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Abstract 

 

Multipath propagation can pose significant challenges to satellite based navigation 

systems. It remains a dominant source of accuracy degradation and is a major issue for 

high precision GNSS applications. Multipath can result in biased GNSS measurements, 

which can lead to inaccurate position estimates or, through fading and self-interference, 

can cause loss of lock of the signals. Without accurate LOS delay estimation in multipath 

environments GNSS receivers cannot provide reliable positions, velocity and time (PVT) 

estimates. Although there are many algorithms proposed in the literature which endeavor 

to mitigate the effects of multipath, this research topic is still active as no final solution 

has yet been found. 

Given the above, the problem of GNSS multipath mitigation is pursued in this work 

through the estimation of the parameters of multipath components. For this purpose, three 

different approaches are proposed and tested. First, a sequential ML-based approach is 

proposed that sequentially estimates the channel parameters with a smaller computational 

load compared to the conventional ML-based approaches. This approach uses a detection 

procedure to avoid over-estimating or underestimating the number of multipath 

components. For this reason, the proposed approach is more robust in dealing with severe 

multipath situations such as urban areas. Afterwards, this ML-Based approach is 

combined with a low-complexity Bayesian tracking algorithm to further decrease the 

computational load. In this way, the receiver switches between two modes of operation 

depending on the severity of the variations of the multipath channel.  A set of simulation 
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and data processing results is then used to assess the performance of this technique. The 

results show that the proposed system outperforms both the classical DLLs and the 

conventional ML-based algorithms. This algorithm is also used to characterize the 

distribution of the number of multipath components for some of the visible satellites in 

the collected data set. 

Second, some of the most well-known adaptive filters (LMS, NLMS, RLS and APA) are 

modified and developed to be used for the purpose of equalization of the multipath 

channel.  The very low computational load associated with these techniques make them 

more suitable for implementation in hand-held receivers. The innovative hard decision 

block used in the structure of their feedback procedure increases their efficiency. The 

presented simulation and data processing results show that the estimation performances 

of some of these techniques (RLS and APA) are comparable to near-optimal ML-based 

techniques at higher SNR values. 

 Third, the possibility of employing the Doppler shifted copies of the received signal in a 

fast fading channel for the purpose of improving the estimation performance of subspace-

based methods is analyzed and tested through simulation and experimental results. The 

results demonstrate a considerable improvement in the estimation accuracy of the 

proposed system compared to the cases where diversity approaches are used. 
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ML
N  Number of time epochs that MSML is applied to initiate the LMMSE 

tracking 

k
K  Matrix of Kalman gain 

k
q  Moving averaged MSE 

γ  Transition threshold 

k
C  Matrix of equalizer coefficients at the k

th
 epoch 

0C  Optimal point of k
C  in MSE cost function space 

( )J C  MSE cost function 

µ  Step-size parameter 

d  Vector of correlation function samples of LOS 

R  Autocorrelation matrix of the received signal 

Γ  Cross-correlation matrix of the received signal and d 

P  Matrix of update direction 

minJ  Minimum value of MSE cost function 

dR  Autocorrelation matrix of d 

U  Matrix of eigen-vectors of R 

Λ  Diagonal matrix with eigenvalues of R on its main diagonal 

n
λ  n

th
 eigenvalue of R (in decreasing order) 

I  Identity matrix 

ρ  Eigen-spread coefficient 

ε  Regularization parameter 

λ  A design parameter used in RLS method 

K  Number of epochs used in averaging to compute R in APA approach 



 

 

vi 

 

o
µ  Optimal value of the step-size 

maxλ  Largest eigenvalue of R 

R̂  Estimate of R 

k
e  A priori estimation error vector 

k
r  A posteriori estimation error vector 

k
Y  Matrix with K successive vectors of k

y  on its rows  

k
D  Matrix with K successive vectors of k

d  on its rows 

( )p t  Spreading waveform 

q
b  Navigation data bits 

b
E  Bit energy 

B  Signal bandwidth 

c
N  Spreading factor 

( ),h t τ  Time varying channel impulse response 

B
N  Number of Doppler branches 

ST
N  Number of spatial-temporal diversity branches 

( ),ψ θ τ  Spreading function 

( )δ τ  Dirac delta function 

d
B  Doppler spread parameter 

v  Speed of the receiver 

Ψ  Matrix of spreading function samples 

Y  Matrix including Doppler shifted versions of y on its columns 

H                     Matrix including channel frequency response vectors on its columns 

 F                    Digital Fourier transform matrix 

s
U                   Signal sub-space 

N
U                  Noise sub-space 

NU
P                 Noise projection matrix 

( )SDP τ          MUSIC delay profile 

k

D
R                  Estimated correlation matrix using the Doppler combining method 

ST
R                 Estimated correlation matrix using spatial-temporal diversity 



 

 

1   

 

Chapter One: INTRODUCTION 

 

1.1 Motivation 

As the interest in positioning and localization applications is growing, higher 

performance Global Navigation Satellite Systems (GNSSs) are required for emerging and 

future applications. GNSSs provide services to a wide range of military and civilian 

applications. Moreover, outstanding performance of GNSS in outdoor scenarios is alluring 

individuals and industry to extend its application in signal degraded environments such as 

urban canyons. However, the achievable positioning accuracy of a satellite navigation 

system, such as Global Positioning System (GPS), is seriously hindered by several 

phenomena that affect the main observable in these systems: the signal’s time of arrival 

(TOA).  

Undoubtedly, the problem of accurate Line-of-Sight (LOS) delay estimation is 

encountered among the most challenging synchronization problems in the context of 

GNSSs.  

Although modern GPS receivers achieve high pseudorange estimation accuracy under 

line-of-sight conditions, it is well-known that multipath remains as a dominant source of 

ranging error in high precision GNSS positioning applications. Measurements have 

shown that in challenging environments such as urban areas, multipath signals may 

introduce positioning errors of the order of several tens of metres (Parkinson & Spilker 

1996). For this reason, extensive research has been recently dedicated to the reduction of 

multipath errors in these types of environments and numerous multipath mitigation 

approaches have been developed.  
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The main scope of this thesis is the analysis of multipath mitigation techniques and the 

development of enhanced one for stand-alone GNSS applications with a focus on dense 

multipath environment such as urban and sub-urban areas. 

1.2 Limitations of the Previous Work 

Among the multipath mitigation techniques, probably the simplest ones are those that 

apply special antenna designs such as the use of choke rings and dual-polarization 

(Manandhar & Shibasaki 2004) antennas to prevent secondary reflections from entering 

the receiver front-end. However, these techniques are not able to completely eliminate 

multipath reflections in dense multipath environments (Dragunas & Borre 2011) since 

they can only remove reflections arriving from low elevation angles. 

The most common delay measurement techniques implemented in today’s commercial 

GNSS receivers are the classical feedback code delay tracking loops that make use of a 

few correlators (Lohan et al 2012). The most widely known feedback-delay estimator is 

the standard wide correlator Delay Lock Loop (DLL) or Early-Minus-Late (EML) loop 

(Fock et al 2001). In this estimator, two correlators spaced by one chip (early and late) 

are used to form a discriminator function. The output of this discriminator function 

determines how much the correlators must be shifted to compensate the effect of 

multipath. This classical EML is not able to compensate the effect of multipath 

components with relative (to LOS) delays smaller than one chip (Braasch 1992). A 

modification of the EML that provides some multipath rejection is the Narrow Correlator 

(NC) technique which is based on the idea of narrowing the Early-Late spacing of the 

Delay-Lock Loop (DLL) and increasing the correlation bandwidth (Van Dierendonck et 

al 1992). With this technique, the jitter is reduced and the range of multipath delays that 
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affect the DLL tracking point is shorter (Selva 2003). The receiver’s front-end filter 

bandwidth and the sampling rate of its digitizer are the two parameters that must be 

considered in determining a proper value for correlator spacing (Betz & Kolodziejski 

2000). The implementation of narrow correlator spacing reduces the multipath bias on the 

Coarse/Acquisition (C/A) code pseudorange measurements compared to the standard 

EML but even with this advantage, the bias due to multipath is still dominant and can be 

very large in dense multipath environments. Another discriminator-based technique 

proposed for use in GNSS receivers is the so-called Double-Delta technique, which uses 

four or five correlators in the tracking loop (Irsigler & Eissfeller 2003). This technique 

provides enhanced multipath immunity to the receiver under good Carrier-to-Noise-

density ratio (C/N0) conditions (Hurskainen et al 2008), however it degrades the noise 

performance of the DLL (McGraw & Braasch 1999). A number of well-known examples 

of the double-delta technique are the High Resolution Correlator (HRC) (McGraw & 

Braasch 1999), the Pulse Aperture Correlator (PAC) (Jones et al 2004) or Strobe 

Correlator (SC) (Garin & Rousseau 1997) and the modified correlator reference 

waveform (Weill 2003). The SC discriminator is a linear combination of NC 

discriminators with different values of correlator spacing. The HRC uses multiple 

correlators from a conventional GNSS receiver to form a linear combination of correlator 

outputs that yields a net correlation function that is much narrower than the usual C/A 

code autocorrelation function. 

Another feedback-tracking structure is the Early-Late-Slope (ELS), which is also known 

as the Multipath Elimination Technique (MET) (Townsend & Fenton 1994). The ELS 

technique still takes full advantage of narrow correlator spacing but decreases the 
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multipath bias on the pseudorange bias compared to the NC technique. Its structure is 

based on two correlator pairs at both sides of the correlation function’s central peak. 

Once both slopes are known, they can be used to estimate a pseudorange correction that 

can be applied to pseudorange measurements. Moreover, an improvement of ELS, Slop-

Based Multipath Estimation (SBME) (Bhuiyan et al 2010), uses an additional correlator 

at the late side of the correlation function to estimate and compensate for the multipath 

bias of a NC tracking loop. 

