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Abstract 

 

Increasing interest exists in replacing hardware components of GNSS receivers with 

software. Moving the digitization closer to the antenna has the major benefit of added 

flexibility. Algorithms can be developed and tested effectively and in a timely manner. 

Implementations can be modified with a simple software update rather than a hardware 

change. General purpose radios can be used for GNSS, requiring only specific software, 

not necessarily hardware. 

 

The major drawback, however, is the need for large amounts of processing power to 

perform Doppler removal and correlation (DRC). This is especially true with the 

introduction of new, higher bandwidth signals which require sampling rates upwards of 

40 Msps. With each channel being tracked requiring six multiplications and four 

additions per sample per code phase, in order to achieve real-time operation, it becomes 

necessary to offload some of the processing from the central processing unit (CPU) onto 

a coprocessor. 

 

To the best of the author’s knowledge, the only functional Graphics Processing Unit 

(GPU) aided GNSS receiver in development is in the PLAN group (Petovello et al 2008). 

The receiver is based on GSNRx™ – the PLAN group’s software GNSS receiver – and is 

capable of performing DRC processing for eight satellites on 1 ms of 25 Msps data in less 

than 1 ms, suggesting real-time capability, although no real-time capability had 
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previously been implemented. This research starts with a complete re-design of the DRC 

module and extends the real-time capability of GSNRx™ to 40 Msps. 

 

The new stand-alone DRC module for the GPS L1 C/A signal described herein has been 

developed using the NVIDIA CUDA software development kit. The module employs a 

multi-threaded asynchronous design and as such utilizes CPU resources only when 

initiating correlation tasks. All DRC operations are performed on an NVIDIA GeForce 

8800 GTX.  

 

The DRC module has been integrated into GSNRx™. Timing as well as tracking and 

navigation solution results are given. 
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Introduction 

 

There are two major forces driving software GNSS receivers: cost / integrateability and 

their use as a research platform.  

 

Increasing demand for Location Based Services (LBS) has led to the increasing 

popularity of GNSS receivers being incorporated into other platforms, such as mobile 

phones. Traditionally, this is performed by having two completely separate antennas / 

signal paths, one for communication and the other for GNSS. By moving the digitization 

of the signals closer to the antenna, software receivers give system designers the ability to 

share resources between general purpose radios and GNSS, thus reducing cost.  

 

General purpose radios can be used for GNSS, requiring only specific software, not 

necessarily hardware. The major drawback, however, is the need for large amounts of 

processing power.  

 

With the increase in the number of new GNSS signals, it is important to have suitable 

development platforms to conduct this research.  

 

Using a software based receiver, algorithms can be developed and tested quickly by 

researchers without the need for specialized hardware or training. Implementations can be 

modified with a simple software update rather than a hardware change. Again, the major 
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drawback is the need for large processing power required for real-time operation or the 

large storage required for post-processing.  

 

This thesis will present two major contributions: the work performed to decrease the 

processing time required for high-bandwidth GNSS signals by offloading tasks to aiding 

hardware, and the work performed to allow real-time processing of GNSS signals.  

 

1.1 Limitations of Previous Work 

 

There has been considerable success in the development of software GNSS receivers both 

in the PLAN group, and outside (Borre 2007, Angheileri 2007, Pany 2004, Ledvina 2003, 

Schamus 2002, Thor 2002), however work has been limited to either low sample rate or 

post mission processing. To the best of the author’s knowledge, there is no PC based 

software receiver available which can process high sample rate data – 25 mega samples 

per second (Msps) or more – on eight satellites in real-time.  

 

For the purpose of this work, PC based software receivers can be divided into three 

categories: pure software, Field Programmable Gate Array (FPGA) aided and Graphics 

Processing Unit (GPU) aided. The following is a brief description of existing work in 

each category. 
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1.1.1 Pure Software GNSS Receivers 

 

During the last few years, many real-time PC-based software GNSS receivers have been 

developed (Borre 2007, Angheileri 2007, Pany 2004, Ledvina 2003, Schamus 2002, Thor 

2002, Petovello & Lachapelle 2008). All are able to track GPS L1 C/A on at least four 

satellites at a sample rate of 5 MHz.  

 

ipexSR (Pany 2004) stands out as the only pure software receiver capable of tracking 

high bandwidth signals. It is able to process up to 13 correlator pairs at a 33.3 Msps 

sampling rate on a 3.0 GHz PC. This equates to tracking the early prompt and late 

replicas of four satellites. Time critical functions have been implemented in assembly to 

decrease overhead and increase computational efficiency.  

 

GSNRx™ (Petovello & Lachapelle 2008), developed by the PLAN group, is capable of 

tracking up to eight satellites at a 5 Msps sampling rate in nearly double real-time on a 

1.6 GHz PC. A multi-threaded, multi-processor implementation has been developed and 

is currently being tested. This version is capable of real-time operation and utilizes some 

of the software developed during this research.  

 

In order to obtain such high processing rates, both implementations utilize the Intel 

chipsets single instruction multiple data (SIMD) functions (Charkhandeh 2007). These 

functions allow the processor to perform an identical arithmetic operation on 16 
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individual data points, assuming 16-bit data, in one clock cycle. The limitation of this 

approach will always be the width of a General Purpose Processor’s (GPP’s) Arithmetic 

Logic Unit (ALU), and the clock speed. As current implementations are already nearly 

fully utilizing the available hardware, with present hardware it would be very difficult to 

increase the sampling rate. 

 

1.1.2 FPGA Aided Software GNSS Receivers 

 

To the best of the author’s knowledge, no work has been published on a PC based FPGA 

assisted GNSS receiver.  

 

However, two labs have been developing Digital Signal Processing (DSP) / FPGA based 

GNSS receivers, namely SNAP at the University of New South Wales (Engel et al 2006) 

and the Navigation Lab at the Politecnico di Torino (Dovis 2005).  

 

Both labs have developed a similar architecture in which an FPGA is used to take in IF 

samples, perform Doppler Removal and Correlation (DRC) and pass data onto a DSP 

which performs the higher level functions. Both receivers are intended to be stand-alone 

boards. 
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There are two drawbacks to the FPGA approach. First, hardware is specialized and 

unavailable on most PCs and second the implementation is more difficult to maintain and 

upgrade as fewer researchers in the field are familiar with HDL than with C.  

 

1.1.3 GPU Aided Software GNSS Receivers 

 

As of the outset of this thesis, the only GPU aided GNSS receiver in development is in 

the PLAN group (Petovello et al 2008). The receiver is based on GSNRx™ and is 

capable of performing Doppler Removal and Correlation (DRC) processing for eight 

satellites on 1 ms of 25 Msps data in less than 1 ms, suggesting real-time capability. No 

real-time capability had been implemented at the start of this research. 

 

During the course of this work, the National Institute of Information and 

Communications Technology in Japan had developed a GPU aided software receiver 

(Hobiger et al 2009). It does not use traditional early, prompt, late correlator scheme for 

the code tracking loop, rather it exploits the fast FFT functionality of the GPU to create a 

finer correlation function. The receiver is real-time capable up to 16 Msps.  

 

1.2 Objectives and Contributions 

 

The overall objective of this thesis is to develop and test a co-processor aided, real-time, 

PC based, software GNSS receiver. The starting point is the GNSS Software Navigation 
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Receiver (GSNRx™), a C++ class-based software receiver developed by the PLAN 

group, capable of processing  raw data samples from a GNSS front-end (Petovello & 

O’Driscoll 2007). Since the biggest challenge associated in a real-time functionality is the 

processing power required by the DRC and signal generation (Petovello et al 2008), this 

research will concentrate on offloading these functions to a GPU. In order to maintain 

flexibility in the software, the goal will be to keep as many operations as possible in a 

high level language on the PC. To keep the system general, signal type, code ID and 

other parameters will be transparent to co-processor tasks.  

 

This objective can be divided into the following tasks: 

• Implementation of a stand-alone DRC kernel on GPU hardware 

• Integration of the DRC into GSNRx™ 

• Modification of tracking / measurement algorithms to accommodate the new 

correlation structure 

• Incorporation of a real-time front-end into the existing software 

• Real-time testing and optimization 

 

 

1.3 Thesis Outline 

 

The subsequent chapters are structured as follows. 
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Chapter 2 reviews the theoretical background of GNSS receivers, concentrating on 

Doppler removal and correlation. Special interest is paid to software based GNSS 

receivers, specifically to the processing load required for Doppler removal and 

correlation (DRC). Following this is a discussion on different processor technologies 

including general purpose processors (GPPs), digital signal processors (DSPs), graphic 

processing units (GPUs) and field-programmable gate arrays (FPGAs). The chapter 

concludes with a discussion on algorithm parallelization.  

 

Chapter 3 breaks down the contributions of this work which were made in order to 

create a real-time co-processor aided receiver. First, streams which  had to be abandoned 

are discussed. This includes the DRC design for a Xilinx FPGA and for an ATI GPU. 

Following this, the design cycle for the DRC module on an NVIDIA GPU is outlined. 

Design challenges and their solutions are presented. The chapter concludes with a 

description of the final DRC module.   

 

Chapter 4 outlines the design of the separate sample source modules, created for this 

work, required for real-time operation. The chapter concludes with an overview of the 

real-time receiver, and contrasts it with the post-processing receiver. 

 

Chapter 5 provides results of the various tests performed to ensure stable real-time 

operation. It starts with raw processing rates of the DRC module with different 

optimization specifications. This section includes the processing times required for each 
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kernel call. Following this, the sample source – the hardware capable of streaming GNSS 

samples to the processing PC – is analyzed to show transfer rate capability. The chapter 

concludes by showing resource usage – CPU and network – for different sampling rates 

in real-time operation. 

 

Chapter 6 draws conclusions from this work. Suggestions are made for further research.  

