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Abstract

The Global Positioning System (GPS) is commonly used for pedestrian navigation.
Unfortunately, GPS is often unable to provide the accuracy and availability in
environments where pedestrian navigation is commonly required. One low cost inertial
measurement unit (IMU) is often used to increase the accuracy and improve the
availability of the navigation solution. This research develops several fusion methods of
using multiple IMUs to enhance performance. In particular, this research seeks to

understand the benefits and detriments of each fusion method.

Three fusion methods are proposed. First, all raw IMU measurements are mapped into a
common frame (i.e. a virtual frame) and processed in a typical combined GPS-IMU
Kalman filter. Second, a large stacked filter is constructed of several IMUs. This filter
construction allows for relative information between the IMUs to be used as updates.
Third, a federated filter is used to process each IMU as a local filter. The output of each
local filter is shared with a master filter, which in turn, shares information back with the
local filters. The construction of each filter is discussed and improvements are made to
the virtual IMU (VIMU) architecture, which is the most commonly used architecture in

the literature.

Since accuracy and availability are the most important characteristics of a pedestrian
navigation system, the analysis of each filter's performance focuses on these two
parameters. The various approaches are implemented in software, a hardware
configuration is designed and actual data is collected in two environments, one where
GPS signals are moderately attenuated and another where signals are severely attenuated,
to a point where the standalone GPS solution is unusable. Accuracy is shown as a

function of architecture and the number of IMUs used.

Results indicate that the stacked filter provides a linear increase in accuracy, while other
architectures typically have less improvement with the addition of more than three IMUs.

Areas where GPS is sufficient show little improvement with additional IMUs. Only the
i



stacked filter decreases the minimal detectable blunder of GPS observations by a
significant amount. Federated filters provide a comparable, but less accurate, solution to

that of the stacked filter at a much lower computational cost.
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Chapter One: Introduction

The Global Positioning System (GPS) is a freely available satellite constellation that is
maintained by the United States Department of Defense (DoD). Over the past few
decades a multi-billion dollar industry has grown around the services made available
through GPS. Declining hardware costs and increasingly user friendly interfaces
continue to propel both commercial growth and the publics interest in satellite borne
positioning. One sector that has experienced some of the fastest advancement of late has
been pedestrian navigation, including cellular phone and first responder navigation.
However, due to error sources that cannot be mitigated in real time, the navigation
solution can extend beyond acceptable error limits or be completely unavailable. Thus,
research to improve the accuracy and availability of a personal navigation system for

pedestrians is warranted.

As GPS markets continue to expand and new applications are found every day, any new
application must abide by a key requirement; namely, direct line-of-sight between the
satellites and the receiver. So stringent is this requirement that the simple occlusion of
satellites renders many navigation systems useless or at the least highly degraded. As
users travel in urban canyons, parkades, indoors or in high foliage areas, the ability for
GPS to provide a navigation solution is compromised. Although High Sensitivity GPS
(HSGPS) receivers can track weak signals through fading, this renders them susceptible
to high noise and multipath errors (Lachapelle 2007). Thus, researchers are examining

other sensors to integrate with GPS.

Inertial measurement units (IMU) are a common complement to GPS, although it is
technically more correct to state that GPS augments an inertial navigation system (INS).
The advantage being that the GPS and inertial sensors can provide a continuous
navigation solution, where GPS alone cannot. As competitive consumer markets drive

the price of mobile navigation devices lower, an increasingly common choice for IMUs is
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micro electro-mechanical systems (MEMS). The size, cost, weight, and low power
consumption make these an attractive grade of IMU; however their in-run biases, scale
factors and high noise require the integration scheme to mitigate these errors (Titterton &

Weston 2004).

While existing INS research has involved one IMU, the purpose of this research is to
investigate the use of multiple IMUs in tandem with GPS. In particular, this research will
investigate various approaches to integrate multiple IMUs with several filter architectures
and constraints that can be used to further improve the accuracy and availability of the

navigation solution, with emphasis on pedestrian navigation.

The objectives of this thesis are to:
1. Design, implement and test different techniques to utilize multiple IMUs and GPS
observations for pedestrian navigation. Estimation architectures include:
a. Virtual IMU observation fusion
b. Centralized filter design
c. Federated filter design
2. Assess fault detection capability on the IMU and GPS measurements, discussing
any limitations.
3. Analyze and compare the performance of the different estimation architectures
selected and the number of IMUs used.
4. Analyze the performance of each architecture in residential and indoor conditions.

5. Discuss the advantages and disadvantages of each architecture.

1.1 Pedestrian Navigation

Potential pedestrian navigation users include:
e first responders (e.g. emergency search and rescue)
e cellular phone users (E911 and navigation)

e health and activity monitoring



e recreational users (e.g. hikers, climbers, skiers)

e self guided tourists

e athletes and athletic trainers

e consensual tracking (e.g. elderly, parolees, employees)

e navigation for the visually impaired

e military forces

Each application requires a specific level of navigation accuracy which depends on

various factors. Table 1 shows the requirements of some instances of pedestrian

navigation and some commercial products that address them (marked *). In proposing a

new technology, the proposed system should be equivalent or better in accuracy to those

that it seeks to replace, but preferably be less expensive and have longer availability in

GPS-compromised environments.

Table 1 — Various Accuracy Requirements and Realizations

Application

Accuracy Requirement or Realization*

Cellular Phone Users

50 m (1o) - GPS Enabled (E911, Phase II)

Emergency Land Applications

5-20 m (Hofmann-Wellenhof et al 2003)

Public Transport

20-50 m (Hofmann-Wellenhof et al 2003)

Athletic Training

0.01-50 m

Tourism

50-100 m (CEP) (Prost et al 2008)*

Military Ground Forces

<10.5 m (2 o) (Rockwell Collins - DAGR Technical
Data Sheet)*

First Responders

<3 m (ENSCO GEO/NAYV Technical Data Sheet)*

< 30 m in 30 min GPS outage (personal discussion
with D. Taylor of ENSCO, Inc.)*




4

A key to the success of many INS pedestrian navigation applications is the placement of
the IMU on a foot (e.g. Mezentsev (2005)) where the IMU experiences the repetitive and
predictable motion of the human gait during walking. This allows for zero velocity
updates while the foot in is contact with the ground, which plays a critical role in
maintaining the long term accuracy of the system. There are two typical approaches for
pedestrian navigation involving IMUs, (i) pedestrian dead reckoning (PDR), and (ii) a
strap down INS (Groves et al 2007).

PDR uses the step length of a user and propagates the position forward using a known
heading. Sensors used in PDR typically include GPS, IMUs, and magnetometers. This
common approach is found in Gebre-Egziabher (2002), Mezentsev (2005), Stirling et al
(2005), Beauregard (2007), Tan et al (2008), Zhao et al (2009) and Sun et al (2009).
PDR has been successful when subjects walk normally, however it degrades quickly
when users jog, sprint, shuffle, crawl (e.g. firefighters crawling inside a building), travel
uphill or climb stairs. It is noteworthy that in PDR mode, the position error is typically a

function of distance, rather than time (Mezentsev 2005).

Alternatively, an IMU is placed on the foot and treated as an INS. Examples for this
method include: Brand & Phillips (2003), Lachapelle et al (2003), Foxlin (2005),
Kasameyer et al (2005), Grejner-Brzezinska et al (2006), Mather et al (2006), Beauregard
(2007), Groves et al (2007), Bancroft et al (2008) and Godha & Lachapelle (2008). This
configuration reduces the necessity for magnetometers, although these can be used to aid
with attitude determination as in Groves et al (2007). The INS method also allows for
direct analysis of sport and biomedical applications such as gait kinematics and posture
analysis (Kwakkel et al 2007, Renaudin et al 2007, Kwakkel 2008, Kwakkel et al 2008).
However, a disadvantage to this approach is the time varying lever arm between the GPS
antenna and IMU(s). To date, this error has been ignored and thus the magnitude of the
lever arm*s effect has not been quantified. Another limitation to the foot-mounted INS is
the degraded accuracy over extended time periods. This result is common to all low cost

INS setups and is primarily due to heading errors (Bancroft et al 2008).
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Magnetometers are often integrated with the IMU to provide additional heading
information. Often, a three axis magnetometer is mounted in conjunction with an IMU.
In this manner the pitch and roll of the INS can be used to orient the magnetometer data
in the local level frame. From this, the heading can be computed and used to update the
system (Goldenberg 2007). The success of multisensor fusion technology has meant that
manufacturers of MEMS IMUs are more commonly including magnetometers within the
IMU triad (e.g. Analog Devices ADIS16405). Magnetometers however, are susceptible
to magnetic interference from hard and soft iron effects. These biases can be self induced
(from current inside the data collection apparatus), or externally induced from the
materials in the environment. Mitigating such magnetic disturbances is very challenging

considering the environments that pedestrian navigation includes (Goldenberg 2007).

Barometers are commonly used to mitigate temporal height variations. This improves the
vertical channel accuracy, as long as the bias between the true height and current pressure
is resolved. It is common for commercial pedestrian systems to include an IMU,
magnetometer and barometer (Grejner-Brzezinska et al 2006, Mather et al 2006, Groves

et al 2007).

Ultra wide band measurements in pedestrian navigation are receiving more attention due
to their “multipath free” benefits in addition to non-line-of-sight requirements (Chui &
O'Keefe 2008, Renaudin et al 2008, Chui & O'Keefe 2009). While this approach requires
additional infrastructure, the potential use in first responders and other pedestrian

applications is promising.

1.2 Multiple IMU Integration

GPS and IMUs have been successfully integrated since the formal introduction of GPS.
More recently, attention has been placed on integration with MEMS IMUs to reduce cost,
but still provide robust navigation solutions. A natural progression is to use more IMU
sensors, and thus capitalize on the decreasing cost of MEMS sensors, in order to improve

overall accuracy. As such, researchers commonly fuse multiple IMU measurements in
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the raw observation (i.e. specific force and angular velocity) domain, but have not
pursued any other fusion methods. Thus, multi-IMU fusion can either occur in two
categorical domains: the observation or estimation domain. The following sections

explain these concepts in detail.

1.2.1 Raw IMU Observation Fusion

Numerous studies have taken an observation domain approach to redundant IMU
(RIMU) integration whereby the observations of several IMUs are fused, generating a
single virtual IMU measurement (Sturza 1988, Brown & Sturza 1990, Sukkarieh et al
2000, Allerton & Jia 2002, Colomina et al 2004, Giroux et al 2004, Pittelkau 2005,
Osman et al 2006, Pittelkau 2006, Waegli et al 2008). The term virtual IMU (VIMU)
will be used herein to describe fusion architectures in the observation domain. RIMU is
more commonly used in the literature and can be confused with reduced IMU which has

the same acronym.

In the development of VIMU theory, optimizing the configuration of the IMU sensor
axes is an important consideration. Pejsa (1974) mathematically determined the optimal
configuration for sensor axes; with sensors in a skewed formation rather than an
orthogonal one (although the ideal 3 axis sensor is orthogonal). This work named this
optimal setup the Skew Redundant IMU (SRIMU). Further work derived the GDOP
(Geometric Dilution of Precision) for a multi-sensor cluster to provide theoretical
estimations, incorporating correct weighting schemes and providing fault detection

through statistical misclosure testing (Sturza 1988, Brown & Sturza 1990).

The prominent method of RIMU fusion fuses raw IMU observations using least squares
estimation, mapping each IMU observation to a virtual IMU frame (which requires a
priori knowledge of the transformation into the virtual fame). The estimation is
described in Allerton & Jia (2002), Colomina et al (2004), and Waegli et al (2008). This
methodology is fundamentally flawed in that the IMU observations contain un-modeled

errors prior to fault testing thus negating fundamental rules of input/output covariance
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estimation. The work described in one paper (Waegli et al 2008) of the ten referred to in
this section (1.2.1) report an actual improvement in performance (approximately 30% to

45%), rather than theoretical derivations of what could be done.

Figure 1 shows the VIMU observation fusion and integration with GPS.

GPS i .
Kalman
IMU 1
Filter
Squares
IMU 2
Estimati Av, = IMU Observation (velocity increment)
strmation A, = IMU Observation (angle increment)
(, ; = GPS Observations (psuedorange and Doppler)
IMU n " . . i
R,; = GPS Observation covariance matrix

X = States

P, = State covariance matrix

System Feedback ( OAV, SAO) 5 > Corrections of €

Figure 1 — IMU Observation Fusion Architecture

Often, the purpose of virtual IMU integration is not to improve the accuracy (although
this is a desirable outcome), but to facilitate the detection and exclusion of faulty
observations (Sturza 1988, Sukkarieh et al 2000). Of the papers listed in this section
(1.2.1), only Waegli et al (2008) provides the actual statistical thresholds for fault
detection as well as the quantity of the observations actually rejected. It therefore is
prudent that more analysis be performed on the behaviour of the distribution of the raw
observations since the true impact of faults in the data remains unexplored. It is unclear

whether or not any faults even occur within the IMU data.



1.2.2 Architectural Filter Fusion

The fusion of GPS and a single IMU is typically implemented in a Kalman filter (Groves
2008). Other estimation techniques such as particle and sigma point filters are gaining
popularity (e.g. Kubo & Wang (2008), Li et al (2008)), but go beyond the scope of this

thesis.

Several architectures have been proposed for the integration of multisensor systems
(Allerton & Jia 2005). While the literature is not consistent in terms of nomenclature,
Figure 2 represents a selection of different architectures. For simplicity, the architectures
discussed within this thesis are either centralized or decentralized, although Mutambara
(1998) categorizes architectures into three categories. “Full” decentralization
architectures provide random inter-communication between filters and do not provide one
“final” solution making this filter unsuitable for navigation purposes and therefore will
not be discussed further. Subsets of the decentralized architecture include the federated
filter and sensor observation fusion. The bottom three architectures in Figure 2 represent
the architectures that will be considered in this thesis; namely the stacked and federated

filters as well as the VIMU.

Multisensor

Estimation

Centralized FuII. . Decentralized
Decentralization

. Federated Sensor
Stacked Filter Observation

Filter Fusion (VIMU)

Figure 2 — Categorization of Multisensor Architectures



1.2.2.1 Centralized Filter Fusion

This multi-IMU approach uses a centralized filter that is composed of several individual
block filters (e.g. Brand & Phillips (2003), Colomina et al (2004), Bancroft et al (2008),
(Bancroft 2009)). The technique allows for the inclusion of relative geometry
constraints, such as relative position, velocity and attitude between IMUs. The use of
these constraints represent an advantage over the VIMU estimation techniques since

VIMU architectures fail to utilize for this useful information.

The process of fault detection has not been investigated thoroughly for the centralized
approach. The filter has shown promise with a 58 to 71% accuracy improvement in
position, velocity and attitude relative to a truth solution (Bancroft et al 2008, Bancroft

2009). The centralization architecture is depicted in Figure 3.

— Sensor 1

- Sensor 2

-» Sensor 3

. - th
(£, = Observations of the i" sensor

R, = Covariance matrix of

-» Sensor 7 the i™ observations set

X = States centralized filter
13); = State covariance matrix of

System Feedback (5, ) the centralized filter
¢ =Esimation of e

& e =Corrections of € )

Figure 3 — Centralized Data Fusion Architecture

Also not discussed thoroughly in the current literature is the numerical stability of such a

large filter (noting that a five IMU filter can consists of 105 states).
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1.2.2.2 Federated Filter Fusion

To the author's knowledge, there has been no published work in the domain of
decentralized filters incorporating multiple IMUs. Federated filters were introduced in
the late 1980°s and early 90*s for GPS and INS integration (e.g. Carlson (1990) and Wei
& Schwarz (1990)), but have not been extended to the multi-IMU case. Federated filters
utilizing several other navigation systems such as radar altimeters, terrain aided
navigation systems and synthetic aperture radar have been discussed, but not restricted to

IMUs (Carlson 2002, Allerton & Jia 2005).

Figure 4 shows a decentralized federated filter, where n individual “local” filters provide
the input to a master filter (Mutambara 1998, Allerton & Jia 2005). Federated filters use
an information sharing algorithm between the master and local filters (Gao et al 1993).
Carlson and Berarducci (1994) discuss variations of the sharing principles, essentially
tuning the configuration. The decentralized architecture, and like derivatives, are
conducive to a multi-IMU scenario where each IMU represents its own local INS filter.
An attractive by-product of the decentralized filter is a decrease in processing time,
relative to its centralized counterpart (Gao et al 1993). Processing time is an important
consideration in real-time applications where the use of multiple inertial units requires

increased matrix computations and lengthy inversions.
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— Reference
System

Sensor 1
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: VERE N/
Sensor 2 Data T3

Fusion
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{, = Observation(s) of the i" sensor

Sensor 3

% = States of the i" filter

b4 . .
Sensor # _ 2 P, = State Variance Covariance
"""" Matrix of the i filter

Information Sharing ¢ = Esimation of

Figure 4 — Federated Data Fusion Architecture

1.3 Thesis Overview

GNSS (Global Navigation Satellite System) aided INS is built on three key foundations:
GNSS fundamentals, inertial navigation fundamentals, and the fusion of GPS and INS
through an estimation process. The following sections provide the context for this thesis
and the associated research. The review provided here is not intended to be
comprehensive, but rather to provide background knowledge in order to facilitate the

understanding of the integration schemes used within this thesis.

Chapter Two of this thesis provides the necessary background knowledge of GPS for
pedestrian navigation users. GPS errors are discussed in detail to provide context to the
errors as well as their mitigation techniques. Chapter Three provides background
knowledge of inertial navigation, inertial measurement devices and errors contained
within inertial measurement. Chapter Four provides the theoretical background for the
estimation theory behind the filters proposed in Chapter Five. Chapter Four discusses the
Kalman filter, its limitations and the input data requirements. Chapter Five discusses

specific architectures used to fuse multiple IMUs for pedestrian navigation, namely the
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VIMU, stacked filter and the federated filters. The chapter provides the construction and
theory behind each proposed filter, in addition to several advantages and disadvantages
for each architecture. Chapter Six provides results of two data sets in typical pedestrian

environments. Chapter Seven concludes with several recommendations and conclusions.
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Chapter Two: Satellite Based Navigation

2.1 GNSS Terminology

Global Navigation Satellite System (GNSS) is a generic term referring to worldwide
radio-navigation satellite systems. The United States GPS was the first GNSS, declared
operational in April 1995. The term was not used with respect to the U.S. Navy*s Transit
(GPS*s predecessor), although arguably it was the first true GNSS, having started
operating in 1964. Today, many GNSS systems are either operational, under
replenishment, or under deployment. The Russian Global Navigation Satellite System
(GLONASS) was developed simultaneously with GPS, operating with a full 24 satellite
constellation in 1996, although the number of satellites has at times been reduced due to
political and financial strife. In 1999, the European Union decided to proceed with its
own GNSS, Galileo, although it will be managed by the public and private sectors rather
than from within a military jurisdiction. Japan, under government and industry
management, has developed Quasi-Zenith Satellite System (QZSS), a localized
augmentation to GPS and future GNSSs. China has developed its own GNSS, called
BeiDou (or Compass), which anticipates usage of a full 30 satellite constellation and
satellite based augmentation operations. The Indian Regional Navigation Satellite
System (IRNSS) is also under implementation with anticipation for both SBAS and
global capabilities. Thus, it is clear that the term GNSS widely refers to available

radionavigation satellite systems extending beyond only GPS.

2.2 The Global Positioning System

The Navigation System by Timing and Ranging (NAVSTAR) GNSS, now referred to
simply as GPS, provides Radio Frequency (RF) ranging capabilities enabling military and
civilian users to compute precise position, velocity, and time (PVT) through trilateration.
The complete system was conceived during the 1960“s after the success of Transit, and in

1969 the U.S. Office of the Secretary of Defense organized the Defense Navigation
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Satellite System to consolidate the development of the system. The Joint Program Office
(JPO) was instituted in 1973 to facilitate the construction, ground control management
and receiver development for NAVSTAR, and currently still operates in that capacity

today (Kaplan & Hegarty 2006).

GPS consists of three major segments: the space, control and user segments. The space
segment manages the construction and launching of replacement satellites. The control
segment monitors the health of the satellites and arranges satellite navigation data
uploads. The user segment includes all military and civilian users and the manufactures

that produce GPS receivers.

2.2.1 GPS Space Segment

The GPS satellite constellation is nominally at least 24 satellites set in 6 orbital planes,
each orbital plane consisting of four or five satellites. Every orbital plane is earth
centered, separated by 60 longitudinal degrees, and elevated 55 degrees from the
equatorial plane (Lachapelle 2007). Each satellite orbit is slightly elliptical with
eccentricities typically near 0.01, has an 11 hours 58 minutes period (one-half sidereal
day) and are medium earth orbits (MEO), approximately 20,200 km from the mean
surface of the earth. At the time of writing the GPS constellation consisted of 31 active
satellites (United States Naval Observatory 2010). On 24 March 2009, Satellite Vehicle
Number (SVN) 49, a GPS IIR-M satellite, was launched, beginning a new era of LS5
signal transmission. SVN 49 was retrofitted with an L5 transmitter to fulfill requirements
under the International Telecommunication Union Radiocommunication Sector and

therefore avoided any foreign claim to the L5 frequency band.

2.2.2 GPS Control Segment

The control segment consists of several satellite tracking stations around the world
including monitoring stations and master control stations, used to determine the position,

velocity and time (PVT) of each satellite. It is the control segment™s responsibility to
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precisely determine the PVT of each satellite, upload ephemeris parameters and provide a
predicted clock model of the satellite. These predicted ephemeris and time models are

broadcast for use by the user segment.

Timing upon each satellite is maintained by an atomic clock. GPS Block I, II, and some
ITA satellites used Caesium clocks, but all subsequent satellites contain stable Rubidium

clocks.

The U.S. Naval Observatory maintains GPS time to be within 1us of Coordinated
Universal Time (UTC) modulo 1 integer second (IS-GPS-200E 2010), although GPS
time is typically within 50 ns (Kaplan & Hegarty 2006). This time dissemination is a
product of both the ground control stations, using International Atomic Time Standards,
and GPS satellite measurements. GPS time and UTC time were set coincident at Oh
January 6, 1980. GPS time is a continuous time scale and is not adjusted for leap
seconds, which results in GPS time being biased by integer seconds (hence the modulo 1

integer second adjustment).

2.2.3 GPS User Segment

GPS (and in general GNSS) users use Time of Arrival (TOA) transmission observations,
attempting to directly measure the travel time between the user and satellite. In order to
measure the travel time, GPS uses three ultra high radio frequencies, namely: LI
(1575.42 MHz), L2 (1227.60 MHz), and L5 (1176.45 MHz). Pseudorandom noise (PRN)
code sequences and the navigation message are modulated onto each satellites carrier,
thus utilizing Code Division Multiple Access (CDMA) spread spectrum methods. Gold
PRN codes were selected to provide minimal self and cross correlation between satellite

PRN codes (Gold 1967).

