulated change in position.  Therefore it is ideal to combine these 

measurements with an absolute positioning system such as GPS.  The relative navigation 

information of mechanization can be determined in several frames, such as a local level 

frame, the ECEF frame, wander frame or even the inertial frame.  Mechanization frame 

implementations each contain their own advantages and disadvantages.  Ultimately the 

frame used is selected for the application, computational burden and developer 

preference.  This thesis will use the ECEF mechanization.  Mathematically, the ECEF 

mechanization equations are represented as 

e e

e e b e e e
b ib ie

e e b b
b b ei ib

R 2
R R

r v
v f v γ  (3.15) 

where:  
er  is the ECEF position vector, 
ev  is the ECEF velocity vector, 

e
bR  

is the rotation matrix from the body frame to the ECEF frame, 

e
ie  is the skew symmetric form of the angular velocity between the inertial and 

ECEF frame, as viewed in the ECEF frame, 
eγ  is the normal gravity vector (i.e. an estimation of local gravity provided by a 

mathematical model), 
b
ei  is the skew symmetric form of the angular velocity between the ECEF and 

inertial frame, as viewed in the body frame, and 
b
ib  is the skew symmetric form of the angular velocity between the inertial and 

body frame, as viewed in the body frame (the Gyro measurements) 
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In practice, the mechanization of inertial measurements into position, velocity and 

attitude information is not implemented as a set of differential equations as above but 

rather as a series of computational steps.  These steps are discussed here.  

 

The first step is to correct the incoming IMU data with the best estimate of their 

respective errors as described in Section 3.5.  Estimates of the errors are derived either 

from a filter (i.e. Kalman filter), an a priori calibration process, or both.  Some errors 

such as the sensor axis non-orthogonality are also performed in a pre-filtering step, 

sometimes within the IMU processor.  In the case of the gyro, the specific force 

dependent bias errors are also corrected in a pre-filtering step.  The correction of the raw 

IMU measurements is performed mathematically as:  
b
ib gb

ib
g

b
ˆ

S
 (3.16) 

b
b ib a
ib

a

f bf̂
S .

 (3.17) 

 

The noise of each sensor cannot be removed at this stage and therefore the residuals are 

assumed to be stochastic.  In cases where residual errors remain, this assumption may not 

reflect the truth. 

 

The second step is to use the integrated gyro measurement to provide a change in rotation 

experienced during the interval of mechanization.  Since earth rotation is observed within 

the gyro observation it first must be removed.  This ensures that only the specific rotation 

for the IMU is computed and does not include ambient rotations.  The gyro outputs the 

observations within the body frame and therefore earth rotation must be determined in the 

body frame.  The earth rotation rectification is given as  
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b b b
eb ib ie

b b e
ib e ie

b b
ib e

ie

ˆ

ˆ R
0

ˆ R 0

ω ω ω
ω ω

ω

  

(3.18) 

where  

ie  is the earth‟s rotation rate (~ 15.041 °/hr). 

 

The angular velocity expressed in Equation (3.18) is then integrated over the epoch to 

provide a small rotation vector between the kth and kth+1 epoch.  The rotation vector is 

then converted to a quaternion as detailed in Savage (2007).  Then through quaternion 

multiplication the quaternion representing the rotation between the body and ECEF frame 

is updated.  The attitude update step is shown as 
e e e
eb eb ebk 1 k

Q Q Q  (3.19) 

where  
c
baQ  is the quaternion describing the rotation from the „a‟ to „b‟ frame, as seen in the c 

frame.   

 

Step 3 is to provide incremental velocities in the ECEF frame.  The specific force 

measurements are integrated over the interval to yield incremental velocities.  As a result 

the rotation into the ECEF frame is applied to the velocity increments.  However, because 

the rotation matrix from the body to the ECEF frame is only available at the discrete ends 

of the integration period, the average of the rotation matrices and the slight incremental 

rotation during the interval must be accounted for.  If the interval occurs over k and k+1 

epochs, it is mathematically shown as 

e e b
k b 3x3 bk

e e b
k 1 b 3x3 bk 1

1R I S
2

1R I S
2

Δv Δv

Δv Δv

  

(3.20) 

where  
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bS  is the skew symmetric form of the rotation vector.  

 

Thus, the average of the computed e
ibv  is used to finally provide the updated velocity, 

explicitly as 
e e

e k k 1
k,k 1 2

Δv ΔvΔv
.
 (3.21) 

 

At this point the Coriolis and the gravity effects must be compensated for.  Gravity is 

approximately estimated using a global model.  These models typically account for 

gravitation and centripetal acceleration, but do not provide the resolution required for 

estimating local gravitation anomalies.  Regardless, the normal gravity vector nominally 

contain residual gravitation errors on the order of 10-8 m/s2, resulting in minuscule errors 

for pedestrian navigation applications (Schwarz & Wei 1990).  Coriolis acceleration is 

computed using the average velocity over the interval.  The adjustment is given as 
e e e e e
k,k 1 k,k 1 ie k,k 12 tΔv Δv v γ .

 (3.22) 

 

The incremental position is then determined by integrating the velocity and added to the 

previous epoch‟s position as 
e e e
k 1 k k,k 1 tr r v . (3.23) 

 

3.7 Initial Alignment 

The attitude of an IMU with respect to the mechanization frame is required prior to 

updating the position, velocity and attitude (PVA) as seen in Equation (3.18), thus 

requiring an initial attitude.  The process of determining the heading from gyro 

observations is called gyro-compassing, however due to the large biases and high noise of 

MEMS gyros, gyro-compassing is not possible and therefore not discussed here.  Other 

possible initial heading alignment procedures are performed through magnetic compasses 

or having the user input their heading manually.   



53 

 

 

Assuming the IMU is stationary the pitch and roll of the IMU can be determined through 

the accelerometers as 
b
ib x

b
ib y

f
sin

f
sin

γ

γ .

 
(3.24) 

 

(3.25) 

 

Based on the gravity vector and the observed magnitude of the IMU horizontal axes, the 

pitch and roll can be determined which is shown in Equations (3.24) and (3.25).  It is 

noted that since the observed accelerometer values are uncorrected (i.e. the filter has not 

yet started to estimate biases) the initial attitude still contain errors.  Given a maximum 

bias of 0.3 m/s2 (as per the specifications sheet), the error in the pitch and roll would be 

approximately 1.8°.  
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Chapter Four: Estimation Theory 

 

When trying to estimate a parameter such as position or velocity from pseudoranges or 

Doppler measurements, there can be three separate scenarios: (1) the number of 

independent observations is less than the number of desired parameters; (2) the number 

of observations is equal to the number of parameters; or (3) the number of independent 

observations is greater than the number of parameters.  The first case is said to be under-

determined.  In such a scenario, the parameters may not be fully resolved since the 

observation space is not sufficient to translate the entire parameter space.  The latter two 

scenarios are called fully-determined and over-determined respectively, since the 

observation space is completely defined and adequate for translation into the desired 

parameters. 

 

The method of estimating parameters from redundant observations and determining the 

estimated covariance of the estimated parameters is known as estimation theory.  

Measurement systems convert redundant measurements into one set of parameters, most 

commonly through a least squares approach.  If the system contains dynamics the 

dynamics characteristics can be fused with the redundant measurements in an optimal 

form.  Kalman filtering is a classical estimation algorithm utilizing both measurements 

and dynamics.  

 

4.1 Measurement Systems 

The observation equation relates the parameters to be estimated and the observations.  

Equations (2.2) and (3.13) are examples of observation equations.  

 

Consider a parametric system of the kth epoch that is described as follows 

k k k kHl x ε  (4.1) 

where:  
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kl  is the vector of observations, 

kH  is the design matrix, 

kx  is the parameter vector, and 

kε  is the measurement noise. 

 

The design matrix is a Jacobian matrix of the observation equations, effectively a linear 

conversion from the parameter to the observation domain.   

 

In systems that are over-determined, the goal is to minimize the magnitude of the residual 

error.  This magnitude is described as the cost since it is an undesirable outcome of 

observation errors.  The cost function of least squares (i.e. the error to be minimized) is 

mathematically shown as 
T

k k k k k k kJ x xl H W l H  (4.2) 

where  

J  is the cost function to be minimized and  

kW  is a weighting matrix. 

 

Least squares equations are derived by differentiating Equation (4.2) with respect to the 

parameters ( kx ), setting the differentiated function to zero and solving for the parameters 

(Gao 2008).  The covariance of the parameters is determined by propagating the 

covariance of the observations as given by 
Tf fP R  (4.3) 

where:  

P  is covariance matrix of the estimated parameters,  

R  is the covariance matrix of the observations, 

 is the observation, and 

f  is the parametric mathematical model. 
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In least squares it is common to let the weighting matrix equal to the inverse of the 

covariance matrix of the observations ( 1R ).  With this approach the estimated 

parameters and the corresponding covariance matrix can be computed as 
1T 1 T 1

k k k k k k kˆ H R H H Rx l  (4.4) 

1T 1
k k k kP H R H  (4.5) 

 

After the adjustment, the residual error vector and its covariance matrix are computed as 

k k k kˆHr l x  (4.6) 

where  

kr  are the residuals, and 

k

T
r k k k kC R H P H  (4.7) 

where  

kr
C  is residuals covariance matrix. 

 

4.2 Dynamic Systems 

If a differential relationship exists between states2, the dynamic system can be 

incorporated into the estimation process thereby increasing the quality of the estimation.  

Dynamic systems are described as  

x t F t x t G t w t  (4.8) 

where:  

F t  is a coefficient matrix describing the differential equations, 

G t  is the coefficient matrix shaping the input noise, 

w t  is the white noise vector, and 

                                                 

2The nomenclature for dynamic systems typically uses states rather than parameters, although they are 
effectively the same thing. 
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t  is time. 

 

Note that the system dynamics do not contain observations.  This is because dynamic 

systems only relate the parameters within the system.  The combination of system 

dynamics and measurements is usually fused through a Kalman filter.   

 

4.3 Kalman Filtering 

The Kalman filter is a recursive algorithm forming a minimum variance estimation of 

system dynamics and measurements.  The filter operates in two steps: a prediction that 

utilizes system dynamics to predict the next state, and an update which relates the 

measurements to the parameter space and combines them with the prediction to give the 

final estimates.  The combination of prediction and measurements requires a concept 

called the Kalman gain.  Effectively, the Kalman gain is a method of optimizing the 

weight of incoming measurements with respect to the prediction.  In this manner the filter 

bases the solution on a fused prediction and update.  To distinguish between a prediction 

and an update stage, the superscript “-” and “+” are used, respectively.   

 

There are three fundamental assumptions in a Kalman filter (Gao 2008).  These 

assumptions are that (1) there is no time correlation of the process noise ( w ), (2) there is 

no time correlation of the measurement errors ( ), and (3) there is no correlation 

between the process noise and measurement noise.  These are expressed as: 

kT
k i

Q ,i k
E

0,i k
w w  (4.9) 

kT
k i

R ,i k
E

0,i k
ε ε

 
(4.10) 

T
k i

0,i k
E

0,i k
w ε

 
(4.11) 

where  
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kQ  is the process noise.   

 

These assumptions are critical to the propagation of the state covariance matrix, which is 

used within the filter to determine the weight of incoming observations.  Thus, failure in 

these three assumptions typically results in overly optimistic state variances, poor 

performance and reduced fault detection and exclusion capabilities.  Unfortunately, in 

navigation applications these assumptions are not always true.  GPS multipath errors for 

example cause biased time correlations (Lachapelle 2007).  For the purpose of this 

research, increasing the measurement variance provides sufficient results.  There are 

other approaches to deal with the violation of the three assumptions, but extend beyond 

the focus of this thesis.   

 

The Kalman filter operates in discrete mode for navigation applications.  Discrete mode 

refers to the fact that observations occur at discrete times rather than through a 

continuous series.  Thus, the system dynamic model must first be converted to discrete 

time in order to predict the states.  The state vector ( x ) is predicted by 

k 1 k,k 1 kˆ ˆx x  (4.12) 

where  

k,k 1  is the transition matrix from the k to k+1 epochs. 

 

The transition matrix is a time transformation matrix, effectively translating a state vector 

in time.  It is computed directly from the dynamics matrix.  The transition matrix ( ) is 

theoretically defined as 
k 1 kF t t F t

k,k 1 e e , (4.13) 

but practically computed through the following Taylor series expansion 
2 3

k,k 1

F t F t
I F t ...

2! 3!
. (4.14) 

 

The covariance of the states in the prediction is computed as 
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T
k 1 k,k 1 k k,k 1 kP P Q . (4.15) 

 

This equation conceptually propagates the current covariance in time and adds a user 

defined amount of uncertainty to the prediction.  This compensates for any incorrect 

assumptions about the dynamic process, such as un-modelled movements or higher order 

effects.   

 

The process noise is typically expressed in the continuous time domain as 
k 1

k

t
T T

k ,k 1 c ,k 1
t

Q G Q G d  (4.16) 

where  

G  is the shaping matrix and 

cQ  is the continuous time spectral density of the white noise vector. 

 

However, it must be computed in discrete time.  Equation (4.16) shows the computation 

of process noise through trapezoidal integration as 

T T T k 1 k
k k,k 1 k c k k,k 1 k c k

t t
Q G Q G G Q G

2 .
 (4.17) 

 

The Kalman filter can operate in prediction mode as long as necessary (i.e. in the absence 

of measurements) and at any frequency.  This is an attractive feature in that a solution 

and its propagated variance-covariance matrix can be provided to the user at any time 

even when measurements are not available.   

 

As measurements become available the filter enters the update stage, where the 

measurements are fused with the prediction(s).  The Kalman gain matrix is a weighting 

matrix used to determine the amount of new information added to the system.  In the 

event that measurements are overly noisy, the Kalman gain decreases their effect on the 

final solution.  The Kalman gain equation is given as 
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1T T
k k k k k k kK P H H P H R

.
 (4.18) 

 

The innovation sequence is given as 

k k k kˆHυ l x , (4.19) 

where  

kυ  is the innovation sequence. 

and represents the difference between the observations and the current states mapped 

back into the observation domain.  The innovation sequence covariance matrix is 

computed as 

k

T
k x k kC H P H R . (4.20) 

Any erroneous observations are detected by exceeding a threshold (e.g. 3 ).  This fact 

forms the basis for fault detection and observation exclusion.   

 

After the computation of the Kalman gain, the states can then be updated as 

k k k kˆ ˆ Kx x υ . (4.21) 

 

The covariance of the states is computed during the update stage and is given as 

k k k xP I K H P . (4.22) 

A more common covariance update, which provides better symmetry and positive 

definiteness (at the cost of computational burden), known as the Joseph form is given as 

(Grewal & Andrews 2001) 
T T

k k k k k k k k kP I K H P I K H K R K . (4.23) 

 

4.4 Extended Kalman Filter 

Often the measurement and dynamic systems are not linear functions, as the case of GPS 

and IMU mechanization.  Thus, a linearization about the last filter estimate is applied to 
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the standard form of the Kalman filter.  The derived filter is typically referred to as the 

Extended Kalman filter (EKF).   

 

4.4.1 Non Linear Dynamic Model 

To perform a linearization on the dynamic model, first consider rewriting the form of 

Equation (4.8) to incorporate a Taylor series expansion, such as  

x t f x,t G t w t .   (4.24) 

The expansion is formed as 

0 0 0x t f x , t f x , t x x ... G t w t  (4.25) 

and after neglecting the higher order terms of the Taylor series expansion, Equation 

(4.25) then simplifies to 

0 0 0

0

x t f x , t f x , t x x G t w t

x t x t F x t G t w t

x t F x t G t w t ,
 

 

(4.26) 

which has the same general form as Equation (4.8).  The EKF then estimates the 

perturbation of the expansion point (more correctly, the expansion vector) and therefore 

the perturbation must be added to the expansion point to provide the absolute values of 

the state vector.  The state vector after each update is reset to zero.  This restricts the state 

vector to be zero mean.  With this restriction Equation (4.21) now has the form  

k k kˆ Kx υ , (4.27) 

and all remaining covariance equations remain the same.   

 

4.4.2 Non Linear Measurement Model 

The measurement model linearization is performed in a similar fashion to that of the 

dynamic model.  Equation (4.1) is rewritten as 

k k khl x ε . (4.28) 
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The linearization is performed in the same manner as Equations (4.24) to (4.26) and the 

resulting equation becomes 

k k kHl x ε . 
(4.29) 

When an EKF is used with non-linear measurements, Equation (4.21) is adapted in the 

following way 

k

k k k k k k

x̂

k k k

ˆ ˆ ˆK H

ˆ ˆ ˆ

x x x l x

x x x k k kˆK Hl x

k k k kˆ ˆ K .x x l

 

 

 

(4.30) 

 

4.5 Adaptive Kalman Filter 

In some filtering applications, determining the correct amount of process noise to be 

added can be extremely difficult.  Filter tuning, whereby the actual values are tuned to the 

particular data set can improve the overall performance.  However, it is not always 

realistic to tune each data set or is always possible to derive tuning parameters that will 

work in all situations.   