Chapter Two: Background 

 

This chapter starts off with a general overview of GNSS receiver structure and then 

details specifics about software GNSS receivers. Following this, an overview of available 

processor technologies is presented. Finally, the chapter is concluded with a discussion 

on parallel processing.   

 

2.1 GNSS Receiver Overview 

 

A GNSS receiver can be divided into several modules: the front end, which is composed 

of an antenna, a frequency synthesizer, a down-converter and a digitizer, multiple 

channels, which are composed of a Doppler Removal and Correlation (DRC) module and 

a tracking loop, and finally, a navigation solution estimator.   
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Figure 1 -- GNSS Receiver Overview 

Figure 1 shows an overview of a general receiver. After amplification from the antenna, 

signals are down-converted to an intermediate frequency (IF) and digitized. Multiple 

parallel channels then process the digitized samples to remove the IF and Doppler, thus 

bringing them to baseband, and to despread their spectrum. More details on this follow. A 

discriminator evaluates each channel to produce an error estimate between the incoming 

signal and the locally generated replica. This value is then filtered by the tracking loop 

filter and fed back to the DRC module. At measurement epochs, relative propagation 

delay measurements are generated from each signal and used to produce a navigation 

solution estimate.  

 

For brevity, functional details about the front end, the tracking loops and the navigation 

solution estimator will be omitted from this discussion. The reader is referred to Ward 

(2005) Chapter 5, for an in-depth study.  
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The work presented in Chapter 3 is based on parallelization and optimization of the DRC 

algorithm, which is described in further detail here.  

 

After down-conversion and digitization, assuming real sampling, a constant data bit, as 

integration is contained within one bit, and ignoring noise, the signal at the input of the 

DRC module can be represented as a sum of signals, where the i
th

 signal can be 

represented as:  

 

 

 [ ] [ ]cos(2 { } )
i i i s i IF di s i

r n d c nT f f nTτ π θ= − + +  (2.1) 

where:  

i is the satellite number. 

n is the sample number, 

di is the navigation message data bit,   

ci is the spreading sequence chip, 

τi is the spreading sequence code phase,  

fIF is the intermediate frequency of the down-converter,  

fd is the Doppler frequency caused by user and satellite motion, 

Ts is the sampling period and, 

θi the phase of the incoming signal. 
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In order to be able to recover the navigation message data sent by the satellite, the 

receiver needs to reproduce a local replica of the incoming signal for two reasons: first, 

due to satellite and user motion, and clock imperfections, the incoming signal frequency 

is not known and cannot be down-converted to baseband by hardware and second, due to 

the spreading sequence, the signal power is spread over a much larger frequency band 

and is thus well below the noise floor (Lachapelle 2008).  

 

The spreading sequence is a high frequency pseudo-random noise (PRN) code which is 

XORed with the navigation data at the satellite. This is done for three reasons. First, the 

high rate sequence acts to spread the signal power over a larger frequency range – see 

Figure 2. This makes the signal less prone to interference in the transmission path.  

 Figure 2 -- Frequency Spectrum of CDMA Signal 

0 2 4 6 8 10

x 10
6

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

Frequency(Hz)

R
e

la
ti

v
e

 P
o

w
e

r

Frequency Spectrum

 

 
Carrier Only

Carrier and Data

Carrier, Data and PRN

0 2 4 6 8 10

x 10
6

10
-16

10
-14

10
-12

10
-10

10
-8

10
-6

10
-4

Frequency(Hz)

R
e

la
ti

v
e

 P
o

w
e

r

Frequency Spectrum

 

 
Carrier Only

Carrier and Data

Carrier, Data and PRN



12 

 

 

Second, by modulating each signal with a different spreading code, separation is 

provided. That is, multiple signals can be transmitted on the same carrier frequency at the 

same time and each can be recovered using its specific code (Viterbi 1995). Third, and 

most important in the field of navigation, by modulating the signal with a deterministic 

code, the user can obtain relative transmission delay information between signals from 

the incoming code phase. 

 

Figure 3 shows the details of a DRC module.  
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Figure 3 -- Single Channel DRC 

 

The digitized samples are first multiplied by a complex local carrier replica, which brings 

them to baseband. After this, the two components are multiplied by delayed versions of 
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the spreading sequence: an early, a prompt and a late replica. The results for each are 

summed up producing the following output, again assuming a constant data bit: 

 

 
sin( )

( ) exp{ ( 1) }
sin( )

s
s s

s

fNT
C dR j f N T j

N fT

π
τ π θ

π

∆
= ∆ − + ∆

∆
 (2.2) 

 

where: 

d is the navigation message bit,  

Rs is the correlation function at a code offset ∆τ, 

∆f is the error in the frequency of the locally generated carrier replica, and ∆θ is the error 

in the phase of the locally generate carrier replica.  

 

The results from this correlation are passed through a series of discriminators to estimate 

∆τ, ∆f and ∆θ, and tracking parameters are updated for the next correlation epoch. 

 

 

2.2 Software GNSS Receiver 

 

A software receiver will implement all tasks described in the previous section, following 

sampling, in software. This section will begin with a brief history of software receivers, 

followed by an overview of the challenges faced in software receiver design, and finally, 

conclude with some methods developed to mitigate those challenges.  
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2.2.1 History of Software GNSS Receivers 

 

Like a lot of technology, software GNSS receivers, and software defined radio in general 

was driven by military development. In the early 1990s, U.S. military services were 

utilizing radios with dedicated hardware components optimized for specific field 

applications (Won et al 2006). The design life of these radios was typically assumed to be 

30 years. At the same time, commercial radio applications began driving up the pace of 

technology development such that the effective lifetime of any given component design 

was two years.  

 

To accommodate the rapid change in equipment design, the United States Department of 

Defense initiated a project called Speakeasy as a proof of concept for a programmable 

waveform, multiband, multimode radio (Lackey & Upmal, 1995). The developed 

approach was software defined radio (SDR): the digitizer is placed as close as possible to 

the antenna, thus IF data is processed using software techniques rather than by dedicated 

hardware.  

 

The software implementation of all baseband functions facilitates easy design 

modification and updates. This flexibility was very beneficial in a military setting which 

required communication at different frequencies, modulation types, spreading sequences 

and baseband algorithms.  



15 

 

 

 

Over the years, several advancements in SDR research have made real-time software 

GNSS receivers possible. One such advancement came in 1990, when NASA and Caltech 

JPL introduced an FFT based acquisition scheme for CDMA signals. This was later 

improved upon by (Nee & Coenen 1991) to allow for FFT and IFFT based acquisition of 

GPS signals. 

 

Work on the GNNS software receiver began with Akos (1997) with the development of 

the first receiver to rely solely on software algorithms for signal acquisition and tracking. 

Since then, multiple centers have been researching the topic, see section 1.1. Until 

recently, all software GNSS receivers recorded data, and processed it post-mission. (Akos 

et al2001) were first to develop and present a real-time software GNSS receiver. A large 

amount of current research interest is focused on real-time capable receivers.  

 

2.2.2 Challenges in Software GNSS Receiver Design 

 

As alluded to in Chapter one, the biggest challenge of software receivers is their high 

computational requirement. To that end, the required processing tasks are divided into 

high-rate, medium-rate and low-rate operations (Petovello et al 2008).  

 

2.2.2.1 High-Rate Operations 
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High rate operations are performed at the sampling rate of the receiver, a minimum of 

4 MHz for GPS L1 C/A and up to 25 MHz for other signals assuming real sampling. 

These include DRC and signal generation. In order to produce three delayed outputs for 

tracking, DRC requires at least eight multiplications and six additions per sample per 

signal (Petovello & Lachapelle 2008). Signal generation requires one sine / cosine 

generation and three ranging code sample generations per sample per signal.  

 

The high rate operations are the greatest computational load on the receiver, and as such, 

are the focus of this work.  

 

2.2.2.2 Medium-Rate Operations 

 

Medium rate operations are preformed after every correlation epoch, between 50 Hz and 

1 kHz. That is, these tasks are performed on the output of the high-rate tasks. Operations 

include discriminators, tracking loop updates, and navigation message extraction.  

 

2.2.2.3 Low-Rate Operations 

 

Low rate operations are performed at the output rate of the receiver, between 100 Hz and 

1 Hz. These operations include measurement generation and navigation solution 

computation and are performed independently of high and medium-rate operations.   
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Table 1 summarizes how many mathematical operations per second (additions or 

multiplications) are required per channel to perform only the high-rate tasks mentioned 

above. The disparity in calculation requirement is due to the difference in bandwidth of 

the signals. Higher bandwidth signals need to be sampled at higher rates, thus require 

more calculations per second.  

 

Table 1 – Operations per Second 

Signal Operations / Second 

GPS L1 C/A 320 M 

Galileo E1 640 M 

Galileo E5A 3.2 G 

 

 

2.2.3 Methods for Reducing Computation Cost in Software GNSS Receivers 

 

In a serial software receiver, two methods are usually implemented in order to reduce 

computational cost. First signal and code generation are usually implemented by a look-

up table, rather than direct computation (Ledvina et al 2002).  

 

Since storing every possible carrier frequency would be unfeasible, a coarse grid is used. 

The introduced difference in Doppler is later removed by a phase shift. Even so, the 

downside of this approach is the large memory requirement. If a spacing of 50 Hz is used, 
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400 look-up tables are needed for a +/- 10 kHz Doppler range. This means that at a 

sampling frequency of 20 MHz, 16 Msamples of memory are needed. That is, 16 MB and 

32 MB of memory are required for eight-bit samples and 16-bit samples respectively.  

 

The second method of reducing computational load relies on bitwise operations on the IF 

samples. Called Vector Processing, also introduced by (Ledvina et al 2003) this method 

operates by storing data bits from separate samples in a single word. 