Two positioning services are currently supported by GPS: Standard Positioning Service
(SPS) and Precise Positioning Service (PPS). SPS is available to all users while PPS is
restricted for the U.S. military and other authorized users. Currently, Anti Spoofing (AS)
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encrypts the Y code restricting use of the Y code to PPS users. The encrypted Y code is
referred to as the P(Y) code and is modulated onto the L1 and L2 frequencies. Selective
Availability (SA) was also used to segregate SPS and PPS users prior to 2000. SA
degraded the accuracy of the measurements by introducing satellite clock dithering and
degraded ephemeris parameters providing false satellite positions. SA reduced the
accuracy of single point GPS receivers by up to 100 m. SA was officially turned to zero
on May 2, 2000 by U.S. presidential order and the capability for SA on Block III
satellites was later removed (GPS World Staff 2007). With SA off, the benefit of the PPS
service over the SPS is: (1) access to the codes sequences on L2 providing dual frequency
ionosphere corrections, (2) longer P(Y) code lengths and higher chipping rates providing
higher range measurement precision and (3) lower multipath effects. With the addition of
L5, SPS users will be able to achieve similar precision to those of PPS, although with less

ability to mitigate interference and jamming.

2.3 GPS Signal Structure

Each GPS satellite transmits three components: the carrier, the ranging code and the
navigation data message. The PRN code is modulated onto the carrier phase and the
navigation data message is added via modulo-2, forming the Binary Phase Shift Keyed

(BPSK) digital modulation. Mathematically, the transmitted signal on L1 is represented

as
S,=AP Y’ t @D ¢ cos 2f;t YA4C' t BD ¢ sin 2f;¢ (2.1)
where:

SZI is the signal transmitted on L1 of the j" satellite,

A, Aq are the in-phase and quadrature amplitude,

py’ ; is the encrypted version of the Y code, known as the P(Y) code of the jth
satellite,

Dt is the navigation data message,
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C/ ¢ is the C/A PRN code of the j" satellite, and

11 is the L1 frequency (1575.42 MHz).

The @ symbol refers to the modulo-2 addition and is commonly referred to as the XOR

operator.

The code modulation yields a spread spectrum proportional to the chipping rate of the
code. The main lobe of the spread spectrum for the C/A code is 2 MHz (1.023 MHz
chipping rate), and 20 MHz for P(Y) code (10.23 chipping rate).

GPS signals are broadcasted right hand circularly polarized (RHCP). This counters the
change in polarization, resultant from Faraday rotation that would otherwise occur on a
linearly polarized signal. The RHCP signal can provide improved multipath rejection

(i.e. rejecting LHCP signals) at the antenna level for high precision applications.

A satellites navigation data message consists of five 300 bit subframes. Each subframe
consists of ten 30 bit words. Because the bit rate of the navigation message is 50 bps, it
takes 750 seconds (12.5 min) to completely observe the navigation message, although
subframes 1 to 3 repeat the same information. Subframe 1 contains the current GPS
week number, satellite accuracy and health, clock correction terms and differential group
delay information. Subframe 2 and 3 contain ephemeris parameters. Subframes 4 and 5
contain almanac data, special messages, satellite configuration flags, ionospheric model
parameters, and UTC offset data. Subframes 4 and 5 contain 25 pages and are

sequentially broadcasted (Lachapelle 2007).

The GPS signal structure is intricate and will not be further reviewed herein. Further
information on the structure of the signal can be found in Misra & Enge (2001), Kaplan

& Hegarty (2006), and IS-GPS-200E (2010).
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2.4 GPS Observables

Three main observations are typically provided by GPS receivers: pseudorange, carrier

phase, and Doppler frequency.

2.4.1 Code Pseudorange Observation

The apparent time shift between the receivers replicated code and the code received at
the antenna yields a function of the travel time between satellite transmission and antenna
recipient (Kaplan & Hegarty 2006). The transmission is referenced to the satellites time
and the reception is referenced to the receiver time, thus actually not measuring the time
of travel between satellite and antenna, but the apparent time of travel. Multiplying this
time difference by the speed of light yields a biased range; hence the range is called a

pseudorange. The pseudorange observation equation of the j™ satellite is given as

P =g’ +8 +c d/ —dT +d,+d]  +&],+¢] (2.2)
where:

o’ is the geometric range between satellite and receiver antenna [m],

Sp’ is the satellite position error (broadcast ephemeris) [m] ,

c is the speed of light [m/s],

dt’ is the satellite clock error with respect to GPS time [s],

dT is the receiver clock error with respect to GPS time [s],

dl{; ) is the ionospheric error [m],

d;;ap is the tropospheric error [m],

g;)"m is the code multipath [m], and

g;; are the other code errors (considered to be stochastic) [m].
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2.4.2 Carrier Phase Observation

The carrier phase observation is the most precise range measurement a GPS receiver can
provide. While the carrier phase observation still contains the same satellite based
propagation errors as that of the pseudorange, the carrier phase typically provides much
better precision in terms of noise and multipath. The cost of the better precision however
comes at the expense of an unknown integer ambiguity term and is to be resolved by the

processing software.
The ionospheric delay term for the carrier phase has the same magnitude, but opposite
sign to the pseudorange. This effect is a result of carrier phase advancement versus code

delay experienced by the signal during propagation through the atmosphere.

The phase observation equation of the j" satellite is given as

F =0 Y& Ycd/ —dr —dj, *d) tAN' tg g (2.3)
where:
A is the carrier phase wavelength [m] and

N/ is the integer ambiguity

j is the carrier phase multipath [m], and

g{;‘ are the other carrier phase errors (considered to be stochastic) [m].

Due to the difficulty in resolving the ambiguity in single point mode (which most
pedestrian navigation applications are) and the inability to maintain carrier phase lock in
attenuated environments, the carrier phase observation is not used and therefore will not

be further discussed.
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2.4.3 Doppler Frequency Observation

The relative motion between the satellite and user antenna results in an apparent
frequency shift called the Doppler frequency. The Doppler frequency is an instantaneous
measurement made on the carrier phase tracking loop and since it is a time derivative of
the phase observation it is impervious to the carrier phase ambiguity. The Doppler can be
scaled by the wavelength to provide a relative velocity between the satellite and antenna.
Since the satellites velocity can be precisely calculated, multiple Doppler observations

can provide the absolute velocity determination of a receiver.

The Doppler observation equation of the jth satellite is given as

¢ =p +& +c di —dl’ +d),+d), +& +& (2.4)
where:
P’ is the geometric range rate between satellite and receiver antenna [m/s],
5p’ is the satellite velocity error (broadcast ephemeris) [m/s] ,
df’ is the satellite clock drift error [s/s],
dT 1s the receiver clock drift error [s/s],
d’ is the ionospheric error drift [m/s],
d’ is the tropospheric error drift [m/s],
trop
g(; is the Doppler multipath rate of change [m/s], and
g; are the other Doppler errors (considered to be stochastic) [m/s].

2.5 GPS Error Sources

The errors in observation Equations (2.2), (2.3), and (2.4) can be categorized into three
sources: satellite based, propagation, and receiver based. Satellite based errors include
the satellite clock and ephemeris errors (i.e. satellite position and velocity errors).

Propagation errors include the effects resultant from the ionosphere, troposphere,
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surrounding environment, and interference. Receiver-based errors are a function of the
receiver clock, antenna type, noise characteristics and inter-channel biases. All GPS
error sources discussed within this thesis are considered either stochastic or systematic.
In some cases, systematic errors will be represented as stochastic processes, thus creating
the inability to correct, solve or remove the error, but enabling some form of error

mitigation.

2.5.1 Satellite Based Errors

Satellite based errors include the broadcast ephemeris errors and the satellite clock error.
These errors are ultimately controlled by the GPS control segment. The satellite
ephemeris parameters and clock are reverse computed using known control stations
around the world. The control segment then predicts ephemeris parameters and clock
corrections, uploading them to the satellite approximately every two hours. The longer
the delay between updates the more error present in the broadcast parameters. In post
mission applications, these parameters can be estimated with very high precision,
reducing the final GPS satellite orbital error to 5 cm and satellite clock time to 0.5 ns (i.e.

~15 cm) (Kaplan & Hegarty 2006).

2.5.1.1 Broadcast Ephemeris Errors

GPS satellites serve as control points used in determining a user”s PVT, and thus any
error in the control points are observed in the observations. As part of the satellite
navigation message, subframes 2 and 3 contain the necessary parameters to compute the
satellite position and velocity. These broadcasted parameters contain a residual error,
introducing an error into the PVT estimation of the satellite. A total of 16 ephemeris
parameters are sent by the satellite, six of which represent the fundamental Keplarian
elements describing an orbit. The remaining parameters provide the perturbations of the
Keplarian orbit, which account for the gravitational effects of the earth, moon and sun,
solar radiation pressure and varying gravitation effects around the earth (Misra & Enge

2001).
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The satellite trajectory can be defined in terms of a space vehicle body frame, consisting
of the three orthogonal axes, pointing along track, across track and radially from the user.
The magnitude of the ephemeris error is dominated by the along and across track errors
of the satellite (resulting from weak geometry in estimating the PVT of a satellite from
multiple stations on earth). It is common for satellites to have a 1 to 6 m residual position
error (3D); however the effective range error is only typically 0.8 m (lo)(Kaplan &
Hegarty 2006). The broadcast satellite velocity error is around 0.6 mm/s (1o) (Olynik
2002).

2.5.1.2 Satellite Clock Errors

Aboard all GPS satellites are atomic clocks which maintain the onboard timing
operations, signal generation and broadcasting. While the clocks are extremely stable,
absolute timing of the satellite clock drifts with respect to GPS time. The control
segment approximates the clock errors using a second order polynomial fit and uploads
the coefficients of the polynomial to the satellite to include in the broadcasted navigation

message. The satellite clock correction is represented as

dt'=a, +a, t—t, +a, t—t,  +At +1, (2.5)
where:
a,.a,,a, are the broadcast clock correction coefficients [s, s/s, s/sz],
0 1 2
t is current epoch time [s],
{, is the referenced epoch [s],
At, is the correction due to relativistic effects [s], and
o is the group delay [s].

The clock correction parameters are predicted by the control segment and therefore still
contain residual errors. The magnitudes of the residual errors are typically 0.3 to 4 m,
and vary as a function of satellite clock type and time since the last control segment

upload (Kaplan & Hegarty 2006). The magnitude of the residual clock drift typically
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resides around 0.084 mm/s (1c) for Block II, 0.070 mm/s (1c) for Block IIA, and 0.052
mm/s (1o) for Block II R (Olynik 2002).

Since the satellite experiences high velocities and travels through varying gravitational
potentials the clock corrections also include a relativistic correction. When the satellites
are at perigee (i.e. closest to earth) the velocity reaches a maximum and the gravitational
potential reaches a minimum (and vice versa). This change in speed and gravitational
potential causes the satellite clock to run more slowly and when the satellite is at apogee
the clock will run more quickly relative to earth. This effect, shown mathematically
below, can have a maximum magnitude of 21 m (70 ns) and is computed as (IS-GPS-

200E 2010)

N = Fe\Jasin E, (2.6)
where:

F is the a predetermined constant, -4.442807633 e-10 [s/m"”],

e is the satellite orbit eccentricity,

a is the satellite orbit semi-major axis [m], and

E, is the satellite orbit the eccentric anomaly.

The average time it takes the signal to travel from the satellite to earth can reach 75 ms.
During this time, the earth rotates resulting in a relativistic error, resulting in a small
discrepancy between the broadcast and received time. The error is commonly referred to
as the Sagnac effect and the correction is simply referred to as the earth rotation

correction.

Prior to launch, the satellite clock frequency is adjusted from 10.23 MHz to
10.22999999543 MHz so that GPS users do not have to correct for this portion of
relativity theory.
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2.5.2 Propagation Based Errors

Electro-magnetic waves experience effects resulting from the medium they travel in, thus
GPS signals experience errors resulting from the atmosphere and surrounding
environment. The medium and local environments are categorized as propagation-based

€rrors.

2.5.2.1 The Ionosphere and Ionospheric Errors

The ionosphere is a portion of the atmosphere extending 50 to 1,000 km above the
surface of the earth. For GNSS L band EM waves, this portion of the atmosphere is
dispersive, meaning that different frequencies propagate differently. The dispersive
nature of the ionosphere is a result of the free electrons present in it. Free electrons are
created by the ionization of gas molecules by ultraviolet cosmic rays. The ionospheric
effect on group velocity and phase velocity are equal, but of opposite sign (see Equations
(2.2) and (2.3)). The magnitude of the delay is proportional to the electron density and
inversely proportional to the square of the frequency. Total Electron Content (TEC) is a
value used to represent the density and refers to the number of free electrons in a 1 m?
cylinder cross section extending from satellite to antenna. Mathematically, the
ionospheric error is represented as
d = —40.;-2T EC

where

(2.7)

TEC  is the total electron density [electrons/m?] and

f is the carrier wave frequency (e.g. L1) [Hz]

The TEC is diurnal, but is also a function of antenna location, season, satellite elevation
angle, ionizing flux, magnetic activity, sun spot cycle and scintillation (Kaplan &

Hegarty 2006).
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The signal path of each satellite-to-user observation will have a different ionospheric

delays and therefore has to be corrected. A common approach to determine this error is

to define the user's zenith ionospheric delay ( ;) and multiply it by an obliquity factor.

won

Figure 5 shows a cross sectional diagram of the situation.

Figure 5 — Obliquity Factor of the zenith Angle

Mathematically, the process can be modeled as

. 27
dl =d° 1{%}

on won RE + h] (2.8)
OF;
where:
R, is an approximation of the earth*s radius [km],
é’j is the zenith angle of the j™ satellite [°],
h, is the approximate mean height of the ionosphere (nominally 350 km) [km], and

OF. is the obliquity factor of the j™ satellite.
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Mitigating the ionospheric error is done in a variety of ways. Satellite navigation users
capable of making multiple frequency observations can remove the first order effect of
the ionospheric error. The first order effects account for 99% of the ionosphere error
magnitude (Lachapelle 2007). Users capable of differential GPS can determine and
mitigate the ionosphere error, although the accuracy is a function of the distance between
receivers. Unfortunately, the use of multiple receivers and multiple frequencies adds cost

to hardware and is thus typically too expensive for pedestrian navigation applications.

The Klobuchar model (also known as the broadcast model) approximates the zenith
ionospheric error with a constant value during the night and a half cosine function during

the day. The model is a function of user time as follows

. A .
4, if |t — 4] > T“ ,otherwise

difm = (29)
C{Al 4 (MD
A4
where:
4 is the constant bias (5e-9 s) [s]
A4, is the amplitude of the cosine function [s]
A is the corresponding peak of the cosine function (50,400 s or 1400 h local time)

[s], and

is the period of the cosine function [s].

Parameters A4, and 4, are determined by the control segment and broadcast in the fourth

subframe of the navigation message. It has been estimated that the model only accounts

for 50 % of the true ionospheric error (Misra & Enge 2001).

Other methods of mitigating the ionosphere error include using 2D and 3D wide area

models, grid and spherical harmonic global ionospheric models, such as IONosphere map



27

Exchange (IONEX) and Bernese ION format, Voxel (box) approach and radio

occultation from low earth orbiting satellites.

The zenith ionosphere error typically ranges between 3 and 45 m (Kaplan & Hegarty
2006), although in times of high ionospheric activity can be much greater. The rate of
change in ionospheric error is on the order of 1.4 mm/s (15) (Olynik 2002), but is a

function of the level of ionospheric activity.

2.5.2.2 Tropospheric Errors

The troposphere extends from the surface of the earth to approximately 50 km and
consists of mostly nitrogen, oxygen gas and water vapour. About 75 % of all the dry gas
atmosphere of the earth is contained within the troposphere. The majority of water
vapour is within 4 km of mean sea level and all of the water vapour is within 12 km. The
troposphere is non dispersive and its refractive index is typically 0.03 % of unity. The
troposphere error consists of two categorized sources: the dry and wet components.
Since the dry and wet components behave very differently they are modeled differently,
but ultimately the sum of the dry and wet troposphere errors equals the total tropospheric

C€Iror.

Errors of the dry and wet components are computed by integrating the refractivity over
the entire path length. Thus, determining refractivity throughout the troposphere can
provide estimates of the troposphere error. Refractivity is a function of temperature,
pressure and water vapour. Mathematically the dry component refractivity can be

computed as

P
Now = (2.10)
where:
a, is an empirically determined constant (~77.624 K/mbar)

P is the total pressure [mbar], and



28

7 is the temperature [K].

Moreover, refractivity for the wet component can be computed as

e

e

Ny =a, 7% (2.11)

where

a g % are empirically determined constants (approximately -12.92 K/mbar and
3.719 - 10° K*/mbar, respectively), and

e is the partial pressure of water vapour [mbar].

The troposphere error is then represented as

d,,, = 10_6'[Na,ydl +107° Nwdl- (2.12)

Unfortunately, determining temperature, pressure and humidity along the entire travel
path is unrealistic in most geomatics applications, including pedestrian navigation. Thus,
several models to approximate the troposphere error have been developed. Most, at
present, provide the zenith troposphere delay as a function of temperature, pressure,
humidity and latitude, and require an additional obliquity factor to map the error to the
satellite zenith. The obliquity factor of the ionosphere and troposphere errors are

typically not the same.

Numerous troposphere models have been developed including the Saastamoinen,
Hopfield, modified Hopfield and Black and Eisner, which assume different atmospheric
characteristics and models. = The magnitude of the zenith troposphere error is
approximately 2.4 m, and typically the accuracy of these models is about 80 to 90 %,
leaving residuals on the order of 25 to 50 cm (Misra & Enge 2001). The rate of change in
the residual error is approximately 1 mm/s at the zenith and 2 mm/s at the horizon

(Olynik 2002).
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2.5.2.3 Multipath Errors

Multipath errors, or simply multipath, are created when antennas receive non line of sight
signals which interfere with the transmitted line of sight signal. In some cases, such as
indoors and in urban canyons, there may not be line of sight signals received by the

antenna.

Multipath is categorized into two categories: specular and diffuse (Lachapelle 2007).
Specular multipath is created when the transmitted signal is reflected in a particular
direction and follows Snell*s law. Diffuse multipath is created when the signal is
reflected in multiple ways. Materials that are smooth (e.g. glass buildings and cars)
typically produce specular multipath and normally contain equivalent signal strengths,
while rough materials (e.g. trees or ocean surfaces) produce diffuse multipath with

reduced power levels.

Multipath is a systematic error that is very difficult to quantify in real time and thus
difficult to correct. However, there are a few characteristics which are important to
consider (Kuusniemi 2005):
1. Multipath decorrelates both temporally and spatially very rapidly.
2. Line of Sight (LOS) signals are always RHCP and all LHCP are multipath
signals.
3. Multipath is observable and repeatable and is a function of the satellite and user
position and surrounding environment.
4. Multipath signals can have seemingly normal power levels, but generally are
lower in power.
5. Multipath is unbounded for Non-LOS (NLOS) signals.
There is very little that can be done to mitigate multipath at the pseudorange level. Most
mitigation is performed internally in the receiver and antenna. HSGPS receivers are
particular susceptible to multipath, but have the advantage of providing users with more

observation availability.
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Multipath signals always arrive after the LOS signal; however the change in the phase of
the reflected signal can result in estimated ranges that are less than the true distance
(ignoring other ranging errors). Multipath on the pseudorange is limited to one half chip
length (~150 m on L1 C/A code), provided LOS signals are present. However, in some
environments such as indoors, only NLOS signals are available and therefore multipath

can theoretically be unbounded.

Multipath is mitigated by appropriate site selection, receiver design, antenna selection
and use of an antenna ground place (choke ring). Unfortunately, none of these attributes
are conducive to pedestrian navigation, thus making multipath one of the largest error

sources in pedestrian navigation applications.

2.5.3 Receiver Based Range Errors
2.5.3.1 Receiver Clock Errors

Inherent to all GNSS receivers is a time bias between GPS time and the receiver's
internal time. Since the receiver estimates the range based on the transmit time
(referenced to GPS time) and the received time (referenced to the receiver's time), all
measured ranges will contain a bias known as the receiver clock error. The error is
estimated within the estimation process as a fourth parameter (in addition to three
position parameters). This pattern also follows with the receiver®s clock drift, which is

also estimated as part of the navigation solution if Doppler observations are used.

Typically a GNSS receiver will incorporate a relatively low cost quartz clock, although
some high end geodetic receivers will use a temperature compensated crystal oscillator
(TCXO). These high-end clocks are typically more expensive, require more power and

are physically larger thus limiting their applications.
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The receiver clock error is a systematic quantity. The clock error can also be predicted
from apriori information contained in the clock drift, thus in a filter, the receiver clock

drift is typically estimated as a random walk or Gauss-Markov process.

2.5.3.2 Noise

Random noise is inherent in all GNSS observations, albeit it may have different
magnitudes. Noise defined herein is a stochastic error. Noise results from amplifiers,
antenna, cables, inter-channel biases, thermal noise jitter (receiver clock), dynamic stress
on the oscillator and simple resolution of the observed code. The L1 C/A code has a
noise standard deviation of about 0.8 m (10), although this value varies between receiver
types. A 6 cm/s (1o) noise standard deviation on the Doppler observation is commonly
used. Noise error magnitude is also fundamentally based on the strength of the received

signal power.

Noise can be determined through a zero baseline test as discussed in Lachapelle (2007).
To provide context, a 10 hour zero baseline test was conducted in open skies and in a
residential house. In the latter case the signal attenuation reached 17 dB, but was
commonly about 10 dB. Since zero baselines remove all systematic errors, the residual
error 1s stochastic. It is commonly assumed that these errors are normally distributed,
however as shown in Figure 6 and Figure 7 the errors are not completely Gaussian. For
the purposes of this thesis, the pseudorange and Doppler observations are however

assumed to be Gaussian.
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Figure 6 — Zero Baseline Pseudorange Errors (u-blox 10 Hours @ 1 Hz)"
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Figure 7 — Zero Baseline Doppler Errors (u-blox 10 Hours @ 1 Hz)'

'Note - ¢ is the standard deviation and shown in the figure with a black line, y, is the skewness of the data,
v, is the Kurtosis of the data and H, is the spectral density of the data.
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2.5.4 Received Signal Power
Carrier to Noise density (C/N,) is a measure of the relative signal strength compared to

the surrounding noise environment. This metric provides a concise measurement of the

integrity of the signal received at the antenna. C/N, (in units of db-Hz) is computed by

C/Noz{Ps} (2.13)

o
where

P is the signal power [W] and

N, is the noise power with respect to a 1 Hz bandwidth [W/Hz].

Typical C/N, values for direct LOS signals are greater than 35 dB-Hz. Signals between
28 and 35 dB-Hz are marginal and any signal less than 28 dB-Hz is poor. Signals less
than 28 dB-Hz are likely reflected signals or signals with severe attenuation and usually

occur indoors.

The Signal-to-Noise Ratio (SNR) alternatively provides an indication on the receiver
performance given the observed signal. This metric accounts for the receivers processing

bandwidth, nominally 2 MHz, and is computed by

P
SNR ={ > } (2.14)
BN, |,
where
B 1s the receiver's processing bandwidth [Hz].

The signal power is weakened by several factors including free space loss, ionospheric
and tropospheric loss, depolarization loss, and antenna location. Power gains include the
SV Effective Isotropically Radiated Power (EIRP). These power levels typically sum to
a nominal value of -160 dB and may vary depending on latitude, satellite elevation angle,

atmospheric conditions and local environment. Figure 8 graphically shows the
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magnitude of each power loss and gain, free space loss accounting for 97 % of power loss

(Lachapelle 2007).
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Figure 8 — Power Losses and Gains

Goldhirsh & Vogel (1998) indicate that tree canopies can reduce power levels by 11 dB
with approximately 5 dB RMS variation at 1.6 GHz (L1). The study also indicates that
indoors the L1 signal power can be reduced by up to 25 dB and that the human body

shielding can reduce power levels between 6 to 10 dB.