Although all of these techniques achieve much better results than the conventional 

standard DLL in terms of multipath bias, since their structure is based on the shape of the 

autocorrelation function, they cannot mitigate the effect of closely spaced multipath. In 

particular, when the number of paths is larger than two, their performance degrades 

significantly and the timing synchronization may fail (Closas et al 2006). In general, the 

important common property between all of these correlation-based techniques is that their 

stable lock point is at the maximum power of the autocorrelation function (Townsend & 

Fenton 1994) no matter how much this peak has been shifted with respect to the peak that 

corresponds to the actual LOS.  This effect is the main source of biases in the output of 

these DLLs in dense multipath environments where the correlation function peak is 

shifted considerably. This shift in the PRN code autocorrelation function peak usually 

happens when the number of paths is large or when at least one of the multipath 

components is stronger than the LOS signal (this is shown in Chapter 2 through 

simulations). 

The other class of multipath mitigation techniques includes the advanced methods such as 

the Multipath Estimating Delay Locked Loop (MEDLL) (Townsend et al 1995, Nee et al 
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1992, Nee et al 1994), the Multipath Mitigation Technique (MMT) (Weill 2002), the 

Vision Correlator (VC) (Fenton & Jones 2005), which is an implementation of MMT, the 

Fast Iterative Maximum Likelihood Algorithm (FIMLA) (Sahmoudi & Amin 2008), 

Sequential Maximum Likelihood (Sahmoudi & Amin 2009), the Reduced Search Space 

Multipath Likelihood (RSSML) algorithm (Bhuiyan et al 2009), the deconvolution 

approaches (Skournetou et al 2011) and MUSIC based delay estimators (Groh & Sand 

2011). This class of techniques is based on Maximum Likelihood (ML) estimation. The 

ML-based multipath estimation techniques are driven to approach theoretical 

performance upper limits (i.e. Cramer-Rao Lower Band). These algorithms are typically 

computationally complex and sometimes difficult to implement since they require 

employing a large number of correlators and applying complex procedures to process the 

correlator outputs (Lohan et al 2005) which are normally based on exploring a large 

search-space.  

The MEDLL, which is one of the most promising advanced multipath estimation and 

mitigation techniques (Bhuiyan & Lohan 2010), normally uses numerous correlators in 

order to accurately determine the shape of the multipath corrupted correlation function. 

Afterwards, it determines the best combination of the parameters of LOS and multipath 

components by using a reference correlation function (ideal correlation function of the 

PRN code). Therefore, a large search space is explored at each time epoch (equal to 

coherent integration period) in order to find the best combination of amplitudes, delays 

and phases for all the paths. At the cost of this complex multi-correlator structure, 

MEDLL introduces multipath mitigation performance superior to that of correlation-

based techniques. Moreover, MEDLL has motivated the design of different other ML-
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based techniques for the purpose of multipath mitigation such as the non-coherent 

MEDLL, described in (Bhuiyan & Lohan 2008). A special implementation of MEDLL is 

the so-called CADLL (Coupled Amplitude-Delay Lock Loop) technique (Chen & Dovis 

2011), which assigns two amplitude lock loops (for tracking the real and imaginary parts 

of the path coefficients) and one delay lock loop to every estimated path.  

If the receiver is equipped with an antenna array, then it is possible to employ standard 

beamforming techniques (Van Trees 2002) in a way that the main beam is directed to the 

LOS signal and nulls are approximately placed at the multipath angles of arrival. In 

(Daneshmand et al 2012, Seco-Granados 2007) the motion of the antenna array is 

employed to decorrelate the multipath components and also synthesize an augmented 

array to increase the degree of freedom of the array. 

There are also several techniques that make use of some external devices or signals to aid 

GNSS in degraded signal environments such as indoors. Some examples are inertial 

sensors, optical systems and wireless networks such as WiFi, Bluetooth or RFID. The 

issue with these techniques is that they require their own infrastructure and are normally 

used for indoor localization (Dragunas & Borre 2011). 

1.3 Objectives  

Considering the limitations of the previous work, the objectives of this thesis can be 

outlined as follows: 

a) The main objective is to design, test and analyze optimal or near optimal (in the 

sense of estimation mean square error) multipath estimation and mitigation 

techniques, which require a reasonable computational burden for navigation 

receivers and are based upon realistic signal and noise models.  
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b) The second objective is to study the statistical distribution of the number of 

multipath components in an urban channel using real data measurements.  

c) The third objective of this thesis is to analyze the effectiveness of employing the 

Doppler-frequency shifted copies of the received signal in a fast fading channel 

encountered in vehicular navigation as a means of decorrelating the multipath 

signals.  The decorrelation of the multipath signals improves the performance of 

the subspace-based multipath delay estimation algorithms. 

1.4 Contributions 

To attain objective (a), the following approaches are considered:  

1) The Maximum Likelihood principle is employed in order to derive an optimal 

estimator (Cramer-Rao bound). An ML-based multipath estimation-detection 

technique is proposed that sequentially removes the contribution of multipath 

components from the correlation function of the received signal. Unlike the 

other ML-based techniques in the same context, the number of paths is not 

assumed to be known in advance. Using a novel method, after estimating the 

parameters of the previously detected multipath components and their 

removal, the existence of a probable new path is tested via a General 

Likelihood Ratio test for a certain probability of false-alarm. Furthermore, the 

estimated parameters are refined after detecting every new multipath 

component. These steps improve the estimation performance compared to 

current ML-based algorithms. Moreover, since the detection stage uses the 
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results of the estimation stage, the additional computation burden that it 

imposes to the system is insignificant.  

2) In order to reduce the computational cost of the receiver that employs the 

sequential ML-based method discussed above, it is combined with a low-

complexity Bayesian tracking technique, namely the Linear Mean Squared 

Error (LMMSE) technique. The combination of the two techniques is based 

on a mechanism that automatically switches the system to the low-complexity 

Bayesian tracking mode whenever the variations of the channel are slow.  

3) Another class of algorithms is investigated and extended for GNSS multipath 

mitigation application. Techniques from this class are sub-optimal 

approximations of the optimal steepest descent algorithms. The computational 

complexity of this class of techniques, which are known as stochastic gradient 

algorithms, is smaller than any of the ML-base techniques. These algorithms 

adaptively adjust the coefficients of a filter designed to remove the 

contribution of multipath components from the received correlator function. 

An optimum hard decision block is designed to evaluate the error vector that 

is fed back to system to modify the filter coefficients adaptively. 

To attain objective (b), using a real data collected in an urban environment, the proposed 

sequential ML-based channel estimation-detection technique is used to derive the 

histogram of the number of detected multipath components for all visible satellites to 

investigate their distributions and their stochastic characteristics. 
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To attain objective (c), the last chapter of this thesis employs a Doppler-combining 

technique to take advantage of the Doppler-spectrum broadening of the received signal in 

a fast fading channel to combat signal coherency and improve the estimation accuracy of 

the Multiple Signal Classification (MUSIC) technique. The performance results of this 

technique are then compared to some other techniques for different values of coherent 

integration time to assess its effectiveness. 

1.5 Thesis Outline 

The structure of this dissertation can be summarized as follows:  

Chapter 2 begins with a brief overview on the theoretical background related to the 

propagation of the GNSS signal in a typical Land Mobile Satellite (LMS) channel. The 

main functionalities of a GNSS receiver are then discussed with particular attention to 

signal acquisition and tracking. Finally, a review of current multipath mitigation 

algorithms is presented to provide a benchmark against which the proposed methods can 

be assessed.  

Chapter 3 presents a novel ML-based delay estimation algorithm designed to provide 

robustness against multipath propagation. The proposed algorithm solves a combined 

detection-estimation problem to sequentially estimate the parameters of each individual 

multipath component and predict the existence of a further possible component. A 

comparison between contemporary maximum likelihood based multipath estimation 

techniques and this new technique is provided. A selection of realistic channel simulation 

models is used to assess relative performance under different operating scenarios.  

In Chapter 4 the proposed sequential ML-based algorithm presented in Chapter 3 is 

combined with a Bayesian tracking technique, namely Linear Least Mean Squared Error 
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(LLMSE) technique, which uses the estimated channel by the ML-based method as a 

priori knowledge to track the slow variations in the channel as time progresses and 

reduce the total computational complexity of the system. A set of real life data processing 

results is then presented to compare the performance of the combined technique with the 

ones of the conventional tracking algorithms introduced in Chapter 2 in terms of 

pseudorange and positioning errors.  

Chapter 5 introduces a sub-optimal class of techniques with relatively small 

computational complexity. The algorithms of this class, which are generally referred to as 

adaptive filters, are extended for the application of GNSS multipath mitigation in a way 

that, instead of direct estimation of multipath channel, they adaptively adjust the 

coefficients of a filter designed to remove the effect of multipath from the correlation 

function of the received signal. Simulation and real data processing results are presented 

to compare the performance of different algorithms of this class. Moreover, a comparison 

in terms of complexity of the well-known algorithms in this class is provided. 

In Chapter 6 the Doppler spectrum broadening of the fast fading channel resulting from 

the motion of the receiver or surrounding objects is employed to decorrelate signal 

reflections for the purpose of high-resolution estimation of multipath delays through a 

subspace-based technique. Specifically, delay-domain correlator outputs at different 

Doppler frequencies are combined to enhance the rank of the signal autocorrelation 

matrix. Simulation and results of real data collected in an urban environment are then 

presented to compare the performance of the proposed method with the spatial-temporal-

diversity-based-MUSIC technique and the double-delta correlator technique.  

Chapter 7 provides conclusions and presents recommendations for future work. 
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Chapter Two: Technical Background 

In this chapter, the structure of GNSS signals, channel and receiver will be introduced 

and the required technical background to support the development in the rest of thesis 

will be presented. 

2.1 GNSS Signal and Channel Structure 

Most navigation satellite systems take advantage the Direct Sequence Code Division 

Multiple Access (DS/CDMA) technology to spread the spectrum of the transmitted 

navigation signal and benefit from the provided multiple access property. The focus of 

this thesis is on this class of signals.  