 

There are two common approaches to adaptive processing: Multiple Model (MM) and 

Innovation Based (IB).  Multiple Model adaptive processing uses a bank of Kalman 

filters to derive numerous solutions and then weights each solution based on hypothesis 

testing of the innovation sequence relative to each filter in the bank.  This brute force 

approach is computationally expensive and excessive.  Innovation based adaptive 

filtering has therefore gained more attention and is the method chosen for this thesis.  

 

In IB adaptive filtering, the kQ  and/or kR are adapted over time based on the whiteness of 

the innovation sequence.  IB adaptive filtering has shown improvements in some 

situations, but can be extremely volatile if any of the three Kalman filter assumptions fail 

(Mohamed & Schwarz 1999).   

 



63 

 

To estimate kQ  and kR , the innovation sequence covariance matrix is determined from 

the innovation sequence over a set period of time (or epochs).  Thus, the estimated 

innovation covariance matrix is computed as (Mohamed & Schwarz 1999) 

k

0

k
T

i i
i i

1Ĉ
N

υ υ  (4.31) 

where  

k
Ĉυ  is the innovation based covariance matrix of the innovation sequence, 

0i  
is the index at the beginning of the period, 

k is the index at the end of the period, and 

N is the number epochs within the period.  

 

Using Equation (4.31), kQ  and kR  are computed as 

k

T
k k k

ˆ ˆQ K C K  (4.32) 

k

T
k k

ˆR̂ C HP H . (4.33) 

 

4.6 Decentralized Filtering 

Decentralized filtering is a two-stage data processing technique.  Decentralized filters 

involve a series of filters where the outputs are input into a final fusion technique that 

ultimately provides a final solution.  Decentralized filters are composed of two types of 

filters, namely local and master.  The local filters process their own data in parallel with 

the other local filters to provide the best possible local estimate.  The master filter then 

uses the output of the local filters as input to provide an optimal global estimate.  Figure 

14 shows a decentralized architecture.  Loosely coupled GPS and IMU integration is a 

prime example of a decentralized filter where the IMU mechanization occurs within the 

master filter and GPS is processed in a local filter to provide position and velocity 

information.  There is no restriction on the estimation type, for example a local filter 

could be a least squares estimator (in which the local filter should be referred to as a local 
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estimator).  However, the local filters are usually Kalman filters and therefore present 

some issues that are discussed below.   

 

 
 

There are two fundamental weaknesses within decentralized filter architectures, namely: 

1. If the master filter is a Kalman filter, it requires that all input must be stochastic 

with no time correlation.  Typical of any local filtering, time correlation results 

from the dynamics inherent to the system.  No time correlation within 

observations is a fundamental characteristic and maintains the optimal solution of 

the master filter.  If not respected, the results can be biased and provide overly 

optimistic covariance estimates.  Brown & Hwang (1997) state that using the 

output of the local filters at the approximate time correlation period can yield 

satisfactory results and bypass this effect.  However, this requires previous 

knowledge of the time correlation characteristics, something that is not always 

available. 

2. The local filters may not necessarily make use of all the information available.  

This in turn reduces the quality of the local filter, when in fact other pertinent 

information is available.  The master filter may not be able to recover all the 

information from the data provided by the local filters; to which point the master 

filter is then considered sub-optimal and consequently the information passed 

back to the local filters is also sub-optimal (Brown & Hwang 1997).  For 
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example, consider a black box altimeter, which only outputs an estimated 

elevation, used in conjunction with a local GPS elevation filter.  The black boxed 

altimeter could provide a more accurate elevation output if an approximate 

elevation was fed into the altimeter.  In this manner the altimeter could be 

calibrated, rather than operate in an autonomous mode.  In this configuration the 

altimeter‟s filter (or whatever estimation technique employed within) is sub-

optimal when considering the elevation from the GPS filter could be used.   

 

Often the results of the master filter can be fed back to the local filters.  This can help 

assist the local filter performance thereby improving the master filter performance.  

Moreover, this approach optimizes the local filters performance (since local filters only 

use a portion of the observed data).  This is the basis for a federated filter.   

 

4.7 Federated Filtering 

Federated filtering is defined within this thesis as a decentralized filter that incorporates 

information sharing between local and master filters.  Federated filtering is a two stage 

process, segmenting information processing between local and master filters.  The 

method of sharing information varies but there are typically four genres of sharing 

information: no reset, fusion reset, zero reset and cascaded.  Before each method is 

outlined, it is important to first understand how to conserve information between any 

given number of local filters and the master filter.   

 

4.7.1 Information Conservation Principle 

The basic principle of information sharing follows three steps (Carlson & Berarducci 

1994): 

1. Divide the total information among several local filters. 

2. Perform local filter propagation and measurement update within each local filter. 

3. Recombine the information from the local filters within an optimal master fusion 

algorithm.   
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In order to show the mathematics behind the information conservation principle, 

alternative Kalman filter equations are used (Brown & Hwang 1997).  The derivation will 

follow from Brown & Hwang (1997) and Carlson (2002) and shows that the information 

conservation principle within the federated filter is optimally equal to the centralized 

version, although practically this may not always be the case.  A rigorous derivation is 

available in Carlson (1990).  He shows that when all inputs to local filters are 

independent, the federated filter is equivalent to the centralized Kalman filter.  In the 

context of describing the information principle the subscript “C” will represent a 

centralized filter, “M” will represent a master filter within the federated filter and “L” 

will represent a local filter within the federated filter.   

 

The state information matrix (the inverse of the state covariance matrix), is used in the 

update and is given as 
1 1 T 1

C CP P H R H . (4.34) 

 

Conceptually, Equation (4.34) shows that the final information of the centralized update 

is the sum of the information provided in the prediction and the information provided in 

the observations.  It can be shown in terms of the information matrix that 
1 1 1

C C kP P P . (4.35) 

 

If the observation covariance matrix is assumed to be block diagonal, Equation (4.34) can 

be rewritten as 
1 1 T 1 T 1 T 1

C C 1 1 1 2 2 2 n n n

n1 T 1
C i i i

i 1
n1 1

C i
i 1

P P H R H H R H ... H R H

P H R H

P P .

 
 

 

(4.36) 
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To complete the alternate version of the Kalman filter equations, the Kalman gain is 

computed using the state covariance as 
T 1K P H R . (4.37) 

 

The update of the state vector can also be rewritten, using Equations (4.22) and (4.37) 

1 T 1

1 T 1

ˆ ˆ K

ˆ ˆK H

ˆ ˆK KH
ˆI KH K

ˆP P P H R

ˆ ˆP P H R

x x υ

x l x

x l x
x l

x l

x x l

 

 

 

 

 

(4.38) 

which shows that the updated states are a blend of the old state information and the new 

measurements.   

 

It is now possible to form the master filter version of Equation (4.36) of the sum of 

information from the master and local filters, (again assuming no correlation between the 

local filters) as 

i

i

i

1
1 1 T

n 11 1

M M L
i 1
n 11 1 1 T

M M L i
i 1
n n11 1 1 T

M M L i
i 1 i 1

P HR HP

P P P

P P P HR H

P P P HR H

.

 
 

 

 

(4.39) 

 

Equation (4.39) shows that the total information contained in the master filter is the sum 

of the current master filter information, the sum of all the local filters information and the 

information contained in the observations of each local filter.  This shows the principle of 

information conservation, as Equation (4.39) must conform to the standard form set 
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in (4.34), otherwise the master filter will be sub-optimal.  Thus, a federated filter 

incorporating the information sharing principle must therefore satisfy the equation 

i

n 11 1

C M L
i 1

P P P  (4.40) 

and ensure that the information contained in the master filter is not duplicated in the local 

filters. 

 

Similarly the state vector version in Equation (4.38) can be rewritten as 

i

i

n1 1
M M M M i i

i 1

n 11 1
M M M M L i i i

i 1

n n11 1
M M M M L i i i

i 1 i 1

P P P

P P P HR

P P P HR

x x x

x x x l

x x x l

 

 

 

 

(4.41) 

provided that the master filter complies with the following condition 

i

n 11 1

C C M M L i
i 1

P P P .x x x  (4.42) 

 

The process noise within the federated filter must also be shared.  Using a similar process 

as above the process noise condition can be reached as follows (Carlson 2002)  

i

n 11 1

C M L
i 1

Q Q Q
.
 (4.43) 

 

Thus, the conservation of information includes the state information and the process 

noise information.   

 

At this point it is necessary to clarify that only states common between the master and 

local filter require the conditions in Equations (4.40), (4.42), (4.43).  Any states that are 

particular to the local filters and are not passed or shared between filters can operate in a 
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normal fashion and should not be modified.  This ensures that the best possible filtering 

can occur when sharing information between filters.   

 

4.7.2 No Reset Federated Filter 

Figure 15 represents the federated no reset (FNR) filter architecture.  This architecture 

only sends information from the reference system to the local filters.  The reference 

system is the source of observations that are provided to the local filters.  The reference 

system, for example, could be the observations of GPS receiver, the filtered navigation 

solution of a GPS receiver, or an INS solution.  More on the selection of the reference 

system is discussed in Section 5.4. 

 
 

 

The master filter must be a snapshot fusing algorithm (e.g. least-squares), whereby the 

input is fused in a single epoch basis (and therefore independent of time).  In this manner, 

the information sharing principle is maintained because no a priori information is 

contained within the master filter and all of the information is stored within the local 

filters (Carlson 2002).  Mathematically this is represented as: 

FNR: 
i

n 11

C L
i 1

P P  (4.44) 
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i

n 11

C C L i
i 1

P Px x  (4.45) 

 
i

n 11

C L
i 1

1Q Q
n

 (4.46) 

 

The FNR architecture is useful in “black box” type navigation systems where access to 

the local filters is not possible.  However, because input into the local filters is the output 

from the reference system, the output of the local filters is correlated, thus violating the 

condition of Equation (4.10).  Therefore, the weighting of the local filters is skewed and 

the final master fusion can produce overly optimistic covariance matrices (Groves 2008).  

It is conceivable that the correlation could be approximated and incorporated into the 

fusion estimator.   

 

4.7.3 Fusion Reset Federated Filter 

The federated fusion reset (FFR) architecture is represented in Figure 16.   
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The FFR extends the FNR architecture to include feedback from the master fusion.  The 

states and the covariance from the master fusion replace the matching states and 

covariance within the local filter.  The covariance from the master fusion is scaled by the 

information factor (i.e. its inverse).  In this manner the information is shared from the 

master fusion to the local filters conserving the information conservation principle.  The 

filter sharing equations can be written as follows: 

FFR: 

 
i

n 11

C i L
i 1

P P  (4.47) 

 
i

n 11

C C i L i
i 1

P Px x  (4.48) 

 
i

n 11

C i L
i 1

Q Q  (4.49) 

 

The information factor must adhere to the following rule 

1 2 n... 1 (4.50) 

where  

i  is the information constant shared between the master filter and the ith local 

filter. 

 

 

4.7.4 Zero Reset Federated Filter 

Figure 17 represents a Federated Zero Reset (FZR) architecture which periodically resets 

the covariance of the local filters.  
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Zero resets set the information matrices within the local filter to zero, which then 

eliminates all information in the local filters being repeatedly passed into the master 

filter.  The zero reset is performed at the same interval that information is passed to the 

master filter.  In this manner the local filters perform sub-optimally because the ability to 

converge is restricted by the master fusion update rate.  However, the master filter 

performs optimally (Carlson & Berarducci 1994).  All information is then stored within 

the master filter.  States that are not passed into the master filter are not required to be 

reset.  The sharing information equations are as follows: 

FZR: 1 1

C MP P  (4.51) 

 1 1

C C M MP Px x  (4.52) 

 
i

n 11

C i L
i 1

Q Q  (4.53) 
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4.7.5 Cascaded Federated Filter 

The federated cascaded (FC) filter, shown in Figure 18, shows a filter with no resets or 

information shared and a master filtering algorithm which blindly processes the output.  

In this architecture, errors from the reference are propagated into each local filter thus 

correlating the input into the master Kalman filter.  This filter architecture must be used 

with caution because any incorrect tuning within the reference system will provide poor 

results in all local filters, resulting in overall performance degradation (Brown & Hwang 

1997).  This architecture is only useful in black-box local filters where limited access is 

available and filtering at the master fusion level is possible.  It is under this consideration 

that this filter is not analyzed within this research.  The sharing information equations can 

be written as follows: 

FC: 
i

n 11 1

C M L
i 1

P P P  (4.54) 

 
i

n 11 1

C C M M L i
i 1

P P Px x x  (4.55) 

 
i

n 11 1

C M L
i 1

Q Q Q  (4.56) 
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4.8 Reliability of Observations 

Reliability is a term generically used to describe the practice of detecting and rejecting 

gross errors (also known as faults or blunders) in observations.  The process by which 

this is accomplished is referred to as Fault Detection and Exclusion (FDE).  FDE is based 

on a priori knowledge of the statistical behaviour of the observations, whereby any 

deviation from the observations behaviour can be detected and removed to keep the 

remaining observations within the assumed statistical model and blunder free.  In terms 

of a filter, removing faults not only improves the reliability, but improves the fusion 

between the dynamics and observations because the covariance matrix of the 

observations is more accurately represented.  Filtering theory states that if the input noise 

is zero mean and Gaussian, the innovation sequence will also be zero mean and Gaussian 

(Gao 2008).  This premise forms the basis for hypothesis testing of the innovation 

sequence.  This section will first describe the scenario where any number of faults are 

possible, and then proceed to a recursive single fault detection algorithm that is able to 

identify all possible faults in an epoch. 

 

The following equation shows a measurement model with known faults present ( k ) 

where faults are biases appearing in the observation vector 

k k k k k kH Ml x ε  (4.57) 

where  

kM  is the blunder mapping matrix and 

k  
vector of known blunders. 

 

The null hypothesis ( 0H ) assumes the innovation sequence is zero mean and white 

Gaussian noise, with no faults present.  The alternative hypothesis ( aH ) is that innovation 

sequence contains faults.  The distributions for the hypothesis testing are therefore 

k0
k H

~ N 0,Cυυ  
(4.58) 

(4.59) 
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ka
k k kH

~ N M ,C ,υυ  

where N x,y is a Gaussian distribution with x mean and y variance.   

 

The test statistic, as given in Teunissen & Salzmann (1989), is 

k k k

1T 1 T 1 T 1
k k k k k k kT C M M C M M Cυ υ υυ υ  (4.60) 

 

Assuming any combination of faults implicitly requires that the mapping blunder matrix, 

M, needs to be constructed for each possible combination of faults.  However, the 

number of fault combinations that can be formed in the M matrix is extensive.  If faults 

occur in any combination of 10 observations, this can produce 1023 potential M matrices 

(
10

10
1

i
i

C ).  Thus, it is more practical to recursively assume that one fault occurs in the 

current set of measurements.  By setting the M matrix to contain only a single one (and 

assuming no correlation within the innovation covariance), the test statistic can be 

reduced to 

i

k

k i
k 1

ii

t
Cυ

υ
 (4.61) 

where  

i is the ith index of the innovation sequence. 

 

In this manner the innovation sequence element is normalized by its estimated variance, 

effectively indicating the probability of this innovation occurring within the Gaussian 

distribution (commonly referred to as a z score).  As such, the null and alternative 

hypothesis simplify to 

i
0

k H
t ~ N 0,1

 

i
a

k 0H
t ~ N ,1  

(4.62) 

(4.63) 

where  
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0  is the non-centrality parameter. 

 

The null hypothesis is accepted if 
ik 1 /2t n and rejected if 

ik 1 /2t n .  The testing is 

performed at both ends of a normal distribution (two tailed test), thus the threshold 

testing value typically associated with a percentage ( ).   

 

As mentioned earlier, single fault detection can be applied recursively to detect multiple 

faults within an epoch.  Unfortunately, the pure mathematics of this modification is not 

entirely correct and there are several assumptions that are associated with this approach 

(Petovello 2003).  For example, when multiple faults exceed the threshold, the largest kt

is rejected and the sequence is estimated again.  This appears to be correct, but it is 

conceivable for one fault to negatively affect another element in the innovation sequence, 

and falsely identify a fault.  This leads to the theory behind statistical reliability.   

 

4.9 Statistical Reliability 

The previous section outlined the method of detecting outliers within the innovation 

vector.  Extending the theory to predict the largest fault detectable and its impact on the 

states is known as statistical reliability.  Statistical reliability aims to quantify the 

probability of false alarm and misdetection.  These two probabilities are fundamental in 

hypothesis testing. 