Figure 9 shows the cumulative probability distribution of the 10 hour data set presented
in Section 2.5.4. This distribution shows that indoors, the availability of untainted signals
is reduced dramatically. This particular data set shows that 41 % of the C/N, are lower

than what would be observed in open sky conditions.
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Figure 9 — Cumulative Distribution of C/N, (u-blox 10 Hours @ 1 Hz)
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Chapter Three: Inertial Navigation

Inertial navigation derives relative navigation parameters from a self contained
autonomous sensor system (i.e. an IMU). An IMU contains an accelerometer triad, that
measures the specific force exerted on the IMU, as well as a gyroscope triad, that
measures the angular velocity of the IMU. Once earth rotation and gravity effects are
removed from the IMU observations, the integration of the angular velocity over a finite
period yields the rotation over the interval and the double integration of the specific force

yields the change in position (e.g. Farrell & Barth (1998)).

The measurement errors in IMUs are a chief concern, since they accumulate with
successive integrations and vary with time, making them hard to quantify over a single
interval. In order to estimate the IMU errors, measurements are checked against other
navigation information. The fusion of GPS and IMU measurements is attractive since
satellite measurements do not accumulate like those of inertial units. GPS therefore
provides absolute positions (and velocity) to the system, in addition to providing essential
information to estimate IMU errors. Other updates to the INS can provide enhanced IMU
error estimation including zero velocity updates (Godha & Lachapelle 2008), speed
updates (i.e. observations from wheel speed sensors) (Gao 2007), coordinate updates and

non-holonomic constraints (Godha 2006).

3.1 Coordinate Frames

Four major coordinate frames are often used in inertial navigation. Since each plays a
critical role in the INS, a brief description of these frames is necessary. The four
coordinate frames discussed are: the inertial frame (i frame), Earth Centered Earth Fixed
(ECEF), local level (LL) frame and the body frame (b frame). The inertial frame, which

is a non-rotating, non-accelerating frame, is fixed with respect to celestial objects (e.g.
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stars). Table 2 shows the definition (and convention) of the frames used within this

thesis.
Table 2 — Coordinate Frame Convention
Frame Origin X Axis Y Axis Z Axis
Toward Orthogonal 'to X .
Inertial (i) Earth®s Centre of Vernal anq Z Forming a Earth Rotation
Mass . Right Handed Axis (mean)
Equinox
Frame
Earth Mean Orthogonal to X
Centered Earth®s Center of Meridian of and Z axis Earth Rotation
Earth Fixed Mass Greenwich Forming a Right Axis (mean)
(ECEF) (e) Handed Frame
Local Level Geodetic tOhZﬂEff(:rlzrllzg
(LL) Frame IMU Vertex Geodetic North ..
East Ellipsoid,
0 Upward
Orthogonal to X
Body Frame Across Track | Along Track of and Y Axis
y(b) MU Vertex of IMU %MU Forming a Tight
Handed System

3.2 Attitude Representation

Transformations between coordinate frames are very common in an INS. IMU
observations are made in the body frame, the user typically desires output navigation
information in the ECEF or LL frame and the earth rotation vector is easiest to determine

in the inertial frame.

This work will make use of three types of attitude representations: direction cosine matrix
(or rotation matrix), quaternion, and Euler angles. Each representation has its own
advantages and disadvantages, and typically a combination of all three is used in
software.  Schleppe (1996) provides an excellent review of the various attitude

representations and their respective conversions.
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3.2.1 Direction Cosine Matrix

The direction cosine matrix represents a rotation between two arbitrary frames (e.g.
rotation between frames a and b). An element within the direction cosine matrix
(represented by row r and column c) contains the cosine of the angle between the ¢ axis
of the a frame and the r axis of the b frame (Savage 2007). Direction cosine matrices are
unambiguous and contain no singularities. The direction cosine matrix however does
have an inherent weakness because each element within the matrix does require the use

of trigonometric processing, a large processing burden.

3.2.2 Quaternion

Quaternions are based on Euler's theorem stating that between two coordinate systems
one single invariant axis exists with one rotation about that axis. The four parameter
quaternion is defined by a scalar rotation angle and a unit vector, which is commonly

called the Euler axis. Mathematically, the quaternion can be expressed as

cos s
_ 2
q= B 3.1
esin—
2
where
£ 1s the rotation about the Euler axis and
e is the unit vector of the Euler axis

When two coordinate systems are equivalent (e.g. parallel), the Euler axis vector is zero
and the scalar quantity is 1. Opposite rotations are created by multiplying the unit vector
by -1. This moves the Euler axis to the opposite quadrant, thereby allowing for inverted
rotations. Quaternion parameters are dependent upon each other and satisfy the
constraint that their sum of squares is unity (Schleppe 1996). This latter characteristic is

why many applications favour the use of quaternions over direction cosine matrices.
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3.2.3 Euler Angles

Euler angles are three sequential rotations that represent the difference in orientation
between two coordinate frames. Euler angles are ambiguous and contain singularities,
but are commonly preferred because they can provide a conceptually simple
understanding of the attitude in 3D Euclidean space. The Euler angle ambiguity arises
because no restriction is placed on the order of the sequential rotations, thus there are
several potential rotations sequences that could be performed. Since Euler angles provide
no ability to directly rotate a vector, they are commonly converted to a rotation matrix.
Each Euler angles is used to compute a rotation matrix however the sequential order must
be known. The three Euler angles (o, f, y) are represented as their equivalent direction
cosine matrices as follows:
1 0 0
R, a =|0 cos ¢ —sin « (3.2)

0 sin & CoS &

[cos B 0 sin B ]
R, B=| O 1 0 (3.3)
_—sin p 0 cos p ]

[cos y —sin g O]

R, y =|siny cos y O (3.4)
0 0 1]

where:

o 1s the rotation about the X axis,

£ 1s the rotation about the Y axis, and

v4 is the rotation about the Z axis.

Euler angles therefore are not commonly used within software to store the rotation
between frames, but are used for simple user input and output. The three parameters are
also easily interpolated which makes them ideal candidates for Kalman filter states,

whereas the other rotation representations are not as conformal.



40
3.2.4 Rotation between Frames
For the general purpose of this review, rotations will be shown using the direction cosine

(rotation) matrix. Rotation from the inertial frame to the ECEF frame is a function of the

earth®s rotation rate and the interval over which to integrate the rotation. The rotation is

given as
€ __
R/ =R, (DIeOAt (3.5)
where:
o, is earth"s rotation rate vector [rad/s],
At is the interval of the integration time [s], and
R. is the rotation matrix about the j" axis

]

The ECEF to LL rotation matrix is given as
R.=R, 90 -¢ R, 90°+ 1 (3.6)

where
17 is the longitude [deg] and
A is the latitude [deg].

The rotation from the body frame to the local level frame is (convention specific)

RL:R3 wR &R ¢ G.7)
where:

174 is the yaw (rad),

e is the roll (rad), and

@ is the pitch (rad).

The rotation from the body frame to the ECEF frame is commonly computed in the

following manner

R = R{+R; (3.8)



41

Using a, b and c as arbitrary frames, there are a few properties of rotation matrices that

are noteworthy, explicitly:

R!= R* ' (3.9)

R? =R'R¢ (3.10)

L,=RR 3.11)

Equation (3.9) shows that a reverse rotation can be performed by transposing the matrix.

Equation (3.10) shows that subsequent rotations can be combined into one rotation matrix

and that rotation matrices themselves can be rotated. Equation (3.11) shows that a

rotation matrix to one frame and back to the original frame is in fact no rotation.

3.3 MEMS IMU Sensor Design

The past few decades has seen increased attention on MEMS IMU sensor design

resulting from the following (Titterton & Weston 2004):

a broad market

low cost

small size and weight

extensive longevity

no maintenance

low power consumption

low part number

mass production capabilities

“simple” construction procedures relative to the higher end IMUs

manufactures are not required to calibrate each unit

However, the benefits come at the cost of obtaining high quality (and integrity)

measurements. While this is apparent in today“s market, Titterton & Weston (2004)
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claim that MEMS IMU quality may rival the current tactical grade IMU and eventually

the navigation grade sensors.

3.3.1 MEMS Gyroscope Technology

Vibratory gyros are the most common type of MEMS gyro technology. MEMS vibratory
gyros are based on the Coriolis force resulting from vibrating proof masses experiencing

a velocity. The Coriolis force is computed as

where:

a, is the Coriolis force,

A is the velocity of the object, and
Q is the angular velocity.

The premise for a vibratory MEMS gyro is to provide a proof mass with a predetermined
velocity (from vibrations), observe the Coriolis force via a change in electrical
capacitance and mathematically compute the angular velocity of the proof mass. There
are several components of a MEMS gyro including proof mass, motor, sensing electrodes

and A/D conversion. Each component is discussed next.

3.3.1.1 Proof Masses

Proof masses are generally divided into three categories based on their design: simple
beam, balanced beam and cylindrical shell oscillators. Simple beams are susceptible to
external vibrations yielding incorrect observations, thus the more effective balanced
beams are typically used and are commonly referred to as tuning fork gyros.
Manufacturers also use a cylinder shell based proof mass, which yields even better
performance parameters than the balanced beam. Proof masses are made of silicon or
quartz and are typically on the order of 20 to 100 um thick. The thickness of the mass
typically translates into the stability of the gyro.
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Simple beam oscillator Balanced oscillator Cylindrical shell

Figure 10 - MEMS GYRO Test Masses (Titterton & Weston 2004)

3.3.1.2 Motor

The proof mass requires velocity in order for a perpendicular Coriolis reaction to be
measured. The motor design, shown in Figure 11, is an electrostatic comb drive which
vibrates when an alternating current is applied. The proof mass commonly vibrates
consistently at about 12 kHz with a consistent amplitude of about 10 um (Titterton &
Weston 2004).

Figure 11 — Comb Drive Motor Schematics (Apostolyuk 2006)

3.3.1.3 Sensing Electrodes

As rotation (from user motion) is experienced by the vibrating mass, the Coriolis force
pushes the mass out of the vibrating plane. The magnitude of this movement is measured

by the change in capacitance. The capacitance variation is extremely sensitive,
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measuring changes near 1 aF (10™'® Farads). Because gyro capacitors must be so
sensitive robust manufacturing techniques are used to enhance their ability. The
capacitance sensitivity typically translates linearly into the gyros resolution and noise

parameters (Titterton & Weston 2004).

3.3.2 MEMS Accelerometers Technology

Two general categories exist for MEMS accelerometers: pendulous and vibrating beam.

3.3.2.1 Pendulous Accelerometers

A pendulous accelerometer uses a similar proof mass as the gyros proof mass described
in Section 3.3.1.1. The objective of the accelerometer is to measure the mass®s deflection
based on a change in capacitance and convert the magnitude of the deflection into a
specific force. Just as in the MEMS gyro case, this capacitance must be extremely
sensitive to changes on the order of 12 fF (107° F). The capacitors sensitivity similarly

dictates the resolution and noise parameters of the accelerometer.

3.3.2.2 Vibrating Beam Accelerometers

The vibrating beam accelerometer uses an electrostatic comb drive as described in
Section 3.3.1.2. The comb drive is set to vibrate at a consistent frequency (approximately
20 kHz) and when a force is applied, a change in resonant frequency is measured (rather

than an actual displacement via capacitance change).

3.4 IMU Observation Equations

The observations that an IMU provides are contaminated with both stochastic and
systematic errors. The accuracy of any INS is directly related to the mitigation of these

errors and therefore identification of the errors in an observation equation is critical.

The accelerometer observation equation, after calibration, is given as
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Fb_ b
f,=b, +Sf, +n, (3.13)
where:
f‘E is the true specific force vector,
1
b, is the bias vector of the accelerometers,
S, is the scale factor and cross coupling error matrix, and
n, is noise (assumed to be white Gaussian).

The observation is in vector form, each axis containing a specific force measurement.

Similarly, the gyro observation equation after calibration is given as

~b b
@}, =b,+Sap +Gf+n, (3.14)
where:
(’)'bb is the true angular velocity,
bg is the bias vector of the gyros,
Gg specific force dependent bias matrix,
Sg is the scale factor and cross coupling error matrix, and
1, 1s white Gaussian noise.

3.5 IMU Error Sources

Accelerometer and gyro (gyroscope) errors typically include biases, scale factors, triad
non-orthogonalities and noise. The magnitude of the noise and the stability of biases are
the two common attributes that usually determine the quality of the sensor. The quality
of an IMU is typically reflected in its cost. Considering that this research is for
pedestrian navigation, system cost becomes a major factor in the development of a

marketable product. MEMS provide the IMU of choice for pedestrian applications.



46

3.5.1 Biases

Biases are errors independent and uncorrelated of the specific force and angular velocity
experienced by the unit (IEEE 2001). The bias of a MEMS grade IMU consists of two
parts, the turn-on bias and the time variant bias. The biases are typically estimated in a
filter, in addition to the position, velocity, attitude and other sensor errors. Godha (2006),
for example, models both the turn on bias and the time variant bias in a Kalman filter.
The turn on bias commonly contains 90 % of the bias (Groves 2008), however MEMS
IMU"s are more prone to temperature based biases which can often have similar
magnitudes as the turn on bias. Table 3 shows the magnitude of the biases for several

grades of IMUs.

Table 3 — Typical IMU Grade Bias Specifications (Titterton & Weston 2004, Groves

2008)
IMU Grade Gyro Bias (°/hr) A:fi:f;?gi}g;;;;;&?f )
Strategic 0.0001 0.01
Navigation 0.01 0.1
Tactical 0.1-10 1-10
Automotive/Pedestrian >10 >10

3.5.2 Scale Factor Errors

A scale factor error is a ratio of change in the output of the sensor with respect to true
intended measurement (IEEE 2001). Scale factors describe the first order trend of the
bias. The scale factor can be estimated in the filter, alongside the biases. Table 4 provide

typical scale factor specifications for varying grades of IMUs.

Table 4 —Typical IMU Grade Scale Factor Specifications

IMU Grade Gyro Scale Factor (ppm) Acc;f:&‘;‘?;;rn?)cale

Strategic Nil Nil

Navigation 5 100
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Tactical 150 300

Automotive/Pedestrian 10,000 10,000

3.5.3 Cross Coupling Errors

Cross coupling or misalignment errors result from the non-orthogonality of the sensor
triad making the observing axis sensitive to input from the adjoining normal axes (Groves

2008). The errors can be quantified by coefficients, which occupy the off-diagonal terms
of the Sa,g matrix and as such can also be expressed in PPM. These errors are most

commonly estimated through calibration. The measurements are then corrected prior to

being used in the navigation filter or estimation process.

3.5.4 Gyro Specific Force Errors

Gyros that use a spinning or vibratory mass incur additional errors because of imbalances
in the proof mass. These errors are a function of the amount of specific force applied to
the gyro triad and commonly have magnitudes between 1 and 100 °/hr/g. Thus, an
inertial unit located on a foot, which can experience 4 g of acceleration during heel strike,

could produce a 400 °/hr error.

3.5.5 Random Noise

Electrical limitations and mechanical instabilities generate noise in all IMU observations.
MEMS IMUs suffer from significant noise because their signals are extremely weak and
the ability to measure minute fluctuations is challenging. Figure 12 and Figure 13 show
the histogram of 15 hours of static data of a MEMS grade IMU (Cloudcap®s Crista IMU
at 100 Hz). A visual inspection shows that the errors follow a Gaussian distribution.
This test required that the mean be removed to account for levelling errors and systematic

IMU errors. The mean was estimated by using a 100 epoch mean filter.
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Figure 12 — Accelerometer Noise Characteristics of a Static MEMS Grade IMU (15
hours @ 100 Hz)'
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Figure 13 — Gyroscope Noise Characteristics of a Static MEMS Grade IMU (15
hours @ 100 Hz)

! 5 is the standard deviation and shown in the figure with a black line, y, is the skewness
of the data, y, is the Kurtosis of the data and H, is the spectral density of the data.
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3.6 Mechanization Equations

The mechanization of the raw IMU measurements converts the specific force (filf)) and

angular velocity (0)5,) to an incremental change in position, velocity and attitude over a

time interval. Mechanization only provides relative information and consequently can
only provide the accumulated change in position. Therefore it is ideal to combine these
measurements with an absolute positioning system such as GPS. The relative navigation
information of mechanization can be determined in several frames, such as a local level
frame, the ECEF frame, wander frame or even the inertial frame. Mechanization frame
implementations each contain their own advantages and disadvantages. Ultimately the
frame used is selected for the application, computational burden and developer
preference. This thesis will use the ECEF mechanization. Mathematically, the ECEF
mechanization equations are represented as

- € €

r v
= Rifh - 200" +° (3.15)
R | my oo

where

re is the ECEF position vector,

ve is the ECEF velocity vector,

R! is the rotation matrix from the body frame to the ECEF frame,

Q¢ is the skew symmetric form of the angular velocity between the inertial and

ECEF frame, as viewed in the ECEF frame,
T is the normal gravity vector (i.e. an estimation of local gravity provided by a
mathematical model),
b is the skew symmetric form of the angular velocity between the ECEF and
inertial frame, as viewed in the body frame, and
is the skew symmetric form of the angular velocity between the inertial and

body frame, as viewed in the body frame (the Gyro measurements)
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In practice, the mechanization of inertial measurements into position, velocity and
attitude information is not implemented as a set of differential equations as above but

rather as a series of computational steps. These steps are discussed here.

The first step is to correct the incoming IMU data with the best estimate of their
respective errors as described in Section 3.5. Estimates of the errors are derived either
from a filter (i.e. Kalman filter), an a priori calibration process, or both. Some errors
such as the sensor axis non-orthogonality are also performed in a pre-filtering step,
sometimes within the IMU processor. In the case of the gyro, the specific force
dependent bias errors are also corrected in a pre-filtering step. The correction of the raw

IMU measurements is performed mathematically as:

~b
o Oy —b
o0 = 2 (3.16)
Sg
o —b
fﬁ;:% (3.17)

The noise of each sensor cannot be removed at this stage and therefore the residuals are
assumed to be stochastic. In cases where residual errors remain, this assumption may not

reflect the truth.

The second step is to use the integrated gyro measurement to provide a change in rotation
experienced during the interval of mechanization. Since earth rotation is observed within
the gyro observation it first must be removed. This ensures that only the specific rotation
for the IMU is computed and does not include ambient rotations. The gyro outputs the
observations within the body frame and therefore earth rotation must be determined in the

body frame. The earth rotation rectification is given as



51

g, = O, - o
=b;, —RJo,
0
=6)}’b—R§ 0 (3.18)
O
where

o, is the earth®s rotation rate (~ 15.041 °/hr).

The angular velocity expressed in Equation (3.18) is then integrated over the epoch to
provide a small rotation vector between the k™ and k™+1 epoch. The rotation vector is
then converted to a quaternion as detailed in Savage (2007). Then through quaternion
multiplication the quaternion representing the rotation between the body and ECEF frame

is updated. The attitude update step is shown as

Q= &  *AQ, (3.19)
where
Q. is the quaternion describing the rotation from the ,a* to ,b* frame, as seen in the ¢
frame.

Step 3 is to provide incremental velocities in the ECEF frame. The specific force
measurements are integrated over the interval to yield incremental velocities. As a result
the rotation into the ECEF frame is applied to the velocity increments. However, because
the rotation matrix from the body to the ECEF frame is only available at the discrete ends
of the integration period, the average of the rotation matrices and the slight incremental
rotation during the interval must be accounted for. If the interval occurs over k and k+1

epochs, it is mathematically shown as
e e 1 b
Av, = R} . | +§Sb Av

Av;—l = R} [13)(3 _%SbjAVb (3.20)

b i

where
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S, is the skew symmetric form of the rotation vector.

Thus, the average of the computed Av; is used to finally provide the updated velocity,
explicitly as

€ €
AV, +Av,

e _
AV = )

(3.21)

At this point the Coriolis and the gravity effects must be compensated for. Gravity is
approximately estimated using a global model. These models typically account for
gravitation and centripetal acceleration, but do not provide the resolution required for
estimating local gravitation anomalies. Regardless, the normal gravity vector nominally
contain residual gravitation errors on the order of 10 m/s®, resulting in minuscule errors
for pedestrian navigation applications (Schwarz & Wei 1990). Coriolis acceleration is

computed using the average velocity over the interval. The adjustment is given as

Avek,k+1 =Avi,k+1 T zg%eevlikﬂ - ﬂt. (3.22)

The incremental position is then determined by integrating the velocity and added to the

previous epochs position as

Ly =+ Vi (3.23)

3.7 Initial Alignment

The attitude of an IMU with respect to the mechanization frame is required prior to
updating the position, velocity and attitude (PVA) as seen in Equation (3.18), thus
requiring an initial attitude. The process of determining the heading from gyro
observations is called gyro-compassing, however due to the large biases and high noise of
MEMS gyros, gyro-compassing is not possible and therefore not discussed here. Other
possible initial heading alignment procedures are performed through magnetic compasses

or having the user input their heading manually.
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Assuming the IMU is stationary the pitch and roll of the IMU can be determined through

the accelerometers as

o

sin @ ZHTHX (3.24)
£

sin & ZHT”)/ (325)

Based on the gravity vector and the observed magnitude of the IMU horizontal axes, the
pitch and roll can be determined which is shown in Equations (3.24) and (3.25). It is
noted that since the observed accelerometer values are uncorrected (i.e. the filter has not
yet started to estimate biases) the initial attitude still contain errors. Given a maximum
bias of 0.3 m/s” (as per the specifications sheet), the error in the pitch and roll would be

approximately 1.8°.
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Chapter Four: Estimation Theory

When trying to estimate a parameter such as position or velocity from pseudoranges or
Doppler measurements, there can be three separate scenarios: (1) the number of
independent observations is less than the number of desired parameters; (2) the number
of observations is equal to the number of parameters; or (3) the number of independent
observations is greater than the number of parameters. The first case is said to be under-
determined. In such a scenario, the parameters may not be fully resolved since the
observation space is not sufficient to translate the entire parameter space. The latter two
scenarios are called fully-determined and over-determined respectively, since the
observation space is completely defined and adequate for translation into the desired

parameters.

The method of estimating parameters from redundant observations and determining the
estimated covariance of the estimated parameters is known as estimation theory.
Measurement systems convert redundant measurements into one set of parameters, most
commonly through a least squares approach. If the system contains dynamics the
dynamics characteristics can be fused with the redundant measurements in an optimal
form. Kalman filtering is a classical estimation algorithm utilizing both measurements

and dynamics.

4.1 Measurement Systems

The observation equation relates the parameters to be estimated and the observations.

Equations (2.2) and (3.13) are examples of observation equations.

Consider a parametric system of the k' epoch that is described as follows
I, =Hx, +¢g (4.1)

where:
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1 is the vector of observations,
H, is the design matrix,

X, is the parameter vector, and
g, is the measurement noise.

The design matrix is a Jacobian matrix of the observation equations, effectively a linear

conversion from the parameter to the observation domain.

In systems that are over-determined, the goal is to minimize the magnitude of the residual
error. This magnitude is described as the cost since it is an undesirable outcome of
observation errors. The cost function of least squares (i.e. the error to be minimized) is

mathematically shown as

J=1, -Hx, ! W, I, —H;x, 4.2)
where
J is the cost function to be minimized and

W, 1s a weighting matrix.