The complex baseband GNSS signal at the output of the transmitter can be represented as 

( ) ( ) ( )b q b b

q

s t E b m t qT d t qT= − −∑  (2.1) 

where 's
q

b  are the navigation data bits, b
T  is the bit period, ( )m t  is the modulating 

waveform and d(t) is represented by 

( ) ( )
1

bN

p

k

d t p t kT
=

= −∑  (2.2) 

where Tp is the code period duration, Nb is the integer number of code periods occurring 

during one bit interval, and ( )p t
 
is the spreading waveform with the chip interval of c

T  

and can be represented as 

( ) [ ] ( )
1

Nc

c

n

p t c n v t nT
=

= −∑  (2.3) 
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where [ ]c n  is the pseudo-noise (PN) spreading code which is pseudo-random sequence 

of 1±  values, c
N  is the code length and ( )c

v t nT−  is the chip waveform. The received 

baseband signal in multipath environment is modeled as an M-path signal composed of a 

direct path and (M-1) reflected rays the plus noise term, n(t), which is assumed to be 

additive Gaussian in this thesis and can be represented as 

( ) ( ) ( ) ( )
1

k

M
j

k k

k

r t A s t e n t
φτ

=

= − +∑  (2.4) 

where , and
k k k

A φ τ  are the time-variant amplitude, instantaneous phase and delay 

parameters corresponding to the k-th path, respectively. Furthermore, k
φ  can be 

represented by 

2
k k k

f tφ πδ ϕ= +  (2.5) 

where k
ϕ  is the initial phase offset corresponding to the k-th path and k

fδ  is the 

corresponding Doppler frequency shift which can be expressed as  

( ).s u

k

V V
fδ

λ

−
=

u
 (2.6) 

where s
V  is the velocity of the satellite, u

V  is the velocity of the receiver, u  is the spatial 

unit vector in the direction of LOS between the transmitter and the receiver and λ is the 

wavelength of the carrier signal. The reflection of a GNSS signal in a multipath 

environment has been shown in Figure 2-1. 
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Figure 2-1: Signal reflections in multipath environment 

In the receiver, the received signal after being down converted, filtered and sampled is 

correlated to a replica of the transmitted PN code to become de-spread. This process 

decreases the bandwidth of the signal c
N  times. The autocorrelation function of a PN 

code, ( )g τ , with a length of c
N  is shown in Figure 2-2. For the GPS C/A signal, the PN 

codes are Gold codes with a length of 1023
c

N = . This family of codes has very low 

cross-correlation values which makes them suitable for multi-access communication. 
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Figure 2-2: Autocorrelation function of a PN code 

It is important to remember that if the additive noise process prior to correlation is white, 

it is no longer white after the correlation, instead its successive time samples are 

correlated with the correlation function ( )g τ . Herein, the distorting effect of the front-

end filter on the shape of the autocorrelation function has been ignored. 

Considering the above signal model, the output of the correlator can be expressed as: 

( ) ( ) ( )

( )
1

0, , ... , 1

M

k k

k

s s

y t a g t w t

t T N T

τ
=

= − +

= −

∑
 (2.7) 

where kj

k k
a A e

φ= is the complex path coefficient corresponding to the k-th path and g is 

the ideal autocorrelation function of the PN code and w(t) is the noise term at the output 

of the correlator. 

 After the de-spreading process, the output signal enters the acquisition/tracking process 

wherein the synchronization parameters are estimated and used in the computation of the 

1

1
c

N−

( )g τ
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navigation solution. In the next section these stages of the GNSS receivers will be 

introduced. 

2.2 Architecture of a GNSS Receiver 

In this chapter, different functionalities of a typical GNSS receiver will be explained 

starting from signal reception by the Radio Frequency (RF) front-end to the computation 

of the navigation solution which is basically the user’s position. The block diagram of a 

typical GNSS receiver is shown in Figure 2-3 and the highlighted part denotes the area of 

this thesis. 

 

Figure 2-3: Block diagram of typical GNSS receiver 

2.2.1 RF Front-End 

The receiver’s RF front-end starts with a Right-Hand Circularly Polarized (RHCP) 

antenna since this is the polarization of the transmitted GNSS signals (after each 

reflection the polarization of the signal changes). Immediately after the antenna, there is a 

Low Noise Amplifier (LNA). The LNA is a fundamental block in any receiver’s front-

end since not only it amplifies the received signal but it also acts as a band-pass filter and 

rejects the out-of-band interferences. Typically after the LNA, there is a Local Oscillator 

(LO) that down-converts the received RF signal to Intermediate Frequency (IF). The 
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stability of the receiver’s clock is very low compared to the atomic clock of the satellites. 

Therefore, the time offset produced by the internal LO is considered as an unknown 

parameter to be estimated by the GNSS receiver.  

Afterwards, the IF signal is digitized by a Analog to Digital Converter (ADC) that 

outputs a stream of signal samples which are then quantized by a certain number of bit 

levels. 

Lastly, the signal must be down-converted from IF to base-band. For this purpose, a 

conventional I&Q demodulator is used which consists of a second LO followed by 

another ADC. This procedure produces I&Q samples by splitting the signal into two, 

multiplying the arms by LO and its 90
�

 shifted version and finally low-pass filtering and 

quantizing the signal at both of the arms.  

The complex signal at the output of the front-end is buried in noise. Therefore, the next 

step is de-spreading the signal and then estimating the synchronization parameters 

through acquisition and tracking procedures. These synchronization parameters include 

the code delay, carrier phase and Doppler frequency of the received signal and provide 

information about the distance between the satellite and the GNSS receiver used in the 

computation of navigation solution. The acquisition and tracking stages are explained in 

the following sections. 

2.2.2 Signal Acquisition 

The acquisition operation of a GNSS receiver aims to determine and track the satellites 

visible and achieve a coarse estimate of the synchronization parameters of those 

satellites. The search stage in the acquisition procedure is a three-dimensional search 

process that includes searching over satellite numbers, code delays and Doppler 
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frequency domains. For each satellite, a two-dimensional search space is produced by 

correlating the received signal and the corresponding locally generated code, which is 

moved in delay and frequency to cover the range of all the possible time delays and 

Doppler shifts. The maximum power of the generated correlation values provides a rough 

estimate of the synchronization parameters of the given satellites. There are several 

alternatives for performing the two-dimensional search. The most common and simplest 

technique is the FFT-based procedure (Tsui 2000). Figure 2-4 shows the correlation 

outputs for two possible cases: when the tested satellite is visible and when it is not 

visible or the SNR of the received signal from the tested satellite is not high enough to be 

detected. In order to detect the signal of a visible satellite, the maximum correlation 

power must exceed an established threshold that is defined based on a desired probability 

of false alarm. For further improvement of the acquisition performance, a number of 

correlation outputs can be coherently averaged to increase the SNR of the correlation 

peak. 

Finally, the searching technique used in the acquisition stage can be a serial search 

(Hurskainen 2009), a parallel search or a hybrid search. In a serial search, the search bins 

are explored one by one and therefore the search is very slow but computationally simple. 

In a parallel search, a bank of matched filters is used to explore all of the search bins in 

parallel and is therefore fast but computationally complex. A hybrid search is a balanced 

trade-off between the serial and parallel search techniques. In this thesis, the parallel 

search technique is considered. 
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In cases where the receiver has some rough information about the position of the 

receiver, the initialization of the acquisition processed is referred to as warm start as 

opposed to cold start initialization wherein no prior information is available.  

 

Figure 2-4: Normalized correlation output for a given satellite when (a) the satellite 

is visible (b) the satellite is not visible 

2.2.3 Signal Tracking 

After the acquisition is performed and the visible satellites along with the rough estimates 

of their synchronization parameters are determined, the receiver initiates the tracking 

mode of the operation. The purpose of this mode is to provide fine estimates of the 

synchronization parameters of the detected satellites while keeping track of them as well 

as extracting the navigation data bit streams. Provided that the estimates of the 

synchronization parameters outputted by the acquisition mode are roughly correct, the 

tracking loops are able to lock on the parameters by continuous adjustment of the local 

code. The tracking loops that are used in a GNSS receiver include the Delay Lock Loop 

(DLL) that tracks the time delay, the Phase Lock Loop (PLL) that tracks carrier phase 

(a) (b)
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and the Frequency Lock Loop (FLL) that tracks the Doppler frequency. Since in tracking 

stage the search space has been reduced, the computation complexity of this stage is 

smaller than that of the acquisition stage. As in the acquisition stage, most of the 

commonly-used DLLs attempt to find the maximum of the correlation function in the 

reduced search space. This is based on the assumption that there is no multipath 

component in the received signal. The structure of some of the most well-known DLLs is 

explained in the next section. 

2.2.4 Navigation Solution 

The objective of the navigation solution unit is to demodulate the navigation messages 

and compute the position of the receiver using the pseudorange measurements obtained 

during the acquisition and tracking stages.  

The navigation message provides the receiver with the orbital parameters required to 

determine the orbits and clock bias of the satellites. This information is used in the 

computation of the receiver’s location. The time duration required by the receiver to 

produce the first position solution is referred to as the Time To First Fix (TTFF). This 

parameter mostly depends on the acquisition and positioning strategies used by the 

receiver. 

The pseudorange parameter for each satellite is computed by multiplying the estimate of 

LOS time delay by the speed of the light (c). There is a nonlinear relation between the 

coordinates of the receiver and the measured pseudorange that can be expressed as   

( ) ( ) ( ) ( )
2 2 2

   k k k

k s u s u s u k kx x y y y y c t t= − + − + − + − +ρ δ δ ε  (2.8) 
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where k
ρ indicates the pseudorange between the receiver and the k-th satellite, 

[ ]u u u u
P x y z=  is the location of user, k k k k

s s s s
P x y z =    denotes the location of the k-th 

satellite, tδδδδ and k
tδδδδ  are the clock offsets associated to the receiver and the satellite 

respectively, and k
ε includes errors from different sources such as noise, multipath and 

atmospheric delays. At least four visible satellites are required to solve  (2.8) for xu, yu, zu 

and tδ . Moreover, taking derivative of both sides of  (2.8) provides a relation between the 

Doppler frequency and the relative velocity of receiver with respect to the satellite. 

2.3 Conventional Multipath mitigation Techniques 

In this section the structure of some of the classical DLL algorithms that are used as a 

benchmark for performance comparison in some of the next chapters is briefly 

introduced. 

2.3.1 Narrow Correlator 

One of the primary approaches used to reduce the influences of code multipath is the 

Narrow Correlator technique, which was first proposed by Van Dierendonck et al (1992). 