 

False alarms are Type I errors in hypothesis testing.  This percentage indicates how often 

the system will detect a fault when, in fact, no fault is present.  In statistical terms, it the 

probability of rejecting H0 when in fact H0 is true.  Misdetections are Type II errors 

where the system fails to detect a fault when, in fact, a fault occurred.  In statistical terms, 

it is the probability of accepting Ha when H0 is true.  The probability of a Type I error is 

 and the probability of Type II errors is .  Figure 19 graphically shows the 

relationship between the two types of errors. 
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Figure 19 – Probability of Type I and Type II Errors 

 

The non-centrality parameter can be determined from the possibility of accepting type I 

and type II errors and is given as 

0 1 /2 1 . (4.64) 

 

The non-centrality parameter can be mapped into the measurement domain, if and 

are first set, to provide the smallest possible fault detected, or commonly known as the 

Minimum Detectable Blunder (MDB) (Petovello 2003) 

k

MDB 0
i 1

ii
Cυ .

 (4.65) 

 

Once the MDB has been computed, the effect it can have on the estimated states is 

computed as 
MDB

k k iK Mx . (4.66) 
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Chapter Five: Multiple IMU Estimation 

Architectures 

 

Prior to describing the multi-IMU architectures designed and systematically tested herein, 

a short introduction of the Single Inertial Navigation System (SINS) architecture is given.  

Specifics of pedestrian navigation applications where a single IMU located on the foot 

are first discussed below in order to outline the important factors in processing inertial 

data.   

 

The sub-sections of the chapter then present the novel theoretical research developed for 

this thesis.  The estimation architectures described in Section 5.2 are more thoroughly 

developed than previously published, essentially correctly identifying an effective virtual 

IMU fusion.  The validity discussion of FDE testing for VIMUs is also an important 

contribution.  Sections 5.3 and 5.4 are entirely novel to the realm of multi-IMU 

architectures, specifically the design, implementation and comparative results of each 

filter have not previously been studied in the literature, to the knowledge of the author.  

The architectures are presented in this chapter will be field tested in Chapter 6.   

 

5.1 Single Inertial Navigation with IMU on the Foot 

The SINS Kalman filter estimates three dimensional accelerometer and gyro biases (6 

states), scale factor errors (6 states) and corrections to the expansion point of the position 

(3 states), velocity (3 states), and Euler angle attitude (3 states).  This combination is 

commonly referred to as the 21 state filter.  GPS observations used in this filter (and all 

multi-IMU filters) are only double differenced pseudoranges.  Doppler observations are 

unusable since the GPS antenna is mounted to the backpack and the IMU is on the foot, 

which results in a time varying lever arm.  However, pseudorange observations have a 

noise level larger than the time variant portion of the lever arm and are therefore still 
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usable.  As this study utilizes double differenced GPS observations, no additional states 

are required to estimate the GPS receiver clock errors.   

 

The filter operates in a tight integration mode, allowing the system to be updated with 

less than four satellites, a key performance consideration when poor GPS observability is 

expected (Knight 1999).  Inertial measurements are corrected by their estimated error 

states, mechanized into the ECEF navigation frame and subsequently used to predict the 

filter forward in time.  The system is updated as GPS observations become available.   

 

Zero-Velocity Updates (ZUPTs) are applied while the foot is at rest during the stance 

phase.  The detection method checks the magnitude of the acceleration and the three 

sample variances of the accelerometer signal.  Several authors have discussed zero 

velocity detection in detail including Mezentsev (2005), Godha (2006), and Kwakkel 

(2008).  Readers are referred to these publications for more information on the detection 

process.  

 

5.2 Virtual IMU Architectures 

In many cases, such as aviation multi-IMU navigation systems, the purpose of adding 

additional IMUs to a navigation system is to facilitate IMU fault detection rather than 

improving accuracy.  For pedestrian navigation applications, the opposite is true.  

Improving accuracy and availability are more important than high levels of reliability, 

although the latter can also becomes important as soon as accuracy and availability 

requirements are met.  This is most often the case because most pedestrian applications 

are not required to meet strict safety-of-life standards.  Therefore, it will be shown herein 

that accuracy is improved through the use of a virtual IMU architecture.  However, the 

validity and practicality of FDE may not be acceptable for low cost IMUs and their 

applications. 

 

As introduced in Section 1.2.1, VIMU is the fusion of raw IMU observations which are 

rigidly mounted on a body.  When IMU observations are simply averaged together 
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(assuming they are already in the same frame), the relative noise reduction of the VIMU 

data relative to a SINS is readily observed.  The standard deviation of the mean is given 

as 

n
2 2

x i i
i 1

 (5.1) 

where  

 is the weight associated with each observation set and 

n
 

is the number of ensembles (e.g. IMUs).   

 

The equation is further simplified assuming that the ensembles are homogeneous (an 

acceptable assumption provided all IMUs are of the same make and model) in which case 

x
x n

 (5.2) 

where  

x  is the standard deviation of each ensemble.   

 

Thus, as n IMUs are added to a virtual IMU navigation system the noise reduction is 

reduced by a factor of 1/2n .  This assumes that a single axis is mapped into a single 

VIMU axis (and consequently a single IMU is mapped into the VIMU frame).  Figure 20 

shows the theoretical percentage improvement as a function of the number of IMUs used.   
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Figure 20 – Noise Reduction of Multiple IMUs (VIMU) 

 

Another benefit of the virtual IMU scenario is a direct real time estimate of the VIMU 

process noise, as derived from each IMU (Guerrier 2008).  This is beneficial when the 

IMUs have time variant process noise characteristics or filter tuning is not possible for 

each application or data set.   

 

Averaging of IMUs‟ observations is simple and the least computationally burdensome 

method of forming a VIMU, however because each IMU is located at a different point on 

the body, the IMUs measure different specific forces based on the relative location to the 

VIMU origin.  Consequently, the fusion must be performed in the same reference frame 

and the transformation of each gyro and accelerometer observation set into this frame 

must be preformed.  The transformation is assumed to be known a priori from pre-

surveyed parameters, namely the vector between the IMUs and VIMU origin and the 

rotation from one IMU‟s frame to the VIMU‟s frame.  From Kane & Levinson (2005), 

rigid body equations of the angular velocity from a VIMU as follows 
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vn

n v

bb n
ib v ibRω ω  (5.3) 

where:  

n

n

b
ibω  is the angular velocity of the nth IMU in its body frame,  

n
vR

 

is the rotation matrix from the VIMU body frame to the body frame of the nth 

IMU (known a priori) and 

v

v

b
ibω

 

is the angular velocity of the VIMU in the VIMU body frame.  

 

For the purposes of this thesis, all rotation matrices were determined independently, prior 

to processing the VIMU data.  Further research could determine the IMU and VIMU 

rotation matrix automatically, without the need for a pre-surveyed calibration, or in situ, 

where the IMUs are not rigidly mounted.   

 

The specific force, as derived from a VIMU relative to a rigidly attached body, is given in 

the equation below (Kane & Levinson 2005) 

v v v v v vn

n v v

b b b b b bb n n n
ib v ib v ib nv v ib ib nvR R Rf f α r ω ω r  (5.4) 

where:  

n

n

b
ibf  is the specific force vector of the nth IMU, 

vb
ibf

 

is the specific force vector of the virtual IMU, 

vb
ibα

 

is the angular acceleration of the VIMU, and 

vb
nvr

 

is the lever arm vector between the nth IMU and VIMU origins within the VIMU 

body frame. 

 

To the author‟s knowledge, the second and third term on the right hand side of Equation 

(5.4) have been neglected in previous VIMU systems proposed in the literature.  This 

adjustment to the mapping equation presents an important improvement in accuracy.  As 

will be shown later in this thesis, these terms can be significant. 
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Equation (5.4) uses the angular acceleration of the virtual frame, which may or may not 

be output by an IMU.  In the event that the angular acceleration is not output by the IMU 

(as is the case in this thesis), the angular acceleration must be estimated as an additional 

component of the VIMU fusion procedure in order to correctly determine the specific 

force.  Neglecting this term results in a specific force mapping error related to the lever 

arm between an IMU and the VIMU origin and the angular acceleration experienced.   

 

When a VIMU fusion is formed, the lever arms and angular accelerations may be 

assumed to be so small that the correction is negligible.  However, when angular 

accelerations are large, as the case when IMUs are located on a foot, the second and third 

terms of Equation (5.4) cannot be ignored.  Angular accelerations can reach maximum of 

900 rad/s2 in the X axes, and 100-200 rad/s2 in the Y and Z axes while on the forefoot 

during regular walking gaits (Kwakkel 2008).  Assuming a 7 cm lever arm between the 

VIMU and the IMU, the corresponding acceleration correction is written as 

v vn

n

b bb
ib ib nv

2 2

13.1 800 0.035
31.5 m / s 200 rad / s 0.035 m
31.5 100 0.05

f α r

.

  

 

Figure 21 shows the maximum effect that the angular acceleration can have on the 

specific force.  The maximum error occurs when the lever arm and angular acceleration 

unit vectors are 90 degrees to each other (i.e. v v v vb b b b
ib nv ib nv sinα r α r ). Conversely 

the minimum value (i.e. zero effect) occurs when the two unit vectors are parallel.   
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Figure 21 – Maximum Acceleration Errors Due to Angular Acceleration 

 

Figure 22 shows five specific force measurements (rigidly mounted) during the heel lift 

of the gait cycle starting at time 588.0 s.  As the heel lifts the forefoot experiences a high 

angular acceleration, causing large variations in the magnitude of the specific force.  

Additionally, the third term of Equation (5.4) will also contribute to the residual error.  If 

the angular acceleration or the third term of Equation (5.4) were neglected, the fusion of 

the IMU measurements would be compromised.   
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Figure 22 – Specific Force Observations of Five IMUs (IMUs Rigidly Mounted on 

Foot) during Gait Cycle. 

 

Therefore the nine state estimation model is now described for estimation of angular 

acceleration, in addition to the angular velocity and specific force.  

 

5.2.1 VIMU – Nine Parameter Least-Squares Estimator 

In the VIMU least-squares model, the unknown parameters are the angular velocity, 

angular acceleration and specific force vectors of the VIMU.  As a result of the cross 

products within Equation (5.4), the 9 state model is non-linear and therefore the system 

must be linearized.  Appendix A provides the derivation of the linearization process.  The 

linearized observation equation, in a similar format to Equation (4.1) is given as 

vn
n v

vn n n
n v v v

v

R 0 0
R R R

ω
ω

f
f r

α
, n  1, ,N  (5.5) 
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where v vA ω r ω r
 
and N is the number of IMUs. 

 

The nine parameter least-squares estimation operates in a standard fashion.  It uses all 

gyro and accelerometer measurements as observations and provides an estimation of the 

virtual IMU accelerometer and gyro measurements.  If five IMUs are used, the system 

has 30 observations and operates at the same frequency as the incoming observations.  

For this thesis, measurements were weighted equally because the IMUs are all the same 

make and model.  

 

5.2.1.1  Two IMU Least-Squares Rank Deficiency 

This nine-parameter least-squares model shown in Section 5.2.1 has a unique 

circumstance when two IMUs are used.  When using two IMUs, the design matrix will 

only ever have a maximum rank of 8, indicating that only 8 of the 9 parameters are 

actually solvable.  Further, because the design matrix will only ever have a rank of 8, the 

rank of the normal equation will only be 8 and therefore the normal equation will not be 

invertible.  It should be noted that the rank of the design matrix for three IMUs is nine 

and no issues arise estimating all nine parameters, provided no linear relationships exist 

between IMUs.   

 

Conceptually, the linear dependency arises due to the fact that any angular acceleration 

about the vector between the two IMUs (i.e. the angular velocity vector and the vector 

between the IMUs is parallel) will result in zero acceleration.  Therefore, all three axis 

components of the angular acceleration cannot be estimated.  As additional IMUs are 

added the angular acceleration between the two IMUs is observable from other non 

parallel angular velocities.   

 

To provide a better understanding of the problem the design matrix using two IMUs can 

be written as 
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1
v

1 1 1
v v 1 v 1 v v 1

2
v

2 2 2
v v 2 v 2 v v 2

R 0 0

R R R
H

R 0 0

R R R

ω r ω r r

ω r ω r r

   (5.6) 

 

A series of Matlab scripts were written to use symbolic math to compute the rank of the 

above matrix.  This method completely eliminates any singularities arising from linear 

dependencies resulting from similar rotations to the VIMU frame ( n
vR ) and the IMU to 

VIMU vector ( nr ) (which could be generated in columns 4 to 9 of the design matrix).  It 

was determined that the design matrix always had a maximum rank of 8, which proves 

that the system could not estimate all nine parameters, no matter the values of n
vR  and nr .  

It is conceivable that the rank could be lower, again if some linear combination between 

the columns exist.   

 

To further show which parameter is unsolvable, the design matrix from a data collection 

described in Chapter 6 was used. These design matrices are time variant and therefore 

this analysis is only provided to clarify the problem.  The design matrix was modified to 

eliminate one column (i.e. one parameter) at a time, thereby determining which parameter 

(or parameters) was unsolvable.  Table 5 shows results of the test including the number of 

parameters in the modified least-squares estimation, the condition number of H, the rank 

of H and whether the normal matrix of H is invertible.   

 

Table 5 – Two IMU Least-Squares Rank Deficiency 

 
All 9 

Parameters 
Estimated 

Angular 
Velocity 
(X, Y or 
Z Axis 

Removed) 

Specific 
Force (X, 

Y or Z 
Axis 

Removed) 

Angular 
Acceleration 

(X Axis 
Removed) 

Angular 
Acceleration 

(Y Axis 
Removed) 

Angular 
Acceleration 

(Z Axis 
Removed) 

Estimated 
Parameters 9 8 8 8 8 8 
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Condition of 
H 1.0e17 2.3e16 2.2e16 58 58 41 

Rank 8 7 7 8 8 8 
Normal Matrix 

Invertible No No No Yes Yes Yes 

 

The analysis shows that the system must remove one component of the angular 

acceleration vector in order to create a solvable system. The specific X, Y or Z 

component to be removed is not restricted to any specific axis.  Using a twin IMU 

configuration, as per the data collected in Chapter 6, the best results would occur by 

removing the Z axis of the angular acceleration.  Because the modified least-squares 

version only allows two angular acceleration axes to be estimated, the second term of 

Equation (5.4) is incomplete and the configuration is unfit for comparison to the other 

VIMU architectures since it operates in a reduced parametric fashion.  The two VIMU is 

therefore not analyzed within Chapter 6. 

  

5.2.2 VIMU – Nine State Adaptive Kalman Filter 

The angular acceleration is the time derivative of the angular velocity and therefore a 

differential equation exists that relates these states.  This forms the basis of a VIMU 

Kalman filter.  A VIMU Kalman filter further reduces noise and can enhance navigation 

performance.  The differential equations of the nine states are as follows: 
b b

v vib ib
ω α  

v ff η  

vα η  

(5.7) 

(5.8) 

(5.9) 

where  

fη  is the process noise of the uncertainty in the time derivative of the specific 

force vector and 

αη

 

is the process noise of the uncertainty in the time derivative of the angular 

acceleration.   

 

The matrix form of the filter, similar to Equation (4.8), is 
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v v
f

v v

v v

0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

ω ω
η

f f
η

α α
 (5.10) 

Determining the optimal values for f and  is challenging, given the dynamics of the 

foot throughout the gait cycle.  To resolve this issue, an adaptive Kalman filter is used to 

determine the process noise in real time.  A 0.5 s (50 epoch) window is used to determine 

the process noise and is computed using Equations (4.31) and (4.32).  The observation 

variance, as computed in Equation (4.33), is not used as the input variance, but is held 

constant to a pre-determined value.   

 

The filter predicts and updates at the same frequency as the incoming measurements (i.e. 

100 Hz) which makes this version of the VIMU fusion the most computationally 

expensive.  Updates are performed in an “epoch” mode (all measurements at a given 

epoch), although it is conceivable to process them sequentially for optimal processing 

speed. 

 

The VIMU filter must operate with IMUs which are time synchronized.  The adaptive 

Kalman filter could still function if the IMUs are synchronized but have output 

observations at different data rates or if the observations had different time stamps.  The 

required time synchronization is related to the angular dynamics, specifically the angular 

acceleration, and will incorrectly determine the specific force at the VIMU location.  

Given the angular acceleration can reach a magnitude of 40,000 °/s2 for an IMU located 

on the foot (see Section 6.8.2) and the noise of the gyro observation is 0.7 °/s (as per 

specification sheet of the IMUs used within this research), a time synchronization 

between IMU observations of at least 0.02 ms level is required.   