Least squares equations are derived by differentiating Equation (4.2) with respect to the
parameters ( X, ), setting the differentiated function to zero and solving for the parameters

(Gao 2008). The covariance of the parameters is determined by propagating the

covariance of the observations as given by

p (a_ij(a_ij (4.3)
ol ol

where:

P 1s covariance matrix of the estimated parameters,

R is the covariance matrix of the observations,

( is the observation, and

f is the parametric mathematical model.
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In least squares it is common to let the weighting matrix equal to the inverse of the
covariance matrix of the observations (R™'). With this approach the estimated
parameters and the corresponding covariance matrix can be computed as
% = H[R;'H, HR (4.4)
1

P,= H/R'H, (4.5)

After the adjustment, the residual error vector and its covariance matrix are computed as

r,=1,-HZ%, (4.6)
where

r, are the residuals, and

C, =R, —H,PH] (4.7)
where

C, is residuals covariance matrix.

4.2 Dynamic Systems

If a differential relationship exists between states”, the dynamic system can be
incorporated into the estimation process thereby increasing the quality of the estimation.

Dynamic systems are described as

xt=Ftxt+tGtwt (4.8)
where:

Ft is a coefficient matrix describing the differential equations,

Gt is the coefficient matrix shaping the input noise,

wt 1s the white noise vector, and

*The nomenclature for dynamic systems typically uses states rather than parameters, although they are
effectively the same thing.
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t 1S time.

Note that the system dynamics do not contain observations. This is because dynamic
systems only relate the parameters within the system. The combination of system

dynamics and measurements is usually fused through a Kalman filter.

4.3 Kalman Filtering

The Kalman filter is a recursive algorithm forming a minimum variance estimation of
system dynamics and measurements. The filter operates in two steps: a prediction that
utilizes system dynamics to predict the next state, and an update which relates the
measurements to the parameter space and combines them with the prediction to give the
final estimates. The combination of prediction and measurements requires a concept
called the Kalman gain. Effectively, the Kalman gain is a method of optimizing the
weight of incoming measurements with respect to the prediction. In this manner the filter
bases the solution on a fused prediction and update. To distinguish between a prediction

and an update stage, the superscript “-” and “+” are used, respectively.

There are three fundamental assumptions in a Kalman filter (Gao 2008). These
assumptions are that (1) there is no time correlation of the process noise (W), (2) there is
no time correlation of the measurement errors (&), and (3) there is no correlation

between the process noise and measurement noise. These are expressed as:

i Q.i=k

E T= 4.
AAd {O,i:tk (49)
- R,,i=k

Elge |=¢ © 4.10
L {O,iik} (+10)
: 0,i =k

=)
E[we] {O,i?fk} (4.11)

where
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Q is the process noise.

These assumptions are critical to the propagation of the state covariance matrix, which is
used within the filter to determine the weight of incoming observations. Thus, failure in
these three assumptions typically results in overly optimistic state variances, poor
performance and reduced fault detection and exclusion capabilities. Unfortunately, in
navigation applications these assumptions are not always true. GPS multipath errors for
example cause biased time correlations (Lachapelle 2007). For the purpose of this
research, increasing the measurement variance provides sufficient results. There are
other approaches to deal with the violation of the three assumptions, but extend beyond

the focus of this thesis.

The Kalman filter operates in discrete mode for navigation applications. Discrete mode
refers to the fact that observations occur at discrete times rather than through a
continuous series. Thus, the system dynamic model must first be converted to discrete
time in order to predict the states. The state vector ( X ) is predicted by

il;ﬂ = ®k,k+l§k (4-12)

where

®, ., Isthe transition matrix from the k to k+1 epochs.

The transition matrix is a time transformation matrix, effectively translating a state vector
in time. It is computed directly from the dynamics matrix. The transition matrix (®) is

theoretically defined as

Dy =¢ T =e (4.13)

b

but practically computed through the following Taylor series expansion

FAt°  FAt®
@, ., =I1+FAt+ + . (4.14)
okt 2! 3!

The covariance of the states in the prediction is computed as
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Pk_+1 = (I)k,k+lPk(I)E,k+l + Q< * (4 1 5)

This equation conceptually propagates the current covariance in time and adds a user
defined amount of uncertainty to the prediction. This compensates for any incorrect
assumptions about the dynamic process, such as un-modelled movements or higher order

effects.

The process noise is typically expressed in the continuous time domain as

s
Q=]®,.67Q tG" rd,dr (4.16)

t
where

G 7 is the shaping matrix and

Q. 7 is the continuous time spectral density of the white noise vector.

However, it must be computed in discrete time. Equation (4.16) shows the computation
of process noise through trapezoidal integration as

tk+1 B tk

Q= (I)k,kﬂGchGkT(I)]—l;kﬂ + GchGkT 5

(4.17)

The Kalman filter can operate in prediction mode as long as necessary (i.e. in the absence
of measurements) and at any frequency. This is an attractive feature in that a solution
and its propagated variance-covariance matrix can be provided to the user at any time

even when measurements are not available.

As measurements become available the filter enters the update stage, where the
measurements are fused with the prediction(s). The Kalman gain matrix is a weighting
matrix used to determine the amount of new information added to the system. In the
event that measurements are overly noisy, the Kalman gain decreases their effect on the

final solution. The Kalman gain equation is given as
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B -1
K, =P H; HRH +R, (4.18)

The innovation sequence is given as

v, =1, —H, X, (4.19)
where
v, is the innovation sequence.

and represents the difference between the observations and the current states mapped
back into the observation domain. The innovation sequence covariance matrix is

computed as
C, =H,PH; +R,. (4.20)

Any erroneous observations are detected by exceeding a threshold (e.g. 30). This fact

forms the basis for fault detection and observation exclusion.

After the computation of the Kalman gain, the states can then be updated as

% =% Koo, (4.21)

The covariance of the states is computed during the update stage and is given as
P = I-K.H, P, . (4.22)

A more common covariance update, which provides better symmetry and positive
definiteness (at the cost of computational burden), known as the Joseph form is given as

(Grewal & Andrews 2001)
P'= I-K,H, P I-K,H, ' +K,R K (4.23)
4.4 Extended Kalman Filter

Often the measurement and dynamic systems are not linear functions, as the case of GPS

and IMU mechanization. Thus, a linearization about the last filter estimate is applied to
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the standard form of the Kalman filter. The derived filter is typically referred to as the
Extended Kalman filter (EKF).

4.4.1 Non Linear Dynamic Model

To perform a linearization on the dynamic model, first consider rewriting the form of
Equation (4.8) to incorporate a Taylor series expansion, such as
Xt=fxt+Gtwt. (4.24)
The expansion is formed as

xt="fx,t+f x,t x—-%x, +... +G t wt (4.25)

and after neglecting the higher order terms of the Taylor series expansion, Equation
(4.25) then simplifies to

Xt ~f x,t +f x,t x-x, +G t w t

Xt=%X,t+Fdxt+Gtwt

ox t =Fdx t +G t w t, (4.26)

which has the same general form as Equation (4.8). The EKF then estimates the
perturbation of the expansion point (more correctly, the expansion vector) and therefore
the perturbation must be added to the expansion point to provide the absolute values of
the state vector. The state vector after each update is reset to zero. This restricts the state

vector to be zero mean. With this restriction Equation (4.21) now has the form
& =K, 4.27)

and all remaining covariance equations remain the same.

4.4.2 Non Linear Measurement Model

The measurement model linearization is performed in a similar fashion to that of the
dynamic model. Equation (4.1) is rewritten as

I=hx, +s (4.28)
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The linearization is performed in the same manner as Equations (4.24) to (4.26) and the

resulting equation becomes

ol, =Héx, +g, (4.29)

When an EKF is used with non-linear measurements, Equation (4.21) is adapted in the

following way

X, =X, +0x, +K, Sl —HoX,

ot
SRy

’A‘E:i;%"'Kkélk_%) 430
R =% +K, 01, (%:30)

4.5 Adaptive Kalman Filter

In some filtering applications, determining the correct amount of process noise to be
added can be extremely difficult. Filter tuning, whereby the actual values are tuned to the
particular data set can improve the overall performance. However, it is not always
realistic to tune each data set or is always possible to derive tuning parameters that will

work in all situations.

There are two common approaches to adaptive processing: Multiple Model (MM) and
Innovation Based (IB). Multiple Model adaptive processing uses a bank of Kalman
filters to derive numerous solutions and then weights each solution based on hypothesis
testing of the innovation sequence relative to each filter in the bank. This brute force
approach is computationally expensive and excessive. Innovation based adaptive

filtering has therefore gained more attention and is the method chosen for this thesis.

In IB adaptive filtering, the Q, and/or R, are adapted over time based on the whiteness of

the innovation sequence. IB adaptive filtering has shown improvements in some
situations, but can be extremely volatile if any of the three Kalman filter assumptions fail

(Mohamed & Schwarz 1999).
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To estimate Q, and R,, the innovation sequence covariance matrix is determined from

the innovation sequence over a set period of time (or epochs). Thus, the estimated

innovation covariance matrix is computed as (Mohamed & Schwarz 1999)

AN T
C, = ﬁzvivi 431)
=i
where
¢ is the innovation based covariance matrix of the innovation sequence,
i, is the index at the beginning of the period,
k is the index at the end of the period, and
N is the number epochs within the period.

Using Equation (4.31),Q, and R, are computed as

Q =KC, K (4.32)
R, =C ~HPH' (4.33)

4.6 Decentralized Filtering

Decentralized filtering is a two-stage data processing technique. Decentralized filters
involve a series of filters where the outputs are input into a final fusion technique that
ultimately provides a final solution. Decentralized filters are composed of two types of
filters, namely local and master. The local filters process their own data in parallel with
the other local filters to provide the best possible local estimate. The master filter then
uses the output of the local filters as input to provide an optimal global estimate. Figure
14 shows a decentralized architecture. Loosely coupled GPS and IMU integration is a
prime example of a decentralized filter where the IMU mechanization occurs within the
master filter and GPS is processed in a local filter to provide position and velocity
information. There is no restriction on the estimation type, for example a local filter

could be a least squares estimator (in which the local filter should be referred to as a local
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estimator). However, the local filters are usually Kalman filters and therefore present

some issues that are discussed below.

: w3y
Sensor 1 Local Filter 1 ’
Sensor 2 Local Filter 2 Master
Fusion
Sensor 3 Local Filter 3 ) "
¢, = Observation(s) of the i"" sensor
%, = States of the i" filter
Sensor 7 Local Filter n P, = State Covariance matrix of the
i" filter

¢ = Esimation of e

Figure 14 — Decentralized Filtering (No Information Sharing)

There are two fundamental weaknesses within decentralized filter architectures, namely:

1.

If the master filter is a Kalman filter, it requires that all input must be stochastic
with no time correlation. Typical of any local filtering, time correlation results
from the dynamics inherent to the system. No time correlation within
observations is a fundamental characteristic and maintains the optimal solution of
the master filter. If not respected, the results can be biased and provide overly
optimistic covariance estimates. Brown & Hwang (1997) state that using the
output of the local filters at the approximate time correlation period can yield
satisfactory results and bypass this effect. However, this requires previous
knowledge of the time correlation characteristics, something that is not always
available.

The local filters may not necessarily make use of all the information available.
This in turn reduces the quality of the local filter, when in fact other pertinent
information is available. The master filter may not be able to recover all the
information from the data provided by the local filters; to which point the master
filter is then considered sub-optimal and consequently the information passed

back to the local filters is also sub-optimal (Brown & Hwang 1997). For
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example, consider a black box altimeter, which only outputs an estimated
elevation, used in conjunction with a local GPS elevation filter. The black boxed
altimeter could provide a more accurate elevation output if an approximate
elevation was fed into the altimeter. In this manner the altimeter could be
calibrated, rather than operate in an autonomous mode. In this configuration the
altimeter”s filter (or whatever estimation technique employed within) is sub-

optimal when considering the elevation from the GPS filter could be used.

Often the results of the master filter can be fed back to the local filters. This can help
assist the local filter performance thereby improving the master filter performance.
Moreover, this approach optimizes the local filters performance (since local filters only

use a portion of the observed data). This is the basis for a federated filter.

4.7 Federated Filtering

Federated filtering is defined within this thesis as a decentralized filter that incorporates
information sharing between local and master filters. Federated filtering is a two stage
process, segmenting information processing between local and master filters. The
method of sharing information varies but there are typically four genres of sharing
information: no reset, fusion reset, zero reset and cascaded. Before each method is
outlined, it is important to first understand how to conserve information between any

given number of local filters and the master filter.

4.7.1 Information Conservation Principle

The basic principle of information sharing follows three steps (Carlson & Berarducci
1994):
1. Divide the total information among several local filters.
2. Perform local filter propagation and measurement update within each local filter.
3. Recombine the information from the local filters within an optimal master fusion

algorithm.
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In order to show the mathematics behind the information conservation principle,
alternative Kalman filter equations are used (Brown & Hwang 1997). The derivation will
follow from Brown & Hwang (1997) and Carlson (2002) and shows that the information
conservation principle within the federated filter is optimally equal to the centralized
version, although practically this may not always be the case. A rigorous derivation is
available in Carlson (1990). He shows that when all inputs to local filters are
independent, the federated filter is equivalent to the centralized Kalman filter. In the
context of describing the information principle the subscript “C” will represent a
centralized filter, “M” will represent a master filter within the federated filter and “L”

will represent a local filter within the federated filter.

The state information matrix (the inverse of the state covariance matrix), is used in the
update and is given as

Pt = P +H'RTH. (4.34)

Conceptually, Equation (4.34) shows that the final information of the centralized update
is the sum of the information provided in the prediction and the information provided in

the observations. It can be shown in terms of the information matrix that

PP =P +P . (4.35)

If the observation covariance matrix is assumed to be block diagonal, Equation (4.34) can

be rewritten as
-1

P: = P, +H'R'H,+H'R;'H, +..+H'R'H,

- B, +Y HR'H,
i=1

_ n _ 4.36
= P: 1+Z P, ' (4.36)
i=1
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To complete the alternate version of the Kalman filter equations, the Kalman gain is

computed using the state covariance as

K=P'H'R™. (4.37)

The update of the state vector can also be rewritten, using Equations (4.22) and (4.37)
x"=x"+Kv

=X +K 1-Hx"

=X+ KIl-KHX"

= [-KH x +KI

=P* P~ %+ PHR'I
-1 (4.38)
'=P" P~ % +H'R
which shows that the updated states are a blend of the old state information and the new

measurements.
It is now possible to form the master filter version of Equation (4.36) of the sum of

information from the master and local filters, (again assuming no correlation between the

local filters) as

(4.39)

Equation (4.39) shows that the total information contained in the master filter is the sum
of the current master filter information, the sum of all the local filters information and the
information contained in the observations of each local filter. This shows the principle of

information conservation, as Equation (4.39) must conform to the standard form set
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in (4.34), otherwise the master filter will be sub-optimal. Thus, a federated filter
incorporating the information sharing principle must therefore satisfy the equation
-1 -1 -1
P =P, +> P (4.40)
i=1
and ensure that the information contained in the master filter is not duplicated in the local

filters.

Similarly the state vector version in Equation (4.38) can be rewritten as

x;, =P,| P lx& +ZPilxiJ
i=1
X, + Z[ Pl x4 HRilliD
i=1

N R xi+ZHRilli) (4.41)
i=1

i=1

>
<

I
z"d
z"U

provided that the master filter complies with the following condition

-1 -1

_ _ I B I
P x.= B, xM+Z P ox. (4.42)
i=1

The process noise within the federated filter must also be shared. Using a similar process
as above the process noise condition can be reached as follows (Carlson 2002)

1

Q '=Q '+ 443)

Thus, the conservation of information includes the state information and the process

noise information.

At this point it is necessary to clarify that only states common between the master and
local filter require the conditions in Equations (4.40), (4.42), (4.43). Any states that are

particular to the local filters and are not passed or shared between filters can operate in a
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normal fashion and should not be modified. This ensures that the best possible filtering

can occur when sharing information between filters.

4.7.2 No Reset Federated Filter

Figure 15 represents the federated no reset (FNR) filter architecture. This architecture
only sends information from the reference system to the local filters. The reference
system is the source of observations that are provided to the local filters. The reference
system, for example, could be the observations of GPS receiver, the filtered navigation
solution of a GPS receiver, or an INS solution. More on the selection of the reference

system is discussed in Section 5.4.

— Reference

System
0 x,P
Sensor 1 |1 i
£ X, P, . WENGDY
Sensor2 =1, Yo B
> Data
Fusion
l
Sensor3 =15 ‘ "
Snapshot £, = Observation(s) of the i sensor
¢ Fusion %, = States of the i local filter
Sensor n - f; . = State covariance matrix

of the i™ filter

Figure 15 — Federated No Reset Filter Architecture

The master filter must be a snapshot fusing algorithm (e.g. least-squares), whereby the
input is fused in a single epoch basis (and therefore independent of time). In this manner,
the information sharing principle is maintained because no a priori information is
contained within the master filter and all of the information is stored within the local

filters (Carlson 2002). Mathematically this is represented as:

: I -1
FNR: —p 7' 3 P, (4.44)
i=1
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Po Xc=2 P X (4.45)

Q. :lz Q. (4.46)

The FNR architecture is useful in “black box” type navigation systems where access to
the local filters is not possible. However, because input into the local filters is the output
from the reference system, the output of the local filters is correlated, thus violating the
condition of Equation (4.10). Therefore, the weighting of the local filters is skewed and
the final master fusion can produce overly optimistic covariance matrices (Groves 2008).
It is conceivable that the correlation could be approximated and incorporated into the

fusion estimator.

4.7.3 Fusion Reset Federated Filter

The federated fusion reset (FFR) architecture is represented in Figure 16.

Reference
System

Sensor 1

W ENTSS

Fusion

Sensor 2

Dynamic

Filtering

Sensor 3
------- ¢, = Observation(s) of the i" sensor

%, = States of the i" filter

P, = State covariance matrix

Sensor n "
_______ of the i™ filter

)’eM , PM,)% / ,Bn B, = Information constant of the
i" filter

Figure 16 — Fusion Reset Federated Filter Architecture
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The FFR extends the FNR architecture to include feedback from the master fusion. The
states and the covariance from the master fusion replace the matching states and
covariance within the local filter. The covariance from the master fusion is scaled by the
information factor (i.e. its inverse). In this manner the information is shared from the
master fusion to the local filters conserving the information conservation principle. The

filter sharing equations can be written as follows:

FFR: oo _1
P. =D 5 P (4.47)
i=1

-1 L -1

P. xe=).8 P x (4.48)
i=1

-1 n -1

Q '=Y8Q (449)

i=l1

The information factor must adhere to the following rule

B+B+.+82=1 (4.50)

where

B, is the information constant shared between the master filter and the i™ local
filter.

4.7.4 Zero Reset Federated Filter

Figure 17 represents a Federated Zero Reset (FZR) architecture which periodically resets

the covariance of the local filters.
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Figure 17 — Zero Reset Federated Filter Architecture

Zero resets set the information matrices within the local filter to zero, which then
eliminates all information in the local filters being repeatedly passed into the master
filter. The zero reset is performed at the same interval that information is passed to the
master filter. In this manner the local filters perform sub-optimally because the ability to
converge is restricted by the master fusion update rate. However, the master filter
performs optimally (Carlson & Berarducci 1994). All information is then stored within
the master filter. States that are not passed into the master filter are not required to be

reset. The sharing information equations are as follows:

FZR: p '—p 4.51)
P 'x.= P, x, (4.52)

Q =Zn:ﬂi Q. (4.53)
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4.7.5 Cascaded Federated Filter

The federated cascaded (FC) filter, shown in Figure 18, shows a filter with no resets or
information shared and a master filtering algorithm which blindly processes the output.
In this architecture, errors from the reference are propagated into each local filter thus
correlating the input into the master Kalman filter. This filter architecture must be used
with caution because any incorrect tuning within the reference system will provide poor
results in all local filters, resulting in overall performance degradation (Brown & Hwang
1997). This architecture is only useful in black-box local filters where limited access is
available and filtering at the master fusion level is possible. It is under this consideration
that this filter is not analyzed within this research. The sharing information equations can

be written as follows:

FC: -1 SRR -1

P =Pk + PLi (4.54)
i=1
-1 -1 1 -1
P xo= Py Xy +Z Pox (4.55)
i=I
—1 -1 n -1
Q. =0Q, +>.Q (4.56)
i=l
Reference
System
¥4
Sensor 1 L
, Fusion
Sensor 2 &
Dynamic
L, Filterin
Sensor 3 & 1, = Observation(s) of the i" sensor
£, = States of the i" filter
l, P = State covariance matrix
Sensor n f
of the i" filter

Figure 18 — Cascaded Federated Filter Architecture
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4.8 Reliability of Observations

Reliability is a term generically used to describe the practice of detecting and rejecting
gross errors (also known as faults or blunders) in observations. The process by which
this is accomplished is referred to as Fault Detection and Exclusion (FDE). FDE is based
on a priori knowledge of the statistical behaviour of the observations, whereby any
deviation from the observations behaviour can be detected and removed to keep the
remaining observations within the assumed statistical model and blunder free. In terms
of a filter, removing faults not only improves the reliability, but improves the fusion
between the dynamics and observations because the covariance matrix of the
observations is more accurately represented. Filtering theory states that if the input noise
is zero mean and Gaussian, the innovation sequence will also be zero mean and Gaussian
(Gao 2008). This premise forms the basis for hypothesis testing of the innovation
sequence. This section will first describe the scenario where any number of faults are
possible, and then proceed to a recursive single fault detection algorithm that is able to

identify all possible faults in an epoch.

The following equation shows a measurement model with known faults present (V,)

where faults are biases appearing in the observation vector

I, =Hx, +M,V, +¢ (4.57)
where

M, is the blunder mapping matrix and

v, vector of known blunders.

The null hypothesis (H,) assumes the innovation sequence is zero mean and white

Gaussian noise, with no faults present. The alternative hypothesis (H, ) is that innovation

sequence contains faults. The distributions for the hypothesis testing are therefore
(4.58)

v|, ~N 0,C,
i (4.59)
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v, ~N MV,.C, .

where N x,y is a Gaussian distribution with x mean and y variance.

The test statistic, as given in Teunissen & Salzmann (1989), is

T =vo'C:'M, M'C:'M, ~ MTC-!
T 0L My MG My &, Vi (4.60)

Assuming any combination of faults implicitly requires that the mapping blunder matrix,
M, needs to be constructed for each possible combination of faults. However, the
number of fault combinations that can be formed in the M matrix is extensive. If faults

occur in any combination of 10 observations, this can produce 1023 potential M matrices

10

(Z 10C.). Thus, it is more practical to recursively assume that one fault occurs in the
i=1

current set of measurements. By setting the M matrix to contain only a single one (and
assuming no correlation within the innovation covariance), the test statistic can be

reduced to

t =
i 4.61
‘ C ( )

. . .th - . .
1 is the i"" index of the innovation sequence.

In this manner the innovation sequence element is normalized by its estimated variance,
effectively indicating the probability of this innovation occurring within the Gaussian

distribution (commonly referred to as a z score). As such, the null and alternative

hypothesis simplify to
t ~N 0,1
kiln, ’ (4.62)
~ 4.63
t, ‘m N 6,1 (4.63)

where
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J, is the non-centrality parameter.

The null hypothesis is accepted if ‘tki‘ <n,_,,and rejected if ‘tk,‘ >n, ,,. The testing is

performed at both ends of a normal distribution (two tailed test), thus the threshold

testing value typically associated with a percentage (< ).