The NC discriminator output is computed by subtracting an early and a late sample of the 

correlation function with a sub-chip code-phase spacing and can be expressed as 

1 2y yτ∆ = −  (2.9) 

where y1 and y2 are the value of ACF at early and late samples. These two samples are 

initially on the opposite sides of the roughly estimated code phase in the acquisition 

process. Usually a correlator spacing of 0.1 chips is used to build up the discriminator 

function (Irsigler & Eissfeller 2003). 
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2.3.2 Double-Delta Correlator 

The term "Double Delta (∆∆) Correlator" is a general expression for special code 

discriminators formed by a linear combination of two correlator pairs instead of only one. 

In Figure 2-5 the general structure of this class of discriminators is shown. The most 

well-known techniques of this class are the Early-Late-Slope (ELS), the Pulse Strobe 

Correlator (SC) and the High Resolution Correlator (HRC) which will be introduced in 

the following sub-sections. 

 
Figure 2-5: Structure of a double delta correlator discriminator 

2.3.2.1 Early-Late Slope 

The basic idea behind the ELS technique is to compute the slope of the correlation 

function on both sides of its central peak and then use the values to compute a code-phase 

correction term that is fed back to the system to shift the pairs of correlators. It can be 

noticed in Figure 2-5 that the in the presence of multipath, the autocorrelation function of 

the received signal is distorted so that the slopes at the early and late sides of the central 

peak are no longer of the same magnitude. In the ELS technique, the correction term is 
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computed in a way to compensate for the slope difference of the rising and falling edges 

of the ACF peak and it can be expressed as 

( )( )1 2 1 2

1 2

2y y d a a

a a
τ

− + +
∆ =

−
 (2.10) 

where 
( )1 2

1

2 E E
a

d

−
=  and 

( )2 1

2

2 L L
a

d

−
=  are the ACF slopes at the early and late 

sides respectively, 1y  and 2y  are the values of ACF at E1 and L1 (in Figure 2-5), and d is 

the spacing between E1 and L1 (the spacing between E2 and L2 is 2d). 

2.3.2.2 Strobe Correlator 

The strobe correlator discriminator is implemented through a linear combination of two 

narrow correlators with different correlator spacing parameters (d1 and d2) and can be 

expressed as 

( ) ( )2 2
1 2 1 1 2 2

1 1

d d
E L E L

d d
τ τ τ   ∆ = ∆ − ∆ = − − −   

   
 (2.11) 

where 1∆τ  and 2∆τ  are the code-phase error terms produced by the narrower and wider 

NCs respectively. This combination increases the sensitivity of the discriminator to short-

range multipath components compared to original NCs. 

2.3.2.3 High Resolution Correlator 

The High Resolution Correlator (HRC) combines five correlator outputs (E2, E1, P, L1, 

L2) from a conventional GNSS receiver (similar to Figure 2-5) to form an approximation 

to the gated correlator (Kanekal & Braasch 1998). E1 and L1 are spaced d chips, E2 and 
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L2 are spaced 2d chips and P (prompt) is in the middle. The idea behind HRC is to yield 

a net correlator function that is much narrower than that of the C/A correlation function.  

Firstly, a synthesized correlator, namely HRC Prompt, is formed as follows: 

( )1 12HRCP P E L= − +  (2.12) 

At the next step, early and late HRC correlators are computed to form an EML 

discriminator function for the purpose of code tracking as follows: 

( ) ( ) ( )

( ) ( ) ( )
1 2

1 2

2

2

HRC HRC

HRC HRC

E P d E E P

L P d L L P

= + = − +

= − = − +

τ τ

τ τ
, (2.13) 

 And the corresponding EML discriminator function will be  

( ) ( ) ( ) ( )1 1 2 22 2HRC HRC HRCD E L E L E L= − = − − −τ . (2.14) 

The discriminator function in  (2.14) is the same as the Strobe correlator discriminator 

function in  (2.11). Using the above synthesized correlators, the performance of HRC is 

identical to the gated correlator for short to medium delay multipath reflections (Garin & 

Rousseau 1997) which are of a greater concern in real scenarios. However, this technique 

only helps to reduce code multipath and also the reduction in signal power degrades the 

tracking accuracy at low C/N0 values (McGraw & Braasch). To deal with these issues, 

another version of HRC was proposed by McGraw & Braasch (1999) that uses the 

following discriminator function: 

. .
HRC HRC

HRC

ID IP QD QP

SP

+
∆ =τ . (2.15) 
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where IDHRC and IPHRC denote the real parts of DHRC and PHRC, QDHRC and QPHRC denote 

the imaginary parts of DHRC and PHRC and 
2 2SP IP QP= + . This implementation of HRC 

reduces carrier phase multipath as well as providing an improved reduction in code 

multipath. 

2.4 Drawback of classic DLLs 

In Chapter One it was explained that in cases where the peak of the correlation function is 

shifted in the delay-domain due to the effect of severe multipath, the classical DLLs 

produced biased estimates. In this section, this drawback is shown through a simple 

simulation. Consider the autocorrelation function for a multipath simulation scenario with 

four reflected paths in Figure 2-6. The position of the true simulated paths and the 

estimated channel impulse response by a simple Least Squares (LS) estimator (refer to 

Section 2.4.3) is also shown for comparison. Table 2-1 shows the simulation path 

parameters. 

The purple points in Figure 2-6 depict the five correlator used in the structure of 

correlation-based DLLs. The green arrow shows the area within which pseudorange 

measurements can be corrected. Since the correlation peak has shifted considerably, the 

correlation based DLLs are not able to correct the bias. Since the correlators are well 

centered about the correlation peak, the values of the feedback produced by the 

discriminator functions are close to zero and the corresponding DLLs are not able to 

correct the measurement errors. 

This effect is the main source of biases in the output of these DLLs in dense multipath 

environments. 
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Figure 2-6:  Shifted autocorrelation function peak (C/N0 = 30 dB-Hz) 

 

 

 

Table 2-1: Simulation parameters 

Path # Attenuation (dB) Delay (chips) 

1 -2 0.07 

2 -3 0.15 

3 -4 0.25 

4 -6 0.4 
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Figure 2-7 shows the pseudorange measurement errors produced by NC, ELS and HRC 

discriminators for this multipath simulation scenario corresponding to Table 2-1. It is 

observed that, since the number of paths is large and the correlation function peak has 

considerably shifted, there is large bias in measurement errors produced by all of these 

three DLLs. 

 

Figure 2-7: Pseudorange measurement errors in a four-path channel (C/N0 = 30 dB-

Hz) 

 

2.5 GNSS Channel Estimation 

As it was briefly discussed in Chapter One, as opposed to the classical DLLs, there are 

some advanced ranging measurement techniques based on the estimation of the channel 

parameters and which are the main focus of this thesis. In this section, the general 

theories behind some of the most well-known classes of these techniques are introduced. 
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2.5.1 Cramer-Rao Lower Bound 

Within different channel estimation techniques, we start from those estimators that 

provide unbiased estimates of unknown deterministic parameters with the minimum 

estimation error variance. These techniques are referred to as Unbiased Minimum 

Variance (MVU) estimators and they are optimal with the optimality criterion being to 

attain the minimum estimation variance. Moreover, there is a lower bound for the 

estimation variance of unbiased estimators, which is referred to as the Cramer-Rao Lower 

Bound (CRLB). Therefore, any unbiased estimator that uniformly attains CRLB is an 

MVU estimator. Since the unknown parameters were assumed to be deterministic, this 

bound depends on the PDF of the noise process. 

In cases where there is a vector of unknown parameters, as it is the case in this thesis, an 

estimation error matrix is associated to the MVU estimator that includes the CRLB of the 

unknown parameters on its main diagonal. The inverse of this matrix is referred to as the 

Fisher Information Matrix (FIM). Assuming that y is the vector of the received data and a 

is the vector of deterministic unknown parameters, FIM is defined as 

( )
( )2 ln ;

ij
i j

p
E
 ∂

  = −    ∂ ∂  

y a
I a

a a
, (2.16) 

where ( )
ij

  I a  is the i-j-th element of I(a) and ( );p y a  is the PDF of the received data. 

Given  (2.16), the CRLB for the i-th entry of a is found as 

( ) ( )1ˆvar i
ii

− ≥  a I a . (2.17) 
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It is important to notice that although there is not always an MVU estimator for any 

estimation problem, CRLB can be always used as a benchmark to assess the performance 

of other unbiased estimators. 

2.5.2 Maximum Likelihood Techniques 

The Maximum Likelihood (ML) estimator is the most popular practical estimator that 

approaches the theoretical performance limit. For most of cases of practical interest the 

ML estimator is approximately (asymptotically) the MVU estimator for large data 

records (Kay 1993). In other words if MLE
â is the ML estimate of a and N is the available 

length of data over which a is deterministic, then one has 

[ ] ( ) ( )1

MLE MLE
ˆ ˆas : and covN E −→ ∞ → →a a a I a . (2.18) 

However, for specific case of linear system model and Gaussian noise (which is the case 

in this thesis), the ML estimator is exactly (not approximately) the MVU estimator and it 

attains the CRLB.  

For any unknown deterministic vector of parameters a, the ML estimate is defined as the 

value that maximizes the likelihood function which is ( );p y a , the maximization being 

performed over the possible range of a. Considering a linear system model as  

= +y Ga w , (2.19) 

where w is the vector of noise samples which is assumed to be zero-mean and Gaussian 

with the covariance matrix of Q, ( );p y a  can be represented as 
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( )
( ) ( )

( ) ( )
H 1

1

22

1 1
; exp

2
2 det

N
p

π

− 
= − − −  

y a y Ga Q y Ga

Q

. 
(2.20) 

Therefore the ML estimate of a is found by minimizing the following expression: 

( ) ( ) ( )
H 1

2ln ;p
−− = − −y a y Ga Q y Ga . (2.21) 

This minimization is obtained by setting the derivative of  (2.21) to zero as 

( )
( )H 1

ln ;
0

p
−

∂
= − =

∂

y a
G Q y Ga

a
. (2.22) 

Solving  (2.22) for a results in 

( )
1

H 1 H 1

MLE
ˆ

−− −=a G Q G G Q y , (2.23) 

which is, as explained before,  the MVU estimate of a. This estimate of a, is itself a 

random variable with Gaussian distribution and can be represented by 

( )( )1

MLE
ˆ , −a a I a∼ΝΝΝΝ , (2.24) 

where in this case  ( ) H 1−=I a G Q G (Kay 1993). 