 

 

2.3 Processor Technologies 

 

The starting point of this work, GSNRx
TM

, is designed to run on an x86 based, Windows 

PC. This has the advantage that it can run on most consumer computers. The downside 

however, is that neither the operating system nor the processor are optimized for real-

time processing of highly mathematically intensive tasks such as the high-rate operations 

described in the previous section. This section presents some available processor 

technologies and explains why an NVIDIA GPU was chosen as the implementation 

architecture for this work.  
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2.3.1 General Purpose Processors 

 

General purpose processors (GPPs), such as the x86 based processor GSNRx
TM

 runs on, 

are built on the von Neumann architecture (Hennessey & Patterson 2007). As such, they 

have a single storage structure – memory space – to hold both instructions and data. This 

means that programs and data can be stored in the same space and loaded on the fly. This 

has the benefit of simplicity in both hardware and operating system design, enabling 

higher clock speeds and leaving more resources free for other tasks. The drawback is that 

the processor can either be reading an instruction or reading / writing data, but cannot do 

both simultaneously.   

 

This limitation leads to the von Neumann bottleneck, the limited throughput between the 

processor and external memory. Since in most processors, throughput is much smaller 

than the rate at which the processor can work, speed is limited when few operations are 

required on large amounts of data, such as for DRC.  

 

Mechanisms, such as cache and branch prediction, exist in order to mitigate this 

bottleneck (Jouppi 2007).  

 

Cache is high-speed, low access cost storage for a duplicate copy of data, stored 

elsewhere, which is more costly to access. In terms of processors, cache is located on the 

same chip as the processor and duplicates external memory, either in RAM or on the hard 
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disk. For example, in a modern PC, the cache can be accessed in one to two clock cycles, 

while RAM access requires 20 clock cycles. A cache controller will automatically fetch 

commonly used external data. Once it is on chip it can be accessed and changed in the 

future without need to re-fetch. External access is only needed once it is replaced in the 

cache with other data.  

 

Branch prediction is a mechanism which attempts to guess which way a branching 

instruction – if/else, or loop – will go before it is known. Guesses are made based on 

previous executions of the branch. The guessed branch is fetched and speculatively 

executed, and placed into the pipeline before the result of the branch is known. If it 

guessed correctly, a branch predictor ensures that no cycles are lost due to a branch. An 

incorrect guess is usually quite costly as the entire pipeline – up to 20 cycles – has to be 

flushed and the alternate branch fetched.  

 

These features, along with high clock speeds, mean that GPPs are well suited to 

executing low-data, non sequential control code. Since so many resources are devoted to 

memory management the underlying memory and processor architecture is less important 

to the programmer and can be treated as transparent.  

 

2.3.2 Digital Signal Processors 
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In contrast to GPPs, digital signal processors (DSPs) are usually based on the Harvard 

architecture, meaning they have a separate memory space / bus for instructions and data 

(Hennessey & Patterson 2007).  This means that instructions and data do not necessarily 

have to be the same size, and more importantly, can be fetched simultaneously.  

 

Common features of DSPs include very complex direct memory access (DMA) 

controllers, fast highly parallel multiply-accumulate capable logic units, floating point 

units integrated into the datapath and a highly pipelined architecture. These features mean 

that DPSs are well suited to high-data, high mathematical complexity, low branching 

operations needed for signal processing. DSPs also have a highly irregular nature in terms 

of architecture and instruction sets, meaning that the programmer often has to hand-

optimize programs in assembly. The lack of resources devoted to memory management – 

i.e. cache – means that the underlying structure cannot be treated as transparent and must 

be taken into account.  

 

2.3.3 Graphic Processor Units 

 

Graphics processing units (GPUs) are specialized, floating point, processors capable of 

highly parallel arithmetic operations. Originally GPUs contained fixed-function pipelines 

and were optimized for polygon fill rates (Owens et al 2007). By 2002, however, 

hardware had become so advanced that even low-end consumer products were capable of 

refreshing an entire screen up to 1500 times per second. This encouraged manufacturers 
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to produce flexible hardware and application programming interfaces (APIs) capable of 

not only rendering but also programmable shading, lens simulation and even real-time 

ray-tracing (McCool 2001). While earlier hardware was limited to outputting a 8-bit-per-

channel colour value, modern GPUs have programmable processing units capable of full 

IEEE single precision floating point operations (Owens et al 2007).  

 

Over time, this change in hardware produced research interest in general purpose 

computing on graphics processing units (GPGPU). This has persuaded manufacturers to 

develop and release even more flexible APIs which allow the programmer direct access 

to the hardware.  

 

Modern GPUs have a highly parallel architecture with upwards of 128 execution cores, 

each housing upwards of 32 arithmetic logic units (ALUs). Very few resources are 

devoted to out-of-order execution, branch prediction or cache, yielding very high parallel 

processing performance at the cost of code complexity. The hardware cannot be 

transparent to the programmer. They are designed for high-end graphics, meaning GPUs 

can best handle many parallel but simple tasks.   

 

As of the outset of the project, there were no standards in either GPU code or hardware 

structure. The two main manufacturers, NVIDIA and ATI have their own proprietary 

programming languages and device structures. In the initial phases of this project, it was 

determined that the NVIDIA development kit was more mature and stable and was thus 
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chosen as the platform. This decision was based on the available documentation and 

support from both manufacturers. 

 

During this work, OpenCL – a coding framework which allows compilation and 

execution on both ATI and NVIDIA GPUs – was adopted by both manufacturers.  

 

A discussion on the NVIDIA programming language – CUDA – and hardware device 

structure follows.  

 

2.3.3.1 CUDA 

 

Compute Unified Device Architecture (CUDA) is NVIDIA’s parallel programming 

model and software environment built by extending the capabilities of the C 

programming language. It is based on three main abstractions: a hierarchy of threads, a 

hierarchy of memories and a system of blocking synchronization.  

 

Using CUDA, a programmer defines C functions – kernels – which are executed k times 

in parallel by k threads – see Figure 4. This contrasts with standard C code which is 

executed once. Each thread is assigned a unique ID which is accessible from within the 

kernel. Threads are arranged into one, two or three dimensional blocks. Each thread block 

is subsequently arranged into a one or two dimensional grid. The large number of threads, 
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and the low context switching / synchronization overhead mean that massive 

parallelization, to the point of one thread per data sample, is efficient.  

 

Figure 4 -- GPU Thread Structure (NVIDIA 2009) 

 

2.3.3.2 NVIDIA GPU Structure 
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In 2006, NVIDIA introduced the Tesla unified graphics and computing architecture 

(NVIDIA 2009). The scalable nature of this design allows the architecture to span a wide 

array of segments from high-performance to entry level.  The massively multithreaded 

processor is a highly efficient platform for both graphics and general purpose, parallel 

computing.  

 

The Tesla architecture is based on an array of multithreaded streaming multiprocessors. 

Each multiprocessor consists of eight scalar processors, each with its own register 

memory, two transcendental special function units, a multithreaded instruction unit, an 

on-chip parallel data cache of shared memory, access to cached read-only constant 

memory and cached texture memory – see Figure 5.  
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Figure 5 -- GPU Hardware Structure (NVIDIA 2009) 

 

When the host CPU invokes a kernel grid, threads and blocks are enumerated and 

distributed to multiprocessors with available execution resources. Threads within one 

block will execute on one multiprocessor, giving them access to low-latency, shared 

memory.  
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Hundreds of threads running several different kernels are managed through a Single 

Instruction Multiple Thread (SIMT) architecture. The microprocessor’s SIMT controller 

creates and schedules groups of up to 32 threads, called warps. On instruction issue time, 

the SIMT controller selects a warp that is ready to execute and issues the next instruction 

to all threads simultaneously. If threads diverge due to a data dependant branch – loop, if 

statement, switch – execution has to be serialized. The controller will execute each 

branch path, deactivating threads which are not on that path. Separate warps can execute 

separate instructions at the same time. Thus, to maintain efficiency, it is important to 

ensure that there is minimal warp-level divergence.  

 

2.3.4 Field Programmable Gate Arrays 

 

Field Programmable Gate Arrays (FPGAs) are reconfigurable logic devices that are 

designed to implement a variety of digital circuits. They are integrated circuits that 

contain many identical logic cells – basic logic elements (BLEs) – connected with wires 

and programmable switches. Each BLE can take on a limited set of functions. Designs 

are implemented by programming which logic function each cell will perform, and 

selectively closing switches to connect the cells. 

 

Logic cell architecture varies between different families of FPGAs, but the most common 

BLE is implemented as a lookup table (LUT) combined with a flip-flop (FF), as shown in 
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Figure 6. Input size varies from three to ten bits and output size is usually limited to two 

bits.   

 

 

Figure 6 -- Basic Logic Element of an FPGA (Jameison 2007) 

 

Utilization of an FPGA is measured by the number of BLEs required to implement a 

certain function. It is common for FPGAs to contain additional circuits, such as memory 

and multipliers (Zhang 2008). In some cases, it is possible to reduce utilization, or 

implement a wider function by incorporating these circuits.  

 

FPGA design is performed using either a hardware descriptive language (HDL) or 

schematic capture, with most designs done in HDL as it is more readable for large scale 

projects.  

 

HDL programming involves creating blocks called entities, enumerating the inputs and 

outputs of each block, describing the internal logic, and finally connecting blocks. A 

synthesizer will then translate this code into LUTs and wiring.  
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In order to expedite designs, vendors supply designers with IP cores – large blocks 

implementing DSP algorithms, communication modules, interface modules and soft 

processors (Zhang 2008). 

 

2.3.5 Reasons for Choosing GPU 

 

A decision was made to design a real-time DRC for NVIDIA GPUs. This was based on 

several reasons: hardware capability, hardware cost, hardware availability and 

development software maturity.  

 

The fast release cycle of graphics hardware and the highly competitive nature of the 

market have caused computing power to increase exponentially.  