As mentioned earlier, single fault detection can be applied recursively to detect multiple
faults within an epoch. Unfortunately, the pure mathematics of this modification is not

entirely correct and there are several assumptions that are associated with this approach
(Petovello 2003). For example, when multiple faults exceed the threshold, the largest t,

is rejected and the sequence is estimated again. This appears to be correct, but it is
conceivable for one fault to negatively affect another element in the innovation sequence,

and falsely identify a fault. This leads to the theory behind statistical reliability.

4.9 Statistical Reliability

The previous section outlined the method of detecting outliers within the innovation
vector. Extending the theory to predict the largest fault detectable and its impact on the
states 1s known as statistical reliability. Statistical reliability aims to quantify the
probability of false alarm and misdetection. These two probabilities are fundamental in

hypothesis testing.

False alarms are Type I errors in hypothesis testing. This percentage indicates how often
the system will detect a fault when, in fact, no fault is present. In statistical terms, it the
probability of rejecting Hy when in fact Hy is true. Misdetections are Type II errors
where the system fails to detect a fault when, in fact, a fault occurred. In statistical terms,
it is the probability of accepting H, when Hy is true. The probability of a Type I error is
« and the probability of Type II errors is . Figure 19 graphically shows the

relationship between the two types of errors.
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Figure 19 — Probability of Type I and Type II Errors

The non-centrality parameter can be determined from the possibility of accepting type I

and type II errors and is given as

By = Thean * 7?1_;3. (464)

The non-centrality parameter can be mapped into the measurement domain, if <& and S
are first set, to provide the smallest possible fault detected, or commonly known as the

Minimum Detectable Blunder (MDB) (Petovello 2003)

5
VMDB — 0
i o= (4.65)

Yk i

Once the MDB has been computed, the effect it can have on the estimated states is

computed as

ox, = K MV¥? . (4.66)
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Chapter Five: Multiple IMU Estimation

Architectures

Prior to describing the multi-IMU architectures designed and systematically tested herein,
a short introduction of the Single Inertial Navigation System (SINS) architecture is given.
Specifics of pedestrian navigation applications where a single IMU located on the foot
are first discussed below in order to outline the important factors in processing inertial

data.

The sub-sections of the chapter then present the novel theoretical research developed for
this thesis. The estimation architectures described in Section 5.2 are more thoroughly
developed than previously published, essentially correctly identifying an effective virtual
IMU fusion. The validity discussion of FDE testing for VIMUs is also an important
contribution.  Sections 5.3 and 5.4 are entirely novel to the realm of multi-IMU
architectures, specifically the design, implementation and comparative results of each
filter have not previously been studied in the literature, to the knowledge of the author.

The architectures are presented in this chapter will be field tested in Chapter 6.

5.1 Single Inertial Navigation with IMU on the Foot

The SINS Kalman filter estimates three dimensional accelerometer and gyro biases (6
states), scale factor errors (6 states) and corrections to the expansion point of the position
(3 states), velocity (3 states), and Euler angle attitude (3 states). This combination is
commonly referred to as the 21 state filter. GPS observations used in this filter (and all
multi-IMU filters) are only double differenced pseudoranges. Doppler observations are
unusable since the GPS antenna is mounted to the backpack and the IMU is on the foot,
which results in a time varying lever arm. However, pseudorange observations have a

noise level larger than the time variant portion of the lever arm and are therefore still
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usable. As this study utilizes double differenced GPS observations, no additional states

are required to estimate the GPS receiver clock errors.

The filter operates in a tight integration mode, allowing the system to be updated with
less than four satellites, a key performance consideration when poor GPS observability is
expected (Knight 1999). Inertial measurements are corrected by their estimated error
states, mechanized into the ECEF navigation frame and subsequently used to predict the

filter forward in time. The system is updated as GPS observations become available.

Zero-Velocity Updates (ZUPTs) are applied while the foot is at rest during the stance
phase. The detection method checks the magnitude of the acceleration and the three
sample variances of the accelerometer signal. Several authors have discussed zero
velocity detection in detail including Mezentsev (2005), Godha (2006), and Kwakkel
(2008). Readers are referred to these publications for more information on the detection

process.

5.2 Virtual IMU Architectures

In many cases, such as aviation multi-IMU navigation systems, the purpose of adding
additional IMUs to a navigation system is to facilitate IMU fault detection rather than
improving accuracy. For pedestrian navigation applications, the opposite is true.
Improving accuracy and availability are more important than high levels of reliability,
although the latter can also becomes important as soon as accuracy and availability
requirements are met. This is most often the case because most pedestrian applications
are not required to meet strict safety-of-life standards. Therefore, it will be shown herein
that accuracy is improved through the use of a virtual IMU architecture. However, the
validity and practicality of FDE may not be acceptable for low cost IMUs and their

applications.

As introduced in Section 1.2.1, VIMU is the fusion of raw IMU observations which are

rigidly mounted on a body. When IMU observations are simply averaged together
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(assuming they are already in the same frame), the relative noise reduction of the VIMU

data relative to a SINS is readily observed. The standard deviation of the mean is given

as

o, = %Za)fof (5.1)
i=1

where

0] is the weight associated with each observation set and

n is the number of ensembles (e.g. IMUs).

The equation is further simplified assuming that the ensembles are homogeneous (an

acceptable assumption provided all IMUs are of the same make and model) in which case

o =2 (5.2)
Jn

where

o, is the standard deviation of each ensemble.

Thus, as n IMUs are added to a virtual IMU navigation system the noise reduction is
reduced by a factor of n?. This assumes that a single axis is mapped into a single
VIMU axis (and consequently a single IMU is mapped into the VIMU frame). Figure 20

shows the theoretical percentage improvement as a function of the number of IMUs used.
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Figure 20 — Noise Reduction of Multiple IMUs (VIMU)

Another benefit of the virtual IMU scenario is a direct real time estimate of the VIMU
process noise, as derived from each IMU (Guerrier 2008). This is beneficial when the
IMUs have time variant process noise characteristics or filter tuning is not possible for

each application or data set.

Averaging of IMUs™ observations is simple and the least computationally burdensome
method of forming a VIMU, however because each IMU is located at a different point on
the body, the IMUs measure different specific forces based on the relative location to the
VIMU origin. Consequently, the fusion must be performed in the same reference frame
and the transformation of each gyro and accelerometer observation set into this frame
must be preformed. The transformation is assumed to be known a priori from pre-
surveyed parameters, namely the vector between the IMUs and VIMU origin and the
rotation from one IMU*S frame to the VIMU"S frame. From Kane & Levinson (2005),
rigid body equations of the angular velocity from a VIMU as follows
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b, _pn,.b,
o, =Ro; (5.3)
where:

o> is the angular velocity of the n™ IMU in its body frame,
ib

n

R" is the rotation matrix from the VIMU body frame to the body frame of the n™
IMU (known a priori) and

o is the angular velocity of the VIMU in the VIMU body frame.

ib,
For the purposes of this thesis, all rotation matrices were determined independently, prior
to processing the VIMU data. Further research could determine the IMU and VIMU

rotation matrix automatically, without the need for a pre-surveyed calibration, or in situ,

where the IMUs are not rigidly mounted.

The specific force, as derived from a VIMU relative to a rigidly attached body, is given in
the equation below (Kane & Levinson 2005)

fif,: =R +R? o xr™ +R" coibgv X ‘”35;, xrd (5.4)
where:
£ is the specific force vector of the n™ IMU,
ib,
fE is the specific force vector of the virtual IMU,
1
oy is the angular acceleration of the VIMU, and
r is the lever arm vector between the n™ IMU and VIMU origins within the VIMU
body frame.

To the author's knowledge, the second and third term on the right hand side of Equation
(5.4) have been neglected in previous VIMU systems proposed in the literature. This
adjustment to the mapping equation presents an important improvement in accuracy. As

will be shown later in this thesis, these terms can be significant.
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Equation (5.4) uses the angular acceleration of the virtual frame, which may or may not
be output by an IMU. In the event that the angular acceleration is not output by the IMU
(as is the case in this thesis), the angular acceleration must be estimated as an additional
component of the VIMU fusion procedure in order to correctly determine the specific
force. Neglecting this term results in a specific force mapping error related to the lever

arm between an IMU and the VIMU origin and the angular acceleration experienced.

When a VIMU fusion is formed, the lever arms and angular accelerations may be
assumed to be so small that the correction is negligible. However, when angular
accelerations are large, as the case when IMUs are located on a foot, the second and third
terms of Equation (5.4) cannot be ignored. Angular accelerations can reach maximum of
900 rad/s® in the X axes, and 100-200 rad/s® in the Y and Z axes while on the forefoot
during regular walking gaits (Kwakkel 2008). Assuming a 7 cm lever arm between the

VIMU and the IMU, the corresponding acceleration correction is written as

Afbn = b x 4Dy
for = oy X1,

—13.1 800 —0.035
31.5 |m/s®> =200 |rad /s**| 0.035 |m
31.5 100 0.05

Figure 21 shows the maximum effect that the angular acceleration can have on the
specific force. The maximum error occurs when the lever arm and angular acceleration

. : b b b, b
unit vectors are 90 degrees to each other (i.e. ay xr,» ZH%I‘ r,

sin@). Conversely

the minimum value (i.e. zero effect) occurs when the two unit vectors are parallel.
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Figure 21 — Maximum Acceleration Errors Due to Angular Acceleration

Figure 22 shows five specific force measurements (rigidly mounted) during the heel lift
of the gait cycle starting at time 588.0 s. As the heel lifts the forefoot experiences a high
angular acceleration, causing large variations in the magnitude of the specific force.
Additionally, the third term of Equation (5.4) will also contribute to the residual error. If
the angular acceleration or the third term of Equation (5.4) were neglected, the fusion of

the IMU measurements would be compromised.
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Figure 22 — Specific Force Observations of Five IMUs (IMUs Rigidly Mounted on
Foot) during Gait Cycle.

Therefore the nine state estimation model is now described for estimation of angular

acceleration, in addition to the angular velocity and specific force.

5.2.1 VIMU — Nine Parameter Least-Squares Estimator

In the VIMU least-squares model, the unknown parameters are the angular velocity,
angular acceleration and specific force vectors of the VIMU. As a result of the cross
products within Equation (5.4), the 9 state model is non-linear and therefore the system
must be linearized. Appendix A provides the derivation of the linearization process. The

linearized observation equation, in a similar format to Equation (4.1) is given as

Z R? 0 0 oo,
0
n— v o |, vne 1,...N (5.5)
of -R!A R! —-R! rx 5

)

n
v
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where A= @, x rx +[ o, xr x] and N is the number of IMUs.

The nine parameter least-squares estimation operates in a standard fashion. It uses all
gyro and accelerometer measurements as observations and provides an estimation of the
virtual IMU accelerometer and gyro measurements. If five IMUs are used, the system
has 30 observations and operates at the same frequency as the incoming observations.
For this thesis, measurements were weighted equally because the IMUs are all the same

make and model.

5.2.1.1 Two IMU Least-Squares Rank Deficiency

This nine-parameter least-squares model shown in Section 5.2.1 has a unique
circumstance when two IMUs are used. When using two IMUs, the design matrix will
only ever have a maximum rank of 8, indicating that only 8 of the 9 parameters are
actually solvable. Further, because the design matrix will only ever have a rank of 8, the
rank of the normal equation will only be 8 and therefore the normal equation will not be
invertible. It should be noted that the rank of the design matrix for three IMUs is nine
and no issues arise estimating all nine parameters, provided no linear relationships exist

between IMUs.

Conceptually, the linear dependency arises due to the fact that any angular acceleration
about the vector between the two IMUs (i.e. the angular velocity vector and the vector
between the IMUs is parallel) will result in zero acceleration. Therefore, all three axis
components of the angular acceleration cannot be estimated. As additional IMUs are
added the angular acceleration between the two IMUs is observable from other non

parallel angular velocities.

To provide a better understanding of the problem the design matrix using two IMUs can

be written as
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R! 0 0
| R e t[en <] RL Ry nx
o R} 0 0 (5.6)
R} o > [r2 X] +[ o, *r, X] R: Rl r,*

A series of Matlab scripts were written to use symbolic math to compute the rank of the

above matrix. This method completely eliminates any singularities arising from linear

dependencies resulting from similar rotations to the VIMU frame (R}) and the IMU to

VIMU vector (T, ) (which could be generated in columns 4 to 9 of the design matrix). It
was determined that the design matrix always had a maximum rank of 8, which proves
that the system could not estimate all nine parameters, no matter the values of R} and r, .

It is conceivable that the rank could be lower, again if some linear combination between

the columns exist.

To further show which parameter is unsolvable, the design matrix from a data collection
described in Chapter 6 was used. These design matrices are time variant and therefore
this analysis is only provided to clarify the problem. The design matrix was modified to
eliminate one column (i.e. one parameter) at a time, thereby determining which parameter
(or parameters) was unsolvable. Table 5 shows results of the test including the number of
parameters in the modified least-squares estimation, the condition number of H, the rank

of H and whether the normal matrix of H is invertible.

Table 5 — Two IMU Least-Squares Rank Deficiency

Angular Specific
All 9 Velocity | Force (X, Angula.r Angula.r Angula'r
Acceleration Acceleration Acceleration
Parameters | (X, Y or YorZ . . .
. . . (X Axis (Y Axis (Z Axis
Estimated Z Axis Axis Removed) Removed) Removed)
Removed) | Removed) v v v
Estimated 9 3 3 3 3 g
Parameters
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Condglon of 1.0e17 2.3¢16 2.2¢16 58 58 41
Rank 8 7 7 8 8 8
Normal Matrlx No No No Yes Yes Yes
Invertible

The analysis shows that the system must remove one component of the angular
acceleration vector in order to create a solvable system. The specific X, Y or Z
component to be removed is not restricted to any specific axis. Using a twin IMU
configuration, as per the data collected in Chapter 6, the best results would occur by
removing the Z axis of the angular acceleration. Because the modified least-squares
version only allows two angular acceleration axes to be estimated, the second term of
Equation (5.4) is incomplete and the configuration is unfit for comparison to the other
VIMU architectures since it operates in a reduced parametric fashion. The two VIMU is

therefore not analyzed within Chapter 6.

5.2.2 VIMU - Nine State Adaptive Kalman Filter

The angular acceleration is the time derivative of the angular velocity and therefore a
differential equation exists that relates these states. This forms the basis of a VIMU
Kalman filter. A VIMU Kalman filter further reduces noise and can enhance navigation

performance. The differential equations of the nine states are as follows:

- b b

o, . =0 (5.7)
f, =n, (5.8)
@, =n, (5.9)
where
n, is the process noise of the uncertainty in the time derivative of the specific

force vector and

n, is the process noise of the uncertainty in the time derivative of the angular

acceleration.

The matrix form of the filter, similar to Equation (4.8), is
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][00 1Te,] [0 0
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@l 00 olallo 1"

Determining the optimal values for 7,and 77, is challenging, given the dynamics of the

foot throughout the gait cycle. To resolve this issue, an adaptive Kalman filter is used to
determine the process noise in real time. A 0.5 s (50 epoch) window is used to determine
the process noise and is computed using Equations (4.31) and (4.32). The observation
variance, as computed in Equation (4.33), is not used as the input variance, but is held

constant to a pre-determined value.

The filter predicts and updates at the same frequency as the incoming measurements (i.e.
100 Hz) which makes this version of the VIMU fusion the most computationally
expensive. Updates are performed in an “epoch” mode (all measurements at a given
epoch), although it is conceivable to process them sequentially for optimal processing

speed.

The VIMU filter must operate with IMUs which are time synchronized. The adaptive
Kalman filter could still function if the IMUs are synchronized but have output
observations at different data rates or if the observations had different time stamps. The
required time synchronization is related to the angular dynamics, specifically the angular
acceleration, and will incorrectly determine the specific force at the VIMU location.
Given the angular acceleration can reach a magnitude of 40,000 °/s* for an IMU located
on the foot (see Section 6.8.2) and the noise of the gyro observation is 0.7 °/s (as per
specification sheet of the IMUs used within this research), a time synchronization

between IMU observations of at least 0.02 ms level is required.

5.2.3 Validity of FDE for MEMS Grade VIMU Fusion

This section will demonstrate that FDE is not always a viable option for MEMS IMUs

with large biases and scale factors, in particular when IMUs experience large
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accelerations and angular velocities. Fault detection works on the premise that the
misclosure or innovation sequence has zero mean (see Equations (4.62) and (4.63)). As
the biases and scale factors of each IMU have not been estimated, and therefore not
removed from the observations, the observation model is not zero mean and therefore

FDE effectiveness is compromised.

Residuals computed from a 9 state least-squares estimation of each sensor axis are shown
below in Figure 23 and Figure 24 (and Appendix B). The period shows a complete gait
cycle where all the IMUs were rigidly mounted on the foot. The full details of this data
collection are provided in Chapter Six. The residuals are shown with the raw IMU
measurements of each sensor in the VIMU frame. The residuals for the accelerometer
have a peak magnitude of about 4 m/s>, which corresponds to the highest acceleration
within the gait cycle. Large gyro residuals of nearly 20 °/s are also observed and also
correspond to high dynamics. During the stance phase of the gait, the residuals are much
smaller, often in the range of the biases. Therefore, the magnitude of the residuals is

clearly correlated to high dynamics.
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Figure 23 — Specific Force Residuals from a Virtual IMU Computed from Least-
Squares (Y and Z Axis are shown in Appendix B)
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Figure 24 — Angular Velocity Residuals from a Virtual IMU Computed from Least-
Squares (Y and Z Axis are shown in Appendix B)

Figure 25 shows the residuals of the Y axis accelerometer as a function of the specific
force experienced in the Y axis from a dataset described in Chapter Six. A trend line was
fitted to the data, which is shown in red. The general trend of the data indicates that the
specific force is linearly related to the residuals. This result shows the impact of the scale
factor on the VIMU estimation process. The slope of the red line (0.0339) is the
approximate scale factor of the Y axis accelerometer during the test (although it does
fluctuate by a few percent). It is also interesting to note that the bias (0.105 m/s?) is also
similar to the bias estimated in the SINS filter (but fluctuates in similar fashion to the
scale factor). The two parameters of the trend line serve as confirmation that the
estimation is working correctly and that the remaining systematic errors have been

identified.
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Figure 25 — Y Axis Residuals Vs Y Axis Acceleration (VIMU Frame)

Because the magnitude of the residuals is a function of dynamics rather than sensor error,
the input covariance matrix must accommodate these large variations, otherwise faults
will be detected during every gait cycle (or whenever the IMU experiences high
dynamics). With a VIMU architecture, each IMUs sensor errors cannot be modeled
individually. Thus, if FDE was to be performed, the input covariance matrix could not be
a function of sensor noise, but rather must contain an increased amount of error to
account for biases and the scale factor errors. This increase in error would also be a
function of dynamics since the scale factor would create a large bias in the results.
Therefore it is a recommendation of this thesis that FDE not be performed on MEMS-
based VIMU fusion.

5.3 Centralized IMU Estimation Architectures

The centralized filter proposed in this thesis is referred to as a stacked filter, consisting of

several individual INS filters. In this manner several “block” filters (i.e. SINS filters) are
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contained within one centralized filter, ultimately operating as one. This filter
architecture has been previously described in Bancroft (2009) and Bancroft et al (2008)
and is elaborated upon herein. Specifics are also given concerning a more robust GPS

observation FDE algorithm.

The stacked filter contains parameters for position, velocity, attitude, accelerometer and
gyro biases and accelerometer and gyro scale factors for each IMU. If five IMUs are
used then there are five 21 states filters contained within one centralized 105 state filter.
Each block filter can be updated at the same time or individually, but the entire filter
prediction cycle must be synchronized (to avoid different block times, within the stacked
filter). An attractive characteristic of the stacked filter (and federated filters) is that each
block filter could contain additional or different IMU error states, thus facilitating
varying types and qualities of IMUs and error state models, which the VIMU architecture
does not. Since the IMUs are all the same make and model, the block filters are identical

with slightly varied input process noise parameters for each IMU.

The block form of Equation (4.12) and the block form of the stacked filter, similar to

Equation (4.1) are as follows

x| [@, 0 0 0 Jaxi]| [w]

;| | 0 Cr 0 0 ox; . w;
: 0 0o . 0 : : G5.10)

_aXZﬂ 1L 0 0 0 (I)Z,kﬂ | _5XZ ) _WZ ]

oz, | |Hy, 0 0 0 |[0Xy, | | My

azlzm B 0 H/f+1 0 0 axlzm N n12c+1 (5-12)
- 0 0 -0 : :

oz, | O 0 0 H. |0y M|

where:

" is the n'™ block filter transition matrix,
kok+1
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ox;,  isthe n'™ block filter states (21 state model),

oz, is the misclosure vector from the n™ block filter of the observations,
w) is the process driving noise of the n™ block filter, and

n,., is the measurement noise of the n™ block filter.

The stacked transition matrix of (5.11) and the design matrix of (5.12) are block diagonal.
This important characteristic makes the block filters operate independently, unless
additional updates are applied. Thus, if the stacked filter operated without additional
updates, the block results would theoretically be identical to the independent IMU filters.
In practice however, round off errors and minute computational correlation between

block filters result in small differences (i.e. the position varies a few centimetres).

During a GPS update, each block filter requires its own misclosure vector, derived from
the GPS observations. However, if each block requires its own misclosure vector, the
GPS observations must be repeatedly used for each IMU, thereby directly violating

Equation (4.10). The stacked filter innovation vector would have the following form

v, | |P, X

D.i = N." _|" X,(_)i (5.13)
v, | B |, X

where

h x© s the predicted observation derived from the observation equation using the

n"™ block state vector of the k™ epoch.

The transformation from P, to [B, B, -~ B | can be performed through a

transformation matrixB, [ [ --- I', which effectively repeats the original

observation vector. Therefore, the covariance transformation of the R matrix is BRB' ,

resulting in a new covariance matrix for the repeated observation vector. However, the
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use of this covariance matrix results in a divergent filter, yielding spurious and incorrect
results. A closer analysis of the covariance matrix shows a 100% correlation between
observations. Take for example a three observation covariance matrix, repeated two
times (three observations feeding two identical states). The observations vector is

transformed to

3x3 b _

, where a, b, ¢ are the observations.
13x3 6x3

3x1

o o o6 oK

L~ J6xl1

The covariance matrix is transformed to

2
r [ Gu O-ab O-ac
3x3 2 Ji I _
J Op Op Op 303 d3x3 56 =
3x3
L~ 2x5 _16x3 o o . 0.2
ca c ¢ l3x3
T _ - _ -
O-a O-ah O-ac Ga Uab O-ac
2 2
O Op Op O Op Op
2 2
_O-La acb O-c 133 Uca O-ab O-c 133
— - r o, —
Ga O-ab O-ac Ga Jab Gac
2 2
O Op O Ope 9p O
2 2
L ca ch ¢ I3x3 |~ ca cb c 13x3 Jg 6

The transformed covariance matrix will then have the following correlation coefficient

matrix
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This matrix has 100% correlated observations, therefore making the observation set

unusable. When data is processed with this covariance matrix, the filter diverges rapidly.

This problem, however, is easily solved by removing the inter block correlation within
the covariance matrix, thus assuming that all “repeated” observations are independent
(aside from any serial correlation that is introduced from observation differencing). This
makes the stacked filter observation covariance matrix block diagonal. In this manner the
block filters can act similarly to local filters within a federated filter, which also use the
observations repeatedly, albeit in their own INS filters. Information conservation
principles apply when the final solution is combined, noting that the outputs of each
block filter are highly correlated. The result of the stacked filter is five navigation
solutions that are combined via least squares to give the final navigation solution. It is

therefore important to observe the correlation between the navigation solutions of each

block filter

5.3.1 Stacked Filter Relative Updates

Because the stacked filter contains multiple position, velocity and attitude states, one for

each IMU, the filter can be updated with relative PVA information that is known a priori.
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This section describes the relative updates that can be used as constraints to improve the

performance of the filter.