2.5.3 Least Squares Techniques 

The optimal estimator described in the previous sub-section was based on the assumption 

of having prior knowledge about the PDF of the received data. However, there may be 

some cases where no assumption about the distribution of data can be made. In this sub-

section another estimator is introduced that estimates deterministic unknown parameters 

without any assumption about the statistics of data, and only the signal model is assumed 
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to be linear. This estimator, namely the Least Squares (LS) estimator, has no optimality 

properties associated with it in general. 

The LS approach attempts to minimize the squared difference between the received data 

and the estimated data. Considering the linear model in  (2.19) and assuming that G is a 

full rank matrix, the LS estimator chooses the estimate of a, LS
â , so that it minimizes the 

following cost function: 

( ) ( ) ( )
H

J = − −a y Ga y Ga . (2.25) 

Setting the derivative of  (2.25) results in  

( )
( )H2 0

J∂
= − =

∂

a
G y Ga

a
. (2.26) 

Solving  (2.26) for a results in the following solution: 

( )
1

H H

LS
ˆ

−

=a G G G y . (2.27) 

The equality 
H H=G Ga G y  that leads to the solution in  (2.27) is known as the normal 

equation. 

It is important to notice that under the assumption of white noise process ( 2
σσσσ=Q I ) the 

ML solution in  (2.23) reduces to the LS solution in  (2.27). 

Different alternatives of the LS estimation such as de-convolution approaches have been 

suggested in the literature for the problem of multipath delay estimation.  

2.5.4 Bayesian Estimators 

All estimators introduced by this sub-section were based on the assumption that unknown 

parameters to be estimated are deterministic constants. In this sub-section a class of 
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estimators will be introduced that assumes the unknown parameters are random variables 

whose particular realizations are to be estimated. This consideration provides the 

opportunity to take any available prior knowledge about the statistics of the parameters to 

be estimated into account, which leads to a more accurate estimation. This class of 

estimators is known as the Bayesian Approach since it is derived based on the Bayes’ 

theorem. The objective of a Bayesian estimator is to minimize the Bayesian Mean Square 

Error (BMSE) of estimation. The resultant estimate can then be said to be optimal in the 

minimum BMSE sense with respect to the assumed prior PDF for the unknown random 

variables.  

This Bayesian MSE which is fundamentally different from MSE in classical estimators, 

is defined as   

[ ]( ) [ ] [ ]( ) ( )
2

B B
ˆ ˆ ,BMSE i i i p d d= −∫∫a a a y a y a . (2.28) 

where ( ),p y a  is the joint PDF of y , Bâ  is the Bayesian estimate of a and [ ]ia  and 

[ ]B
ˆ ia are the i-th entry of a  and Bâ , respectively. In fact, the BMSE in  (2.28) is 

independent from the unknown random variable since it is obtained by averaging over the 

PDF of a. Taking advantage of the following Bayes’ theorem 

( ) ( ) ( ),p p p=y a a y y , (2.29) 

the equality in  (2.28) can be simplified to 

( ) ( ) ( )
2

B B
ˆ ˆBMSE p d= −∫a a a a y a . (2.30) 

Minimizing  (2.30) with respect to Bâ  results in the following Bayesian estimate: 
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( )B
ˆ p d E  = =  ∫a a a y a a y . (2.31) 

The right side of  (2.31) is the mean of the posteriori PDF which is the PDF of a after data 

have been observed. For this reason, the estimator in  (2.31) is referred to as the Minimum 

Mean Square Error (MMSE) estimator. 

In cases where the system model is the linear model in  (2.19) and the unknown random 

variables and noise samples are jointly Gaussian so that ( )µ ,ΝΝΝΝ a aa Q∼ , the estimate in 

 (2.31) can be simplified in a closed form as (Kay 1993): 

( ) ( )
1

H H

B
ˆ

−

= + + −a a a aa µ Q G GQ G Q y Gµ . (2.32) 

In this case G does not need to be full rank. An alternative form of  (2.32) can be 

represented as 

( ) ( )
1

1 H 1 H 1

B
ˆ

−− − −= + + −a a aa µ Q G Q G G Q y Gµ . (2.33) 

It is important to consider that in the case where there is no prior information, 1− →
a

Q 0 , 

the equality in  (2.33) reduces to the ML estimate in  (2.23), i.e. 

( )
1

H 1 H 1

B
ˆ

−− −→a G Q G G Q y . The linear MMSE estimator can be also solved sequentially 

as explained in Chapter 4. 
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Chapter Three: Sequential Maximum Likelihood Multipath Estimation 

 

Given the limitations of the traditional code phase estimation techniques, this chapter 

considers another class of code tracking algorithms where the GNSS receiver endeavors 

to characterize the propagation channel by estimating the relative delay and amplitude of 

the first signal component to arrive and each individual reflection. Within this class, the 

most well-known approaches are those that are based on maximum likelihood (ML) 

estimation of the channel. In this chapter, some of the most promising ML-based 

multipath estimation algorithms are theoretically and empirically compared and a novel 

technique is then proposed. The studied algorithms include basic vector ML estimation of 

the channel that provides a delay profile for the entire search region, multipath delay 

estimation lock loop (MEDLL) (Van Nee 1992, Van Nee et al 1994, Townsend et al 

1995, Van Nee 1997, Lohan et al 2005) that provides delay and amplitude estimates for a 

few of the strongest multipath components iteratively, and sequential maximum 

likelihood (SML) (Sahmoudi & Amin 2009) that sequentially estimates the path 

parameters using scalar ML estimation and iteratively modifies the estimates. In this 

chapter the disadvantages of each approach are addressed and a novel technique is 

proposed that targets these disadvantages. In the proposed approach, which is referred to 

as the modified sequential maximum likelihood (MSML), a sequential maximum-

likelihood channel estimation technique is developed in which the multipath components 

are estimated recursively and the effect of each path is removed before estimation of the 

next. Instead of considering a fixed number of paths, this algorithm predicts the existence 
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of each probable new path at every recursion through a General Likelihood Ratio Test 

(GLRT) for a certain probability of false-alarm after each refinement stage. 

The performances of these four techniques are compared through a selection of 

simulation scenarios including urban, suburban, rural and open sky conditions. The main 

focus in the performance comparison of the algorithms is on the closely-spaced multipath 

scenario, since this situation is generally the most challenging, however, a successful 

algorithm should provide good performance both in the presence and absence of 

multipath.  

3.1 Problem Formulation 

The received signal in a multipath environment is represented by an M-path model, 

composed of the LOS signal and (M-1) reflected rays corrupted by additive Gaussian 

noise with zero mean, n(t), and can be represented by 

( ) ( ) ( )
1

k

M
j

k k

k

r t A s t e n t
φτ

=

= − +∑  (3.1) 

In this model , andk k kA φ τ  are the amplitude, phase shift and time delay parameters 

corresponding to the k-th path relative to the direct path ( 1 1 11, 0, 0A φ τ= = = ) and ( )s t  

being the direct baseband spread spectrum signal which carries the navigation data bits. 

Considering the above signal model, the received baseband signal after being correlated 

with a local replica of the spreading code, coherently integrated over c and sampled at the 

rate of
1

s
T

, can be expressed as 
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( ) ( ) ( ) ( )
1

, 0, , ... , 1
M

k k s s

k

y a g w T N Tτ τ τ τ τ
=

= − + = −∑  (3.2) 

where kj

k k
a A e

φ=  is the complex path coefficient corresponding to the k-th path and 

( )g τ  is the ideal autocorrelation function of the PN code with the period of Tp and w(τ) 

is the noise term at the output of the correlator with a variance of 2

w
σ . The path 

parameters are assumed to be unchanged during the integration time. Eq. (2) can be 

written in matrix form as 

,= +y Ga w  (3.3) 

where y is the vector of the samples of ( )y τ  with a length of 
p

s

T
N

T

 
=  
 

and 

[ ]1 2 ... Ma a a=a  (3.4) 

The vector w with a length of N is the vector of noise samples with a covariance matrix 

of Q and G is an N M×  matrix that can be represented as 

1 2
...

Mτ τ τ
 =  G g g g  (3.5) 

where 
mτg is sampled version of ( )m

g τ τ−  and can be represented by 

( ) ( ) ( )( )0 ... 1
m m s m s mg g T g N Tτ τ τ τ

Τ
 = − − − − g  (3.6) 

3.2 Maximum Likelihood Channel estimation  

Given the fact that the true multipath delays are unknown to the receiver beforehand, a 

search region around the global maximum of the correlation function is considered. Thus, 
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if T is the length of the search region (which is usually selected as a few chips around the 

correlation function peak), there are 
T

L
Tδ

 
=  
 

equally spaced search points, where Tδ is 

the delay between two adjacent points. Considering this fact,  (3.3) can be rewritten as 

= +y Ga w , (3.7) 

where G  is now an N L×  matrix and is defined as 

1 2
...