Figure 7 contrasts the capability of high end CPUs and GPUs using billions of floating 

point operations per second (GFLOPS) as a metric. In terms of raw processing power, 

GPUs are the better choice.  
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Figure 7 -- Processing power of GPUs compared to GPPs 

 

The increase in semiconductor capability for both GPPs and GPUs is driven by the same 

advances in fabrication technology. The disparity in performance can be attributed to a 

fundamental difference in architecture, as discussed in the previous sections.  GPPs 

devote many resources to branch prediction, out-of-order execution and cache while 

GPUs devote all possible transistors to arithmetic operations. This leads to a device 

capable of orders of magnitude more operations per second using the same transistor 

count.  

 

FPGAs are more capable than GPUs for this kind of application as the hardware itself is 

customizable. A design was started for an FPGA which included a multi-channel DRC 

module. In spite of this, it was decided to abandon this stream of work for two reasons. 

First, the hardware is expensive and not readily available in consumer PCs, unlike GPUs. 
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Each unit would have to be custom equipped. Second, as this work is to be a research 

platform, it is important that it can be easily maintained. While most researchers are 

fluent in C and will be able to modify CUDA code with little training, hardware design 

knowledge and HDL experience is less common. 

 

Finally, the choice between NVIDIA and ATI was made due to development software 

maturity. Work was started on an ATI system due to the availability of machines within 

the research group, but was later abandoned due to lack of support and documentation 

from ATI. NVIDIA’s development kit is better documented, with clear examples.  

 

2.4 Algorithm Parallelizability 

 

GFLOPS were discussed in the previous section as a performance metric. This number, 

however, can be misleading. In order to reach these numbers on a GPU, it is necessary to 

utilize all of its resources. To do this, the algorithm to be performed must be 

parallelizable. That is, it must be possible to dissect the algorithm into individual slices 

which have little or no dependency on each other. These pieces can then be mapped onto 

multiple independent processors and simultaneously executed.  

 

For certain algorithms, like Newtown’s method, parallelization is not suitable. Each 

subsequent calculation relies on the result of all proceeding calculations, and thus even if 
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separated into different processors, each calculation would need to wait for all previous 

calculations to finish.  

 

Some algorithms, such as a brute force search in cryptography, are inherently 

parallelizable. Each processor can be given the task of checking one solution, and the 

problem ends when the correct solution is found. 

 

The DRC algorithm lies in between the above examples, requiring both parallel and 

sequential operations. While removing Doppler and correlating each sample for each 

channel at the same time is a parallel operation, the results then need to be reduced (i.e. 

accumulated), which is a sequential operation. 

 

2.5 Conclusion 

 

This chapter presented an overview of GNSS receivers, concentrating on the DRC 

algorithm and software based receivers. Processing power and memory requirements 

were quantified and the motivation for using a co-processor was given. Possible co-

processor technologies – GPP, GPU and FPGA – were described and a discussion on the 

parallelizability of the DRC algorithm was presented.  

 

Due to the parallelizability of the DRC algorithm, and the high availability of hardware, a 

GPU was selected as the co-processor.  



33 

 

 

 

The following chapter will describe the development of the DRC module.  
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Chapter Three: DRC Development 

 

This chapter details the work done to extend the capability of GSNRx
TM

 to facilitate 

high-speed processing of high-bandwidth signals. It begins by describing abandoned 

design streams. This includes the DRC design done on the FPGA and on the ATI GPU. 

Next, the design cycle for the DRC on the NVIDIA GPU is described. This is followed 

by design challenges for the same.  

 

3.1 FPGA Development 

 

Initially, it was decided to use an FPGA in a co-processor environment to offload the 

high-rate operations, namely Doppler removal and correlation. A Xilinx Virtex 4 SX35 

was chosen as the development platform. The SX53 has 34,560 BLEs, a maximum of 

384 kB of distributed RAM and a maximum of 5 MB of block RAM. This was deemed 

sufficient for the required task.  

 

In the subsequent sections the DRC module is described, and the current status reported 

and future work needed to complete the project outlined.  
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3.1.1 FPGA Design Overview 

 

The FPGA DRC module can be broken down into three main parts: an input First-In, 

First-Out (FIFO) buffer, multiple single channel DRCs and an output FIFO, as shown in 

Figure 8.  

 

 

Figure 8 -- FPGA Design Overview 

 

The input and output FIFOs are instantiated IP cores provided by Xilinx. They each 

consist of a 32x512 block RAM module, and logic to allow the input and output to be 

clocked by different clocks. Data is fed into the INPUT buffer from the PCI bus, and 

clocked by the same. After the first word – the size of one sample of data, eight bits in 

this case – is loaded, a FIFO_EMPTY flag, internal to the FIFO, is cleared, and reading is 

enabled. Since the only time that reading and writing is performed on the same word is 
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when the buffer is empty, this method ensures that there will be at least one write clock 

cycle delay, and that clock domain boundaries can safely be crossed. That is to say, under 

no condition will the word be available to the read circuitry for less than an entire read 

clock cycle.   

 

The single channel DRC is shown in Figure 9. For simplicity, the internal clock routing, 

which goes to every multiplier and adder, has been omitted.  Note that since clock 

domains have been crossed in the FIFOs, the entire design can run on one clock.  

 

 

Figure 9 -- FPGA Single Channel DRC 
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Data is fed into the channels though a three bit wide bus. Special control sequences in the 

data are used to update the code and carrier numerically controlled oscillator (NCO) 

frequencies. To expedite design, the carrier and code NCOs are instantiated Xilinx IP 

cores, like the FIFOs. The carrier NCO generates a four-bit wide sine and cosine signal 

which is fed into the correlator unit. The code NCO generates a one bit clock which is 

used to drive the C/A code generator. The C/A code generator relies on two 10 bit shift 

registers to generate an early code replica. Delay states are used to generate prompt and 

late.  

 

The first stage of multiplication – carrier wipeoff – is done using a six bit multiplier. 

While not necessary, the wider output allows for better optimization of the subsequent 

steps. The second stage of multiplication is performed using eight bit multipliers. Finally, 

results are summed using 20 bit accumulators.  

 

On a code rollover, data is fed from the accumulators into the output FIFO. Since 

channels are not synchronous, that is to say their code rollovers happen at different times, 

and they will not write to the buffer at the same time. In order to ensure no data 

collisions, results are buffered locally. The WRITE_ENABLE pin on the output buffer is 

polled before writing, and results are held until it is available. 
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3.1.2 FPGA Design State 

 

In the current state, the FPGA DRC module is capable of single channel operation. The 

logic required for the control sequences on the data has not yet been implemented. To 

complete the module, the control logic would need to be implemented, the design 

extended to multi-channel and GSNRx
TM

 modified to incorporate this module.  

 

3.2 ATI GPU Development 

 

Due to the availability of ATI hardware within the research group, it was initially decided 

to develop the GPU DRC module for the ATI Mobility Radeon HD 2600. Unfortunately, 

even though the Mobility Radeon HD 2600 incorporates the same chipset as the standard 

Radeon HD 2600, Mobility hardware was not supported by the ATI drivers. To overcome 

this problem, software was used which changed the device model number stored on the 

hardware, tricking the operating system into accepting standard drivers for it.  

 

A standalone single channel DRC module was then implemented and tested for 

functionality and speed. The module was capable of streaming data onto the GPU, 

processing and streaming results back to the CPU.  The module had correct functionality, 

but showed instability issues when run at a high rate. It is tempting to speculate that this 
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was due to overheating. The operating system recognized the hardware as standard, not 

mobile which is capable of running at a higher speed; the clock rate was increased, 

causing the device to overheat, thus halting the device under full load.  

 

At the time, there was no information from ATI regarding support for mobility hardware. 

To minimize risk, it was decided to abandon this stream of development and move onto 

NVIDIA hardware.  

 

3.3 NVIDIA GPU Development  

 

An NVIDIA GeForce 8800 GTX fitted into a PC with a single-core 3.0 GHz processor 

with hyper-threading technology was chosen as the new development platform. To 

facilitate finer grained functionality testing of the DRC module, it was developed in 

sections. The following section describes the development cycle. Following that, 

challenges faced during development are discussed. Finally, an overview of the DRC 

module is given.  

 

As mentioned in the introductory chapter, the starting point of this work was a GPU 

solution developed by the PLAN group (Petovello et al 2008). While this work was used 

as a reference, a complete redesign and restructuring of the solution was required in order 

to facilitate higher speed operation.   
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The work discussed in the remainder of this chapter is based on (Knezevic et al 2010). 

The developed module is very flexible, and is capable of correlation for any spreading 

sequence, sampling rate, Doppler frequency and early-prompt-late chip spacing, simply 

by receiving an initialization parameter from the PC. All GPU code has been developed 

in CUDA – a modified version of C – and all CPU code has been developed in C++. 

 

3.3.1 Development Cycle  

 

The multiplier, the basic building block of the DRC, was developed first. This kernel was 

capable of streaming two sets of data from the CPU onto the GPU, multiplying them and 

returning the results to the CPU. Having this unit allowed to test the transfer bandwidth 

between the CPU and the GPU.  

 

Next, this multiplier was extended to a single channel, single lag DRC meaning it could 

multiply an incoming stream of IF samples by a single carrier and code replica. Sine and 

cosine values were calculated on the GPU per sample and the spreading sequence was 

stored in a compressed form in constant memory, exploiting the cache available on each 

multi-processor – see section 3.3.3.1. At this point, functional and preliminary speed 

testing was performed. As the device could perform correlation of 40 Msamples in under 

a second, it was determined that the device was fast enough to permit real-time operation 

and development was continued.  
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At this point, each thread, or each instance of the kernel running on the GPU, of the 

multiplication kernel was responsible for the Doppler removal and correlation of a single 

sample, and there was no capability to sum the results. A reduction kernel was developed 

next. This kernel was responsible for looping over the results generated by the 

multiplication module and summing them.  

 

Finally, the DRC kernel was extended to allow multi-channel, multi-lag operation. After 

functionality and speed testing, the kernel was integrated into GSNRx™.  