5.3.1.1 Relative Position Update (RPUPT)

If the relative position vector between the IMUs is known, it can be used to update the
filter. This information does not update the absolute position of the block filters, but
constrains the rate of divergence between the IMUs. It also aids in the estimation of the
bias and scale factors of the IMUs. If the IMUs are rigidly mounted with respect to each
other, than the vector between them remains constant. If the IMUs are not rigidly held
together the vector must be determined from other means in order to utilize the update.
Bancroft et al (2008), for example, uses the step length to perform a RPUPT on two
IMUs located on each forefoot while Brand & Phillips (2003) use an additional RF
ranging technique to perform a RPUPT.

The inter-IMU vector is measured in one of the IMU“s body frame and is computed by
differencing the lever arms (i.e. the vector from the GPS antenna to the IMU in the body

frame). The relative position update, in the form of Equation (4.1), is given by

Al ~2 2,1
ro—v: =L
A * 1 05 —1 RTST)
’il - ;;12 - Lzy"l = 1 0115 -1 “oas |OX M (5.14)
,?Zl — }aZZ _Li’l 10,5 =1 g
where
7! is the estimated X coordinate of the 1% block filter and
L is the a priori known X component of the vector between the IMUs.

The misclosure is computed by differencing the positions in each block filter and the
known vector between the IMUs. It is important to note that by differencing the lever
arms to generate the inter-IMU vector, the lever arms must be in the same frame and not

the independent body frames. Since the navigation frame for this research is the ECEF
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frame, the inter-IMU vector must be rotated into that frame. Consequently, there is an
inherent relationship between the efficacy of the RPUPT and the error in the orientation

of the body frame relative to the ECEF frame.

The update is applied periodically to facilitate a convergence of the block INS filter,
reduce numerical computations and limit the inter-block correlation accumulation. Using
experimental filter tuning, a periodicity of 6 s and a standard deviation of 1 cm (a

diagonal matrix) provided the best performance.

5.3.1.2 Relative Velocity Update (RVUPT)

The relative velocity of a point on a moving rigid body is given by Marion & Thornton

(1995). In the context of two rigidly mounted IMUs the relative velocity is expressed as

M=o < (5.15)
where:
12! is the relative velocity between the IMUs 2 and 1,
o is the angular velocity vector measured by IMU 1, and
1
1> is the vector between IMUs 1 and 2.

The vector between the IMUs is assumed to be known a priori and the angular velocity
vector is observed by the inertial unit. This update therefore derives its input from the
observation of the IMU. The accuracy is a function of the noise characteristics of the
IMU and the filter*s ability to correctly estimate the systematic IMU errors. The relative
velocity update, in the form of Equation (4.1), is given by

Slop2 —
o * 0, 1 O 1 015
IS IS A B
Vy Vy Ly 01x3 1 01x18 1 01x15 X +1] (516)
o=Vl - O I Opg 1 Ops
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o is the X velocity of the 1* block filter and

<>

2 is the X velocity of the 2™ block filter.

X

As with the relative position update, the relative velocity observation is derived in the
body frame and must be rotated into the navigation frame, thus creating a similar
relationship between the error of the rotation and the RVUPT. The standard deviation
used for RVUPTs was 2 cm/s and was derived using propagation of variances of
Equation (5.15), assuming nominal values of the IMUs noise characteristics and the

accuracy of the known lever arm, as discussed in Section 5.3.1.1.

5.3.1.3 Relative Attitude Update (RAUPT)

The relative attitude update follows a similar procedure to the relative position update.
The misclosure vector is formed using the difference in estimated Euler angles of each
IMU and the pre-surveyed Euler angles describing the rotation between them. In this
research the IMUs are fixed on the same platform and mounted on adjacent faces thereby
allowing simple Euler angle identification. The relative attitude update, in the form of

Equation (4.1), is given as

9512 01x6 1 lels -1 lelz
‘;9512 =10, 1 0,5 -1 0., |ox+n (5.17)
5”512 0,6 1 0, 1 0,

where

(9;912 is the misclosure of the roll between the first and second IMU body frames,

(0512 is the misclosure of the pitch between the first and second IMU body frames,
and

war is the misclosure of the yaw between the first and second IMU body frames.

The standard deviation of this observation is 0.1 rad (i.e. 5.7°).
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5.3.2 Stacked Filter Fault Detection and Exclusion of GPS Measurements

Since GPS observations are repeated within the stacked filter, the FDE process is slightly
modified for GPS observations. The modification eliminates the possibility that GPS
observations may be rejected for one block filter and accepted for another, while at the

same time improving the reliability of the fault detection scheme.

Equation (4.57) describes the effect of the blunder vector and its mapping matrix on the
observation vector. It is in this equation that the FDE algorithm will be modified to test a
series of observations (corresponding to a single GPS measurement) rather than elements
of the innovation sequence. The M matrix is generated based on the GPS observations

and number of IMUs used. For example, the M matrix with three pseudoranges, repeated
7

for two IMUs, with a single fault in the first element willbe =1 0 0 1 0 O

The test statistic is then computed from Equation (4.60) with direct reference to the GPS

observations.

The test statistic, now different than the single element FDE algorithm presented in

Section (4.8), is a chi-squared distribution. The null and alternate hypotheses are

2
T, ~ 2 d.0 (5.18)

T, ~2 d.& . (5.19)
where d is the degrees of freedom (the number of times an observation is used) and J,is

the non-centrality parameter. With these hypotheses, the test is conducted by rejecting

the null hypothesis if T, > > d,0 .

The computation of the MDB for the stacked filter is also modified. From Petovello
(2003) the non-centrality parameter can be computed as J; = V?C;klvk . Reforming this
equation to solve for V, is the premise for determining the MDB provided the non-

centrality parameter has been set. Using M, the fault mapping matrix, the non-centrality
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parameter can be simplified in the following manner, noting that in this particular case,
V,, 1s a scalar

& =ViCi, Vi

s, =VI M'C;'M V,

/2

s, =V, M'C;'M

The MDB of the stacked filter can then be determined as

_ é‘0
MDByeqrirer = W (5.20)

Assuming that the innovation covariance matrix is equivalent between block filters, the

improvement in the MDB versus a SINS MDB is given as follows

%
, T -1
MDBg,yeq rier _ M C"kM
MDB, %y
-1
-1
50 Cvk ii
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The performance however will not be exactly as derived above, as a result of inter-block

correlation present in the covariance matrix introduced by the relative updates.

5.4 Decentralized IMU Estimation Architectures

Decentralized filtering was discussed in Section 4.6. This section will apply the filter

architecture to the case of multiple IMUs and provide the implementation details.

The decentralized filter separates the processing of each IMU into its own INS filter. In
the context of this thesis, a decentralized filter that shares the GPS observations will be
referred to as a federated filter, as this is more consistent with the nomenclature in the

literature.

The federated filters discussed within this chapter contain common states. Specifically,
the shared states are position (I), velocity (V) and the Euler angles representing the
rotation from the body frame to the ECEF frame (@ ). The local filters estimate these
parameters as part of their 21 state filters. The master fusion filter (or least squares
estimator as in this case) also contain the same shared states (I ,vand a). In this
manner, only these states are shared, all biases and scale factors within the local filters

remain unmodified.

The reference data of the federated filter can be formed by one of two methods. The first
method is to use GPS observations, whereby each local filter operates in a tightly coupled
manner (i.e. GPS observations are used in each of the local filters). The second method
is to use one of the IMUs to form an INS aided by the GPS observations, the output
thereof providing updates to the local filters. In this manner, the federated filter operates
in a loosely coupled architecture. If the INS provides the reference to the local filter it
provides a time correlated input into the observations of the local filters. This time
correlation violates the rules of observation input into a filter and therefore would

generate an overly optimistic variance of the states.
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It is conceivable that a standalone GPS navigation solution could be used as the reference
system, however it has been previously shown that a loosely coupled INS produces

suboptimal FDE and overall performance (Godha 2006).

5.4.1 Federated No Reset Filter

The federated no reset (FNR) filter architecture for multiple IMUs is shown in Figure 26.
The filter is fundamentally equivalent to running each IMU through an INS filter and
combining the final results of each solution via least squares. However, in the software
developed for this thesis, each local filter represents one INS and is processed
simultaneously. The master fusion is performed via least squares with each local filter's

PVA providing the observations.

The observation vector for the master fusion is

7

1,5 v, o4 ---1, V, O (5.22)

n n n

and the corresponding R,, matrix is given as

1 9x9 0 0
R,=| o 0o | (5.23)

n 9x9

Thus, if there are five IMUs, the master estimator contains 45 observations and
correspondingly, a 45x45 observation covariance matrix. The master's R,, input

observation covariance matrix is block diagonal, however the internal PVA correlation

remains within the off diagonal elements (i.e. P o0 is not diagonal). Because R, is

block diagonal, the least-squares algorithm processes the multiple PVA as independent
observations which result in overly optimistic variances for the final states. The PVA of
the local filters is in reality correlated as a result of using the same GPS observations and
moreover by potentially similar dynamics if the IMUs are rigidly mounted together.

Figure 26 shows the flow of information for the multi-IMU FNR filter.
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Figure 26 — FNR Multiple IMU Filter

5.4.2 Federated Fusion Reset Filter

The FFR filter has a similar structure to the FNR filter, but the master fusion parameters
(and its corresponding covariance matrix) are shared with the local filters. The
information factor for each local INS filter (see Section 4.7.3) is n”' because the IMUs are
all the same make and model. The input to the master fusion is the same as the FNR
filter. Furthermore, since the states of the INS extended Kalman filter are zero, the PVA
of the master fusion replaces the PVA used to provide the expansion point, rather than the
actual values in the state vector. The covariance information, however, replaces the
actual values with the local filters. Additionally, because correlation is developed within
the local filter between the PVA and other filter states, these values must be set to zero,
otherwise the filter will diverge. Further the covariance replacement of the i™ local filter
with the master state covariance matrix is as follows, the first nine states representing the

PVA having been replaced.

Lp o

P=|B "7 . (5.24)
0

h2x12
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P remains unmodified during the covariance replacement because it contains the bias

h2x12

and scale factors of the i”” IMU which are not shared. Figure 27 shows the data flow of

information in the multi-IMU FFR filter.
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Replacement of PVA and
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Figure 27 — FFR Multiple IMU Filter

5.4.3 Federated Zero Reset Filter

The FZR filter contains a Kalman filter for the master position and velocity information

and a least squares estimator for the attitude information. This varies slightly from the

form given in Section 4.7.4, although it still conforms to the federated filtering

information sharing principles, essentially combining the general form of FZR and the

FFR into one federated filter. The attitude is shared among master and local filters, but

since it does not contain a differential relationship within the master filter (as position and

velocity do), there is no benefit in including attitude as a parameter in the master Kalman

filter. Additionally, since the attitude dynamics are extremely high, the filter would
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require a high amount of process noise to accommodate the dynamics. Future research

could address estimating the attitude derivative within the master filter.

The attitude sharing is performed on a FFR basis, with the position and velocity on a FZR
basis. The inputs of the master Kalman filter are the local filters position and velocity
and the input into the least squares estimator is the attitude. The output of each estimator
is then shared back into the local filters. The position and velocity (PV) covariance is set
to a diagonal matrix, i.e. 100> m* for position and 10> m?/s” for velocity; this effectively
resets the PV portion of the filter. The attitude variance is shared using the information
constant discussed in Section 5.4.2. Figure 28 shows the data flow of information in the

multi-IMU FZR filter.

GPS Observations Position and Velocity into Kalman Filter (i)

wr Attitude into Least Squares (ii)
Local INS Filter

IMU 1 2 Master
Fusion
Estimators
IMU 2
(1)PV Kalman
IMU 3 e
(i1)Attitude
Least-
Squares
IMU n

PVA Replacement (i and ii)
Position and Velocity Variance Reset (i)
Attitude variance replaced with Master Attitude (ii)

Figure 28 — FZR Multiple IMU Filter
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5.5 Comparison of Architectures

Table 6 shows a comparison of the different architectures described in the chapter and
each architectures strengths and weaknesses.

Table 6 — Comparison of the Various Architectures

Filter/Estimation Characteristic VIMU Centralized Fegfll;:;ed
Enhanced GPS Observation FDE No Yes No
IMU Observation FDE Not No No

Recommended
Reduced Noise at Mechanization Yes No No
Input
Constrains Estimator using
Relative PVA No Yes No
Estimates Each IMUs Bias and No Yes Ves
Scale Factor
IMU Time Syncl}ronlzatlon Not No Yes Yes
Required

In the following chapter these models will be implemented and compared with a focused
discussion on the advantages and disadvantages of each. Particular attention will be paid
to the navigational accuracy of each model since it has important implications for

everyday use.

5.6 Software Implementation

The architectures discussed within this research were implemented in a C++ class based
program. The 34 class development was strictly modular, allowing for the repeated use

of classes, in particular the IMU fusion.

The user can select any of the architectures from an option file, modify the various
parameters each architecture requires, modify the IMU noise characteristics/models and
process the data. The program operates in post-mission, but all the algorithms used are

capable of operating in real-time.
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Several GPS and estimation classes were adapted from the previously written source code
within the PLAN Group. These classes were adapted to accommodate where the GPS
data could be used, its format and the numerous estimation classes that were required to

use the data.

A SingleIMU class was created to contain all the information regarding one IMU.
Protected member variables included the position, velocity, quaternion (body to ECEF
rotation), covariance matrices of the PVA, type of alignment performed, spectral
densities of the sensors noise, bias and scale factor models, initial values of errors and
their variances, lever arm to the GPS antenna, and numerous file streams for I/O. This
class worked in conjunction with the IMUs option file class, where the user could modify

any of the initial parameters listed above.

A virtual template class was created to process any type of IMU architecture. Virtual
functions were created to force future class implementations to process data in a similar
manner within the main function. For example, such functions included loading the next
IMU epoch, performing the mechanization of the IMU data, predicting the filter forward,
applying a GPS update and detecting/applying ZUPTs. This base class function was
called IMUProcessor.

Using the IMUProcessor template class, the SingleIMUProcessor, VirtualIMUProcessor,
StackedIMUProcessor, and FederatedIMUProcessor were written and inherited all the
public functions of the IMUProcessor base class (which only contained public functions).
With this organization, the number of private variables within each implementation of the
IMUProcessor class was minimal. For example, the SingleIMUProcessor had one
instance of one SingleIMU class, an Estimator class, a pointer to the GPSProcessor class,
which was defined in the main function. The VirtualIMUProcessor contained an array of
SingleMU classes and one SingelIMUProcessor classes to process the VIMU data. The
FederatedIMUProcessor had an array of SingleIMUProcessors for each local filter, and

then had its own master filter variables contained within the protected member variables.
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In this manner, new architectures could easily be implemented, rather than modifying the

existing code several times for each architecture.

The software developed was not optimized to run in an embedded system, but developed
as a tool for evaluating the proposed architectures. The software was continually tested
against previously developed single IMU integration packages to ensure that the results

were correct.

5.7 Filter Tuning

Tuning the filters developed within this thesis presented a significant (and time
consuming) problem. There are five tunable parameters for each sensor (i.e. axis) within
the IMU. With a five IMU configuration there are potentially over 150 potential
parameters to tune, aside from parameters custom to each architecture (e.g. federated
filter sharing information rate). It should be noted that in the VIMU case only one IMU
(i.e. the VIMU) requires tuning. For the stacked and federated filters, achieving a high
level of tuning for each parameter is simply unrealistic given the quantity. It is conceded
that there could be better results with more advanced filter tuning for each architecture.
However, it presents similar results that would be seen in industry where each sensor

could not be specifically tuned due to the effort required.

Therefore, a generic set of tuning parameters was used during each data set for all IMUs.
Only minor modifications to the spectral densities were allowed to accommodate each
sensor noise range. Consequently, the same parameters used in the single IMU solution
were used in every other multi-IMU solution. Although the solutions may be somewhat
sub-optimal, the methodology facilitates better filter performance comparisons, rather

than tuning performance comparisons.
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Chapter Six: Data Collection and Analysis

Estimation architectures discussed in Chapter 5 were developed in C++ software. Data
was collected in typical pedestrian navigation environments (e.g. urban neighbourhoods
with a mixture of open and occluded sky) and processed using the software. The results
of the different processing architectures are compared within this chapter, accuracy being

the primary interest and improvement as a function of IMUs used.

6.1 Data Collection Environments

Data was collected in two environments: a typical North American residential home and
inside the Olympic Oval at the University of Calgary. The residential home, as shown in
Figure 29, provided an excellent example of an area where GPS was attenuated by 4 to
18 dB and provided reasonable standalone GPS accuracies of a few metres. Although
GPS can typically provide reasonable accuracy in such an environment, the benefit of an
integrated system to reject multipath is valuable and the ability to position an individual

within a room can be of great value to first responders.

Figure 29 — Residential House used for Data Collection

The Olympic Oval, shown in Figure 30, is an ideal location for indoor testing as GPS

signals are attenuated by 25 to 35 dB and are yet observable with high sensitivity
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receivers. Because of the severe signal attenuation, the effects of multipath and noise are
large, often to a point where the GPS solution is completely unreliable and unusable. In
this environment there must be an integrated system to provide useful navigation

information.

Figure 30 — Olympic Oval (Left: roof top with trajectory in red, Right: inside

showing track and ice level)

6.2 Data Collection Set Up

To collect the data, the test subject carried a rigid aluminum backpack to house a
reference INS, two laptops to collect the GPS and IMU data, and batteries to power all

the equipment.

A NovAtel SPAN system was used to provide the reference solution. It consists of a
Honeywell HG1700 AGS58 IMU and a NovAtel OEM4 GPS receiver. The receiver and
IMU operate in an ultra-tight mode in real time and the GPS and IMU data is logged
onboard the OEM4 receiver. The data in this case was differentially post-processed with
a nearby (< 1 km) reference station to provide a reference trajectory. The data was
processed in NovAtel“s Inertial Explorer in forward and reverse directions, smoothed

using RTS smoothing (Gelb 1974) and then combined for the final reference solution.
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The reference solution was accurate to within a few metres in the Oval, and better than

0.5 m while in the residential house.

The GPS receiver used was a u-blox Antaris 4 Precision Timing AEK-4T evaluation kit
with firmware 5.0. The antenna was a u-blox ANN-MS, which was designed and
manufactured by Allis Communications Co Ltd as antenna M827B (M827B Data Sheet
2006). The antenna was attached to the top of the backpack, rather than the head, to
avoid the effects of antenna detuning (Bancroft et al 2010). All GPS data was
differentially processed to eliminate the satellite position and clock errors and reduce the
effect of the ionosphere and troposphere errors. Differential processing was used to
enable a clear analysis of the multi IMU method rather than errors derived from single

point (GPS) positioning.

The IMUs used within this research was Cloudcap Technology*s Crista IMU. The error
characteristics of the Crista IMU and the HG1700 AG11-58 tactical are shown in Table
7. The single retail unit cost associated with a tactical grade IMU is typically around
$50,000 and for a MEMS grade IMU is $1,500. Figure 31 shows a picture of the IMUs

rigidly mounted on a platform attached to the author*s foot.

Table 7 — Reference and MEMS Grade IMU Maximum Errors

HG1700 AG11-58 Cloudcap Crista
Tactical Grade IMU | MEMS Grade IMU
In Run Bias (mg) 1 51
Turn on Bias (mg) - 30
Accelerometer =g =1 Factor (PP%/I) 300 10,000
Random Walk (g/NHz) 2.16x 10° 370 x 10°
In Run Bias (°/h) 1 2,160
Gyro Turn on Bias (°/h) - 5,400
Scale Factor (PPM) 150 10,000
Random Walk (°/h/\Hz) 7.5 226.8
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Figure 31 — Rigidly Mounted IMUs on the Foot

6.3 Disjunction Error

Unfortunately, in view of the size and weight of the reference IMU, it had to be housed
on top of the backpack. This provides a reference solution for the backpack®s location
and not for the IMU location(s). This makes an exact comparison of the multi-IMU PVA
impossible, since the reference solution does not represent the position estimated by the
multi-IMU algorithm. This error, referred to as the disjunction error, can however be
approximated and is less than the users step length and is negligible compared to the error

of the algorithms tested within this thesis.

The IMU was located on the forefoot and the antenna was located on the backpack. The

lever arm is the vector from the forefoot to the antenna on the back pack while standing.
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As the user walked, the lever arm was subject to a periodic change due to the mechanics
of the gait cycle. The most error was accumulated in the longitudinal direction, which
varies with half the step length (i.e. the distance from the standing position to the heel
strike); a minimal latitudinal error is induced if the user has any abduction/adduction (hip
rotation) or varus/valgus (knee rotation); and a minimal vertical effect based on the step
height is also induced. Step lengths typically range from small steps of a few centimetres
to large steps over a metre (Kwakkel 2008) with step heights typically less than 20 cm.
The latitudinal motion was typically less than 10 cm, but varied when the user changed
direction or stepped side to side. Each person‘s gait cycle exhibits different lever arm

errors and contains a variety of aberrations due to the variability in walking mechanics.

Although the lever arm is time variant, the variation is symmetric about the fixed lever
arm. It is under this assumption (i.e. the disjunction errors are symmetric about a
predetermined lever arm) that solutions can be compared to within a decimetre error

envelope.