Lτ τ τ
 =  G g g g , (3.8) 

with ( )1i i Tδτ = − ; a  has a length of L and can be described by 

[ ]
[ ] { }1 2if , ,...,

0 elsewhere

i m Mm
i

τ τ τ τ τ = ∈
= 


a
a . (3.9) 

where [ ]ia  is the i
th

 entry of a . Considering  (3.7), the maximum likelihood (ML) 

estimate of a will be (Kay 1993) 

( )
1

H 1 H 1ˆ
−− −=a G Q G G Q y . (3.10) 

Since the system model in  (3.7) is a linear model and the noise component follows the 

Gaussian distribution, the performance of ML estimate in  (3.10) attains the Cramer-Rao 

Lower Band (CRLB) (Kay 1993). Hence, the covariance matrix of the estimate in (3.10) 

can be expressed as 

( )( )
1−

=aC I a . (3.11) 

where ( )I a  is the Fisher information matrix and can be represented by  
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( ) H 1−=I a G Q G . (3.12) 

In the case where the noise process is white ( 2

w
σ=Q I ),  (3.12) can be written in a simpler 

form as 

( ){ }
( )H

2

i j

ij

w

τ τ

σ
=

g g
I a . (3.13) 

Increasing the number of parameters to be estimated (L) expands the Fisher information 

matrix by adding similar elements to the matrix and this does not affect the previous 

members. However, as it is proven in Appendix A, when this matrix is inverted to form 

the estimation covariance matrix ( aC ), the expansion of ( )I a  results in an increase in 

the diagonal elements of aC which are equivalent to the variance of the estimation of 

individual elements of a . Therefore, since in the MLE solution of  (3.10) all of the 

elements of a  are estimated at once, the performance of the estimation of the parameters 

of interest is adversely affected by increasing the number of search points. In Figure 3-1, 

the diagram of variations of the normalized CRLB of the estimation of each of the 

elements of a vector a with 3 elements versus different values of the length of a , m, is 

shown using the results described in APPENDIX A. The vertical axis represents the ratio 

of CRLB for a certain value of m to CRLB for m = 3. 
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Figure 3-1: Normalized CRLB of estimation as a function of the number of elements 

to be estimated 

 

To enhance the estimation performance of the solution in  (3.10), which we refer to as 

vector ML, at low SNRs it is usually combined with some post processing techniques. 

This post processing includes considering some constraints based on some prior 

knowledge about the distribution or range of the multipath delays or amplitudes (Kostic 

& Pavlovic 1999).  In the case where the Probability Distribution Function (PDF) of a 

path parameter is priori known, some goodness of fit (GOF) evaluation can be applied to 

the estimated paths to find the LOS (Kim 2004). 

3.3 Multipath estimation Delay Lock Loop 

To accommodate the problem of decreasing estimation performance discussed in the 

previous section, a new ML-based algorithm, namely the Multipath Estimation Delay 

Lock Loop (MEDLL), was proposed (Van Nee 1992, Van Nee et al 1994, Townsend 

1995, Van Nee 1997, Lohan et al 2005). In this ML based algorithm, instead of 
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estimating all of the multipath components at once, which results in the estimation of 

some undesired parameters, major multipath channel components are estimated one by 

one.  

In the original MEDLL algorithm (Van Nee 1992), the parameters of the i-th multipath 

signal are estimated as 

( ) ( )
0

ˆ ˆ ˆmax
i

M

i i j i j

j
j i

y a g
τ

τ τ τ τ
=
≠

 
 

= − − 
 
 

∑ . (3.14) 

( ) ( )
0

ˆ ˆ ˆ ˆ ˆ
M

i i j i j

j
j i

A y a gτ τ τ
=
≠

= − −∑  (3.15) 

( ) ( )
0

ˆ ˆ ˆ ˆ ˆ
M

i i j i j

j
j i

y a gθ τ τ τ
=
≠

 
 = ∠ − −
  
 

∑  (3.16) 

where the notation x̂  denotes the estimation x. Solving the equations  (3.14) to (3.16) is 

equivalent to performing a nonlinear curve fit to find a set of reference correlation 

functions with certain parameters that give the best possible fit on the input correlation 

function. However, when estimating the parameters of the entire multipath components at 

once by using a large search space, the same problem that was discussed in the previous 

section will arise, in addition to the implementation being too costly. To deal with this 

problem, Van Nee (1997) proposed an Interference Cancellation (IC) technique with the 

following steps in MEDLL: 
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Step 1) Set ( ) ( )i
y τ to ( ) ( )

1
ˆ

0

ˆ ˆk

i
j

k k

k

y A e g
θτ τ τ

−

=

− −∑ . 

Step 2) Find the global maximum of ( ) ( )i
y τ  and estimate ˆˆ ,

i i
Aτ and ˆ

i
θ . 

Step 3) Re-estimate ˆˆ , ,
k k

Aτ and ˆ
k

θ for k i<  by finding the global maximum of      

( ) ( ) ( ) ( )
ˆ

0

ˆ ˆl

i
ik j

l l

l
l k

y y A e g
θτ τ τ τ

=
≠

= − −∑ . 

Step 4) If not converged go back to step 2. 

Step 5) If i m< increment i and go back to step 1.  

 

In step 5, m is the desired number of paths to be estimated. 

In the approach discussed above, the parameters corresponding to the maximum of the 

correlation function are directly selected as the path parameters. However, in the presence 

of multipath, there is no independent relationship between the delay, amplitude and phase 

of the peak of the correlation function and the parameters of each individual multipath 

component. Therefore, when the number of paths is large, there is no guarantee that the 

iterative procedure converges. In Figure 3-2, the steps of MEDLL in estimating a 

simulated channel are shown. For the case of this figure, the number of components to be 

estimated has been set to 4 (this value is chosen based on the statistical parameters of an 

urban channel presented in Table 3-1). 
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Figure 3-2: An example of different stages of MEDLL in estimating a simulated 

channel (C/N0 =35 dB-Hz) 

 

3.4 Sequential ML 

Another noteworthy ML-based algorithm, proposed in (Sahmoudi & Amin 2009), is 

referred to as the sequential ML (SML) Algorithm. The SML algorithm estimates the 

parameters of the paths sequentially using the following set of ML-based equations: 

1

1
ˆ arg max k

k
k k

i

τ

τ τ τ

τ
Η −

Η −
=

g Q y

g Q g
, (3.17) 

1

ˆ

1

ˆ ˆ

ˆ i

i i

ia
τ

τ τ

Η −

Η −
=

g Q y

g Q g
. (3.18) 
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Equations  (3.17) and (3.18) are based on the assumption that there is only a single signal 

component in the received signal. Similar to MEDLL, the structure of the SML algorithm 

can be summarized by the following steps: 

Step 1) Set ( ) ( )i
y τ to ( ) ( )

1
ˆ

0

ˆ ˆk

i
j

k k

k

y A e g
θτ τ τ

−

=

− −∑ . 

Step 2) Substitute ( ) ( )i
y τ  into Eq. (15-16) to find ˆˆ ,

i i
Aτ and ˆ

i
θ . 

Step 3) Re-estimate ˆˆ , ,
k k

Aτ and ˆ
k

θ for k i<  by substituting

( ) ( ) ( ) ( )
ˆ

0

ˆ ˆl

i
ik j

l l

l
l k

y y A e g
θτ τ τ τ

=
≠

= − −∑  into  (3.17) and (3.18). 

Step 4) If not converged go back to step 2. 

Step 5) If i m< increment i and go back to step 1.  

 

It should be noted that for this algorithm, since the values of delays and complex 

coefficients are computed from an ML estimate of the channel, the required number of 

iterations to meet the convergence will be smaller than that of the MEDLL. In Figure 3-3, 

different steps of SML in estimating a simulated channel are shown. In this case, the LOS 

to residual power ratio is greater than the SNR after estimating the three paths. It is clear, 

however, that due to the low accuracy of the algorithm, the estimated components are not 

exactly located at positions of the true multipath components. 
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Figure 3-3: An example of different stages of SML in estimating a simulated channel 

3.5 Proposed Algorithm 

The sequential ML algorithm discussed in the previous section is able to find optimum 

estimates for the parameters of individual paths by considering the estimation of only one 

path at the time. However, there are still some problems that need to be considered. 

Firstly, in the MEDLL algorithm, the number of signal paths is considered fixed and 

known. However, considering a fixed number of paths may result in underestimation or 

overestimation of the true number of paths which, in turn, may lead to a bias in the final 

ranging solution due to the unresolved multipath components or trusting on noise peaks 

respectively. Furthermore, in the SML algorithm, a threshold equal to the receiver’s 

signal to noise ratio (SNR) is compared with the LOS-to-residual signal power ratio to 

find an estimate for the number of paths. This requires an exact knowledge of the SNR 

and results in a lack of system robustness. Secondly, for both of these algorithms, 
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iterations are required for refining the estimates of the path coefficients. In this section, 

we propose a modified sequential ML algorithm (MSML) that targets these problems and 

can be described by the following steps: 

Step 1) Sequential ML estimation 

Step 2) Refinement of estimated parameters 

Step 3) Detection of new paths 

Step 4) Update of the noise covariance matrix 

In estimating each multipath component, all the above four steps are repeated once. In the 

rest of this section, the above steps are explained in detail. The flowchart of the algorithm 

is shown in Figure 3-4. 

 

Figure 3-4: Flowchart of MSML algorithm 
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3.5.1 A. Sequential ML 

In the first step of the MSML algorithm, the vector â  is computed from  (3.10) and the 

maximum element of the estimated vector and its corresponding delay and complex 

coefficients are determined as the initial estimates of the parameters of the current path. 

The reason for using  (3.10) instead of  (3.17) in finding the delay of the current strongest 

path is that, since the pair of  (3.17) and (3.18) is based upon the assumption that only one 

signal component is present, when there are more than one signal path (which it is the 

case in a multipath channel), it is no longer an efficient ML estimate. In Figure 3-5, the 

functionalities of these two approaches in estimating the delay of the first path of a 

simulated 5-path channel profile are compared wherein “ML” refers to  (3.10) and “SML” 

refers to  (3.17). This figure shows that although, and as was expected, the channel 

estimated by  (3.10) is not perfectly matched to the true channel, it is a better option for 

finding the first path than  (3.17). Similar to the two previous techniques, after estimating 

the parameters of each new path, its contribution is subtracted from the correlation 

function to yield a new approximation of the correlation function and the residual 

correlation function is substituted in  (3.10) to estimate the parameters of the next path 

using the maximum element of the estimated vector. This step of the algorithm is then 

followed by refining the parameters of all of the estimated paths, as explained in the next 

sub-section. 
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Figure 3-5: A comparison of the functionality of Eq.  (3.10) and  (3.17) when finding 

the first path (C/N0 = 35 dB-Hz) 

3.5.2 B. Refinement 

In general, in the MSML algorithm, after detecting each new path (m
th

 path), the 

estimated parameters for all of the previously detected paths are refined as follows: 

( )

1

12 1 1

ˆ

ˆ
ˆ

ˆ

T

m m m m

m

a

a

a

−− −

 
 
 = =
 
 
 

a G Q G G Q y
�

, (3.19) 

where 

1 2ˆ ˆ ˆ...
mm τ τ τ

 =  G g g g . (3.20) 
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The difference between 
m

G  and G  is that 
m

G  only includes those columns of G that 

correspond to the m estimated paths by that time. Therefore, since m is much smaller than 

L, the estimation performance in the refinement stage is considerably better than that in 

the first step. The solution in  (3.19) is the ML estimate of the channel under the 

assumption that there are m multipath components present in the received signal. As 

opposed to the SML and MEDLL algorithms, the solution in  (3.19) considers the mutual 

effects of these m signal components on each other (since multipath components are 

correlated) (Li & Pahlavan 2004). The other advantage of the proposed refinement stage 

is that it does not require iterations since it solves a linear equation. 