 

3.3.2 Development Challenges 

 

Some of the challenges in developing the GPU DRC module are detailed in the following 

sub-sections. 

 

3.3.2.1 Expensive Copying 

 

Copying data onto the GPU board is expensive. It takes eight GPU clock cycles per word 

to copy from the CPU or the global device memory.  More importantly, there is a 400 to 

600 clock cycle latency for memory transfers.  

 

Unfortunately, it is difficult to overcome this problem. The threading engine can hide 

some of this latency by allowing other threads to run while some are waiting on data, but 
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the device is not fully utilized at this time. The only thing which can be done to mitigate 

this problem is to minimize the amount of copying to be done. Even though many threads 

require access to the same data at different times, it is important to ensure that it is 

requested only once, and then stored locally in shared memory on the multiprocessor. In 

order to not overwhelm the relatively small amount of shared memory, it is necessary to 

ensure that all threads running on one multiprocessor are processing nearby time-slices of 

the data stream.  

 

3.3.2.2 Large Thread-Count Required 

 

As mentioned in the previous section, in order to hide data fetching latency, the threading 

engine switches to threads which are not pending on data transfers. In order to do this 

effectively a large number of threads are required. Since thread count is dependent on 

sample count per kernel call, thread count is maximized when the time slice of data to be 

processed per kernel call is maximized. That is, each kernel call should process an entire 

code period for each channel.  

 

The existing DRC and tracking loop update algorithms in GSNRx™ did not allow this 

approach. As can be seen in Figure 10, processing was interrupted not only by code 

rollovers, but by measurement epochs as well. At a measurement epoch, the NCO values 

were recorded and used to generate measurements for the navigation solution. This stop 

in processing was also used to synchronize the channel clocks.  
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Figure 10 – Synchronous DRC / Tracking Loop Update Algorithm 

 

In order to remove this interruption, an algorithm was developed to allow channels to run 

independently, as shown in Figure 11. Measurements on each channel are made on code-

rollover epochs, and tracking loops and tracking parameters are then updated. In order to 

provide the simultaneous measurements the navigation solution requires, measurements 

are propagated either forward or back by keeping track of their rate.  
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Figure 11 – Asynchronous DRC / Tracking Loop Update Algorithm 

 

The asynchronous algorithm adds complexity to the channels as each has to keep its own 

clock dependant on the number of samples processed. By keeping at least two code 

rollovers of data on the GPU at a time in a ping-pong buffer, this method allows each 

channel to run uninterrupted for an entire epoch.  

 

3.3.2.3 Reduction is Serial 

 

The next challenge faced in designing a parallel DRC module is that reduction, or the 

accumulation of the results, is an inherently serial operation due to the data dependencies 

between subsequent steps.  
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As reduction is a very common operation in parallel processing, many approaches have 

been developed (Harris 2007, Roger et al 2007, Horn 2005). All are based on the simplest 

and most intuitive approach, which mimics merge sort. That is, each thread is responsible 

for adding two elements, and calls are made recursively until all data is reduced. This 

tree-based approach is illustrated in Figure 12. 

 

 

Figure 12 -- Tree-Based Reduction (Harris 2007) 

 

In order to minimize memory latency issues described in Section 3.3.2.1, data is first 

copied into shared memory, and then operated on. Selecting which two elements each 

thread will operate on is a non-trivial problem. If, for instance, consecutive elements are 

selected as shown in Figure 13, loads by consecutive threads will cause bank conflicts, as 

described in the following paragraph. 
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Figure 13 -- Reduction, Sequential Addressing (Harris 2007) 

 

To maximize memory bandwidth, multi-processor shared memory is divided into 

equally-sized modules, called banks, which can be accessed simultaneously (NVIDA 

2009). That is, if n threads make read or write requests, and their addresses fall into n 

distinct banks, the request can be served in one clock cycle.  

 

If, however, two or more addresses fall in the same bank, a bank conflict occurs and 

reads are serialized. The hardware logic splits requests into as few reads as possible in 

order to eliminate bank conflicts. The data stored in shared memory is organized such 

that each successive word is in a successive bank. Thus, assuming there are eight memory 

banks and 16 words, in the case shown in Figure 13, threads 0 and 4, 1 and 5, 2 and 6 and 

3 and 7 will conflict.  
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 To mitigate this problem, reads have to be addressed as shown in Figure 14. The stride – 

the number of words each thread should skip – is dependent on the number of banks. In 

the case of this project, stride is dependent on the number of threads per block. Since 

there are 16 banks, an optimal value of 16, 32, 48 or 64 provides the highest bandwidth. 

However, since thread count must also be optimized and has a higher impact on 

performance, peak processing speed is achieved at a sub-optimal stride of 80. This is 

further discussed in section 5.2.2. 

 

 

Figure 14 -- Reduction, Optimized Addressing (Harris 2007) 
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While from a parallel processing perspective, having each thread reduce only two 

elements is optimal, threading overhead and maximum thread count may make this 

impractical. Therefore, depending on the number of samples needing reduction, it may be 

more efficient to have each thread handle multiple samples. This is the case in the 

developed module. It is done in unrolled loops – loops hardcoded by repeating code, 

rather than using loop commands – due to loop overhead.  

 

3.3.3 DRC Algorithm 

 

The DRC algorithm can be divided into three main parts, copying data onto the board, the 

multiplication kernel and the reduction kernel. Each is described in detail in the following 

sections. 

 

3.3.3.1 Copying Data 

 

As described in Section 3.3.2.1, it is expensive to copy data on to the GPU on-chip shared 

memory. It is, therefore, important to perform this transfer such that bandwidth is 

maximized. This section will discuss transfer of IF data onto the board and transfer of the 

spreading code sequence onto the board.   

 

The transfer of IF data can be broken down into two parts: copying from external RAM 

onto on-board global memory and copying from on-board global memory to on-chip 
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shared memory. The former is an asynchronous process which can be performed while 

the CPU is occupied with other tasks. After an epoch of data has been processed, before 

the CPU has updated the tracking loops and generated a navigation solution, a transfer is 

initiated. By the time the CPU is to process more data, the transfer is mostly completed. 

More timing results will follow in Chapter Five. As such, this transfer is not of great 

concern.  

 

Transfer from on-board global memory to on-chip shared memory, conversely, is not 

asynchronous, so optimizing it is important. As discussed in Section 3.3.2.3, shared 

memory bandwidth is maximized when individual threads are accessing separate banks. 

Also, even though each thread requires 8-bits of data, the word size is 32-bits. Thus, to 

maximize bandwidth, before processing begins, a quarter of the available threads are 

responsible for copying the required data into shared memory while other threads are 

suspended. 

 

Transfer of the spreading sequence is carried out differently. Since the spreading 

sequences are relatively small and used many times they can take advantage of the 

constant cache available on the multi-processors.  

 

Before upload to the GPU, spreading sequences are compressed such that each chip takes 

up one bit of memory to ensure that the entire sequence will fit into the cacheable 

memory. The decompression of the sequence requires a modulus operation. While this is 
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expensive on the GPU, by ensuring that the operation is 2
n
, it can be replaced with a bit-

wise AND with 2
n
 - 1.  

 

The following section will discuss the multiplication kernel.  

 

3.3.3.2 Multiplication Kernel 

 

The multiplication kernel is the one capable of benefitting the most from parallelization. 

Since each sample can be independently operated on, there is no data dependency, and all 

threads can, in theory, operate simultaneously. In order to be able to cover an entire code 

rollover epoch – see Section 3.3.2.2 – each thread needs to operate on several samples. 

Following the stride rules outlined in Section 3.3.2.3, each thread addresses samples to 

avoid bank conflicts.  

 

First, thread and block indices are used to calculate the sampleOffset, which combined 

with the startIndex gives the initial data index as follows: 

 
( ) ( )

x x
sampleOffset b samplesPerBlock t samplesPerThread

dataIndex startIndex sampleOffset

= +

= +

i i

 (3.1) 

where:   startIndex is the index of the first sample for that channel,  

  bx is the block index, 

  samplesPerBlock is the number of samples processed by each block,  

  tx is the thread index, 

  samplesPerThread is the number of samples each thread must process, 

   

samplesPerThread is calculated as follows 
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samplesPerEpoch

samplesPerThread
blocksPerGrid threadsPerBlock

=
i

 (3.2)  

where:   samplesPerEpoch is the number of samples per 1 ms of data, 

  blocksPerGrid and threadsPerBlock are adjustable design parameters. 

 

blocksPerGrid and threadsPerBlock are optimized to ensure that samplesPerThread is 

equal to a multiple of the number of banks on the hardware. This configuration ensures 

that consecutive threads read data from different banks, thus increasing the bandwidth.  

Each thread processes samplesPerThread samples by looping dataIndex from its initial 

value to dataIndex+samplesPerThread.  

 

The sampleOffset combined with the sample rate, Doppler and initial phase, is used to 

generate the carrier phase of the sample being operated on as follows:  

 

 
Doppler

carrierPhase initialCarrierPhase sampleOffset
sampleRate

= + i . (3.3) 

 

The code phase is similarly generated. Sine and cosine values are generated on the fly, as 

opposed to using a look-up-table. This is done because on the fly sine/cosine generation 

is a very inexpensive operation on the GPU requiring only eight clocks cycles. Memory 

look-up, however is more expensive due to the delay described in section 3.3.2.1. The 

required code chip is decompressed as described in the previous section. Since code chip 

spacing is always kept at or below one-half chip, it is guaranteed that either the early or 
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late replica will be of the same chip. Thus, two decompressions need to be performed for 

the three signals.   

 

The integer samples are converted to single precision floating point in order to make use 

of the floating point ALU. The –use_fast_math compiler option is used to allow non 

IEEE precision floating point calculation.  