  

5.2.3 Validity of FDE for MEMS Grade VIMU Fusion 

This section will demonstrate that FDE is not always a viable option for MEMS IMUs 

with large biases and scale factors, in particular when IMUs experience large 
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accelerations and angular velocities.  Fault detection works on the premise that the 

misclosure or innovation sequence has zero mean (see Equations (4.62) and (4.63)).  As 

the biases and scale factors of each IMU have not been estimated, and therefore not 

removed from the observations, the observation model is not zero mean and therefore 

FDE effectiveness is compromised.   

 

Residuals computed from a 9 state least-squares estimation of each sensor axis are shown 

below in Figure 23 and Figure 24 (and Appendix B).  The period shows a complete gait 

cycle where all the IMUs were rigidly mounted on the foot.  The full details of this data 

collection are provided in Chapter Six.  The residuals are shown with the raw IMU 

measurements of each sensor in the VIMU frame.  The residuals for the accelerometer 

have a peak magnitude of about 4 m/s2, which corresponds to the highest acceleration 

within the gait cycle.  Large gyro residuals of nearly 20 °/s are also observed and also 

correspond to high dynamics.  During the stance phase of the gait, the residuals are much 

smaller, often in the range of the biases.  Therefore, the magnitude of the residuals is 

clearly correlated to high dynamics.   

 
Figure 23 – Specific Force Residuals from a Virtual IMU Computed from Least-

Squares (Y and Z Axis are shown in Appendix B) 
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Figure 24 – Angular Velocity Residuals from a Virtual IMU Computed from Least-

Squares (Y and Z Axis are shown in Appendix B) 

 

Figure 25 shows the residuals of the Y axis accelerometer as a function of the specific 

force experienced in the Y axis from a dataset described in Chapter Six.  A trend line was 

fitted to the data, which is shown in red.  The general trend of the data indicates that the 

specific force is linearly related to the residuals.  This result shows the impact of the scale 

factor on the VIMU estimation process.  The slope of the red line (0.0339) is the 

approximate scale factor of the Y axis accelerometer during the test (although it does 

fluctuate by a few percent).  It is also interesting to note that the bias (0.105 m/s2) is also 

similar to the bias estimated in the SINS filter (but fluctuates in similar fashion to the 

scale factor).  The two parameters of the trend line serve as confirmation that the 

estimation is working correctly and that the remaining systematic errors have been 

identified.   
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Figure 25 – Y Axis Residuals Vs Y Axis Acceleration (VIMU Frame) 

 

Because the magnitude of the residuals is a function of dynamics rather than sensor error, 

the input covariance matrix must accommodate these large variations, otherwise faults 

will be detected during every gait cycle (or whenever the IMU experiences high 

dynamics).  With a VIMU architecture, each IMUs sensor errors cannot be modeled 

individually.  Thus, if FDE was to be performed, the input covariance matrix could not be 

a function of sensor noise, but rather must contain an increased amount of error to 

account for biases and the scale factor errors.  This increase in error would also be a 

function of dynamics since the scale factor would create a large bias in the results.  

Therefore it is a recommendation of this thesis that FDE not be performed on MEMS-

based VIMU fusion.  

 

5.3 Centralized IMU Estimation Architectures 

The centralized filter proposed in this thesis is referred to as a stacked filter, consisting of 

several individual INS filters.  In this manner several “block” filters (i.e. SINS filters) are 
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contained within one centralized filter, ultimately operating as one.  This filter 

architecture has been previously described in Bancroft (2009) and Bancroft et al (2008) 

and is elaborated upon herein.  Specifics are also given concerning a more robust GPS 

observation FDE algorithm.   

 

The stacked filter contains parameters for position, velocity, attitude, accelerometer and 

gyro biases and accelerometer and gyro scale factors for each IMU.  If five IMUs are 

used then there are five 21 states filters contained within one centralized 105 state filter.  

Each block filter can be updated at the same time or individually, but the entire filter 

prediction cycle must be synchronized (to avoid different block times, within the stacked 

filter).  An attractive characteristic of the stacked filter (and federated filters) is that each 

block filter could contain additional or different IMU error states, thus facilitating 

varying types and qualities of IMUs and error state models, which the VIMU architecture 

does not.  Since the IMUs are all the same make and model, the block filters are identical 

with slightly varied input process noise parameters for each IMU.   

 

The block form of Equation (4.12) and the block form of the stacked filter, similar to 

Equation (4.1) are as follows 

11 1 1
, 11

22 2 2
, 11

, 11

0 0 0
0 0 0
0 0 0
0 0 0

x x w
x x w

x x w

k kk k k

k kk k k

nn n n
k kk k k

 

1 1 1 1
1 1 1 1

2 2 2 2
1 1 1 1

1 1 1 1

0 0 0
0 0 0
0 0 0
0 0 0

z x η
z x η

z x η

k k k k

k k k k

n n n n
k k k k

H
H

H
 

(5.11) 

 

 

(5.12) 

where:  

, 1
n
k k  is the nth block filter transition matrix, 
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1xn
k  is the nth block filter states (21 state model), 

1zn
k  is the misclosure vector from the nth block filter of the observations, 

wn
k  is the process driving noise of the nth block filter, and 

1ηn
k  is the measurement noise of the nth block filter. 

 

The stacked transition matrix of (5.11) and the design matrix of (5.12) are block diagonal.  

This important characteristic makes the block filters operate independently, unless 

additional updates are applied.  Thus, if the stacked filter operated without additional 

updates, the block results would theoretically be identical to the independent IMU filters.  

In practice however, round off errors and minute computational correlation between 

block filters result in small differences (i.e. the position varies a few centimetres).   

 

During a GPS update, each block filter requires its own misclosure vector, derived from 

the GPS observations.  However, if each block requires its own misclosure vector, the 

GPS observations must be repeatedly used for each IMU, thereby directly violating 

Equation (4.10).  The stacked filter innovation vector would have the following form 
( )1

1

( )22

( )

xPυ
xPυ

Pυ x

k
kk

kkk

n nkk k

h

h

h
 

(5.13) 

where  
( )x n

kh  is the predicted observation derived from the observation equation using the 

nth block state vector of the kth epoch. 

 

The transformation from kP  to T

k k kP P P can be performed through a 

transformation matrix B , TI I I , which effectively repeats the original 

observation vector.  Therefore, the covariance transformation of the R  matrix is TBRB , 

resulting in a new covariance matrix for the repeated observation vector.  However, the 
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use of this covariance matrix results in a divergent filter, yielding spurious and incorrect 

results.  A closer analysis of the covariance matrix shows a 100% correlation between 

observations.  Take for example a three observation covariance matrix, repeated two 

times (three observations feeding two identical states).  The observations vector is 

transformed to 

3 3

3 3 6 3
3 1

6 1

x

x x
x

x

a
b

a
I c

b
I a

c
b
c

, where a, b, c are the observations. 

 

The covariance matrix is transformed to 
2

3 3 2
3 3 3 3 3 6

3 3 26 3
3 3

2 2

2 2

2 2

3 3 3 3

2 2

2

2

3 3

a ab ac
x

ba b bc x x x
x x

ca cb c x

a ab ac a ab ac

ba b bc ba b bc

ca cb c ca cb cx x

a ab ac a ab ac

ba b bc b

ca cb c x

I
I I

I

2

2

3 3 6 6

a b bc

ca cb c x x

. 

The transformed covariance matrix will then have the following correlation coefficient 

matrix 
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3 3 3 3

3 3

1 1

1 1

1 1

1 1

1

1

ab ac ab ac

a b a c a b a c

ba bc ba bc

b a b c b a b c

ca cb ca cb

c a c b c a c bx x

ab ac

a b a c

ba bc

b a b c

ca cb

c a c b x 3 3 6 6

1

1

ab ac

a b a c

ba bc

b a b c

ca cb

c a c b x x

. 

 

This matrix has 100% correlated observations, therefore making the observation set 

unusable.  When data is processed with this covariance matrix, the filter diverges rapidly.   

 

This problem, however, is easily solved by removing the inter block correlation within 

the covariance matrix, thus assuming that all “repeated” observations are independent 

(aside from any serial correlation that is introduced from observation differencing).  This 

makes the stacked filter observation covariance matrix block diagonal.  In this manner the 

block filters can act similarly to local filters within a federated filter, which also use the 

observations repeatedly, albeit in their own INS filters.  Information conservation 

principles apply when the final solution is combined, noting that the outputs of each 

block filter are highly correlated.  The result of the stacked filter is five navigation 

solutions that are combined via least squares to give the final navigation solution.  It is 

therefore important to observe the correlation between the navigation solutions of each 

block filter 

 

5.3.1 Stacked Filter Relative Updates 

Because the stacked filter contains multiple position, velocity and attitude states, one for 

each IMU, the filter can be updated with relative PVA information that is known a priori.  
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This section describes the relative updates that can be used as constraints to improve the 

performance of the filter.   

 

5.3.1.1 Relative Position Update (RPUPT) 

If the relative position vector between the IMUs is known, it can be used to update the 

filter.  This information does not update the absolute position of the block filters, but 

constrains the rate of divergence between the IMUs.  It also aids in the estimation of the 

bias and scale factors of the IMUs.  If the IMUs are rigidly mounted with respect to each 

other, than the vector between them remains constant.  If the IMUs are not rigidly held 

together the vector must be determined from other means in order to utilize the update.  

Bancroft et al (2008), for example, uses the step length to perform a RPUPT on two 

IMUs located on each forefoot while Brand & Phillips (2003) use an additional RF 

ranging technique to perform a RPUPT. 

 

The inter-IMU vector is measured in one of the IMU‟s body frame and is computed by 

differencing the lever arms (i.e. the vector from the GPS antenna to the IMU in the body 

frame).  The relative position update, in the form of Equation (4.1), is given by 
1 2 2,1

1 18 1 18
1 2 2,1

1 18 1 18

1 2 2,1 1 18 1 18

ˆ ˆ 1 0 1
ˆ ˆ 1 0 1

1 0 1ˆ ˆ

x x x
x x

y y y x x

x x
z z z

r r L

r r L

r r L

x η
 

(5.14) 

where  
1
x̂r  is the estimated X coordinate of the 1st block filter and 

2,1
xL  is the a priori known X component of the vector between the IMUs. 

 

The misclosure is computed by differencing the positions in each block filter and the 

known vector between the IMUs.  It is important to note that by differencing the lever 

arms to generate the inter-IMU vector, the lever arms must be in the same frame and not 

the independent body frames.  Since the navigation frame for this research is the ECEF 
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frame, the inter-IMU vector must be rotated into that frame.  Consequently, there is an 

inherent relationship between the efficacy of the RPUPT and the error in the orientation 

of the body frame relative to the ECEF frame. 

 

The update is applied periodically to facilitate a convergence of the block INS filter, 

reduce numerical computations and limit the inter-block correlation accumulation.  Using 

experimental filter tuning, a periodicity of 6 s and a standard deviation of 1 cm (a 

diagonal matrix) provided the best performance. 

 

5.3.1.2 Relative Velocity Update (RVUPT) 

The relative velocity of a point on a moving rigid body is given by Marion & Thornton 

(1995).  In the context of two rigidly mounted IMUs the relative velocity is expressed as 
2,1 2,1

1L ω L
 

(5.15) 

where:  
2,1L  is the relative velocity between the IMUs 2 and 1, 

1ω  is the angular velocity vector measured by IMU 1, and 

2,1L  is the vector between IMUs 1 and 2.  

 

The vector between the IMUs is assumed to be known a priori and the angular velocity 

vector is observed by the inertial unit.  This update therefore derives its input from the 

observation of the IMU.  The accuracy is a function of the noise characteristics of the 

IMU and the filter‟s ability to correctly estimate the systematic IMU errors.  The relative 

velocity update, in the form of Equation (4.1), is given by 

1 2 2,1

1 3 1 18 1 15
1 2 2,1

1 3 1 18 1 15

1 2 2,1 1 3 1 18 1 15

ˆ ˆ 0 1 0 1 0
ˆ ˆ 0 1 0 1 0

0 1 0 1 0ˆ ˆ

x x x
x x x

y y y x x x

x x x
z z z

v v L

v v L

v v L

x η
 

(5.16) 

where  



99 

 

1ˆxv  is the X velocity of the 1st block filter and 

2ˆxv  is the X velocity of the 2nd block filter. 

  

As with the relative position update, the relative velocity observation is derived in the 

body frame and must be rotated into the navigation frame, thus creating a similar 

relationship between the error of the rotation and the RVUPT.  The standard deviation 

used for RVUPTs was 2 cm/s and was derived using propagation of variances of 

Equation (5.15), assuming nominal values of the IMUs noise characteristics and the 

accuracy of the known lever arm, as discussed in Section 5.3.1.1.   

 

5.3.1.3 Relative Attitude Update (RAUPT) 

The relative attitude update follows a similar procedure to the relative position update.  

The misclosure vector is formed using the difference in estimated Euler angles of each 

IMU and the pre-surveyed Euler angles describing the rotation between them.  In this 

research the IMUs are fixed on the same platform and mounted on adjacent faces thereby 

allowing simple Euler angle identification.  The relative attitude update, in the form of 

Equation (4.1), is given as 
2

1 1 6 1 18 1 12
2
1 1 6 1 18 1 12
2
1 1 6 1 18 1 12

0 1 0 1 0
0 1 0 1 0
0 1 0 1 0

B
B x x x
B
B x x x
B
B x x x

x η
 

(5.17) 

where:  
2

1
B
B  is the misclosure of the roll between the first and second IMU body frames, 

2
1

B
B  is the misclosure of the pitch between the first and second IMU body frames, 

and 
2
1

B
B

 is the misclosure of the yaw between the first and second IMU body frames. 

 

The standard deviation of this observation is 0.1 rad (i.e. 5.7°).   
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5.3.2 Stacked Filter Fault Detection and Exclusion of GPS Measurements 

Since GPS observations are repeated within the stacked filter, the FDE process is slightly 

modified for GPS observations.  The modification eliminates the possibility that GPS 

observations may be rejected for one block filter and accepted for another, while at the 

same time improving the reliability of the fault detection scheme.  

 

Equation (4.57) describes the effect of the blunder vector and its mapping matrix on the 

observation vector.  It is in this equation that the FDE algorithm will be modified to test a 

series of observations (corresponding to a single GPS measurement) rather than elements 

of the innovation sequence.  The M matrix is generated based on the GPS observations 

and number of IMUs used.  For example, the M matrix with three pseudoranges, repeated 

for two IMUs, with a single fault in the first element will be 1 0 0 1 0 0 TM .  

The test statistic is then computed from Equation (4.60) with direct reference to the GPS 

observations.   

 

The test statistic, now different than the single element FDE algorithm presented in 

Section (4.8), is a chi-squared distribution.  The null and alternate hypotheses are  

0

2
k H

T ~ d,0  

a

2 2
k 0H

T ~ d, ,  

(5.18) 

(5.19) 

where d is the degrees of freedom (the number of times an observation is used) and 0 is 

the non-centrality parameter.  With these hypotheses, the test is conducted by rejecting 

the null hypothesis if 2
kT d,0 .   

 

The computation of the MDB for the stacked filter is also modified.  From Petovello 

(2003) the non-centrality parameter can be computed as 2 1
0 k

T
k kC .  Reforming this 

equation to solve for k  is the premise for determining the MDB provided the non-

centrality parameter has been set.  Using M, the fault mapping matrix, the non-centrality 
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parameter can be simplified in the following manner, noting that in this particular case, 

k , is a scalar 

2 1
0

2 1
0

1/21
0

k

T
k k

T T
k k

T
k

C

M C M

M C M

υ

υ . 

 

The MDB of the stacked filter can then be determined as 

0
Stacked Filter 1/21T

MDB
M C Mυ .

 (5.20) 

 

Assuming that the innovation covariance matrix is equivalent between block filters, the 

improvement in the MDB versus a SINS MDB is given as follows 

 

(5.21) 
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The performance however will not be exactly as derived above, as a result of inter-block 

correlation present in the covariance matrix introduced by the relative updates.   

 

5.4 Decentralized IMU Estimation Architectures 

Decentralized filtering was discussed in Section 4.6.  This section will apply the filter 

architecture to the case of multiple IMUs and provide the implementation details.   

 

The decentralized filter separates the processing of each IMU into its own INS filter.  In 

the context of this thesis, a decentralized filter that shares the GPS observations will be 

referred to as a federated filter, as this is more consistent with the nomenclature in the 

literature.  

 

The federated filters discussed within this chapter contain common states.  Specifically, 

the shared states are position ( r ), velocity ( v ) and the Euler angles representing the 

rotation from the body frame to the ECEF frame ( α ).  The local filters estimate these 

parameters as part of their 21 state filters.  The master fusion filter (or least squares 

estimator as in this case) also contain the same shared states ( r , v and α ).  In this 

manner, only these states are shared, all biases and scale factors within the local filters 

remain unmodified.   