3.5.3 C. Detection of New Paths 

As opposed to the MEDLL and the SML, in the MSML algorithm the number of paths is 

not considered fixed. Instead, after each cycle of estimating a new path component and 

performing the refinement stage, the existence of a possible new path is detected through 

the Generalized Likelihood Ratio Test. In order to accomplish this goal, two different 

strategies can be considered in determining the threshold of detection. The first strategy is 

to consider the estimated parameters of all of the previously detected paths as 

deterministic known parameters when trying to examine the possibility of existence of a 

new path. The second strategy is to consider these parameters as nuisance parameters 

(Kay 1993). Herein, we explain the problem of detecting the (m+1)-th (possible) 

multipath component considering the parameters of all the m previously detected 

components as nuisance parameters since this assumption is more realistic. The first 

strategy is developed in Appendix B. 
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A new path (path m+1) is considered present if the following test ratio passes the 

threshold (hypothesis H1): 

( )
( )

( )
1 1 11

0 1 0

ˆ ˆ ˆ; , ,...,

ˆ ˆ; ,...,

m m

m

p a a a
L

p a a
γ

+ Η Η
= >

Η Η

y
y

y
. (3.21) 

 (3.21) can be expanded as 
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Q
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, (3.22) 

where vectors ˆ
m

a and 1
ˆ

m+a  are obtained from  (3.19). By taking the logarithm of both sides 

of  (3.22), it reduces to 

( )1 1 1 1

1 1 1 1 1 1

1
ˆ ˆ ˆ ˆ ˆ ˆ

2
m m m m m m m m m m m m

γΗ − Η − Η Η − Η Η −
+ + + + + +

′− − − >y Q G a y Q G a a G Q G a a G Q G a , (3.23) 

where logγ γ′ = . After substituting ˆ
m

a and 1
ˆ

m+a  from  (3.19) into  (3.21), the above can be 

represented as 

( ) ( )
1 1

1 1 1 1

1 1 1 1m m m m m m m m
γ

− −
Η − Η − Η Η − Η −

+ + + +
  ′′− >  

y Q G G Q G G G G Q G G Q y , (3.24) 

where 2γ γ′′ ′= . Furthermore, 
1m+G  and 

1m

Η

+G  is given by 

1ˆ1 mm m τ ++
 =  G G g , (3.25) 

and  1

1 1m m

Η −

+ +G Q G can be represented as 
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1

1 1m m α
Η −

+ + Η
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A B
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B
, (3.26) 

where 1

m m

Η −=A G Q G , 
1

1

ˆmm τ +

Η −=B G Q g and 
1 1

1

ˆ ˆm mτ τα
+ +

Η −= g Q g  is a constant scalar. Taking 

advantage of Equation (A.2) in Appendix A, the inverse of the block matrix in  (3.26) 

results in 
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where 
1β −= HB A B . Applying Woodbury’s identity (Noble & Daniel 1977) to 

1

β

−Η 
− 

 

BB
A it can be shown that 

1
1 1

1

α α β

−Η − Η −
− 

− = + 
− 

BB A BB A
A A . (3.28) 

After applying  (3.28) into  (3.27) and then substituting  (3.25) and  (3.27) into  (3.24), and 

applying some simplifications, the inequality of  (3.24) can be re-written as 

( ) ( )1 1

1 1
ˆ ˆ

m m
τ τ τ τ γΗ − Η Η −

+ +
′′′ − − > y Q Dg g D Q y , (3.29) 

where ( )γ γ α β′′′ ′′= −  and D is a constant N N× matrix that can be represented as 

( )
1

1 1

m m m m

−Η − Η −= −D G G Q G G Q I , (3.30) 
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where I is the N N×  identity matrix. Using the variable change of

( )1

1
ˆ

mz τ τΗ −
+= −y Q Dg , the sufficient statistics in  (3.30) can be represented as 

( )T z zz γΗ ′′′= > . (3.31) 

The variable z in  (3.31) is a complex Gaussian scalar random variable and its statistics 

under the two hypotheses can be expressed as 
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Where ( )1

1 1 1 1
ˆ ˆ

m m m mµ τ τΗ Η −
+ + + += −a G Q D g  and 2

1m
σ +  can be obtained by 

{ }
( ) { } ( )

( ) ( )

2

1

1 1

1 1

1

1 1

H

m

m m

m m

E z z

E

σ

τ τ τ τ

τ τ τ τ

+

Η Η − Η −
+ +

Η Η −

+ +

=

= − −

= − −

g D Q yy Q Dg

g D Q Dg

, (3.33) 

Thus, ( )T z  follows a chi-square distribution with two degrees of freedom and can be 

expressed as 

( ) ( )

( )
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2 2
1 2 1 1
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where  1 1 1m m m
λ µ µ∗

+ + += . Finally, the probability of false-alarm can be expressed as 
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Therefore, for a certain probability of false-alarm, the threshold of detection can be 

determined as 

( ) ( ) ( )1

1 12 lnm m FAPγ τ τ τ τΗ Η −
+ +

′′ = − − −g D Q Dg . (3.36) 

It is shown in Appendix B that the first strategy introduced at the beginning of this 

section also results in a sufficient statistics of Chi-squared distribution with two degrees 

of freedom but with a different threshold that is given by (B-12).   

Finally, in order to set a reasonable value for the probability of false-alarm, two important 

points must be considered. First, the probability of existence of each new signal path is 

smaller than the one of the previous path. Urban channel characterization work (Jahn et al 

1996, Fontan et al 2001) has shown that the probability density function (PDF) of the 

number of paths in urban and suburban channels follows the Poisson distribution. 

Therefore, the level of the probability of false-alarm in setting the threshold of detection 

for each new signal path should be inversely proportional to the cumulative distribution 

function (CDF) of the Poisson distribution. The other factor that must be considered in 

setting a value for PFA is that, as the number of paths to be detected increases, since the 

number of nuisance parameters and consequently the level of uncertainty increases, the 

probability of detection of the new path is decreased accordingly. However, in Figure 3-6 

(which is a Monte-Carlo simulation) it is shown that when the number of paths to be 
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detected (m) is larger than two (which is usually the case in urban and suburban 

channels), this adverse effect is insignificant and can therefore be ignored. This figure 

shows the Receiver Operating Characteristic (ROC) curves of the system which are the 

diagrams of PD versus PFA (as the threshold of detection is varied) for different values of 

the number of multipath components to be detected. 

 

 

Figure 3-6: Performance of detector (Receiver Operating Characteristic (ROC)) for 

different values of m (number of parameters to be estimated) at C/N0 = 35 dB-Hz 

 

3.5.4  Updating the Noise Covariance Matrix 

The covariance matrix of the colored noise is updated by averaging (moving average) the 
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adaptive threshold (the reason of using a moving average was to be able to track the 

changes in the channel). This step can be expressed as 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
Fa

P
D

ROC

 

 

m=2

m=3

m=4

m=5

m=10

m=30



 

 

54   

 

( )( ) ( )
1

M M

n n n n n K

′ ′Η
− −= + −Q Q y y Q . (3.37) 

where n, n-1 and n-K are time indices, K is the length of the moving average window, 

M ′ is the final number of estimated paths at the current time epoch and 

( ) ( )
ˆ

0

ˆ ˆl

M
M j

n n l l

l

A e
θ τ τ

′
′

=

= − −∑y y g . In Figure 3-7, an example of the steps of MSML in 

estimating a simulated channel is shown.  For the case of this figure, after estimating four 

multipath components, the applied GLRT has failed and the algorithm has stopped 

estimating new components. 

 

 

Figure 3-7: An example of different stages of MSML in estimating a simulated 

channel (C/N0=35) 

 

3.6 Simulation Results 

To evaluate the effectiveness of the proposed multipath estimation/detection approach 
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simulation scenarios was considered. In these simulations, an intermediate frequency (IF) 

GPS L1 C/A signal with a sampling rate of 20 MHz was used. The coherent integration 

time was 10 ms. The reason for selecting this value for c
T  is that the choice of coherent 

integration time should be larger than 1 ms (one epoch of the C/A code) and smaller than 

20 ms (since we considered a non-data-aided scenario). Within this range, the 

performance of the receiver is insensitive to the choice of c
T  and 10 ms is a value used 

for high sensitivity receivers operating in urban canyons and indoors. Since the maximum 

excessive delay of the channel for near echoes, which are the stronger echoes and 

therefore of more concern, is less than one chip in most environments (Jahn et al 1996), 

the focus here is to search for those components with sub-chip level delays. Therefore we 

consider the search region to be 1± chip around the correlation peak. Herein, only one 

signal from one of the satellites is considered whereas the contribution of the signals from 

other satellites is modeled as AWGN due to the weakness of their interference. Three 

different simulation scenarios including urban, suburban and rural were considered. For 

these simulation scenarios, it was assumed that the channel follows a Rician fading model 

with a mean of µ and a standard deviation of σ, the number of multipath components 

follows a Poisson distribution with a mean of λp and the relative multipath delays follow 

an exponential distribution with a mean of b. The parameters used to characterize the 

simulated channels are given in Table 3-1 (Jahn et al 1996). 