 

Figure 15 illustrates how processing is divided amongst threads. To simplify the graphic, 

sequential addressing is shown. Threads from one block are responsible for a single 

channel.  
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Figure 15 -- Multiplication Kernel 

 

The table on the left hand side of the figure represents the spreading sequences, stored as 

memory codes on the device. The blue lines, all eminating from one element of the table, 

represent that multiple threads, and multiple blocks all process data for a single channel. 

That is, more than one block can be used to process a single channel. The six results from 

each thread – early, prompt and late, in-phase and quadrature-phase, represented as IE, 

IP, IL and QE, QP, QL – are stored in local shared memory. To avoid copying a large 

amount of data out, one thread per block reduces intermediate results for the entire block.  
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The following section describes the reduction kernel.  

 

3.3.3.3 Reduction Kernel 

 

The reduction kernel is responsible for adding the results of the multiplication kernel. The 

stride rules outlined in Section 3.3.2.3 are followed to minimize bank conflicts. Figure 16 

visualizes the reduction process. The block on the right hand side of the figure represents 

a block of threads, each summing the IE, IP, IL and QE, QP, QL results produced by the 

multiplication kernel.  

 

Figure 16 -- Reduction Kernel 
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As described in Section 3.3.2.3, it is more efficient for each thread to sum over multiple 

samples. Only one block per channel is used. If more than one block per channel were to 

be used, multiple kernel calls would need to be made as each block only has access to its 

own shared memory, thus multiple layers of reduction would need to be performed to 

obtain a total sum. While this limits hardware utilisation to 50 percent – as there are 16 

total multiprocessors and only eight channels – it is faster than performing two iterations 

due to the overhead of making a kernel call.  

 

 

3.4 Conclusion 

 

The development process of the high-speed, parallel DRC module was described in this 

chapter. Specific details required for efficient processing on NVIDIA GPUs are taken 

into account. 

 

The following chapter will detail the development work done for the real-time sample-

source, required for real-time operation. 
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Chapter Four: Real-Time Operation Development 

 

Faster than real-time processing is only part of the solution for a real-time capable 

software GNSS receiver. A system is needed which will get samples from the front-end 

to the PC in real-time, buffer them while the receiver and PC are busy with other tasks 

and control program flow between receiver tasks and front-end tasks. This chapter will 

discuss the development of a multithreaded sample-source, an SiGe front-end driver and 

an Ethernet front-end driver.   

 

4.1 Multithreaded Sample Source 

 

The multithreaded sample source is at the heart of the real-time receiver. As the name 

suggests, it is responsible for providing the receiver with IF samples as it is ready to 

process them. In order to do this it has to buffer IF samples if the receiver is not ready to 

process them, ensure that the front-end is serviced within a specified time such that its 

buffer does not overflow and block receiver processing if no data is ready. For the 

purpose of this discussion, the functions of the receiver which process data and the 

functions which provide data are referred to as the sink and source, respectively.  

 

In order to be able to perform these tasks asynchronously and to be able to utilize 

multiple cores, if available on the hardware, the sample source is multi-threaded. The 
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source – see sections 4.3 and 4.4 – is placed in a high-priority thread which is controlled 

by interrupts or blocking calls while the sink is in a low-priority thread controlled by the 

blocking circular buffer – as described in the section 4.2.  

 

4.2 Blocking Circular Buffer 

 

The blocking circular buffer is used to store incoming IF samples and to control program 

flow.  

 

Buffering of the IF samples is achieved by dividing the available memory space into 

equally sized blocks, each the size of 1 ms of IF data. The start and end of the buffer are 

conceptually connected end-to-end as illustrated in Figure 17. This is implemented by 

ensuring that the buffer size is a power of two and bit-wise ANDing memory increments 

with the buffer size less one. For instance for a buffer size of 0x10, a pointer at 0xD 

incremented by 0x4 would yield: 

 

 
0 0 4 0 11

0 11& (0 10 1) 0 1

xD x x

x x x

+ =

− =
. (4.1) 

 

From the point-of-view of the source, this provides a seemingly infinite buffer to which it 

can continuously write. As long as the sink can keep up with processing – which the 
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control segment of the buffer ensures, as described further below – data will not be 

overwritten.  

 

 

Figure 17 -- Circular Buffer 

 

Program flow is controlled by using the Microsoft Windows multithreading API and 

semaphores. Semaphores are protected data types which control access to a common 

resource in a parallel programming environment. Conceptually, a semaphore is a counter 

of the number of free resources available. When a resource is used, the semaphore is 

decremented and when a resource is released, the semaphore is incremented. When a 

request for a resource is made and the semaphore is already at zero, it will block the 

caller until a resource is available. When a buffer is instantiated, read and write pointers 
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and read and write semaphores are created. The pointers are both initiated to the first 

element in the buffer. The read semaphore is initiated to zero and the write semaphore to 

the size of the buffer.  

 

When a buffer write occurs – a source event – the write semaphore is first pended on – 

ensuring that unprocessed data is not overwritten – and then a read semaphore is released 

– allowing the sink to utilize this data. Conversely, when a buffer read occurs – a sink 

event – the read semaphore is pended on – ensuring that there is data to process – and 

then a write semaphore is released – freeing a spot for new data. If, at a source event, the 

buffer is full, the source is blocked and data is lost. This condition is fatal to the operation 

of the receiver. However, as long as the sink is, on average, faster than the source, and the 

buffer is large enough to accommodate temporary variations in speed, this will not occur. 

Speed variations can occur due to either operations of the PC external of the receiver or 

additional receiver processing such as navigation solution estimation; they cause data 

backlog and filling of the buffer. Once the sink is performing at its normal speed, the 

buffer is again emptied and processing is again done in real-time.  

 

Since the source and the sink operate independently in separate threads, this set-up allows 

high-speed servicing of front-end interrupts.  

 

4.3 SiGe Front-End 
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Initial real-time development was done using the SiGe GN3S front end (University of 

Colorado at Boulder, 2010) – see Figure 18.  

 

Figure 18 -- SiGe Front-End 

The front-end comes in two versions; V1, built around the SiGe SE4110, provides real, 

two-bit samples at 16.3676 Msps while V2, built around the SiGe SE4120, provides 

complex I/Q one-bit samples at a frequency of 8.1838 Msps. Both versions have a 64 kB 

hardware buffer, meaning that they require servicing approximately every 4 ms as per the 

following: 

 

65536
4

16.368

samples
ms

Msamplesps
≈ .    (4.2) 

 

A driver was developed based on the softGPS Project driver (Danish GPS Center 2010). 

In order to be able to handle the high-speed servicing requirements, Windows event and 

timer functions are used to generate interrupts when data is ready from the front-end. 
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When an interrupt occurs, a look-up-table (LUT) is used to generate signed samples from 

the one or two bit data as per Table 2. 

 

Table 2 -- GN3S LUT 

Incoming Data Sample (V1) Sample (V2) 

0 1 1 

1 -1 -1 

2 3 Undefined 

3 -3 Undefined 

 

 

Following sample generation, data is copied into the circular buffer, allowing the sink to 

run as described in the previous section. A new timer event is loaded so that the 

following read also generates an interrupt. 

 

4.3.1 Development Challenges 

 

There were two key challenges in modifying the SiGe driver and incorporating it into 

GSNRx™: overcoming a limitation in the run-time of the device and incorrect data sheet 

information. 

 

The SiGe front-ends – versions one and two – are firmware limited to 40 s of run-time. 

That is, there is a counter in the firmware (University of Colorado at Boulder 2010) 
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which disables the device when it reaches a threshold. Since the firmware is based on 

GPL modules (Free Software Foundation 2007), the source has been made available. It 

has been modified to remove the 40 s limitation and to change the device ID so that the 

OS can recognize it as new hardware. The MinGW GCC Compiler suite (MinGW 2009) 

and the Small Device C compiler (SDCC 2009) were used to compile the code. 

Publically available software, called fx2_programmer (Volodya 2002) was used to 

upload the firmware to the device. In order for fx2 programmer to be able to run, it 

requires the libusb_win32 driver (ste_meyer 2010). 

 

The procedure for initiating the SiGe front-end is as follows: 

1) Mount the device using the libusb-win32 driver 

2) Use fx2_programmer to upload the modified firmware to remove the 40 s 

limitation 

3) The device is recognized as new hardware 

4) Mount the device using the modified softGPS Project driver 

5) Start GSNRx™. 

 

The data sheets provided by the University of Colorado at Boulder contain two errors. 

First, for version 2, the listed IF is 38.4 kHz while the actual IF is 38.5 kHz. Next, for 

version 1, the listed IF is 4.092 MHz while the correct IF is 4.1304 MHz and the listed 

sampling frequency is 16.368 MHz while the correct frequency is 16.3676 MHz. 
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4.4 Ethernet Front-End 

 

The Ethernet front-end software was developed to allow the processing hardware and the 

sample provider to be housed on separate PCs. This allows much greater flexibility in 

processing data. For instance, a file stored on a RAID array can be processed by a 

separate machine located on the network, or a real-time front-end can be connected to a 

processing PC. Both of these setups were used in this project – see Chapter Five.  In the 

future, the developed software will allow any front-end acquired by the lab or any PC 

with access to stored samples to be used as a sample provider, and any PC running 

GSNRx™ as the receiver. 

 

The Ethernet front-end is divided into two parts which run on two separate machines: the 

sample provider, which runs on the hardware front-end; and the sample user, which runs 

on the processing PC. The sample user thread is integrated into the circular buffer in 

GSNRx™. It uses the Windows sockets service to set up a listening socket to wait for 

incoming connections. Once a connection is established by the sample provider, the 

thread enters a loop of blocking calls to read the socket data followed by writes to the 

circular buffer, as shown in Figure 19. This configuration allows the higher priority 

source thread to give up control to the sink thread while it waits for data. Unlike the SiGe 

front-end, the Ethernet front-end is not interrupt controlled. 
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On start, the sample provider opens a socket to the sample user, and enters a loop of 

reading samples from the hardware, converting them to eight-bit in order to increase 

network transfer bandwidth and writing to the socket.  