 

The reference data of the federated filter can be formed by one of two methods.  The first 

method is to use GPS observations, whereby each local filter operates in a tightly coupled 

manner (i.e. GPS observations are used in each of the local filters).  The second method 

is to use one of the IMUs to form an INS aided by the GPS observations, the output 

thereof providing updates to the local filters.  In this manner, the federated filter operates 

in a loosely coupled architecture.  If the INS provides the reference to the local filter it 

provides a time correlated input into the observations of the local filters.  This time 

correlation violates the rules of observation input into a filter and therefore would 

generate an overly optimistic variance of the states.  
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It is conceivable that a standalone GPS navigation solution could be used as the reference 

system, however it has been previously shown that a loosely coupled INS produces 

suboptimal FDE and overall performance (Godha 2006).   

 

5.4.1 Federated No Reset Filter 

The federated no reset (FNR) filter architecture for multiple IMUs is shown in Figure 26.  

The filter is fundamentally equivalent to running each IMU through an INS filter and 

combining the final results of each solution via least squares.  However, in the software 

developed for this thesis, each local filter represents one INS and is processed 

simultaneously.  The master fusion is performed via least squares with each local filter‟s 

PVA providing the observations.  

 

The observation vector for the master fusion is 

1 1 1
T

M n n nl r v α r v α  (5.22) 

and the corresponding MR  matrix is given as  

1 9 9

9 9

0 0
0 0
0 0

x

M

n x

P
R

P
. (5.23) 

 

Thus, if there are five IMUs, the master estimator contains 45 observations and 

correspondingly, a 45x45 observation covariance matrix.  The master‟s MR  input 

observation covariance matrix is block diagonal, however the internal PVA correlation 

remains within the off diagonal elements (i.e. 9 9n x
P  is not diagonal).  Because MR is 

block diagonal, the least-squares algorithm processes the multiple PVA as independent 

observations which result in overly optimistic variances for the final states.  The PVA of 

the local filters is in reality correlated as a result of using the same GPS observations and 

moreover by potentially similar dynamics if the IMUs are rigidly mounted together.  

Figure 26 shows the flow of information for the multi-IMU FNR filter.   
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5.4.2 Federated Fusion Reset Filter 

The FFR filter has a similar structure to the FNR filter, but the master fusion parameters 

(and its corresponding covariance matrix) are shared with the local filters.  The 

information factor for each local INS filter (see Section 4.7.3) is n-1 because the IMUs are 

all the same make and model.  The input to the master fusion is the same as the FNR 

filter.  Furthermore, since the states of the INS extended Kalman filter are zero, the PVA 

of the master fusion replaces the PVA used to provide the expansion point, rather than the 

actual values in the state vector.  The covariance information, however, replaces the 

actual values with the local filters.  Additionally, because correlation is developed within 

the local filter between the PVA and other filter states, these values must be set to zero, 

otherwise the filter will diverge.  Further the covariance replacement of the ith local filter 

with the master state covariance matrix is as follows, the first nine states representing the 

PVA having been replaced.   

9 9

12 12

1 0

0

x

x

m
ii

i

P
P

P
. (5.24) 
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Figure 26 – FNR Multiple IMU Filter 
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12 12xiP  remains unmodified during the covariance replacement because it contains the bias 

and scale factors of the ith IMU which are not shared.  Figure 27 shows the data flow of 

information in the multi-IMU FFR filter.  

 

 
 

 

5.4.3 Federated Zero Reset Filter 

The FZR filter contains a Kalman filter for the master position and velocity information 

and a least squares estimator for the attitude information.  This varies slightly from the 

form given in Section 4.7.4, although it still conforms to the federated filtering 

information sharing principles, essentially combining the general form of FZR and the 

FFR into one federated filter.  The attitude is shared among master and local filters, but 

since it does not contain a differential relationship within the master filter (as position and 

velocity do), there is no benefit in including attitude as a parameter in the master Kalman 

filter.  Additionally, since the attitude dynamics are extremely high, the filter would 
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Figure 27 – FFR Multiple IMU Filter 
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require a high amount of process noise to accommodate the dynamics.  Future research 

could address estimating the attitude derivative within the master filter.   

 

The attitude sharing is performed on a FFR basis, with the position and velocity on a FZR 

basis.  The inputs of the master Kalman filter are the local filter‟s position and velocity 

and the input into the least squares estimator is the attitude.  The output of each estimator 

is then shared back into the local filters.  The position and velocity (PV) covariance is set 

to a diagonal matrix, i.e. 1002 m2 for position and 102 m2/s2 for velocity; this effectively 

resets the PV portion of the filter.  The attitude variance is shared using the information 

constant discussed in Section 5.4.2.  Figure 28 shows the data flow of information in the 

multi-IMU FZR filter.  
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5.5  Comparison of Architectures 

Table 6 shows a comparison of the different architectures described in the chapter and 
each architecture‟s strengths and weaknesses.   
 

Table 6 – Comparison of the Various Architectures 

Filter/Estimation Characteristic VIMU Centralized Federated 
Filter 

Enhanced GPS Observation FDE No Yes No 

IMU Observation FDE Not 
Recommended No No 

Reduced Noise at Mechanization 
Input Yes No No 

Constrains Estimator using 
Relative PVA No Yes No 

Estimates Each IMUs Bias and 
Scale Factor No Yes Yes 

IMU Time Synchronization Not 
Required No Yes Yes 

 

In the following chapter these models will be implemented and compared with a focused 

discussion on the advantages and disadvantages of each.  Particular attention will be paid 

to the navigational accuracy of each model since it has important implications for 

everyday use. 

 

5.6 Software Implementation 

The architectures discussed within this research were implemented in a C++ class based 

program.  The 34 class development was strictly modular, allowing for the repeated use 

of classes, in particular the IMU fusion.   

 

The user can select any of the architectures from an option file, modify the various 

parameters each architecture requires, modify the IMU noise characteristics/models and 

process the data.  The program operates in post-mission, but all the algorithms used are 

capable of operating in real-time.  
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Several GPS and estimation classes were adapted from the previously written source code 

within the PLAN Group.  These classes were adapted to accommodate where the GPS 

data could be used, its format and the numerous estimation classes that were required to 

use the data.   

 

A SingleIMU class was created to contain all the information regarding one IMU.  

Protected member variables included the position, velocity, quaternion (body to ECEF 

rotation), covariance matrices of the PVA, type of alignment performed, spectral 

densities of the sensors noise, bias and scale factor models, initial values of errors and 

their variances, lever arm to the GPS antenna, and numerous file streams for I/O.  This 

class worked in conjunction with the IMUs option file class, where the user could modify 

any of the initial parameters listed above. 

 

A virtual template class was created to process any type of IMU architecture.  Virtual 

functions were created to force future class implementations to process data in a similar 

manner within the main function.  For example, such functions included loading the next 

IMU epoch, performing the mechanization of the IMU data, predicting the filter forward, 

applying a GPS update and detecting/applying ZUPTs.  This base class function was 

called IMUProcessor.   

 

Using the IMUProcessor template class, the SingleIMUProcessor, VirtualIMUProcessor, 

StackedIMUProcessor, and FederatedIMUProcessor were written and inherited all the 

public functions of the IMUProcessor base class (which only contained public functions).  

With this organization, the number of private variables within each implementation of the 

IMUProcessor class was minimal.  For example, the SingleIMUProcessor had one 

instance of one SingleIMU class, an Estimator class, a pointer to the GPSProcessor class, 

which was defined in the main function.  The VirtualIMUProcessor contained an array of 

SingleMU classes and one SingelIMUProcessor classes to process the VIMU data.  The 

FederatedIMUProcessor had an array of SingleIMUProcessors for each local filter, and 

then had its own master filter variables contained within the protected member variables.  
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In this manner, new architectures could easily be implemented, rather than modifying the 

existing code several times for each architecture.   

 

The software developed was not optimized to run in an embedded system, but developed 

as a tool for evaluating the proposed architectures.  The software was continually tested 

against previously developed single IMU integration packages to ensure that the results 

were correct.   

 

5.7 Filter Tuning 

Tuning the filters developed within this thesis presented a significant (and time 

consuming) problem.  There are five tunable parameters for each sensor (i.e. axis) within 

the IMU.  With a five IMU configuration there are potentially over 150 potential 

parameters to tune, aside from parameters custom to each architecture (e.g. federated 

filter sharing information rate).  It should be noted that in the VIMU case only one IMU 

(i.e. the VIMU) requires tuning.  For the stacked and federated filters, achieving a high 

level of tuning for each parameter is simply unrealistic given the quantity.  It is conceded 

that there could be better results with more advanced filter tuning for each architecture.  

However, it presents similar results that would be seen in industry where each sensor 

could not be specifically tuned due to the effort required.  

 

Therefore, a generic set of tuning parameters was used during each data set for all IMUs.  

Only minor modifications to the spectral densities were allowed to accommodate each 

sensor noise range.  Consequently, the same parameters used in the single IMU solution 

were used in every other multi-IMU solution.  Although the solutions may be somewhat 

sub-optimal, the methodology facilitates better filter performance comparisons, rather 

than tuning performance comparisons.   
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Chapter Six: Data Collection and Analysis 

 

Estimation architectures discussed in Chapter 5 were developed in C++ software.  Data 

was collected in typical pedestrian navigation environments (e.g. urban neighbourhoods 

with a mixture of open and occluded sky) and processed using the software.  The results 

of the different processing architectures are compared within this chapter, accuracy being 

the primary interest and improvement as a function of IMUs used. 

 

6.1 Data Collection Environments 

Data was collected in two environments: a typical North American residential home and 

inside the Olympic Oval at the University of Calgary.  The residential home, as shown in 

Figure 29, provided an excellent example of an area where GPS was attenuated by 4 to 

18 dB and provided reasonable standalone GPS accuracies of a few metres.  Although 

GPS can typically provide reasonable accuracy in such an environment, the benefit of an 

integrated system to reject multipath is valuable and the ability to position an individual 

within a room can be of great value to first responders. 

 

  
Figure 29 – Residential House used for Data Collection  

 

The Olympic Oval, shown in Figure 30, is an ideal location for indoor testing as GPS 

signals are attenuated by 25 to 35 dB and are yet observable with high sensitivity 
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receivers.  Because of the severe signal attenuation, the effects of multipath and noise are 

large, often to a point where the GPS solution is completely unreliable and unusable.  In 

this environment there must be an integrated system to provide useful navigation 

information.   

 
Figure 30 – Olympic Oval (Left: roof top with trajectory in red, Right: inside 

showing track and ice level) 

 

6.2 Data Collection Set Up 

To collect the data, the test subject carried a rigid aluminum backpack to house a 

reference INS, two laptops to collect the GPS and IMU data, and batteries to power all 

the equipment.   

 

A NovAtel SPAN system was used to provide the reference solution.  It consists of a 

Honeywell HG1700 AG58 IMU and a NovAtel OEM4 GPS receiver.  The receiver and 

IMU operate in an ultra-tight mode in real time and the GPS and IMU data is logged 

onboard the OEM4 receiver.  The data in this case was differentially post-processed with 

a nearby (< 1 km) reference station to provide a reference trajectory.  The data was 

processed in NovAtel‟s Inertial Explorer in forward and reverse directions, smoothed 

using RTS smoothing (Gelb 1974) and then combined for the final reference solution.  
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The reference solution was accurate to within a few metres in the Oval, and better than 

0.5 m while in the residential house.   

 

The GPS receiver used was a u-blox Antaris 4 Precision Timing AEK-4T evaluation kit 

with firmware 5.0.  The antenna was a u-blox ANN-MS, which was designed and 

manufactured by Allis Communications Co Ltd as antenna M827B (M827B Data Sheet 

2006).  The antenna was attached to the top of the backpack, rather than the head, to 

avoid the effects of antenna detuning (Bancroft et al 2010).  All GPS data was 

differentially processed to eliminate the satellite position and clock errors and reduce the 

effect of the ionosphere and troposphere errors.  Differential processing was used to 

enable a clear analysis of the multi IMU method rather than errors derived from single 

point (GPS) positioning.   

 

The IMUs used within this research was Cloudcap Technology‟s Crista IMU.  The error 

characteristics of the Crista IMU and the HG1700 AG11-58 tactical are shown in Table 

7.  The single retail unit cost associated with a tactical grade IMU is typically around 

$50,000 and for a MEMS grade IMU is $1,500. Figure 31 shows a picture of the IMUs 

rigidly mounted on a platform attached to the author‟s foot.  

 

Table 7 – Reference and MEMS Grade IMU Maximum Errors 

 HG1700 AG11-58 
Tactical Grade IMU 

Cloudcap Crista 
MEMS Grade IMU 

Accelerometer 

In Run Bias (mg) 1 51 
Turn on Bias (mg) - 30 
Scale Factor (PPM) 300 10,000 
Random Walk (g/√Hz) 2.16 x 10-6 370 x 10-6 

Gyro 

In Run Bias (°/h) 1 2,160 
Turn on Bias (°/h) - 5,400 
Scale Factor (PPM) 150 10,000 
Random Walk (°/h/√Hz) 7.5 226.8 
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Figure 31 – Rigidly Mounted IMUs on the Foot 

 

6.3 Disjunction Error 

Unfortunately, in view of the size and weight of the reference IMU, it had to be housed 

on top of the backpack.  This provides a reference solution for the backpack‟s location 

and not for the IMU location(s).  This makes an exact comparison of the multi-IMU PVA 

impossible, since the reference solution does not represent the position estimated by the 

multi-IMU algorithm.  This error, referred to as the disjunction error, can however be 

approximated and is less than the users step length and is negligible compared to the error 

of the algorithms tested within this thesis. 

 

The IMU was located on the forefoot and the antenna was located on the backpack.  The 

lever arm is the vector from the forefoot to the antenna on the back pack while standing.  
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As the user walked, the lever arm was subject to a periodic change due to the mechanics 

of the gait cycle.  The most error was accumulated in the longitudinal direction, which 

varies with half the step length (i.e. the distance from the standing position to the heel 

strike); a minimal latitudinal error is induced if the user has any abduction/adduction (hip 

rotation) or varus/valgus (knee rotation); and a minimal vertical effect based on the step 

height is also induced.  Step lengths typically range from small steps of a few centimetres 

to large steps over a metre (Kwakkel 2008) with step heights typically less than 20 cm.  

The latitudinal motion was typically less than 10 cm, but varied when the user changed 

direction or stepped side to side.  Each person‟s gait cycle exhibits different lever arm 

errors and contains a variety of aberrations due to the variability in walking mechanics.   

 

Although the lever arm is time variant, the variation is symmetric about the fixed lever 

arm.  It is under this assumption (i.e. the disjunction errors are symmetric about a 

predetermined lever arm) that solutions can be compared to within a decimetre error 

envelope.   