6.4 Residential Data

During the residential data collection, the subject walked along the street, between the
houses, then walked down stairs to the basement, proceeded up the stairs to the main
level and outside again. The walk through mimicked a first responder®s walk through of
the house. The trajectory is shown in Figure 32. To account for inaccuracies in Google

Earth®s geo-referencing, the trajectory was shifted to correctly align with the house.
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Figure 32 — Truth Trajectory (Residential Data Set)

A 10° satellite elevation mask was used, which generated a Horizontal Dilution of
Precision (HDOP) profile shown in Figure 33. This figure also shows the average power
of all satellites tracked. While in the basement the average C/N, dropped below 30 dB-
Hz and on the main floor the C/N, was approximately 37 dB-Hz. Between the houses the
C/N, decreased to 37 dB-Hz. On the sidewalk the C/N, averaged 43 dB-Hz. The total

walkthrough took 7.5 minutes.
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Figure 33 — Average C/N, and HDOP (Residential Data Set)

6.4.1 Position Accuracy

This section analyzes the accuracy of the architectures discussed in this experiment and
Table 8 provides a summary of the statistical values of each. This table allows for the
comparison of each estimation technique used. This table is discussed throughout

Section 6.4.1.
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Table 8 — Horizontal Errors of All Architectures for Data Collected in a Residential

House
ProcessingNumber| Mean Im I:il)iilllnen ¢ RMS Im ll'f)l:’/[esmen ¢ Std MaxMinMedian
Method |of IMUs P P
(m) (%) (m) (%) (m) |(m) |((m)| (m)
Standalone
GPS 0 1.5 0.0 1.88 0.0 1.2]16.1(0.0] 1.1
1 1.1 25.8 1.27 32.6 06(34/0.0| 09
1 1.2 18.0 1.36 27.7 06(3.0(0.0] 1.2
SINS 1 1.3 14.6 1.47 21.7 08(1421(0.0] 1.1
1 1.3 12.9 1.49 20.9 08(4.1(0.0| 1.1
1 1.3 13.9 1.41 25.2 06(291(0.0| 1.2
2 1.3 13.1 1.46 22.3 07(3.8(0.1] 1.2
VIMU (6 3 1.2 15.2 1.44 23.1 07(3.9]0.0] 1.1
State LSQ) 4 1.2 19.7 1.37 27.1 07(3.8/0.0| 1.0
5 1.1 22.8 1.31 30.2 07(35]0.0| 1.0
VIMU (9 3 1.1 26.6 1.27 32.4 07(33(0.1] 09
o LS(Q‘ 4 | 11 278 125 | 335  |07]33]00] 09
g 5 1.0 29.3 1.23 347 0.713.21(0.0] 0.8
2 1.0 28.5 1.24 34.0 0734100 09
VIMU 3 1.0 29.3 1.24 34.0 07(13.6(0.0] 09
(AKF) 4 1.0 34.7 1.14 39.6 06(3.3]0.0] 0.8
5 0.9 35.7 1.10 41.3 06(27(0.0] 09
2 1.1 23.8 1.28 31.6 06(3.0/0.1| 1.0
Stacked 3 1.1 22.9 1.32 29.9 07(3.3]0.1] 1.0
Filter 4 1.1 24.0 1.30 309 07(34]0.0| 1.0
5 1.1 25.8 1.26 33.1 06(3.1/0.1] 09
2 1.1 24.7 1.28 32.0 06(32]0.0| 1.0
FNR 3 1.1 23.3 1.31 30.3 07(35]0.0| 1.0
(GPS) 4 1.1 22.2 1.33 293 07(3.7/0.1] 1.0
5 1.1 26.9 1.25 335 06(32(0.0] 09
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Mean

RMS

Processing Number/Mean RMS Std | Max|Min| Median
Method lof IMUs Improvement Improvement
(m) (%) (m) (%) (m)| (m) |((m)| (m)
2 1.2 16.5 1.40 25.6 0.7] 3.2 0.1 1.1
3 1.2 16.8 1.39 25.8 0.7]1 3.2 (0.0 1.1
FNR (INS) 4 1.2 17.2 1.39 26.2 0.7] 3.2 0.0 1.1
5 1.2 18.4 1.37 27.2 0.7]1 3.2 (0.0 1.1
2 1.2 15.0 1.38 26.7 0.6 3.0 (0.1 1.2
3 1.1 25.6 1.27 324 0.6 3.410.0 0.9
FFR (INS) 4 1.1 25.7 1.27 32.5 0.6 3.410.0 0.9
5 1.1 25.8 1.27 32.6 0.6/ 3.4 (0.0 0.9
2 4.3 -195.3 4.96 -164.3 24110.7]0.1 4.1
3 4.5 -208.9 6.07 -223.0 4.0/19.4]0.1 3.2
FZR (INS) 4 59 -303.7 7.02 -273.7 3.8116.210.3 4.8
5 4.9 -235.9 6.05 -222.1 3.5119.7(0.0 3.9

6.4.1.1 SINS Results

In order to depict the accuracy of the proposed filters in this research, Figure 34 shows a

time series of the horizontal errors for the five SINS navigation solutions, where multiple

IMU fusion is not used. This figure shows that an accuracy of 1 to 4 metres is achievable

with GPS alone, but has a maximum error of 6 m which would not, for example, locate a

first responder within a specific room of the house. Figure 35 shows the vertical errors

for the same SINS solutions. The vertical error of the standalone GPS solution reaches &

m, while the SINS solution errors are typically within 4 m of the true elevation. It is also

important to note that each SINS solution®s performance is different, often varying by a

few metres in both the horizontal plane and vertical axis. The SINS vertical axis errors,

however, tend to follow each other more closely, which results from the ZUPTs applied

during the stance phase.
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Figure 34 — SINS Horizontal Errors of Five IMUs (Residential Data Set)
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Figure 35 — SINS Vertical Errors of Five IMUs (Residential Data Set)
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The Cumulative Distributions (CD) of the SINS horizontal and vertical errors are shown
in Figure 36. The CD shows that when a SINS is used there is a significant amount of
improvement gained in the vertical channel and a moderate improvement is gained
horizontally. The error biases of the SINS solutions™ horizontal errors are smaller
compared to those of the vertical errors, which shows more deviation resulting from

varying levels of performance depending on the common tuning parameters used.
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Figure 36 — CDs of SINS Errors of Five IMUs (Residential Data Set)

IMU two was selected as the single IMU solution for comparative results within this
section. IMU 2 had an average performing horizontal error amongst all of the IMUs and
provided the least amount of vertical RMS error. This IMUs error is shown in the figures

within this section as the “Single IMU.”
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6.4.1.2 VIMU Results

Figure 37 shows the time series™ horizontal error for the three VIMU fusion methods, and
the standalone GPS and typical SINS for comparison. The RMS of the horizontal errors
is shown in the legend and indicates that moving to the adaptive filter provides a 10.1%
and 6.6 % more accurate solution than averaging and the Least-Squares (LSQ) methods,
respectively. At time 100 s in Figure 37, the user encounters open sky and the Adaptive
Kalman Filter (AKF) quickly accepts the GPS observations, whereas the VIMU and
SINS solutions take nearly 35 s longer to converge. When in the basement where
standalone GPS has six metre horizontal error, the VIMU filters maintain two metre

accuracy whereas the SINS solutions achieve only three to four metre accuracy.

The VIMU solutions contain more noise as a result of the decreased spectral densities
used within the filter. This effect was amplified when GPS measurements were stronger
(i.e. signal power increased) and the filter weighed the observations more heavily, thus
shifting the position. As the filter weighed the GPS measurements less (i.e. when the

signal power decreased), the navigation solution displayed a smoother trajectory.
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Figure 37 — VIMU Horizontal Errors (5 IMUs Used in Residential Data Set)



122

The vertical errors alternatively increased with the VIMU architecture as shown in Figure
38. The vertical error of the VIMU AKF architecture was biased by the largest amount,
namely a few metres, which is larger than the SINS or the other two VIMU solutions.
The VIMU average and VIMU LSQ vertical errors however are only slightly larger than
the SINS solution. Again the SINS vertical solution performed exceptionally well. More

on this result is discussed in Section 6.8.3.
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Figure 38 — VIMU Vertical Errors (5 IMUs Used in Residential Data Set)

The CDs of the horizontal and vertical errors are shown in Figure 39. The VIMU AKF
performance was best in the horizontal plane and poorest in the vertical axis. In the
latter, the VIMUs behaved similarly to the SINS solution, although it was clear that there
was no improvement with the VIMU average and VIMU LSQ solutions.
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Figure 39 — CD of Horizontal and Vertical Errors (Residential Data Set)

6.4.1.3 Stacked and Federated Filter Accuracy

The stacked filter, FNR and FFR filter*s horizontal errors are shown in Figure 40. FZR
results are discussed in Section 6.7. The FNR (GPS) filter provided the best solution

between the stacked and federated filters but only by less than one percent.
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Figure 40 — Stacked and Federated Filter Horizontal Errors (Residential Data Set)

Since GPS signal strength is still reasonable in this environment, the additional
information contained within the relative updates did not further improve the accuracy of
the final solution. This indicates that the filter's biases and scale factors had been
resolved and other un-modelled error sources begin to dominate the solution®s accuracy.
The FNR (INS) performed 6.3% worse than the FNR (GPS), which indicates that using

the raw ranges of the GPS receiver as input to each local filter is superior.

The vertical errors of the stacked and federated filters are shown in Figure 41. The
stacked filter performed the best with a 1.65 m RMS error, but did not outperform the
SINS solution. The FNR (GPS) filter provided the second best solution with a 1.86 m
RMS error. These errors are consistent with the errors experienced with the SINS cases

albeit higher than the specific SINS solution chosen for comparison.
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Figure 41 — Stacked and Federated Filter Vertical Errors (Residential Data Set)

Figure 42 shows the CDs of the horizontal and vertical errors. The horizontal
distributions have a slightly improved performance with more accurate results below the
I m level. For example, the SINS filter solution is better than 1 m 38.5% of the time,
whereas the stacked filter had 58.3 % and the FNR (GPS) filter had 56.5 %. In the
vertical channel the stacked filter had the best CD with 41.5 % less than 1 m error
compared to the FNR (GPS) at 33.9 % less.
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Figure 42 — CD of Horizontal and Vertical Errors for Stacked and Federated
(Residential Data Set)

6.4.2 Filters Position Accuracy vs. Number of IMUs

Of particular interest to this research is the cost vs. benefit of adding IMUs. This section

addresses this question with respect to the architecture used.

6.4.2.1 VIMU Accuracy vs. Number of IMUs

Figure 43 shows the VIMU architectures RMS percent improvement relative to that of a
standalone GPS solution. In all cases, the accuracy improved with each additional IMU.
The AKF method had the largest increase when a second IMU was added, although this
dramatic increase was not maintained with the addition of the third, fourth and fifth IMU.
This is a direct result of estimating the angular acceleration within its filter. Interestingly,
applying the averaging technique with five IMUs was less accurate than with two IMUs

using the LSQ or AKF method. This confirms that estimating the angular acceleration
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had a positive impact on the accuracy of the navigation solution, even more so than the
number of IMUs used. This was an important practical finding, which makes the use of a

dual inertial system considerably more attractive.
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Figure 43 — VIMU Accuracy as a Function of IMUs Used (Residential Data Set)

6.4.2.2 Stacked and Federated Filter Accuracy vs. Number of IMUs

Figure 44 shows the accuracy of the navigation solution as a function of the number of
IMUs used for the stacked and federated filters. The stacked filter showed the largest
percent increase with two IMUs, but then decreased with the addition of the third and
fourth IMU. The third and fourth IMUs were among the least accurate SINS solutions.
Thus, when the filter combined the block filter solutions, the final solution was degraded.
This contradicts the hypothesis that the relative updates would have provided additional
information to improve the accuracy of each block filter. This contradiction is refuted
with the data set from the Olympic Oval, which shows that in the absence of reasonable

GPS observability, the relative updates significantly improve the navigation solution.
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The FNR (GPS) results followed a similar trend to that of the block filter, again
suggesting that the relative updates were providing little improvement to navigation
solution in this case. The FFR (INS) filter performance plateaued at the third IMU and
had similar results with three to five IMUs, only increasing 0.1 % per additional IMU.

The FNR (INS) percent improvement was minute with only 0.3, 0.4 and 1.2 % for each
additional IMU.

Consistent with the results of the VIMU architecture in Section 6.4.2.1, the addition of
the second IMU had the largest percentage increase, even more so than the third, fourth
or fifth IMU. This suggests that if two IMUs are used, the stacked, FNR (GPS) or VIMU
AKF all show similar performance. However, when using more than two IMUs, the

solution accuracy improves at a lower rate.
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6.4.3 Minimum Detectable Blunder (MDB)

The MDB for PRN 22 is shown in Figure 45 when five IMUs were used. PRN 22 had an
elevation angle of 22° and average power of 38 dB-Hz. The MDB was 0.5 m lower in
the SINS solution when compared to a standalone GPS solution. The VIMU MDB was
nearly identical to the SINS, decreasing only by a few centimetres. Thus, the actual
improvement of the MDB with the use of the VIMU is negligible, an expected result
considering that the improvement of the IMU provided no absolute positioning
information. The marginal decrease would also follow suit for the federated filters where
GPS observations were only tested with the information within the local filters. In the
case where the federated filter used a local filter as the reference (e.g. FNR (INS)), the
MDB was identical to the SINS MDB.
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e . . . . : : : :
[ : : ; ! GPS Only - RMS:14.8 m
= 10 [ R A S Single IMU - RMS:14.4 m
' ' ' ' VIMU AKF - RMS:14.4 m
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Figure 45 — Comparison of MDBs for PRN 22 for each Filter (Residential Data Set)

Alternatively, the stacked filter decreased the MDB substantially since it incorporated
multiple positions into the detection algorithm. The stacked filter MDB RMS decreased
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by a factor of 2.27 compared to the theoretical value of 2.24 (1/\n) when five IMUs were

used. This ratio, as derived in Equation (5.21), is shown in Figure 46 over the duration of

the test. The green line shows the theoretical ratio. The discontinuities in the ratio arise

when mismatches between the faults detected in one filter are not detected in another. In

this case, the discontinuities show that the ratio increases, which indicates that the

stacked filter MDB temporality increases as a result of more rejections. Thus, since the

stacked filter rejects more observations, the MDB slightly increases with the reduction in

geometry and the discontinuities arise. In one case however, the MDB remained constant

and the MDB of the single IMU decreased. This would suggest a false detection in the

SINS filter where the MDB would increase and cause the ratio to decrease.

MDBSINGLE ML / MDBSTACKED FILTER

Figure 46 —

0.5

—------- Ammmmmmmm- Trmmmmm——- Fomm-—--- Ammmmmmmm- Trmmmmm——- Fom=----- Ammmmmmmm- o 1
'

Theorefical MDB Ratio (52 |}
Computed MDB Ratio

0.49

0.48

0.47

0.46

0.45

0.44

% I SR N SN N R A S SR
100 150 200 250 300 350 400 450
Test Duration (s)

Ratio of Stacked MDBs and SINS MDBs for PRN 22 (Residential Data
Set) (see Equation (5.21))
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6.5 Olympic Oval Data Set

The Olympic Oval presents a different approach to that of Section 6.4 where GPS,
although moderately attenuated, is still operating within the requirements set out in Table
1. In this environment, GPS will not provide acceptable performance for most
applications and an integrated system is needed. Figure 47 shows an average power drop
of 24 dB inside the Oval while the HDOP occasionally doubles. This figure also shows
the relative power increases when the user is located outside to allow the reference

solution to re-estimate the IMU errors (i.e. 500 to 750 s).

v}
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| ) 1
600 800 1000 1200
Time Inside (s)

I |
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Figure 47 — Average C/N, and HDOP (Olympic Oval Data Set)

6.5.1 Position Accuracy

Table 9 provides the statistical position errors for the indoor Olympic Oval test. Again
this table will not be explicitly discussed, but the information contained within is used

throughout Section 6.5.
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Table 9 — Horizontal Errors of All Architectures for Olympic Oval with IMUs

Rigidly Mounted on the Foot

Processing | Number Mean Im I:il)iilllnen ¢ RMS Im ll'f)l:’/[esmen ¢ Std | Max |MinMedian
Method |of IMUs P P
(m) (%) (m) (%) (m)| (m) |((m)| (m)
Standalone| |, 0.0 33.6 0.0 21.4/1282(0.0] 255
GPS

1 19.9 23.6 249 25.9 15.1/52.0[03] 16.5
] 16.4 37.0 20.1 403 11.6/403[1.1] 14.1
SINS 1 |23.0 11.7 27.5 183 15.152.0(02] 27.4
1 16.5 36.4 228 32.4 15.7/51.8/0.1] 10.8
] 19.2 263 25.9 23.0 174/56.1100] 13.6
2 16.1 38.1 20.0 40.6 11.8/389(0.0] 14.6
VIMU (6 3 15.8 39.4 204 395 12.9/395(0.1] 9.7
State LSQ)| 4 | 155 405 19.9 40.8 12.6/389(02] 105
5 16.1 37.9 21.0 377 134422002 114
VIMU (0 3 16.3 373 21.3 36.8 137144602 11.0
State ES(Q) 4 166 36.0 215 36.0 15.4/53.6/0.0| 18.4
5 15.5 403 20.2 40.1 12.945.7/0.0] 142
2 |162 377 20.7 38.6 12.8/43.5/02] 143
VIMU 3 15.9 38.9 20.8 383 13444301 113
(AKF) 4 1165 36.6 21.6 359 13.948.6]0.1| 142
5 15.1 42.1 19.5 42.1 12.3(402]0.0] 11.9
2 178 222 24.6 27.0 13.3/48.0(03] 15.3
Stacked 3 16.8 21.0 232 31.1 12.7/402]0.7] 12.7
Filter 4 1158 203 20.8 383 12.8414/04] 88
5 16.1 20.8 19.7 415 13.141.4]0.0] 9.9
2 |174 33.1 21.6 35.8 12.8/45.1/0.1] 14.8
3 17.1 34.1 22.0 34.5 13.9/45.7108] 11.0
FNR (GPS)— ¢ 358 22.0 347 143/49.1104] 9.1
5 17.1 34.1 227 32.6 14.950.6]0.1] 11.4




Table 9 (Cont’d)

133

Mean RMS . .
Processing Number| Mean RMS Std \Max| Min [Median
Improvement Improvement
Method |of IMUs o o
(m) (Y0) (m) (Y0) (m)| (m) | (m) | (m)
2 21.5 17.2 27.3 18.9 16.8| 60.8 | 0.8 17.7
3 21.4 17.5 27.2 19.2 1671599 | 0.7 18.4
FNR (INS)
4 21.2 18.3 27.0 19.7 16.71 599 | 0.8 17.9
5 21.3 18.2 27.0 19.6 16.71599| 1.0 17.5
2 20.5 21.2 25.2 25.1 13.6] 522 | 0.3 12.5
3 20.3 22.0 25.2 25.0 15.0] 524 | 0.2 16.7
FFR (INS)
4 20.0 23.0 25.1 254 15.1|52.0| 0.6 16.4
5 20.0 23.1 25.1 253 1521526 | 03 16.6
2 52.0 -100.1 59.3 -76.4 28.6(145.0 1.0 44.4
3 94.1 -262.0 107.5 -219.5 52.0(217.5| 3.2 87.9
FZR (INS)
4 89.6 -244.5 101.1 -200.4 46.81180.9| 3.0 77.1
5 80.6 -209.9 98.7 -193.5 57.11234.0| 10.7 60.1

6.5.1.1 SINS Results

The GPS and SINS horizontal errors for this 21.4 minute test are provided in Figure 48.

Once again, the results are presented to show the capabilities of SINS solutions and

provide context for adding more IMUs in this environment. Accuracy varied by tens of

metres while indoors, but converged when the subject was outside (i.e. in open skies) to

within a few metres.

The horizontal RMS errors varied from 20.1 m to 27.6 m, while the maximum error

varied between 40.3 and 56.1 metres. GPS alone had a maximum error of 128.2 m and it

is obvious that the integrated system was able to mitigate the multipath errors more

effectively. Two SINS solutions (IMU 3 and IMU 4) took nearly 60 s to converge to the

standalone GPS position when the subject exited the first loop. The other three SINS

solutions follow the GPS error trend more consistently when exiting the building. Thus,

each solution had varying degrees of convergence times.
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Figure 48 — Horizontal Errors of Five SINS Solutions (Olympic Oval Data Set)

The vertical errors of the solution are shown in Figure 49. Their RMS varies from 4.4 m
to 14.4 m, much better than the 47 m error standalone GPS provided. Vertical errors had
an extremely low frequency error, which can be attributed to the ZUPTs applied, and
provided a slow error accumulation in the vertical axis. A large bias was also observed in
some of the IMUs, in particular IMU 2, with a bias of approximately 5 metres. This bias
remained stable during the time outside and the GPS aided the solution. Better filter

tuning in the vertical axis for this particular IMU could possibly resolve this problem.



100 -enremremyeneaneaneass rnennney

50

135

______________________________

GPS Only - RMS:47 m
IMU1-RMS:7.0m
IMU 2 -RMS:14.4m
IMU 3 -RMS:9.6 m
IMU 4 -RMS:7.0m
IMUS5-RMS:4.4m

Indoor

1 > I

E o
S
Lo
@
o
S 50
=
100
lhdoor
150 L= 1 >
0 200

Test Duration (s)

1000 1200 1400

Figure 49 — Vertical Errors of Five SINS Solutions (Olympic Oval Data Set)

Figure 50 shows the CD of the errors in the horizontal plane and vertical axis. The

vertical axis errors exhibit a substantial improvement compared to the horizontal plane.

This bottom figure shows that 80 % of the elevation errors are less than 5.5, 10.0, 10.0,
13.2, and 16.5 for IMUs 5, 1, 4, 3 and 2 respectively, and that although these show a

considerable improvement over the standalone GPS solution, they differ for each IMU.

A similar conclusion can also be observed when the horizontal errors at 60 % shows a 14

to 32 m difference.
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Figure 50 — CD of SINS and Horizontal and Vertical Errors of Five IMUs (Olympic
Oval Data Set)

6.5.1.2 VIMU Results

The VIMU horizontal errors are shown in Figure 51. The horizontal error improvement
is more significant than that of the residential data set (e.g. Section 6.4.1.2). The VIMU
average provided a 37.7 % improvement, and the LSQ and AKF methods were similar
with 40.1 % and 42.1 % improvements, respectively. This is further investigated in
Section 6.8.1, which shows that the results are also hindered by time tagging issues due to

several IMUs using their own independent clocks.

The VIMU tends to diverge much more slowly when entering the indoors and converges
much more quickly when exiting, compared to the SINS solution. That said, at time 185
s, the solution very quickly diverged from a 6 m error to nearly a 40 m error. This was a
direct result of a strong multipath signal that had a high C/N,. The filter consequently

overweighed the GPS measurement and the VIMU filters were unable to reject this
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information. This effect has been seen in all the filters during this research and presents a
problem that could not be solved without manual intervention of the observation
covariance matrix. An important observation was that the VIMU filter was able to
mitigate the error the longest. This effect can be seen on a map in Figure 57 which

occurred in the north east corner of the Oval.
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Figure 51 — VIMU Horizontal Errors (5 IMUs Used in Olympic Oval Data Set)

The elevation profile, shown in Figure 52, displays the same elevation divergence as seen
in the residential case described in Section 6.4.1.2. This is addressed in Section 6.8.3 and

is a function of filter tuning rather than the fusion of raw IMU measurements.
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Figure 52 — VIMU Vertical Errors (5 IMUs Used in Olympic Oval Data Set)

Figure 53 shows the CD of the horizontal and vertical errors. The VIMU®S horizontal
errors showed superior performance at 40 % error. This revealed a distinct advantage
over the SINS solutions. However, beyond 40 % the advantage was less pronounced and
provided only marginal improvement compared to the SINS solution. In the vertical axis
the LSQ and the AKF drifted but then slowly converged when GPS was less attenuated.

This convergence was much slower than in the SINS and VIMU average solution.
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Figure 53 — CD of VIMU Horizontal and Vertical Errors (5 IMUs Used in Olympic
Oval Data Set)

6.5.1.3 Stacked and Federated Filter Results

Figure 54 provides the stacked and federated filter horizontal error results. The best
solution was the stacked filter which outperformed its FNR (GPS) counterpart by 8.9 %.
This is evidence of the effectiveness of the relative updates providing more information
to the filter assisting in constraining the divergence of the system when GPS is providing
poor observations. The FNR (GPS) filter again provided more accurate results to the

FNR (INS) and FFR (INS), which provided similar results as the SINS solutions.