 

TCP/IP communication is used to ensure that there are no missing samples from the 

stream by requiring the source to acknowledge the reception of each packet. While UDP 

would provide faster streaming capability, as no acknowledgement packets need to be 

sent, a dropped packet would lead to an unknown delay in the stream and the tracking 

loops would lose lock.  
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Figure 19 -- Ethernet Sample Source Flowchart 

The following chapter will describe the tests performed to ensure correct and stable 

operation and provide the results of those tests.  
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Chapter Five: Testing and Results 

 

This chapter is divided into two major subsections: testing methodology and results.  

 

5.1 Testing Methodology 

 

Testing of the receiver was performed in multiple steps. The following subsections detail 

the profiler structure, the local post-processed test, the Local Area Network (LAN) post-

processed test and the LAN real-time test.  

 

5.1.1 Profiler Structure 

 

Initially, an off-the-shelf profiling solution from Intel called VTune was used to profile 

the performance of the receiver. VTune interrupts the program at either event calls or 

regular interrupts and records the program counter. It then aggregates this data to show 

the user what percentage of run-time was spent in each function. High resolution – down 

to a single line of code – can be obtained with this method.  

 

While this approach performed well on the CPU, code executing on the GPU does not 

rely on the program counter, and as such does not result in valid timing results. As such, 

it was decided that the most accurate approach was to develop a custom profiler.  
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Using the Windows ‘QueryPerformanceCounter()’ functions (MSDN 2010), a wrapper 

was built for each function which needed profiling. These functions allow access to the 

high-resolution performance counter hardware. Resolution is hardware dependant, and 

was 3.2 GHz on the processing PC. Profiled functions included all kernel calls to be 

executed on the GPU and a sum of the rest of the receiver processing. Testing showed 

that the overhead of the timing calls was minimal due to the fact that they were called 

once every entire code epoch, or 1 ms of data, and not every sample. More importantly, 

as this overhead was constant over all calls, it did not alter relative performance. Due to 

the nature of the operating system, the user cannot know when processing will be 

interrupted to allow other tasks to run. In order to minimize the impact of these 

interruptions on timing information, and to provide a more accurate estimate of run time, 

the receiver was run for at least 1000 epochs for each case and data was aggregated. 

 

This type of profiling does not provide direct information on GPU hardware utilization, 

thus optimization of parameters such as threads per block and blocks per grid is based on 

minimizing run time.  

 

5.1.2 Local Post-Processed Test 

 

Initial tests were performed by post processing local data. A 120 second 15 Msps IQ 

sample data file was collected using a National Instruments PXIe-1075 data collection 

chassis which houses an NI PXI-5690 pre-amplifier, an NI PXI-5600 down-converter and 
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an NI PXIe-5622 16-bit digitizer – see Figure 20. Only GPS L1 C/A signals were 

analyzed. At the time of collection, there were 10 visible satellites but only seven were 

processed – PRNs 2, 4, 7, 13, 16, 20 and 23 – since the receiver is capable of eight 

channel operation and one channel is used as a noise floor estimator. Samples were 

recorded at 16-bit precision but converted to eight-bits in order to increase hard-disk 

transfer bandwidth.  

 

 

 

Figure 20 -- NI PXIe-1075 
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It was soon discovered that disk read and seek times are a bottleneck to processing speed. 

As it runs, GSNRx™ produces multiple output files including the navigation solution, 

channel information, tracking information. Tracking and channel information is 

generated and files are updated every correlation epoch. This limits the speed of 

processing locally stored data because the hard disk has to constantly seek from the input 

data file to the multiple output files. 

 

This problem was mitigated by disabling all on correlation epoch, high-speed output 

information – such as tracking status. A significant increase in speed was observed as 

seek times were reduced; however the hard disk read speed was still thought to be a 

limiting factor. 

 

5.1.3 LAN Post-Processed Test 

 

In order to completely remove the hard disk speed as a limiting factor in processing, the 

Ethernet front-end was introduced. A Gigabit Ethernet card was fitted onto the processing 

PC and the sample provider was housed on a PC with a RAID 0 array.  

 

A test was performed to evaluate the bandwidth of the hardware. Data was streamed from 

the RAID array across the network and deleted on the other side. The tests showed that 

the Ethernet front-end was capable of streaming at 80 MBps. Since the objective of this 
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work was to develop a receiver capable of 40 Msps operation, the streaming capability is 

twice as fast as what is required; read speeds were no longer an issue.  

 

5.1.4 LAN Real-Time Test 

 

For high bandwidth, real-time testing, the sample provider runs on a National Instruments 

data collection chassis. Samples are converted from 16-bit to 8-bit in real-time to 

maximize usable network bandwidth. The sample user runs on the PC fitted with the 

NVIDIA card.   

 

 

 

5.2 Results 

  

A multitude of tests were performed to characterize the performance of the new DRC 

module. The following subsections detail functionality testing, timing results and real-

time operation.  

 

The nomenclature adopted uses ‘new’ and ‘old’ to refer to the GPU powered DRC and 

CPU powered DRC, respectively.  
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5.2.1 Functionality Testing 

 

Initial testing was aimed at confirming correct functionality of the DRC module. Three 

factors were considered: correlator output, tracking and navigation solution.  

 

Figure 21 shows the overlapped prompt correlator outputs of the new and old version of 

the DRC module when tracking PRN 23. Small differences are to be expected since the 

new module performs all calculations using floating-pint arithmetic and floating point 

sine / cosine values, while the old module uses integer arithmetic and a 3 bit sine / cosine 

lookup table. These differences can be considered to be numerical approximation errors. 
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Figure 21 – Prompt Correlator Output when Tracking PRN 23 

 

Figure 22 shows the estimated Doppler frequency of the new and old DRC module when 

tracking PRN 23. 
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Figure 22 -- Doppler Frequency Estimate for PRN 23 of Old and New Receiver 

 

The transient is very similar in both cases as identical acquisition information is provided 

and loops have the same parameters. The Doppler estimate becomes much smoother once 

navigation bit synch is established around 1.7 s and 20 ms correlation is used. Figure 23 

shows the difference in the Doppler estimate between the two receivers.  It is notable that 

the difference is zero-mean and under 100 mHz once bitbit synch is established.  
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Figure 23 -- Difference in Doppler Estimates between Old and New Receiver when 

Tracking PRN 23 

 

Figure 24 shows the Phase Locked Indicator (PLI) for the two receivers when tracking 

PRN 23. Like the Doppler, PLI results are identical to within the numerical 

approximation error.  
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Figure 24 -- Phase Locked Indicator for Old and New Receiver when Tracking PRN 

23 

 

Tracking results verify that the multiplication and reduction components of the new DRC 

module function correctly.  
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Finally, Figure 25 shows the error of the GSNRx
TM

 generated least-squares navigation 

solution of the dataset. This point-by-point solution uses seven code-phase measurements 

to calculate position and time.   
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Figure 25 – Least Squares Navigation Solution Error 

 

What is seen here is that there is a small, non-constant bias in the new navigation 

solution. This is a small bug in the software which has not yet been fixed due to time 

constraints.  
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There are two possible causes of the problem which need further investigation. First, the 

new correlation technique, where a correlation is performed over an entire code epoch – 

see Section 3.3.2.2– introduced a need for measurements to be propagated by the amount 

of time the channel clock lags / leads the receiver clock. The bias could be introduced 

through an error in propagating channel times epoch to epoch. 

 

Next, the correlation operation itself may be causing the bias. In order to be able to 

isolate the DRC module from the post-processing of the receiver, the old DRC module 

was modified to allow asynchronous measurement generation. Even though the tracking 

metrics shown previously look very similar, if examined against the asynchronous 

module, a slight difference can be observed. Figure 26 shows the difference in the code 

phase estimate for identical I/Q samples when tracking PRN 23.  
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Figure 26 -- Code Phase Estimate Difference Between GPU and CPU Receiver for 

PRN 23 

 

The jumps seen in the figure are not important, as they represent one module’s code-

rollover occurring before the others. What is notable, however, is the trend in the 

difference between the code phase estimates. As can be seen in Figure 27, the trend is not 

constant and appears to be a random walk.  
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Figure 27 -- Code Phase Estimate Difference Between GPU and CPU Receiver for 

PRN 23 

  

The code phase estimate differences shown in this figure are representative of all signals 

being tracked. A code phase estimate error of 400 µchips is equivalent to about 12 cm in 

pseudorange  as per the following: 

 

 
6

1 299792458
400 12

1.023 10

s m
chips cm

x chips s
µ • • ≈  (5.1) 
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.  

 

This is in line with the disparity in the least squares position solution. However, this 

value is not in line with the differences in the pseudoranges – see Figure 28 where the 

difference in the estimated pseudoranges in the two receivers is plotted against time. The 

pseudoranges are computed by each receiver in the measurement generation block as per: 

 

 ( )PR Trx Ttx c= − •  (5.2) 

where: 

PR is the pseudorange,  

Trx is the received time and 

Ttx is the transit time (calculated from the propagated code phase) 

 

Since the channels operate asynchronously (see section 3.3.2.2), on a measurement 

epoch, the code phase needs to be propagated to a specific point in time, using the current 

channel time, the current code phase and the code phase rate. Thus, the larger error in the 

pseudoranges as opposed to the code phase can be attributed to an error in the channel 

time.  
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Figure 28 - Difference in Pseudorage Esimates between GPU and CPU receiver 

 

A direct comparison of the disparity in pseudoranges versus the disparity in the code 

phase estimate can be seen in Figure 29. In the figure, the blue graph represents the 

negated difference in the estimated code phase (represented in metres), the red graph 

represents the difference in pseudorange and the magenta graph represents the difference 

in pseudoranges biased such that it equals the difference in pesudoranges.  
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Figure 29 - Difference in Pseudorange Estimate and Code Phase Estimate between 

CPU and GPU – PRN 23 

 

The magenta line is included to emphasize the fact that the difference in pseudoranges is 

a biased difference in code phase estimates. 