 

6.4 Residential Data 

During the residential data collection, the subject walked along the street, between the 

houses, then walked down stairs to the basement, proceeded up the stairs to the main 

level and outside again.  The walk through mimicked a first responder‟s walk through of 

the house.  The trajectory is shown in Figure 32.  To account for inaccuracies in Google 

Earth‟s geo-referencing, the trajectory was shifted to correctly align with the house. 
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Figure 32 – Truth Trajectory (Residential Data Set) 

 

A 10° satellite elevation mask was used, which generated a Horizontal Dilution of 

Precision (HDOP) profile shown in Figure 33.  This figure also shows the average power 

of all satellites tracked.  While in the basement the average C/No dropped below 30 dB-

Hz and on the main floor the C/No was approximately 37 dB-Hz.  Between the houses the 

C/No decreased to 37 dB-Hz.  On the sidewalk the C/No averaged 43 dB-Hz.  The total 

walkthrough took 7.5 minutes.   
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Figure 33 – Average C/No and HDOP (Residential Data Set) 

 

6.4.1 Position Accuracy 

This section analyzes the accuracy of the architectures discussed in this experiment and 

Table 8 provides a summary of the statistical values of each.  This table allows for the 

comparison of each estimation technique used.  This table is discussed throughout 

Section 6.4.1. 
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Table 8 – Horizontal Errors of All Architectures for Data Collected in a Residential 

House 

Processing 
Method 

Number 
of IMUs 

Mean Mean 
Improvement RMS RMS 

Improvement Std Max Min Median 

(m) (%) (m) (%) (m) (m) (m) (m) 
Standalone 

GPS 0 1.5 0.0 1.88 0.0 1.2 6.1 0.0 1.1 

 

SINS 

1 1.1 25.8 1.27 32.6 0.6 3.4 0.0 0.9 
1 1.2 18.0 1.36 27.7 0.6 3.0 0.0 1.2 
1 1.3 14.6 1.47 21.7 0.8 4.2 0.0 1.1 
1 1.3 12.9 1.49 20.9 0.8 4.1 0.0 1.1 
1 1.3 13.9 1.41 25.2 0.6 2.9 0.0 1.2 

          

VIMU (6 
State LSQ) 

2 1.3 13.1 1.46 22.3 0.7 3.8 0.1 1.2 
3 1.2 15.2 1.44 23.1 0.7 3.9 0.0 1.1 
4 1.2 19.7 1.37 27.1 0.7 3.8 0.0 1.0 
5 1.1 22.8 1.31 30.2 0.7 3.5 0.0 1.0 

          

VIMU (9 
State LSQ) 

3 1.1 26.6 1.27 32.4 0.7 3.3 0.1 0.9 
4 1.1 27.8 1.25 33.5 0.7 3.3 0.0 0.9 
5 1.0 29.3 1.23 34.7 0.7 3.2 0.0 0.8 

          

VIMU 
(AKF) 

2 1.0 28.5 1.24 34.0 0.7 3.4 0.0 0.9 
3 1.0 29.3 1.24 34.0 0.7 3.6 0.0 0.9 
4 1.0 34.7 1.14 39.6 0.6 3.3 0.0 0.8 
5 0.9 35.7 1.10 41.3 0.6 2.7 0.0 0.9 

          

Stacked 
Filter 

2 1.1 23.8 1.28 31.6 0.6 3.0 0.1 1.0 
3 1.1 22.9 1.32 29.9 0.7 3.3 0.1 1.0 
4 1.1 24.0 1.30 30.9 0.7 3.4 0.0 1.0 
5 1.1 25.8 1.26 33.1 0.6 3.1 0.1 0.9 

          

FNR 
(GPS) 

2 1.1 24.7 1.28 32.0 0.6 3.2 0.0 1.0 
3 1.1 23.3 1.31 30.3 0.7 3.5 0.0 1.0 
4 1.1 22.2 1.33 29.3 0.7 3.7 0.1 1.0 
5 1.1 26.9 1.25 33.5 0.6 3.2 0.0 0.9 
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Table 8 (Cont’d)  

Processing 
Method 

Number 
of IMUs 

Mean Mean 
Improvement RMS RMS 

Improvement Std Max Min Median 

(m) (%) (m) (%) (m) (m) (m) (m) 

FNR (INS) 

2 1.2 16.5 1.40 25.6 0.7 3.2 0.1 1.1 
3 1.2 16.8 1.39 25.8 0.7 3.2 0.0 1.1 
4 1.2 17.2 1.39 26.2 0.7 3.2 0.0 1.1 
5 1.2 18.4 1.37 27.2 0.7 3.2 0.0 1.1 

          

FFR (INS) 

2 1.2 15.0 1.38 26.7 0.6 3.0 0.1 1.2 
3 1.1 25.6 1.27 32.4 0.6 3.4 0.0 0.9 
4 1.1 25.7 1.27 32.5 0.6 3.4 0.0 0.9 
5 1.1 25.8 1.27 32.6 0.6 3.4 0.0 0.9 

          

FZR (INS) 

2 4.3 -195.3 4.96 -164.3 2.4 10.7 0.1 4.1 
3 4.5 -208.9 6.07 -223.0 4.0 19.4 0.1 3.2 
4 5.9 -303.7 7.02 -273.7 3.8 16.2 0.3 4.8 
5 4.9 -235.9 6.05 -222.1 3.5 19.7 0.0 3.9 

 

6.4.1.1 SINS Results 

In order to depict the accuracy of the proposed filters in this research, Figure 34 shows a 

time series of the horizontal errors for the five SINS navigation solutions, where multiple 

IMU fusion is not used.  This figure shows that an accuracy of 1 to 4 metres is achievable 

with GPS alone, but has a maximum error of 6 m which would not, for example, locate a 

first responder within a specific room of the house.  Figure 35 shows the vertical errors 

for the same SINS solutions.  The vertical error of the standalone GPS solution reaches 8 

m, while the SINS solution errors are typically within 4 m of the true elevation.  It is also 

important to note that each SINS solution‟s performance is different, often varying by a 

few metres in both the horizontal plane and vertical axis.  The SINS vertical axis errors, 

however, tend to follow each other more closely, which results from the ZUPTs applied 

during the stance phase.  
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Figure 34 – SINS Horizontal Errors of Five IMUs (Residential Data Set) 

 
Figure 35 – SINS Vertical Errors of Five IMUs (Residential Data Set) 
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The Cumulative Distributions (CD) of the SINS horizontal and vertical errors are shown 

in Figure 36.  The CD shows that when a SINS is used there is a significant amount of 

improvement gained in the vertical channel and a moderate improvement is gained 

horizontally.  The error biases of the SINS solutions‟ horizontal errors are smaller 

compared to those of the vertical errors, which shows more deviation resulting from 

varying levels of performance depending on the common tuning parameters used.   

 

  
Figure 36 – CDs of SINS Errors of Five IMUs (Residential Data Set) 

 

IMU two was selected as the single IMU solution for comparative results within this 

section.  IMU 2 had an average performing horizontal error amongst all of the IMUs and 

provided the least amount of vertical RMS error.  This IMUs error is shown in the figures 

within this section as the “Single IMU.” 
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6.4.1.2 VIMU Results 

Figure 37 shows the time series‟ horizontal error for the three VIMU fusion methods, and 

the standalone GPS and typical SINS for comparison.  The RMS of the horizontal errors 

is shown in the legend and indicates that moving to the adaptive filter provides a 10.1% 

and 6.6 % more accurate solution than averaging and the Least-Squares (LSQ) methods, 

respectively.  At time 100 s in Figure 37, the user encounters open sky and the Adaptive 

Kalman Filter (AKF) quickly accepts the GPS observations, whereas the VIMU and 

SINS solutions take nearly 35 s longer to converge.  When in the basement where 

standalone GPS has six metre horizontal error, the VIMU filters maintain two metre 

accuracy whereas the SINS solutions achieve only three to four metre accuracy.   

 

The VIMU solutions contain more noise as a result of the decreased spectral densities 

used within the filter.  This effect was amplified when GPS measurements were stronger 

(i.e. signal power increased) and the filter weighed the observations more heavily, thus 

shifting the position.  As the filter weighed the GPS measurements less (i.e. when the 

signal power decreased), the navigation solution displayed a smoother trajectory.   

 
Figure 37 – VIMU Horizontal Errors (5 IMUs Used in Residential Data Set)  
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The vertical errors alternatively increased with the VIMU architecture as shown in Figure 

38.  The vertical error of the VIMU AKF architecture was biased by the largest amount, 

namely a few metres, which is larger than the SINS or the other two VIMU solutions.  

The VIMU average and VIMU LSQ vertical errors however are only slightly larger than 

the SINS solution.  Again the SINS vertical solution performed exceptionally well.  More 

on this result is discussed in Section 6.8.3.   

 
Figure 38 – VIMU Vertical Errors (5 IMUs Used in Residential Data Set) 

 

The CDs of the horizontal and vertical errors are shown in Figure 39.  The VIMU AKF 

performance was best in the horizontal plane and poorest in the vertical axis.  In the 

latter, the VIMUs behaved similarly to the SINS solution, although it was clear that there 

was no improvement with the VIMU average and VIMU LSQ solutions.   
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Figure 39 – CD of Horizontal and Vertical Errors (Residential Data Set) 

 

6.4.1.3 Stacked and Federated Filter Accuracy 

The stacked filter, FNR and FFR filter‟s horizontal errors are shown in Figure 40.  FZR 

results are discussed in Section 6.7.  The FNR (GPS) filter provided the best solution 

between the stacked and federated filters but only by less than one percent.   
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Figure 40 – Stacked and Federated Filter Horizontal Errors (Residential Data Set) 

 

Since GPS signal strength is still reasonable in this environment, the additional 

information contained within the relative updates did not further improve the accuracy of 

the final solution.  This indicates that the filter‟s biases and scale factors had been 

resolved and other un-modelled error sources begin to dominate the solution‟s accuracy.  

The FNR (INS) performed 6.3% worse than the FNR (GPS), which indicates that using 

the raw ranges of the GPS receiver as input to each local filter is superior.   

 

The vertical errors of the stacked and federated filters are shown in Figure 41.  The 

stacked filter performed the best with a 1.65 m RMS error, but did not outperform the 

SINS solution.  The FNR (GPS) filter provided the second best solution with a 1.86 m 

RMS error.  These errors are consistent with the errors experienced with the SINS cases 

albeit higher than the specific SINS solution chosen for comparison. 
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Figure 41 – Stacked and Federated Filter Vertical Errors (Residential Data Set) 

 

Figure 42 shows the CDs of the horizontal and vertical errors.  The horizontal 

distributions have a slightly improved performance with more accurate results below the 

1 m level.  For example, the SINS filter solution is better than 1 m 38.5% of the time, 

whereas the stacked filter had 58.3 % and the FNR (GPS) filter had 56.5 %.  In the 

vertical channel the stacked filter had the best CD with 41.5 % less than 1 m error 

compared to the FNR (GPS) at 33.9 % less.  
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Figure 42 – CD of Horizontal and Vertical Errors for Stacked and Federated 

(Residential Data Set) 

 

6.4.2 Filters Position Accuracy vs. Number of IMUs 

Of particular interest to this research is the cost vs. benefit of adding IMUs.  This section 

addresses this question with respect to the architecture used.   

 

6.4.2.1 VIMU Accuracy vs. Number of IMUs 

Figure 43 shows the VIMU architectures RMS percent improvement relative to that of a 

standalone GPS solution.  In all cases, the accuracy improved with each additional IMU.  

The AKF method had the largest increase when a second IMU was added, although this 

dramatic increase was not maintained with the addition of the third, fourth and fifth IMU.  

This is a direct result of estimating the angular acceleration within its filter.  Interestingly, 

applying the averaging technique with five IMUs was less accurate than with two IMUs 

using the LSQ or AKF method.  This confirms that estimating the angular acceleration 
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had a positive impact on the accuracy of the navigation solution, even more so than the 

number of IMUs used.  This was an important practical finding, which makes the use of a 

dual inertial system considerably more attractive.  

 

  
Figure 43 – VIMU Accuracy as a Function of IMUs Used (Residential Data Set) 

 

6.4.2.2 Stacked and Federated Filter Accuracy vs. Number of IMUs 

Figure 44 shows the accuracy of the navigation solution as a function of the number of 

IMUs used for the stacked and federated filters.  The stacked filter showed the largest 

percent increase with two IMUs, but then decreased with the addition of the third and 

fourth IMU.  The third and fourth IMUs were among the least accurate SINS solutions.  

Thus, when the filter combined the block filter solutions, the final solution was degraded.  

This contradicts the hypothesis that the relative updates would have provided additional 

information to improve the accuracy of each block filter.  This contradiction is refuted 

with the data set from the Olympic Oval, which shows that in the absence of reasonable 

GPS observability, the relative updates significantly improve the navigation solution. 
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The FNR (GPS) results followed a similar trend to that of the block filter, again 

suggesting that the relative updates were providing little improvement to navigation 

solution in this case.  The FFR (INS) filter performance plateaued at the third IMU and 

had similar results with three to five IMUs, only increasing 0.1 % per additional IMU.  

The FNR (INS) percent improvement was minute with only 0.3, 0.4 and 1.2 % for each 

additional IMU.   

 

Consistent with the results of the VIMU architecture in Section 6.4.2.1, the addition of 

the second IMU had the largest percentage increase, even more so than the third, fourth 

or fifth IMU.  This suggests that if two IMUs are used, the stacked, FNR (GPS) or VIMU 

AKF all show similar performance.  However, when using more than two IMUs, the 

solution accuracy improves at a lower rate.   

 

 

Figure 44 – Stacked and Federated Filter Accuracy as a Function of IMUs Used 

(Residential Data Set)  
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6.4.3 Minimum Detectable Blunder (MDB) 

The MDB for PRN 22 is shown in Figure 45 when five IMUs were used.  PRN 22 had an 

elevation angle of 22° and average power of 38 dB-Hz.  The MDB was 0.5 m lower in 

the SINS solution when compared to a standalone GPS solution.  The VIMU MDB was 

nearly identical to the SINS, decreasing only by a few centimetres.  Thus, the actual 

improvement of the MDB with the use of the VIMU is negligible, an expected result 

considering that the improvement of the IMU provided no absolute positioning 

information.  The marginal decrease would also follow suit for the federated filters where 

GPS observations were only tested with the information within the local filters.  In the 

case where the federated filter used a local filter as the reference (e.g. FNR (INS)), the 

MDB was identical to the SINS MDB.   

 

 
Figure 45 – Comparison of MDBs for PRN 22 for each Filter (Residential Data Set) 

 

Alternatively, the stacked filter decreased the MDB substantially since it incorporated 

multiple positions into the detection algorithm.  The stacked filter MDB RMS decreased 
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by a factor of 2.27 compared to the theoretical value of 2.24 (1/√n) when five IMUs were 

used.  This ratio, as derived in Equation (5.21), is shown in Figure 46 over the duration of 

the test.  The green line shows the theoretical ratio.  The discontinuities in the ratio arise 

when mismatches between the faults detected in one filter are not detected in another.  In 

this case, the discontinuities show that the ratio increases, which indicates that the 

stacked filter MDB temporality increases as a result of more rejections.  Thus, since the 

stacked filter rejects more observations, the MDB slightly increases with the reduction in 

geometry and the discontinuities arise.  In one case however, the MDB remained constant 

and the MDB of the single IMU decreased.  This would suggest a false detection in the 

SINS filter where the MDB would increase and cause the ratio to decrease.   

 

 
Figure 46 – Ratio of Stacked MDBs and SINS MDBs for PRN 22 (Residential Data 

Set) (see Equation (5.21)) 
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6.5 Olympic Oval Data Set 

The Olympic Oval presents a different approach to that of Section 6.4 where GPS, 

although moderately attenuated, is still operating within the requirements set out in Table 

1.  In this environment, GPS will not provide acceptable performance for most 

applications and an integrated system is needed.  Figure 47 shows an average power drop 

of 24 dB inside the Oval while the HDOP occasionally doubles.  This figure also shows 

the relative power increases when the user is located outside to allow the reference 

solution to re-estimate the IMU errors (i.e. 500 to 750 s). 

  
Figure 47 – Average C/No and HDOP (Olympic Oval Data Set) 

 

6.5.1 Position Accuracy 

Table 9 provides the statistical position errors for the indoor Olympic Oval test.  Again 

this table will not be explicitly discussed, but the information contained within is used 

throughout Section 6.5.   