The SINS and the FFR (INS) error profiles in Figure 54 show a similar result. This
occurred because the reference INS in the FFR were the same single INS plotted in
Figure 54. This introduces a concept where the reference local filter was aiding the other

local filters to follow its trajectory because the input “observations” were time correlated.
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This, in some cases, is to the detriment of a federated filter using one local filter as its
reference solution for other local filters. This result confirmed the theory presented in
Section 5.4; the reference system data must yield to assumptions of the Kalman filter

shown in Equations (4.9), (4.10), (4.11).
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Figure 54 — Horizontal Error of Stacked and Federated Filters (5 IMUs Used in
Olympic Oval Data Set)

In the vertical axis, as shown in Figure 55, the filters generally performed similarly to the
best SINS solution indicating that additional IMUs and varying architecture do not
further improve the elevation accuracy. In both loops, the maximum elevation error was
approximately 12 m which was significantly better than the error in the horizontal plane,
(i.e. four to six times better). The RMS errors were also consistent between architectures,
varying by less than a metre, further confirming that the improvement was a result of the

ZUPTs and was not related to the architecture, number of IMUs or relative updates.
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Figure 55 — Vertical Error of Stacked and Federated Filters (S IMUs Used in
Olympic Oval Data Set)

Figure 56 shows the CD of the horizontal and vertical errors. The stacked filter provided
a reasonable improvement at 90 % CD where it outperformed the FNR (GPS), but
followed a similar trend at lower percentages. Both the FNR (GPS) and stacked filter
behaved similarly below 80 %, which showed that, in terms of the distribution, the

relative updates were providing improvement at times when the FNR (GPS) did not.
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Figure 56 — CD of Horizontal and Vertical Errors for Stacked and Federated Filters
(Olympic Oval Data Set)

To compare the results of each filter, Figure 57 and Figure 58 show a map containing the
trajectories of each architectures best solution (i.e. least amount of RMS error). A
standalone GPS solution and a SINS solution are also provided for context. During the
test the subject walked around the Oval in a counter-clockwise direction, then went
outside, returned to the Oval and walked around the Oval in a clockwise direction. In the
first loop, Figure 57 shows that the VIMU provided an excellent trajectory until the
northeast corner where it diverged in the presence of a strong multipath signal (see
Section 6.5.1.2). Comparing this to the SINS solution, where the heading immediately
diverged after reaching the northward turn at the Oval track, the VIMU heading exhibited
an excellent ability to provide a correct heading. The stacked and FNR filters provide a
similar trajectory, again the largest error appears to be in the heading which had diverged

as the subject exited the SE corner of the track. All solutions at the SE corner have been



143

without good GPS observations for six minutes and were effectively navigating on high

multipath signals.

Figure 57 — Loop 1 (Counter Clock Wise) Map View of Best Performing Filters -
Standalone GPS Solution, M VIMU (AKF), Stacked Filter, FNR
(GPS)

The trajectories of the second loop, shown in Figure 58, appear even better than the first,
especially in the north east and south east corners. In this trajectory, the SINS was well
aligned, but had acquired an along-track error, that provided the large horizontal error
shown in Figure 48. By the time the user exited the track, the SINS solution contained
the largest heading error. This was indicative of the heading degrading during the time
indoor, which was less prominent in the multi-IMU architectures. With remarkable

accuracy, the FNR (GPS) and the stacked filter had aligned themselves with the truth
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trajectory at the north east corner and appear to have an ideal heading. The subject then
made an eastward turn to exit the Oval track where the FNR (GPS) solution provided the

best accuracy while exiting the building.

For the Oval data, the user entered and exited the track at the same point and therefore
provided an interesting metric to compare the solutions. The FNR (GPS) filter only
deviated by 2.5 m, the SINS difference was 13.5 m and the standalone GPS solution had

49.3 m difference. The same check of the reference system yielded a 5.1 m difference.

Figure 58 — Loop 2 (Clock Wise) Map View of Best Performing Filters -
Standalone GPS Solution, IS} VIMU (AKF), Stacked Filter, FNR (GPS)
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6.5.2 Position Accuracy vs. Number of IMUs

The accuracy of the VIMU as a function of the number of IMUs is shown in Figure 59.
This figure provides an indication of the weakness of the VIMU in time tagging.
Because of this issue, the improvement was less incremental for all the VIMU fusion
methods. In this case the VIMU AKF provided the best solution, albeit with marginal

time synchronization.
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Figure 59 — VIMU Accuracy Improvement as a Function of IMUs Used (Olympic
Oval Data Set)

Figure 60 shows the RMS accuracy improvement as a function of the number of IMUs
for the stacked and federated filters. The stacked filter had a linear improvement for each
additional IMU of about 3 to 7 % per IMU added. This again indicates the value of the
relative updates, as each additional IMU provided additional relative information to
improve the accuracy of the solution and the error states within the block filters. The

FNR (INS) and the FFR (INS) results did not increase linearly, but plateaued similar to
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the results of two IMUs. The FNR (GPS) slightly decreased with each additional IMU in

excess of two.

The FNR (INS) and FFR (INS) results were very similar to the residential data set with
very moderate improvements as each IMU was added. The FNR (GPS) also had similar
results between data sets with a slight decrease in performance with more IMUs. The
two data sets confirm that the federated filter architecture did not increase the accuracy,

but merely processed the data in a similar manner to that of the centralized version.
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Figure 60 — Stacked and Federated Filter Accuracy Improvement as a Function of

IMUs Used (Olympic Oval Data Set)

6.5.3 Minimum Detectable Blunder

The MDBs of the various filters proposed in this thesis are shown for PRN 31 in Figure
61. The MDB of all architectures, with the exception of the stacked filter, were very
similar. The MDB decreased for each multi-IMU filter, but by only a few metres. This
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was consistent with the theory, as the MDB is a function of the absolute information
contained in the innovation covariance. Since inertial observations only provide temporal
positioning information, there is not a significant increase in the ability to detect faults in
GPS measurements. On the other hand, the stacked filter MDB was computed using

several absolute positions within its filter, which enhanced its ability to detect faults.
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Figure 61 — MDB of PRN 31 for Various Architectures (Olympic Oval Data Set)

6.6 Estimated Position Variances

A major aspect of navigation is the estimated variances of the solution. A system whose
estimated covariances are not indicative of the real errors provides an untrustworthy
system. Thus validating that the estimated position covariance and the true errors
coincide is an important comparison. Figure 62 and Figure 63 show the horizontal

position errors and the estimated standard deviations of the position as determined in the
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software. The figures show the three sigma bounds, and the horizontal standard

deviations were determined using the propagation of variances.
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Figure 62 — Comparison of Horizontal Errors and Estimated (36) Position Standard

Deviations (Residential Data Set)

The analysis shows that the VIMU results are slightly overoptimistic in the residential
data set. This is attributed to the fact that the process noise of the IMU has been reduced,
but other errors present in the system are still contributing to the navigation solution

errors (i.e. GPS multipath).

Both the FNR (GPS) and the stacked filter results show realistic variances. This confirms
that the filters are operating at a reasonable level, even more so than would have been

anticipated considering the blanket tuning approach used (see Section 5.7).

In the Olympic oval data set, 8.3 % of the SINS horizontal position errors exceeded the
36 values. Given that multipath is extremely difficult to model and is not well

represented in the observation covariance matrix, this percentage is acceptable. The
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VIMU data set had 4.0 % of the errors greater than the 3¢ estimates, while the FNR
(GPS) and stacked filter had 5.2 % and 4.9 %, respectively. These numbers indicate that

the position variances output by the filters are indicative of the true errors.
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Figure 63 - Comparison of Horizontal Errors and Estimated (36) Position Standard

Deviations (Olympic Oval Data Set)

6.7 FZR Filter Results

FZR is not suitable for pedestrian navigation applications with multiple IMUs in
degraded GPS environments. The FZR filter, for all test cases reported herein, provided
unusable results with errors larger than those of the standalone GPS solution. From a
practical stand point, the master filter requires navigation solutions every second (or few
seconds); the exact output rate could be varied for each application. Therefore, the FZR
filter has two approaches to provide the navigation solution at this interval (i.e. 1 Hz).

The first approach to update the master filter at 1 Hz (or less) using the local filters and
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thereby share information at that rate. The second approach is to predict the master filter
at 1 Hz and share information at a lower rate, say 5 or 10 s. If the first approach is used
and the sharing rate is reduced to 1 Hz, the local filters reset too often to converge back to
a reasonable navigation solution. This approach is further compounded by GPS signal
attenuation to levels that provide very slow convergence rates (e.g. indoor). The second
approach is also unrealistic because of the amount of process noise added in pedestrian
navigation filters over 5 or 10 seconds. This effect is even further amplified when the
IMU is located on the foot and the prediction of the master filter can occur at any point in
the gait cycle where the velocity could either be zero (during the stance phase) or at a
maximum (during the swing phase). In either case, the FZR master filter performs poorly
at low data rates. Thus, the information stored in the master filter, which is sub optimal,

further degrades performance when replaced back into the local filters.

This effect could be theoretically bypassed by changing the information sharing principle
to be sequentially processed, where information is shared backward from the master filter
to one local filter at a time. This extends beyond the scope of this thesis, but could

provide additional federated filter architectures for pedestrian navigation results.

6.8 VIMU Fusion Issues

This section analyzes the capability of the proposed VIMU fusion techniques and

provides an explanation of the degraded elevation solution within the VIMU architecture.

6.8.1 VIMU Timing

The Olympic Oval data set saw similar navigation improvement when adding more IMUs
when compared to the residential data set, but contained larger residuals within the
VIMU fusion after entering the Oval. This result is attributed to the time tagging
limitations of the IMU measurements. Each IMU is equipped with an internal clock and
is updated with a Pulse Per Second (PPS) signal generated by the reference INS. This

serves as the time synchronization between GPS and IMU for integration and was
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originally considered acceptable for a single IMU and GPS integration. This
synchronization had an approximate maximum deviation of 1 ms, which with respect to
single IMU integration is acceptable. However, in the case of integration with several

IMUs, clock synchronization accuracy for VIMU must be higher.

During the Oval test, the IMUs clocks frequency and consequently the time bias shifted
when the subject entered the Oval. It is hypothesized that this was due to a temperature
variation (i.e. outside was 28° C vs. inside near the ice rink it was close to 18° C). This
change in temperature shifted the observation time measurements only slightly (on the
order of 7 ms) and became obvious when the IMU data was compared side by side.
Figure 64 shows the difference between the X axis gyro measurements of two IMUs
mapped to the same frame. As the user traveled to the Oval track, the differences

increased. This effect was clearly seen in the residuals of the VIMU estimation methods.

Figure 64 — Differences between 2 IMUs X Axis Gyro Observation when entering
the Olympic Oval
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There is also another potential source of timing error which stems from the PPS accuracy
of the reference INS. Since the PPS was sent to each IMU, exact time synchronization
should occur between all IMUs. To confirm this, the clock bias is shown in Figure 65.
The error bounds are also shown in the figure. By comparing the time when the residuals
increased in Figure 64 and the time when the clock bias increased in Figure 65, it is clear
that the increased residuals occur before the large deviation of the clock bias. Further,
the clock bias increased when the user entered the building and the residual errors
increased when the user reached the lower part of the Oval, where the temperature was

coolest.
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Figure 65 — PPS Timing Accuracy from NovAtel SPAN System during Oval Test

This time tagging issue is very difficult to mitigate and thus makes time synchronization

of IMU data sets to within an acceptable interval very difficult and often impossible.
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6.8.2 Estimating the Angular Acceleration of the VIMU

Estimating the angular acceleration is a nuisance parameter (i.e. not important for
navigation performance) and is only of interest to correctly map the acceleration to the
VIMU frame. However, the ability to estimate the angular acceleration is important to
consider. Since no truth solution is available to provide the angular acceleration, a time
derivative of the angular velocity will suffice. Since the differentiation will remove the
scale factor and biases but increase the noise, it still provides a solution to which the

estimated parameter can be compared.

The upper graph of Figure 66 shows a short time segment of the VIMU LSQ with the raw
differentiated data of one IMU, the raw differentiated data of the VIMU, and the
estimated angular acceleration provided by the LSQ VIMU estimator. The full scale of
the differences makes it difficult to show the subtleties, so the bottom graph shows a
zoomed portion of the top graph. The bottom figure shows that the estimated angular
acceleration is very close to the differentiated values and they are within the values of
their estimated standard deviations. Although this segment occurs in the stance phase, it

is also representative of the results when the foot is in motion.
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The estimated variances of the angular acceleration (and specific force and angular
velocity) are of little importance in the least squares estimator, since all the IMUs are
weighted equally. This information, although not used in this research, could be input

into the navigation filter as a real time noise characteristic.

The VIMU adaptive Kalman filter input variance of the raw observations are critical for
proper fusion. They remain unchanged during the filter operation (noting that only the
process noise is adaptive). Since the filter must assume that the input is Gaussian noise,
the standard deviation of the input filters was set to 0.03 m/s* for the accelerometers (see
Figure 12) and 1600 °/h for the gyro (see Figure 13), much below the actual bias and
scale factors expected. These values were derived from static data in Section 3.5.5 and
were consistent with the spectral densities used within the Kalman filter for the filter*s

process noise.
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Since the IMUs were rigidly mounted together, the estimated state variances within the
AKF changed very minutely and were effectively constant. However, the variances were
extremely optimistic since they did not account for the biases and scale factors and
therefore the output of the AKF could only be considered a noise reduction technique, not

a true estimate of the value.

6.8.3 Increased VIMU Vertical Error

The VIMU vertical errors shown in Figure 38 and Figure 52 clearly demonstrate the
reduced performance of the VIMU vertical estimation. This result was a function of filter
tuning. The IMU spectral density was scaled by an equal number for all three axes.
However, the actual noise reduction, in the case of the VIMU LSQ, was not equal for all
three axes. Figure 67 shows the percent decrease from the LSQ estimator for the
accelerometer and gyro measurements. The gyro measurements for each axis all
decreased equally per IMU added. The accelerometer measurements noise decreases as a
function of the inter-IMU vector and the orientation between each IMU and the VIMU.
Therefore the noise reduction for the accelerometers was not simply n™2, where n

represent the number of IMUs.
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6.9 Processing Speed of Architectures and Number of IMUs

There is a large difference in the computer processing speed of each architecture and for
the number of IMUs used. An exact comparison of the computational load is beyond the
scope of this thesis, but Figure 68 shows the processing rate of each architecture and the
number of IMUs added for the software developed by the author. All data was processed
on an Intel Core 2 Quad CPU with 3.25 GB of RAM. This analysis is merely intended to
be comparative, since there are numerous factors that determine processing speed. The
slowest architecture was the stacked filter. This was mostly due to the inversion required
for the gain matrix computation, which has n times m rows and columns (n is the number
of IMUs and m is the number of GPS observations); propagating the filter forward was

also a burden. This was the only filter that was unable to run in real time.



157

The VIMU AKF was able to process faster than the federated filters, an interesting note
considering the VIMU AKF produced solutions at 100 Hz whereas the federated filters
operate at 20 Hz.
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These results are largely influenced by I/O processes such as the input and output of the
filters data, which include PVA navigation parameters and estimated variances, biases
and scale factors for each IMU with their respective variances, MDB information,
satellite number and DOP information. Thus, in the event of a five IMU federated filter,

the output was five times greater than that of a SINS filter.

6.10 Recommending an Architecture

The purpose of the thesis was to create, implement and analyze various multi-IMU
estimation architectures. This section identifies which architecture might best be suited
for specific environments and characteristics that would be expected for a pedestrian

navigation system considering a multi-IMU approach, given the results within the
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chapter. Table 10 provides the recommended architecture as a function of characteristic,

rating each architecture from one to three, one being the first choice, three being the last.

Table 10 — Architecture Preference as a Function of Development Characteristics

Development Characteristic VIMU Stacked Filter | Federated Filter
High IMU Noise 1 2 3
Low Multipath Environment (e.g. 1 3 )
Residential House)

High Multipath Environment (e.g. 3 1 )
Deep Indoors, Urban Canyons)
Relative Position and Attitude Known 1 1 3
Low Processing Load 1 2
Various Types and Qualities of IMUs

3 1 2
Used
More than Two IMUs 2 1 3

The VIMU architecture would be preferred for a system to operate within a residential
neighbourhood or areas where GPS in only moderately attenuated. This would allow for
good multipath rejection and detection, and bridge any short gaps within the GPS data.
In this case, the IMU would operate as a smoother. Alternatively, if the user was going to
operate deep indoors, the architecture of choice would be the stacked filter. This method
allows for added observations when indoor and can operate without GPS (for a limited
time). The stacked filter also has a better FDE rejection method, which would enable the
detection of poor GPS observations when a single INS configuration (including a VIMU)

could not.

Another aspect that is important to consider in recommending a specific architecture
would be whether the relative position and attitude values are known prior to operation.
Most design plans would include this information, however this restriction may not
always be the case. It is conceivable that a system could add additional IMUs via a
module where the user could purchase any number of IMUs and place them on the

subject. In this case the relative information would not be known and the benefit of
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relative updates or the mapping of IMU observations into the VIMU would not be
possible.

Several other factors would dictate the architecture including design complexity, number
and data rates of IMUs, processing capability and desired battery life. Thus the selection
and recommendation of a specific architecture is left to the developer to weigh the
benefits and detriments. Finally, IMU technology is currently going through rapid
performance enhancements that would possibly affect the above ranking and proposed

architectures.
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Chapter Seven: Conclusions and

Recommendations

This research proposed three architectures for which multi-IMU data can be fused to

provide improved navigation performance. The filters proposed specifically assess the

integration schemes within the scope of pedestrian navigation. The objective of this

thesis was to compare the results of three architectures and provide insight into the

advantages and disadvantages of each, providing a better understanding of the accuracy

and availability for each filter. This chapter provides conclusions and recommendations

that will benefit anyone pursuing multi-IMU fusion.

7.1 Conclusions

1.

The stacked filter provided better results compared to its federated no reset
counterpart, which showcases the use of the relative updates and a better fault
detection algorithm. Although the improvement was minor in the residential data
set, the filter was already operating at a high performance level with the use of
only moderately attenuated GPS signals. In the Olympic Oval data set, the
stacked filter performed 9 % better with five IMUs, than the federated no reset
filter.

The multi-IMU federated filters accuracy reached a maximum with two IMUs,
whereas the stacked filter accuracy linearly increases 3 to 7 % with each
additional IMU. This suggests that the relative updates provide a linear
relationship with the number of IMUs, at least up to five or so units.

When GPS measurements were used as the reference information for the local
filters of the federated filter, the performance was 15% better than when a SINS
solution was used as the reference for the federated filter. The time correlation of
the output of the SINS solution resulted in a dramatic decrease in performance of

the local filters, even though the SINS solution was more accurate.
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The federated zero reset filter provided inadequate navigation solutions in both
data sets. The limitation stems from the intermittent dynamics, which require the
master filter to be updated and the local filters zero resets to be applied at high
data rate (i.e. less than 1 Hz). This results in very short convergence times within
the local filters. Increasing the data rate allows the local filters to converge, but
results in the master filter continually predicting over extended periods of time
and requires an excessive amount of process noise to account for the long
prediction time. Further, since the velocity over the prediction interval is
constant, it does not accurately account for the velocity during the gait cycle, and
resultantly provides a poor prediction of the position.

Within the VIMU scope, FDE is not practical unless the systematic errors have
been removed prior to testing for faults. Performance within the FDE is severely
hindered by the dynamics of the IMU and the magnitude of the scale factors and
biases. There is also no evidence within this research to suggest that FDE on
IMU measurements would increase navigation accuracy or availability; the
primary interests of pedestrian navigation.

Estimating the angular acceleration has a positive impact on the accuracy of the
VIMU navigation solution, even more-so than the number of IMUs used. This is
a very practical finding, which makes the use of a dual inertial system more
attractive.

There is a linear dependence in the case of a VIMU operating with two IMUs.
This eliminates the ability of a dual IMU nine parameter least-squares estimation
algorithm. While only two axes of the angular acceleration can be estimated,
there is potential for operation using an eight parameter estimation model.
Although systematic errors are not removed prior to the VIMU fusion, the least-
squares approach and the adaptive filter approach provide an improvement over
simple averaging with respect to noise reduction. Accuracy improvements are of
the order of 9 to 10% per IMU added up for up to five IMUs added.

Time synchronization of the measurements is critical for the VIMU fusion

methods, but not necessary for the other multi-IMU architectures. Time
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synchronization for VIMU fusion is related to the dynamics of the foot and the
noise properties of the IMU. For the test set up used herein, the ideal time
synchronization should have been 0.02 ms or better, but was in reality 1 ms.
When a large temperature variation was experienced, the clock timing error
reached approximately 7 ms, which hindered the VIMU fusion and limited
performance.

10. The accelerometer measurements of the VIMU require additional tuning for the
Kalman filter. This stems from the fact that the gyro measurement noise
decreases at a rate of n'm, but the accelerometer measurement noise does not
decrease at a similar rate. The noise reduction is a function of the lever arm (i.e.
geometry between IMUs) and quality of the gyro measurements.

11. The elevation accuracy of the stacked and federated filters is much better than that
of the VIMU s, often by several metres. The VIMU results can often have vertical
biases resulting from limited filter tuning in the vertical axis.

12. Processing times of the filters differ, but the stacked filter requires the most
processing time, followed by the federated filters, VIMU AKF, VIMU LSQ and
VIMU average.

7.2 Recommendations

1. The federated zero reset filter was unable to operate at 1 Hz and provided poor
overall performance. This could be theoretically improved upon by changing the
information sharing principle to sequentially process one local filter at a time.
This could provide another federated filter architecture for pedestrian navigation.

2. The estimated variances of the angular acceleration (and specific force and
angular velocity) from the VIMU were not used as filter inputs to the VIMU
filter. This information could be input into the navigation filter as a real time
noise characteristic. More work could be done in comparing error behaviours of
the individual IMUs and passing this information into the processing filter.

3. Because the IMUs were mounted on the foot, all filters benefited from the use of

zero velocity updates. These updates managed the velocity component of the
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filter. If the IMUs were rigidly mounted on the backpack, Doppler measurements
could be used. This would result in more GPS dependent velocity solutions, but
would be more practical for applications where the IMUs are not located on the
foot.

A multi-IMU filter estimating one position, velocity and attitude and IMU errors
for each IMU should be developed. This filter would essentially be a combined
stacked and VIMU filter, where the raw IMU would be fused while the filter
would properly estimate the bias and scale factor IMU error sources. This would
facilitate IMU observation fault detection.

Inertial units that also measure the angular acceleration (in addition to specific
force and angular velocity) would be ideally suited for a VIMU filter where the
angular acceleration is estimated. This would provide another set of observations
and more accurately estimate the angular acceleration. This would also allow for
a dual IMU nine state least-squares estimation architecture that could estimate all
values of the angular acceleration.

The performance of a multi-IMU system using tactical or navigation grade IMUs
would provide interesting results that would provide better insight of the
architectures performance. Since some error sources of the MEMS IMUs are not
estimated or removed in full (i.e. non-orthogonality), these errors sources could
induce errors into the solution. Using higher grade inertial units could provide a
clearer insight into the estimation of the error states, their convergence rates, FDE
performance and overall accuracy.

The use of varying types of IMUs together would provide interesting results. It is
conceivable that users may have access to several IMU (or INSs) that could be
used together to increase navigation accuracy. For example, using two or three
tactical grade IMUs as a reference solution, rather than the best performing IMU,
thereby increasing availability, accuracy and reliability.

The use of multiple GPS receivers is also worth of further investigation for multi-
IMU systems. Multiple receiver (and antenna) systems could utilize attitude

determination, multipath mitigation and real time receiver noise characteristics.
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9. Several of the architectures could be adopted for multiple GPS receiver
configurations. An analysis of the fusion results would be interesting, specifically

estimating the amount of multipath and noise contained in a signal.
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APPENDIX A: DERIVATION OF VIMU DESIGN MATRIX
This appendix shows the partial derivatives with respect to the unknown parameters in
Equation (5.4). For clarity the orientation superscripts and subscripts have been

removed. Equation (5.4) is repeated here
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APPENDIX B: VIMU RESIDUALS
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