 

Figure 30 repeats the above analysis with a different satellite – PRN 7.  
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Figure 30 - Difference in Pserudorange Estimate and Code Phase Estimate between 

CPU and GPU -- PRN 7 

 

The bias in the two cases is different – 1.12 m for PRN 23 and 1.38 m for PRN 7. When 

all available satellites are analyzed, this bias does not seem to be Doppler dependant. 

 

The fact that the code phase estimate is not the only factor yielding different position 

results can further be seen by examining Figure 31. 
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Figure 31 - Easting Position Disparity between Code Phase Estimate and 

Pseudorange Estimate 

 

The above figure is the result of a least squares analysis on the difference in code phase 

estimates between the GPU and CPU receivers. The analysis was performed as follows: 

 

- Ephemerides extracted by GSNRx
TM

 from the IF data were used to generate a 

point-by-point time series of satellite positions 

- Satellite positions were used to generate a leas squares design matrix 
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- The ‘measurements’ provided as input to the least squares estimate were the 

difference in code phase estimates for each satellite 

- A point-by-point least squares adjustment was performed 

- Results were rotated to local-level frame, and plotted against difference in the 

least-squares position results generated by both receivers 

 

The results do not match, as expected from the bias seen between the pseudoranges and 

the code phases.  

 

As mentioned before, this bug has not yet been fixed and, for now, must be left as future 

work.  

 

5.2.2 Timing Results 

 

The profiler described in the previous section was used to obtain timing results and tune 

the number of blocks per grid and number of threads per block of the multiplication 

kernel. In the following test case, an 8-channel receiver operating at 40 Msps is 

considered. 

 

Figure 32 shows the amount of time taken to correlate a 40 Msps signal over 1 ms for 8 

channels with an early, prompt and late replica. The x-axis shows the number of threads 

per block used and the y-axis shows the time taken. Different lines represent the different 
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number of blocks per channel per grid used. The red, dotted line shows 1 ms, or real-time 

capability. 
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Figure 32 -- Time Taken to Correlate 1 ms of Data for Eight Channels 

 

All but one case – one Block per channel – show similar results when thread-count is 

small. When only one block per channel is used, there are a total of only eight blocks, 

leading to only half utilization of the devices 16 multiprocessors. Initially, as thread count 
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is increased, execution time is decreased by a factor of the thread count, yielding a linear 

relationship between the two. This is optimal parallelization.  

 

At some point, depending on block count, the device is fully utilized, thus threading 

overhead is increased, and there is less speedup per additional thread. 

 

Of particular interest here is the portion of the graph below the red line, as this represents 

pseudo real-time operation; that is, it takes less time to process the data than to collect it – 

Figure 33 shows a zoomed inversion of this section of Figure 32. 
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Figure 33 – Time Taken to Correlate 1 ms of Data For 8 Channels (zoomed) 

 

Table 1 shows the break-down of the timing results for the optimal case: 2 blocks per grid 

per channel – with 8 channels, there are 16 blocks per grid total – and 256 threads per 

block. As there are 40,000 samples per epoch, this setup yields 80 samples to be 

processed by every thread, thus producing the sub-optimal stride discussed in section 

3.3.2.3. 

 

 



90 

 

 

 

 

 

 

Table 3 -- Optimal Timing Results 

Best Performance 

Blocks Per Grid 2 

Threads Per Block 256 

Samples Per Thread 80 

Initiate Copy  1.6e-05 s 

Receiver Processing 3.4e-04 s 

Wait for Copy Completion 2.0e-06 s 

Multiply Kernel 3.6e-04 s 

Reduce Kernel 2.4e-05 s 

Copy Out Results 1.2e-05 s 

Total Time 7.6e-04 s 

 

 

“Initiate copy” is the time required to start a copy of IF samples onto the device. This is 

done as soon as correlation for the previous epoch is complete, before the receiver 

processing. Receiver processing includes all tasks the receiver does other than DRC, 

namely the medium and low rate tasks. “Wait for copy completion” is the amount of time 

the kernel has to wait before executing since data has not yet been copied onto the board. 

“Multiply” and “reduce kernel” show the times required for the multiply and reduce 

kernel respectively. Finally, “copy out results” shows the time required to copy the 

results back from the GPU.  
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5.2.3 Real-Time Results 

 

The final test performed was real-time operation. Under the conditions described in the 

previous section – thread and block count – the module is capable of real-time operation 

over eight channels at 30 Msps.    

 

While the receiver was capable of 40 Msps calculation, the front-end is only capable of 

producing and streaming either 30 or 50 Msps samples in real time. Thus real-time 

operation was limited to 30 Msps. 

 

The operation of the receiver in real-time mode is identical to operation in post-process 

Ethernet mode. In the latter, data is collected on the NI, stored onto a RAID array and 

later transferred to the processing PC via Ethernet for processing. In the former, data is 

collected on the NI, stored temporarily in RAM then transferred via Ethernet for 

processing. In both cases, the processing PC accepts packets as they are streamed by the 

sample provider, stores them in the circular buffer and processes.  

 

The receiver was allowed to run overnight to ensure robust operation.   
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Chapter Six: Conclusions 

 

The following sections outline the conclusions and recommendations for future work 

from this thesis. 

 

6.1 Conclusions 

 

The following work has been accomplished and conclusions made throughout the 

progress of this thesis: 

 

1)  An FPGA DRC module has been developed for the Xilinx Vertex 4. Xilinx IP 

cores are used to instantiate input and output FIFOs and carrier and code NCOs. 

Dual clocked FIFOs are used in order to cross clock boundaries thus allowing all 

internal designs to operate on a single clock. The design, in its current state, is 

capable of single channel operation. In order to be completed, logic needs to be 

generated to accept control sequences from the host PC and an FPGA processing 

manager for GSNRx
TM

 needs to be created.  

 

2) A GPU DRC module has been developed for an NVIDIAGeForce  8800GTX 

GPU. The module is divided into three parts: copying of data, multiplication and 

reduction. Copying deals with ensuring IF samples are available on the GPU 

hardware when required. It is optimized to limit the impact of high latency and 
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low bandwidth transfers. Multiplication is responsible for carrier wipe-off and 

correlation on a sample level. It is optimized to minimize the mathematical 

processing and memory load of the GPU. Finally, reduction handles adding the 

results of the multiplication section. It is optimized to minimize bank conflicts 

and maximize parallel usage of hardware. This design proved that a high-

bandwidth – 40 Msps – real-time, software GNSS receiver can operate on 

consumer GPU and CPU hardware.  

 

 

3) GSNRx
TM

 has been modified to allow asynchronous measurements. Instead of 

stopping correlation on each channel on every measurement epoch, correlation is 

allowed to proceed until a code roll-over and measurements are propagated 

forward or back on a per channel basis. While this adds complexity as each 

channel must maintain its own clock, it allows uninterrupted processing of entire 

epochs. This doubles the speed in which the GPU can process data, and may also 

lead to speedups in future parallel designs.  

 

4) A multi-threaded sample source has been developed. It is responsible for 

collecting samples from a front-end, storing them in a circular buffer and 

providing them to the receiver. It controls program flow between sample source – 

the hardware front-end – and sample sink – the receiver by allocating the tasks to 
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different threads and using blocking OS calls to retard threads which are not ready 

to run. It serves as the basis for all real-time GSNRx
TM

 operation.   

 

5) An interface to the SiGe front-end was developed to allow real-time operation 

utilizing the SiGe hardware. Aside from the multi-threaded sample source and 

modification of the driver – to increase stability – this development also included 

changing the firmware on the device itself to disable certain limiting aspects of 

operation, and to allow easier initialization. This module was part of the initial 

real-time design for GSNRx
TM

. It proved that a real-time software based receiver 

can operate on a consumer PC running a standard operating system.  

 

6) An Ethernet front-end was developed to allow sample providing and processing 

hardware to be housed on separate PCs. The software runs on two separate PCs: a 

sample provider and a sample user. A connection between the two is made on 

start-up and data is streamed via the LAN or Internet. Data is buffered on both 

sides, thus either can experience an interruption in processing and still be able to 

maintain real-time operation. This module helped show that over-the-network 

real-time processing is possible.  

 

7) Functionality and timing results are presented for the GPU DRC module and the 

Ethernet front-end. The system is capable of 40 Msps operation and has been 
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tested real-time at 30 Msps. A bug remains in the software and is described in 

detail in Chapter Five.  

 

6.2 Future Work 

 

Based on the results and the experience gained throughout this work, the following 

recommendations are made for future work on this project: 

 

1) Isolate and fix the bias seen in the navigation solution. As discussed in Chapter 

Five, this bias is most likely due to either the time-propagation required by each 

channel because of the new, asynchronous receiver, or improper code generation 

in the DRC module. Even though many tests have been performed to attempt to 

isolate the problem, it is difficult to separate processing noise from the error due 

to its small size.  

 

2) Enhance the GPU DRC module to allow longer PRN codes, thus providing 

modernized signal processing capability. A new scheme of compressing, storing 

and retrieving the chips will need to be created for very large codes.  

 

3) Modify the GPU DRC module to allow more than three correlators per channel. 

This will allow greater tracking flexibility and allow processing of modernized 

GNSS signals.  
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4) As hardware becomes available in the lab, optimize the GPU DRC module newer 

hardware. This will include, amongst other things, a transition from 32-bit 

floating point to 64-bit floating point arithmetic. 

 

5) Enhance the capability of the FPGA DRC to allow multi-channel operation and 

control sequences from GSNRx
TM

. The GPU processing manager can be modified 

as its structure is similar to what would be required by the FPGA. The 

asynchronous structure of the receiver should be maintained.  
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