 

Indoor Indoor 
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Table 9 – Horizontal Errors of All Architectures for Olympic Oval with IMUs 

Rigidly Mounted on the Foot 

Processing 
Method 

Number 
of IMUs 

Mean Mean 
Improvement RMS RMS 

Improvement Std Max Min Median 

(m) (%) (m) (%) (m) (m) (m) (m) 
Standalone 

GPS 0 26.0 0.0 33.6 0.0 21.4 128.2 0.0 25.5 

 

SINS 

1 19.9 23.6 24.9 25.9 15.1 52.0 0.3 16.5 
1 16.4 37.0 20.1 40.3 11.6 40.3 1.1 14.1 
1 23.0 11.7 27.5 18.3 15.1 52.0 0.2 27.4 
1 16.5 36.4 22.8 32.4 15.7 51.8 0.1 10.8 
1 19.2 26.3 25.9 23.0 17.4 56.1 0.0 13.6 

          

VIMU (6 
State LSQ) 

2 16.1 38.1 20.0 40.6 11.8 38.9 0.0 14.6 
3 15.8 39.4 20.4 39.5 12.9 39.5 0.1 9.7 
4 15.5 40.5 19.9 40.8 12.6 38.9 0.2 10.5 
5 16.1 37.9 21.0 37.7 13.4 42.2 0.2 11.4 

          

VIMU (9 
State LSQ) 

3 16.3 37.3 21.3 36.8 13.7 44.6 0.2 11.0 
4 16.6 36.0 21.5 36.0 15.4 53.6 0.0 18.4 
5 15.5 40.3 20.2 40.1 12.9 45.7 0.0 14.2 

          

VIMU 
(AKF) 

2 16.2 37.7 20.7 38.6 12.8 43.5 0.2 14.3 
3 15.9 38.9 20.8 38.3 13.4 44.3 0.1 11.3 
4 16.5 36.6 21.6 35.9 13.9 48.6 0.1 14.2 
5 15.1 42.1 19.5 42.1 12.3 40.2 0.0 11.9 

          

Stacked 
Filter 

2 17.8 22.2 24.6 27.0 13.3 48.0 0.3 15.3 
3 16.8 21.0 23.2 31.1 12.7 40.2 0.7 12.7 
4 15.8 20.3 20.8 38.3 12.8 41.4 0.4 8.8 
5 16.1 20.8 19.7 41.5 13.1 41.4 0.0 9.9 

          

FNR (GPS) 

2 17.4 33.1 21.6 35.8 12.8 45.1 0.1 14.8 
3 17.1 34.1 22.0 34.5 13.9 45.7 0.8 11.0 
4 16.7 35.8 22.0 34.7 14.3 49.1 0.4 9.1 
5 17.1 34.1 22.7 32.6 14.9 50.6 0.1 11.4 
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Table 9 (Cont’d)  

Processing 
Method 

Number 
of IMUs 

Mean Mean 
Improvement RMS RMS 

Improvement Std Max Min Median 

(m) (%) (m) (%) (m) (m) (m) (m) 

FNR (INS) 

2 21.5 17.2 27.3 18.9 16.8 60.8 0.8 17.7 
3 21.4 17.5 27.2 19.2 16.7 59.9 0.7 18.4 
4 21.2 18.3 27.0 19.7 16.7 59.9 0.8 17.9 
5 21.3 18.2 27.0 19.6 16.7 59.9 1.0 17.5 

          

FFR (INS) 

2 20.5 21.2 25.2 25.1 13.6 52.2 0.3 12.5 
3 20.3 22.0 25.2 25.0 15.0 52.4 0.2 16.7 
4 20.0 23.0 25.1 25.4 15.1 52.0 0.6 16.4 
5 20.0 23.1 25.1 25.3 15.2 52.6 0.3 16.6 

          

FZR (INS) 

2 52.0 -100.1 59.3 -76.4 28.6 145.0 1.0 44.4 
3 94.1 -262.0 107.5 -219.5 52.0 217.5 3.2 87.9 
4 89.6 -244.5 101.1 -200.4 46.8 180.9 3.0 77.1 
5 80.6 -209.9 98.7 -193.5 57.1 234.0 10.7 60.1 

 

6.5.1.1 SINS Results 

The GPS and SINS horizontal errors for this 21.4 minute test are provided in Figure 48.  

Once again, the results are presented to show the capabilities of SINS solutions and 

provide context for adding more IMUs in this environment.  Accuracy varied by tens of 

metres while indoors, but converged when the subject was outside (i.e. in open skies) to 

within a few metres.  

 

The horizontal RMS errors varied from 20.1 m to 27.6 m, while the maximum error 

varied between 40.3 and 56.1 metres.  GPS alone had a maximum error of 128.2 m and it 

is obvious that the integrated system was able to mitigate the multipath errors more 

effectively.  Two SINS solutions (IMU 3 and IMU 4) took nearly 60 s to converge to the 

standalone GPS position when the subject exited the first loop.  The other three SINS 

solutions follow the GPS error trend more consistently when exiting the building.  Thus, 

each solution had varying degrees of convergence times.  
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Figure 48 – Horizontal Errors of Five SINS Solutions (Olympic Oval Data Set) 

 

The vertical errors of the solution are shown in Figure 49.  Their RMS varies from 4.4 m 

to 14.4 m, much better than the 47 m error standalone GPS provided.  Vertical errors had 

an extremely low frequency error, which can be attributed to the ZUPTs applied, and 

provided a slow error accumulation in the vertical axis.  A large bias was also observed in 

some of the IMUs, in particular IMU 2, with a bias of approximately 5 metres.  This bias 

remained stable during the time outside and the GPS aided the solution.  Better filter 

tuning in the vertical axis for this particular IMU could possibly resolve this problem.   

 

Indoor Indoor 
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Figure 49 – Vertical Errors of Five SINS Solutions (Olympic Oval Data Set) 

 

Figure 50 shows the CD of the errors in the horizontal plane and vertical axis.  The 

vertical axis errors exhibit a substantial improvement compared to the horizontal plane.  

This bottom figure shows that 80 % of the elevation errors are less than 5.5, 10.0, 10.0, 

13.2, and 16.5 for IMUs 5, 1, 4, 3 and 2 respectively, and that although these show a 

considerable improvement over the standalone GPS solution, they differ for each IMU.  

A similar conclusion can also be observed when the horizontal errors at 60 % shows a 14 

to 32 m difference.   

 

Indoor Indoor 
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Figure 50 – CD of SINS and Horizontal and Vertical Errors of Five IMUs (Olympic 

Oval Data Set) 

 

6.5.1.2 VIMU Results 

The VIMU horizontal errors are shown in Figure 51.  The horizontal error improvement 

is more significant than that of the residential data set (e.g. Section 6.4.1.2).  The VIMU 

average provided a 37.7 % improvement, and the LSQ and AKF methods were similar 

with 40.1 % and 42.1 % improvements, respectively.  This is further investigated in 

Section 6.8.1, which shows that the results are also hindered by time tagging issues due to 

several IMUs using their own independent clocks.   

 

The VIMU tends to diverge much more slowly when entering the indoors and converges 

much more quickly when exiting, compared to the SINS solution.  That said, at time 185 

s, the solution very quickly diverged from a 6 m error to nearly a 40 m error.  This was a 

direct result of a strong multipath signal that had a high C/No.  The filter consequently 

overweighed the GPS measurement and the VIMU filters were unable to reject this 
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information.  This effect has been seen in all the filters during this research and presents a 

problem that could not be solved without manual intervention of the observation 

covariance matrix.  An important observation was that the VIMU filter was able to 

mitigate the error the longest.  This effect can be seen on a map in Figure 57 which 

occurred in the north east corner of the Oval. 

 

 
Figure 51 – VIMU Horizontal Errors (5 IMUs Used in Olympic Oval Data Set) 

 

The elevation profile, shown in Figure 52, displays the same elevation divergence as seen 

in the residential case described in Section 6.4.1.2.  This is addressed in Section 6.8.3 and 

is a function of filter tuning rather than the fusion of raw IMU measurements.   

Indoor Indoor 
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Figure 52 – VIMU Vertical Errors (5 IMUs Used in Olympic Oval Data Set) 

 

Figure 53 shows the CD of the horizontal and vertical errors.  The VIMU‟s horizontal 

errors showed superior performance at 40 % error.  This revealed a distinct advantage 

over the SINS solutions.  However, beyond 40 % the advantage was less pronounced and 

provided only marginal improvement compared to the SINS solution.  In the vertical axis 

the LSQ and the AKF drifted but then slowly converged when GPS was less attenuated.  

This convergence was much slower than in the SINS and VIMU average solution. 

Indoor Indoor 
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Figure 53 – CD of VIMU Horizontal and Vertical Errors (5 IMUs Used in Olympic 

Oval Data Set) 

 

6.5.1.3 Stacked and Federated Filter Results 

Figure 54 provides the stacked and federated filter horizontal error results.  The best 

solution was the stacked filter which outperformed its FNR (GPS) counterpart by 8.9 %.  

This is evidence of the effectiveness of the relative updates providing more information 

to the filter assisting in constraining the divergence of the system when GPS is providing 

poor observations.  The FNR (GPS) filter again provided more accurate results to the 

FNR (INS) and FFR (INS), which provided similar results as the SINS solutions.  

 

The SINS and the FFR (INS) error profiles in Figure 54 show a similar result.  This 

occurred because the reference INS in the FFR were the same single INS plotted in 

Figure 54.  This introduces a concept where the reference local filter was aiding the other 

local filters to follow its trajectory because the input “observations” were time correlated.  
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This, in some cases, is to the detriment of a federated filter using one local filter as its 

reference solution for other local filters.  This result confirmed the theory presented in 

Section 5.4; the reference system data must yield to assumptions of the Kalman filter 

shown in Equations (4.9), (4.10), (4.11). 

 

 
Figure 54 – Horizontal Error of Stacked and Federated Filters (5 IMUs Used in 

Olympic Oval Data Set) 

 

In the vertical axis, as shown in Figure 55, the filters generally performed similarly to the 

best SINS solution indicating that additional IMUs and varying architecture do not 

further improve the elevation accuracy.  In both loops, the maximum elevation error was 

approximately 12 m which was significantly better than the error in the horizontal plane, 

(i.e. four to six times better).  The RMS errors were also consistent between architectures, 

varying by less than a metre, further confirming that the improvement was a result of the 

ZUPTs and was not related to the architecture, number of IMUs or relative updates.   

Indoor Indoor 
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Figure 55 – Vertical Error of Stacked and Federated Filters (5 IMUs Used in 

Olympic Oval Data Set) 

 

Figure 56 shows the CD of the horizontal and vertical errors.  The stacked filter provided 

a reasonable improvement at 90 % CD where it outperformed the FNR (GPS), but 

followed a similar trend at lower percentages.  Both the FNR (GPS) and stacked filter 

behaved similarly below 80 %, which showed that, in terms of the distribution, the 

relative updates were providing improvement at times when the FNR (GPS) did not.  

Indoor Indoor 
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Figure 56 – CD of Horizontal and Vertical Errors for Stacked and Federated Filters 

(Olympic Oval Data Set) 

 

To compare the results of each filter, Figure 57 and Figure 58 show a map containing the 

trajectories of each architectures best solution (i.e. least amount of RMS error).  A 

standalone GPS solution and a SINS solution are also provided for context.  During the 

test the subject walked around the Oval in a counter-clockwise direction, then went 

outside, returned to the Oval and walked around the Oval in a clockwise direction.  In the 

first loop, Figure 57 shows that the VIMU provided an excellent trajectory until the 

northeast corner where it diverged in the presence of a strong multipath signal (see 

Section 6.5.1.2).  Comparing this to the SINS solution, where the heading immediately 

diverged after reaching the northward turn at the Oval track, the VIMU heading exhibited 

an excellent ability to provide a correct heading.  The stacked and FNR filters provide a 

similar trajectory, again the largest error appears to be in the heading which had diverged 

as the subject exited the SE corner of the track.  All solutions at the SE corner have been 
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without good GPS observations for six minutes and were effectively navigating on high 

multipath signals. 

 
Figure 57 – Loop 1 (Counter Clock Wise) Map View of Best Performing Filters - 

Truth Solution, Standalone GPS Solution, SINS, VIMU (AKF), Stacked Filter, FNR 

(GPS) 

The trajectories of the second loop, shown in Figure 58, appear even better than the first, 

especially in the north east and south east corners.  In this trajectory, the SINS was well 

aligned, but had acquired an along-track error, that provided the large horizontal error 

shown in Figure 48.  By the time the user exited the track, the SINS solution contained 

the largest heading error.  This was indicative of the heading degrading during the time 

indoor, which was less prominent in the multi-IMU architectures.  With remarkable 

accuracy, the FNR (GPS) and the stacked filter had aligned themselves with the truth 
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trajectory at the north east corner and appear to have an ideal heading.  The subject then 

made an eastward turn to exit the Oval track where the FNR (GPS) solution provided the 

best accuracy while exiting the building.   

 

For the Oval data, the user entered and exited the track at the same point and therefore 

provided an interesting metric to compare the solutions.  The FNR (GPS) filter only 

deviated by 2.5 m, the SINS difference was 13.5 m and the standalone GPS solution had 

49.3 m difference.  The same check of the reference system yielded a 5.1 m difference.   

 
Figure 58 – Loop 2 (Clock Wise) Map View of Best Performing Filters - Truth 

Solution, Standalone GPS Solution, SINS, VIMU (AKF), Stacked Filter, FNR (GPS) 
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6.5.2 Position Accuracy vs. Number of IMUs 

The accuracy of the VIMU as a function of the number of IMUs is shown in Figure 59.  

This figure provides an indication of the weakness of the VIMU in time tagging.  

Because of this issue, the improvement was less incremental for all the VIMU fusion 

methods.  In this case the VIMU AKF provided the best solution, albeit with marginal 

time synchronization.   

 
Figure 59 – VIMU Accuracy Improvement as a Function of IMUs Used (Olympic 

Oval Data Set) 

 

Figure 60 shows the RMS accuracy improvement as a function of the number of IMUs 

for the stacked and federated filters.  The stacked filter had a linear improvement for each 

additional IMU of about 3 to 7 % per IMU added.  This again indicates the value of the 

relative updates, as each additional IMU provided additional relative information to 

improve the accuracy of the solution and the error states within the block filters.  The 

FNR (INS) and the FFR (INS) results did not increase linearly, but plateaued similar to 
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the results of two IMUs.  The FNR (GPS) slightly decreased with each additional IMU in 

excess of two.   

 

The FNR (INS) and FFR (INS) results were very similar to the residential data set with 

very moderate improvements as each IMU was added.  The FNR (GPS) also had similar 

results between data sets with a slight decrease in performance with more IMUs.  The 

two data sets confirm that the federated filter architecture did not increase the accuracy, 

but merely processed the data in a similar manner to that of the centralized version. 

 

 
Figure 60 – Stacked and Federated Filter Accuracy Improvement as a Function of 

IMUs Used (Olympic Oval Data Set) 

 

6.5.3 Minimum Detectable Blunder 

The MDBs of the various filters proposed in this thesis are shown for PRN 31 in Figure 

61.  The MDB of all architectures, with the exception of the stacked filter, were very 

similar.  The MDB decreased for each multi-IMU filter, but by only a few metres.  This 
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was consistent with the theory, as the MDB is a function of the absolute information 

contained in the innovation covariance.  Since inertial observations only provide temporal 

positioning information, there is not a significant increase in the ability to detect faults in 

GPS measurements.  On the other hand, the stacked filter MDB was computed using 

several absolute positions within its filter, which enhanced its ability to detect faults.  

 

 
Figure 61 – MDB of PRN 31 for Various Architectures (Olympic Oval Data Set) 

 

6.6 Estimated Position Variances 

A major aspect of navigation is the estimated variances of the solution.  A system whose 

estimated covariances are not indicative of the real errors provides an untrustworthy 

system.  Thus validating that the estimated position covariance and the true errors 

coincide is an important comparison.  Figure 62 and Figure 63 show the horizontal 

position errors and the estimated standard deviations of the position as determined in the 

Indoor Indoor 
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software.  The figures show the three sigma bounds, and the horizontal standard 

deviations were determined using the propagation of variances. 

 
Figure 62 – Comparison of Horizontal Errors and Estimated (3σ) Position Standard 

Deviations (Residential Data Set) 

The analysis shows that the VIMU results are slightly overoptimistic in the residential 

data set.  This is attributed to the fact that the process noise of the IMU has been reduced, 

but other errors present in the system are still contributing to the navigation solution 

errors (i.e. GPS multipath).    

 

Both the FNR (GPS) and the stacked filter results show realistic variances.  This confirms 

that the filters are operating at a reasonable level, even more so than would have been 

anticipated considering the blanket tuning approach used (see Section 5.7).   

 

In the Olympic oval data set, 8.3 % of the SINS horizontal position errors exceeded the 

3σ values.  Given that multipath is extremely difficult to model and is not well 

represented in the observation covariance matrix, this percentage is acceptable.   The 
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VIMU data set had 4.0 % of the errors greater than the 3σ estimates, while the FNR 

(GPS) and stacked filter had 5.2 % and 4.9 %, respectively.  These numbers indicate that 

the position variances output by the filters are indicative of the true errors.  

 

 
Figure 63 - Comparison of Horizontal Errors and Estimated (3σ) Position Standard 

Deviations (Olympic Oval Data Set) 

 

6.7 FZR Filter Results 

FZR is not suitable for pedestrian navigation applications with multiple IMUs in 

degraded GPS environments.  The FZR filter, for all test cases reported herein, provided 

unusable results with errors larger than those of the standalone GPS solution.  From a 

practical stand point, the master filter requires navigation solutions every second (or few 

seconds); the exact output rate could be varied for each application.  Therefore, the FZR 

filter has two approaches to provide the navigation solution at this interval (i.e. 1 Hz).  

The first approach to update the master filter at 1 Hz (or less) using the local filters and 
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thereby share information at that rate.  The second approach is to predict the master filter 

at 1 Hz and share information at a lower rate, say 5 or 10 s.  If the first approach is used 

and the sharing rate is reduced to 1 Hz, the local filters reset too often to converge back to 

a reasonable navigation solution.  This approach is further compounded by GPS signal 

attenuation to levels that provide very slow convergence rates (e.g. indoor).  The second 

approach is also unrealistic because of the amount of process noise added in pedestrian 

navigation filters over 5 or 10 seconds.  This effect is even further amplified when the 

IMU is located on the foot and the prediction of the master filter can occur at any point in 

the gait cycle where the velocity could either be zero (during the stance phase) or at a 

maximum (during the swing phase).  In either case, the FZR master filter performs poorly 

at low data rates.  Thus, the information stored in the master filter, which is sub optimal, 

further degrades performance when replaced back into the local filters.  

 

This effect could be theoretically bypassed by changing the information sharing principle 

to be sequentially processed, where information is shared backward from the master filter 

to one local filter at a time.  This extends beyond the scope of this thesis, but could 

provide additional federated filter architectures for pedestrian navigation results.   

 

6.8 VIMU Fusion Issues 

This section analyzes the capability of the proposed VIMU fusion techniques and 

provides an explanation of the degraded elevation solution within the VIMU architecture.   

 

6.8.1 VIMU Timing 

The Olympic Oval data set saw similar navigation improvement when adding more IMUs 

when compared to the residential data set, but contained larger residuals within the 

VIMU fusion after entering the Oval.  This result is attributed to the time tagging 

limitations of the IMU measurements.  Each IMU is equipped with an internal clock and 

is updated with a Pulse Per Second (PPS) signal generated by the reference INS.  This 

serves as the time synchronization between GPS and IMU for integration and was 
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originally considered acceptable for a single IMU and GPS integration.  This 

synchronization had an approximate maximum deviation of 1 ms, which with respect to 

single IMU integration is acceptable.  However, in the case of integration with several 

IMUs, clock synchronization accuracy for VIMU must be higher.   

 

During the Oval test, the IMUs clocks frequency and consequently the time bias shifted 

when the subject entered the Oval.  It is hypothesized that this was due to a temperature 

variation (i.e. outside was 28° C vs. inside near the ice rink it was close to 18° C).  This 

change in temperature shifted the observation time measurements only slightly (on the 

order of 7 ms) and became obvious when the IMU data was compared side by side.  

Figure 64 shows the difference between the X axis gyro measurements of two IMUs 

mapped to the same frame. As the user traveled to the Oval track, the differences 

increased.  This effect was clearly seen in the residuals of the VIMU estimation methods.   

 

 
Figure 64 – Differences between 2 IMUs X Axis Gyro Observation when entering 

the Olympic Oval  
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There is also another potential source of timing error which stems from the PPS accuracy 

of the reference INS.  Since the PPS was sent to each IMU, exact time synchronization 

should occur between all IMUs.  To confirm this, the clock bias is shown in Figure 65.  

The error bounds are also shown in the figure.  By comparing the time when the residuals 

increased in Figure 64 and the time when the clock bias increased in Figure 65, it is clear 

that the increased residuals occur before the large deviation of the clock bias.  Further, 

the clock bias increased when the user entered the building and the residual errors 

increased when the user reached the lower part of the Oval, where the temperature was 

coolest.   

 
Figure 65 – PPS Timing Accuracy from NovAtel SPAN System during Oval Test 

 

This time tagging issue is very difficult to mitigate and thus makes time synchronization 

of IMU data sets to within an acceptable interval very difficult and often impossible.   
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6.8.2 Estimating the Angular Acceleration of the VIMU 

Estimating the angular acceleration is a nuisance parameter (i.e. not important for 

navigation performance) and is only of interest to correctly map the acceleration to the 

VIMU frame.  However, the ability to estimate the angular acceleration is important to 

consider.  Since no truth solution is available to provide the angular acceleration, a time 

derivative of the angular velocity will suffice.  Since the differentiation will remove the 

scale factor and biases but increase the noise, it still provides a solution to which the 

estimated parameter can be compared.   

 

The upper graph of Figure 66 shows a short time segment of the VIMU LSQ with the raw 

differentiated data of one IMU, the raw differentiated data of the VIMU, and the 

estimated angular acceleration provided by the LSQ VIMU estimator.  The full scale of 

the differences makes it difficult to show the subtleties, so the bottom graph shows a 

zoomed portion of the top graph.  The bottom figure shows that the estimated angular 

acceleration is very close to the differentiated values and they are within the values of 

their estimated standard deviations.  Although this segment occurs in the stance phase, it 

is also representative of the results when the foot is in motion.   
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Figure 66 – Estimating the VIMU Angular Acceleration using LSQ 

 

The estimated variances of the angular acceleration (and specific force and angular 

velocity) are of little importance in the least squares estimator, since all the IMUs are 

weighted equally.  This information, although not used in this research, could be input 

into the navigation filter as a real time noise characteristic.   

 

The VIMU adaptive Kalman filter input variance of the raw observations are critical for 

proper fusion.  They remain unchanged during the filter operation (noting that only the 

process noise is adaptive).  Since the filter must assume that the input is Gaussian noise, 

the standard deviation of the input filters was set to 0.03 m/s2 for the accelerometers (see 

Figure 12) and 1600 °/h for the gyro (see Figure 13), much below the actual bias and 

scale factors expected.  These values were derived from static data in Section 3.5.5 and 

were consistent with the spectral densities used within the Kalman filter for the filter‟s 

process noise.   
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Since the IMUs were rigidly mounted together, the estimated state variances within the 

AKF changed very minutely and were effectively constant.  However, the variances were 

extremely optimistic since they did not account for the biases and scale factors and 

therefore the output of the AKF could only be considered a noise reduction technique, not 

a true estimate of the value.   

 

6.8.3 Increased VIMU Vertical Error 

The VIMU vertical errors shown in Figure 38 and Figure 52 clearly demonstrate the 

reduced performance of the VIMU vertical estimation.  This result was a function of filter 

tuning.  The IMU spectral density was scaled by an equal number for all three axes.  

However, the actual noise reduction, in the case of the VIMU LSQ, was not equal for all 

three axes.  Figure 67 shows the percent decrease from the LSQ estimator for the 

accelerometer and gyro measurements.  The gyro measurements for each axis all 

decreased equally per IMU added.  The accelerometer measurements noise decreases as a 

function of the inter-IMU vector and the orientation between each IMU and the VIMU.  

Therefore the noise reduction for the accelerometers was not simply n-1/2, where n 

represent the number of IMUs.  
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Figure 67 – Estimated Variance Improvement of VIMU LSQ (Theoretical) 

 

6.9 Processing Speed of Architectures and Number of IMUs 

There is a large difference in the computer processing speed of each architecture and for 

the number of IMUs used.  An exact comparison of the computational load is beyond the 

scope of this thesis, but Figure 68 shows the processing rate of each architecture and the 

number of IMUs added for the software developed by the author.  All data was processed 

on an Intel Core 2 Quad CPU with 3.25 GB of RAM.  This analysis is merely intended to 

be comparative, since there are numerous factors that determine processing speed.  The 

slowest architecture was the stacked filter.  This was mostly due to the inversion required 

for the gain matrix computation, which has n times m rows and columns (n is the number 

of IMUs and m is the number of GPS observations); propagating the filter forward was 

also a burden.  This was the only filter that was unable to run in real time. 
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The VIMU AKF was able to process faster than the federated filters, an interesting note 

considering the VIMU AKF produced solutions at 100 Hz whereas the federated filters 

operate at 20 Hz.   

 
Figure 68 – Processing Speed of Various Architectures 

These results are largely influenced by I/O processes such as the input and output of the 

filters data, which include PVA navigation parameters and estimated variances, biases 

and scale factors for each IMU with their respective variances, MDB information, 

satellite number and DOP information.  Thus, in the event of a five IMU federated filter, 

the output was five times greater than that of a SINS filter.   

 

6.10 Recommending an Architecture  

The purpose of the thesis was to create, implement and analyze various multi-IMU 

estimation architectures.  This section identifies which architecture might best be suited 

for specific environments and characteristics that would be expected for a pedestrian 

navigation system considering a multi-IMU approach, given the results within the 
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chapter.  Table 10 provides the recommended architecture as a function of characteristic, 

rating each architecture from one to three, one being the first choice, three being the last.   

 

Table 10 – Architecture Preference  as a Function of Development Characteristics  

Development Characteristic VIMU Stacked Filter Federated Filter 
High IMU Noise 1 2 3 
Low Multipath Environment (e.g. 
Residential House) 1 3 2 

High Multipath Environment (e.g. 
Deep Indoors, Urban Canyons) 3 1 2 

Relative Position and Attitude Known 1 1 3 
Low Processing Load 1 3 2 
Various Types and Qualities of IMUs 
Used 3 1 2 

More than Two IMUs 2 1 3 
 

The VIMU architecture would be preferred for a system to operate within a residential 

neighbourhood or areas where GPS in only moderately attenuated.  This would allow for 

good multipath rejection and detection, and bridge any short gaps within the GPS data.  

In this case, the IMU would operate as a smoother.  Alternatively, if the user was going to 

operate deep indoors, the architecture of choice would be the stacked filter.  This method 

allows for added observations when indoor and can operate without GPS (for a limited 

time).  The stacked filter also has a better FDE rejection method, which would enable the 

detection of poor GPS observations when a single INS configuration (including a VIMU) 

could not.     

 

Another aspect that is important to consider in recommending a specific architecture 

would be whether the relative position and attitude values are known prior to operation.  

Most design plans would include this information, however this restriction may not 

always be the case.  It is conceivable that a system could add additional IMUs via a 

module where the user could purchase any number of IMUs and place them on the 

subject.  In this case the relative information would not be known and the benefit of 
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relative updates or the mapping of IMU observations into the VIMU would not be 

possible.   

 

Several other factors would dictate the architecture including design complexity, number 

and data rates of IMUs, processing capability and desired battery life.  Thus the selection 

and recommendation of a specific  architecture is left to the developer  to weigh the 

benefits and detriments.  Finally, IMU technology is currently going through rapid 

performance enhancements that would possibly affect the above ranking and proposed 

architectures. 
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Chapter Seven: Conclusions and 

Recommendations 

This research proposed three architectures for which multi-IMU data can be fused to 

provide improved navigation performance.  The filters proposed specifically assess the 

integration schemes within the scope of pedestrian navigation.  The objective of this 

thesis was to compare the results of three architectures and provide insight into the 

advantages and disadvantages of each, providing a better understanding of the accuracy 

and availability for each filter.  This chapter provides conclusions and recommendations 

that will benefit anyone pursuing multi-IMU fusion.   

 

7.1 Conclusions 

1. The stacked filter provided better results compared to its federated no reset 

counterpart, which showcases the use of the relative updates and a better fault 

detection algorithm.  Although the improvement was minor in the residential data 

set, the filter was already operating at a high performance level with the use of 

only moderately attenuated GPS signals.  In the Olympic Oval data set, the 

stacked filter performed 9 % better with five IMUs, than the federated no reset 

filter.   

2. The multi-IMU federated filters accuracy reached a maximum with two IMUs, 

whereas the stacked filter accuracy linearly increases 3 to 7 % with each 

additional IMU.  This suggests that the relative updates provide a linear 

relationship with the number of IMUs, at least up to five or so units.  

3. When GPS measurements were used as the reference information for the local 

filters of the federated filter, the performance was 15% better than when a SINS 

solution was used as the reference for the federated filter.  The time correlation of 

the output of the SINS solution resulted in a dramatic decrease in performance of 

the local filters, even though the SINS solution was more accurate. 
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4. The federated zero reset filter provided inadequate navigation solutions in both 

data sets.  The limitation stems from the intermittent dynamics, which require the 

master filter to be updated and the local filters zero resets to be applied at high 

data rate (i.e. less than 1 Hz).  This results in very short convergence times within 

the local filters.  Increasing the data rate allows the local filters to converge, but 

results in the master filter continually predicting over extended periods of time 

and requires an excessive amount of process noise to account for the long 

prediction time.  Further, since the velocity over the prediction interval is 

constant, it does not accurately account for the velocity during the gait cycle, and 

resultantly provides a poor prediction of the position.   

5. Within the VIMU scope, FDE is not practical unless the systematic errors have 

been removed prior to testing for faults.  Performance within the FDE is severely 

hindered by the dynamics of the IMU and the magnitude of the scale factors and 

biases.  There is also no evidence within this research to suggest that FDE on 

IMU measurements would increase navigation accuracy or availability; the 

primary interests of pedestrian navigation.   

6. Estimating the angular acceleration has a positive impact on the accuracy of the 

VIMU navigation solution, even more-so than the number of IMUs used.  This is 

a very practical finding, which makes the use of a dual inertial system more 

attractive. 

7. There is a linear dependence in the case of a VIMU operating with two IMUs.  

This eliminates the ability of a dual IMU nine parameter least-squares estimation 

algorithm.  While only two axes of the angular acceleration can be estimated, 

there is potential for operation using an eight parameter estimation model.   

8. Although systematic errors are not removed prior to the VIMU fusion, the least-

squares approach and the adaptive filter approach provide an improvement over 

simple averaging with respect to noise reduction.  Accuracy improvements are of 

the order of 9 to 10% per IMU added up for up to five IMUs added. 

9. Time synchronization of the measurements is critical for the VIMU fusion 

methods, but not necessary for the other multi-IMU architectures.  Time 



162 

 

synchronization for VIMU fusion is related to the dynamics of the foot and the 

noise properties of the IMU.  For the test set up used herein, the ideal time 

synchronization should have been 0.02 ms or better, but was in reality 1 ms.  

When a large temperature variation was experienced, the clock timing error 

reached approximately 7 ms, which hindered the VIMU fusion and limited 

performance.   

10. The accelerometer measurements of the VIMU require additional tuning for the 

Kalman filter.  This stems from the fact that the gyro measurement noise 

decreases at a rate of n-1/2, but the accelerometer measurement noise does not 

decrease at a similar rate.  The noise reduction is a function of the lever arm (i.e. 

geometry between IMUs) and quality of the gyro measurements.   

11. The elevation accuracy of the stacked and federated filters is much better than that 

of the VIMUs, often by several metres.  The VIMU results can often have vertical 

biases resulting from limited filter tuning in the vertical axis.  

12. Processing times of the filters differ, but the stacked filter requires the most 

processing time, followed by the federated filters, VIMU AKF, VIMU LSQ and 

VIMU average.   

 

7.2 Recommendations 

1. The federated zero reset filter was unable to operate at 1 Hz and provided poor 

overall performance.  This could be theoretically improved upon by changing the 

information sharing principle to sequentially process one local filter at a time.  

This could provide another federated filter architecture for pedestrian navigation.   

2. The estimated variances of the angular acceleration (and specific force and 

angular velocity) from the VIMU were not used as filter inputs to the VIMU 

filter.  This information could be input into the navigation filter as a real time 

noise characteristic.  More work could be done in comparing error behaviours of 

the individual IMUs and passing this information into the processing filter. 

3. Because the IMUs were mounted on the foot, all filters benefited from the use of 

zero velocity updates.  These updates managed the velocity component of the 
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filter.  If the IMUs were rigidly mounted on the backpack, Doppler measurements 

could be used.  This would result in more GPS dependent velocity solutions, but 

would be more practical for applications where the IMUs are not located on the 

foot.  

4. A multi-IMU filter estimating one position, velocity and attitude and IMU errors 

for each IMU should be developed.  This filter would essentially be a combined 

stacked and VIMU filter, where the raw IMU would be fused while the filter 

would properly estimate the bias and scale factor IMU error sources.  This would 

facilitate IMU observation fault detection. 

5. Inertial units that also measure the angular acceleration (in addition to specific 

force and angular velocity) would be ideally suited for a VIMU filter where the 

angular acceleration is estimated.  This would provide another set of observations 

and more accurately estimate the angular acceleration.  This would also allow for 

a dual IMU nine state least-squares estimation architecture that could estimate all 

values of the angular acceleration. 

6. The performance of a multi-IMU system using tactical or navigation grade IMUs 

would provide interesting results that would provide better insight of the 

architectures performance.  Since some error sources of the MEMS IMUs are not 

estimated or removed in full (i.e. non-orthogonality), these errors sources could 

induce errors into the solution.  Using higher grade inertial units could provide a 

clearer insight into the estimation of the error states, their convergence rates, FDE 

performance and overall accuracy.   

7. The use of varying types of IMUs together would provide interesting results.  It is 

conceivable that users may have access to several IMU (or INSs) that could be 

used together to increase navigation accuracy.  For example, using two or three 

tactical grade IMUs as a reference solution, rather than the best performing IMU, 

thereby increasing availability, accuracy and reliability.  

8. The use of multiple GPS receivers is also worth of further investigation for multi-

IMU systems.  Multiple receiver (and antenna) systems could utilize attitude 

determination, multipath mitigation and real time receiver noise characteristics.   
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9. Several of the architectures could be adopted for multiple GPS receiver 

configurations.  An analysis of the fusion results would be interesting, specifically 

estimating the amount of multipath and noise contained in a signal.  
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APPENDIX A: DERIVATION OF VIMU DESIGN MATRIX 

This appendix shows the partial derivatives with respect to the unknown parameters in 

Equation (5.4).  For clarity the orientation superscripts and subscripts have been 

removed. Equation (5.4) is repeated here 
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APPENDIX B: VIMU RESIDUALS 
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