 

Table 3-1: Parameters of the simulated channels 

Scenario Elevation λp Max b Exp. [µs] µ [dB] σ [dB] 
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[degrees] Poisson Delay 

[ns] 

 

Urban 45 55−� �
 3.7 600  0.08 -3 2.7 

Suburban 45 55−� �
 1.6 400  0.03 -7.5 2.9 

Rural 45 55−� �
 1.7 400  0.05 -6.3 3.1 

 

Figure 3-8 to 3-10 compare the root mean square (RMS) values of the LOS delay 

estimation errors produced by the four vector ML, MEDLL, SML and MMSL techniques 

under the three different simulation scenarios (the title “ML” in the legend of the figures 

refers to the “vector ML” approach). The applied Monte Carlo simulations were run over 

4000 epochs of data for each value of carrier to noise ratio (C/N0) and the simulated 

channel was altered every 100 ms. The value of the number of paths to be estimated (m) 

for the MEDLL and SML was set to 3 for the three figures. Since the estimated profile by 

the vector ML method has non zero values at all the delays within the search region, in 

order to select the LOS peak for this algorithm, a goodness of fit value was attributed to 

each peak in the profile and the one with the maximum value was selected. The 

considered GOF function correlates the histogram of the delays corresponding to all of 

the peaks coming after each candidate peak with the PDF of the exponential distribution 

that was used in simulating the channel to evaluate the level of fit.  

As can be seen in the figures, under all of the simulation scenarios, the MSML 

outperforms the MEDLL in the sense of LOS delay estimation RMS error for C/N0 

values smaller than 35 dB-Hz.  This improvement in the performance under weak signal 

conditions is a result of enhanced noise rejection at the detection step of the algorithm. 
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Among the four approaches compared, the MEDLL appears to be the most sensitive to 

multipath parameters and noise. The number of paths to be estimated is another factor 

that greatly affects the performance of the MEDLL. In Figure 3-11 the performance of 

the MEDLL for two different values of m are compared; increasing m actually increases 

the risk of relying on spurious peaks. 

It is also evident from Figures 3-8 to 3-10 that the SML algorithm is biased, even for high 

C/N0 values, especially under more severe multipath scenarios where the number of 

multipath components and their relative power is larger. Also increasing m has the same 

adverse effect on the SML as it has on the MEDLL. Since the MSML selects its first path 

from the vector ML profile in  (3.10), under LOS conditions, the performances of the two 

techniques are very similar. 

 

 

Figure 3-8: Comparison of ML-based estimation algorithms in the sense of LOS 

delay estimation for a fading channel with urban model characteristics 
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Figure 3-9: Comparison of ML-based estimation algorithms in the sense of LOS 

delay estimation for a fading channel with suburban model characteristics 
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Figure 3-10: Comparison of ML-based estimation algorithms in the sense of LOS 

delay estimation for a fading channel with rural model characteristics 

 

Figure 3-11: Comparison of performance of MEDLL for two different values of m 

under urban simulation scenario 
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In the previous set of figures (3-8 to 3-10) the performances of different approaches was 

compared in the sense of LOS delay estimation RMS error. However, the performance of 

the algorithm in this sense is heavily dependent on the strategy that it used to select the 

LOS index. It is also of interest to compare the performance of the studied approaches in 

the sense of their ability to estimate the entire channel correctly. In this sense, the error 

metric can be defined as the mean square of the difference between the estimated channel 

and the true one and can be represented as 

( )( )true estimated true estimated

1
ChannelMSE=

tNtN

Η
− −∑ h h h h , (3.38) 

where Nt is the length of the observation period. Figure 3-12 and Figure 3-13 show the 

performance of the four approaches in the sense of channel MSE under urban and 

suburban channel simulation scenarios respectively. The vertical axis represents the 

channel MSE introduced in  (3.38) divided by true true

1
=

tNtN
ρ Η∑h h and therefore it is unit-

less. 
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Figure 3-12: Comparison of ML-based estimation algorithms in the sense of channel 

MSE for a fading channel with urban model characteristics 
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Figure 3-13: Comparison of ML-based estimation algorithms in the sense of channel 

MSE for a fading channel with suburban model characteristics 
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As it was shown in Figure 3-3, the estimated channel indices by the SML are rarely 

located at the exact delays corresponding to the multipath components due to the low 

resolution. Therefore, it generally performs the poorest of the four algorithms. 

To further support the simulation results, a set of related data processing results will be 

presented in Chapter 4.  

3.7 Summary and Conclusions 

A novel sequential ML-based multipath parameter estimation technique was proposed 

herein. The novel algorithm was compared to some of the well-known ML-based 

techniques in the same context in both theory and simulation.   

 It was shown that the basic vector ML estimation suffers from decreasing performance 

as the estimation resolution increases through a higher number of search points. The SML 

algorithm provides inaccurate and biased estimates of the multipath delays. The MEDLL 

algorithm, in addition to requiring iterations and being computationally complex, 

considers a fixed number of paths; this may result in underestimation or overestimation 

of the true number of paths, which in turn may lead to a bias in the final ranging solution. 

Conversely, the proposed MSML algorithm includes a detection step to avoid considering 

a fixed number of paths and a refinement step to improve the estimation accuracy of the 

detected paths. 

The simulation results show that the performance of MEDLL is very sensitive to the 

choice of the number of paths to be estimated and a pessimistic choice (depending on the 

type of environment) can result in a better performance and, for high values of C/N0, it 

can even outperform MSML in some cases. It was also shown that the SML is almost 

always biased, except under LOS conditions, due to its low resolution and its attempt to 
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find the center of power of the delay profile. However the robustness of this algorithm in 

dealing with noise is better than the MEDLL. The results show that the proposed MSML 

algorithm outperforms the other techniques in the sense of LOS delay estimation RMSE, 

in particular for lower values of signal-to-noise ratios under all simulation scenarios 

examined. The comparison of the performance of the algorithms in the sense of channel 

MSE shows that the conventional raw ML technique still has the best performance in this 

sense and that the MSML performance is comparable to it for most C/N0 values. 
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Chapter Four: Bayesian Tracking of the ML-Based Algorithm  

4.1 Introduction 

In Chapter 3, a set of optimal ML-based algorithms were introduced that can estimate the 

parameters of the channel impulse response with no prior knowledge. Without a-priori 

information, the receiver must perform a full multipath estimation procedure, a process 

which can be computationally expensive. When provided with an initial estimate of the 

multipath channel, however, the receiver need only to incur a small computational 

overhead to track changes in the channel. In this Chapter, a receiver design is proposed 

which adaptively alternates between full channel characterization and recursive channel 

refinement, depending on the severity of the variations of the channel to provide a robust 

and efficient multipath mitigating GNSS receiver.  

To perform multipath estimation with no a-priori information, the sequential maximum-

likelihood channel estimation technique (MSML) introduced in Chapter 3 is used. Once 

an initial estimate of the channel has been generated, the receiver can employ a sequential 

Bayesian algorithm, a linear minimum mean square error (LMMSE) technique also 

referred to as Wiener filter (Haykin 2001), to track small changes in the channel. This 

approach has been designed to accurately mitigate the effects of multipath at a low 

computation cost and is effective provided the channel does not change rapidly. To 

accommodate this eventuality, a method of detecting sudden channel variations has been 

developed which can instigate a reversion to the MSML algorithm. 

  The performance of the proposed scheme has been tested using several simulated data 

and real data collected in a downtown environment. The performance metrics are based 

upon pseudorange and positioning errors. The computed range and position solutions by 
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the proposed techniques will be compared to the reference trajectory achieved with a 

combined GNSS-INS system, namely the Novatel SPAN LCI system, that is not affected 

by multipath in these conditions. 

4.2 Sequential Linear Minimum Mean Square Error Estimation 

In addition to taking advantage of prior information, there is still another key difference 

between the Bayesian and non-Bayesian approaches introduced in Chapter 3 in their 

estimation strategies. Whereas the ML-based approaches introduced in Chapter 3 

consider the parameters of interest as deterministic but unknown constants, the Bayesian 

approaches assume that they are random variables and their prior probability distribution 

is somehow known.  The Bayesian estimators aim to estimate a particular realization of 

the unknown random variable using the prior data and the available measurements. 

To proceed with a sequential Linear Minimum Mean Square Error (LMMSE) estimation, 

the following considerations and assumptions should be taken into account: 

1) The system model is linear. This is the case since the system model in (3.7) is a 

linear model which is repeated here for convenience: 

= +y G a w . (4.1) 

2) The channel coefficients are assumed to be zero-mean complex Gaussian random 

variables with a covariance matrix a
Q . 

3) The noise process is a zero-mean complex Gaussian random process with a 

covariance matrix Q. It is also assumed that the channel coefficients and the noise 

samples are statistically independent. 
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4) Taking into account the discussed jointly-Gaussian linear model which is referred 

to as the Bayesian general linear model, the LMMSE estimator is an optimal 

estimator in terms of Bayesian Minimum Mean Square Error (BMMSE) (Kay 

1993) that can be represented by 

[ ]( ) [ ] [ ]
2

ˆ ˆBMMSE i E i i = −  
a a a  (4.2) 

for the i-th entry of the estimated vector. In a same way, the error covariance 

matrix can be represented by 

( )( )ˆ
ˆ ˆE

Η = − −
 aM a a a a  (4.3) 

which includes the BMMSE of the entries of a  on its main diagonal. 

4.3 Combined MSML-LMMSE Algorithm 

As discussed in the introduction, although the ML-based algorithms discussed in Chapter 

3 provide near optimal multipath estimation performance, they are computationally 

demanding since they operate on a large search space at each signal interval to find a set 

of multipath parameters that give the best possible fit on the input correlation function.  

For this reason, as a means to decrease the overall computation burden of the system, a 

combined algorithm is introduced in this section. Once an initial estimate of the channel 

has been generated by applying the MSML technique (first mode of operation) for a 

certain number of time epochs, NML, the receiver employs the sequential LMMSE 
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technique (second mode of operation) to track small variations in the channel and slightly 

modify the estimated channel at a low computation cost provided that the channel does 

not change rapidly. NML is selected as a value smaller than the ratio of the channel 

coherence time and the coherent integration time of the receiver. In this tracking loop, the 

multipath delays and complex coefficients are sequentially updated from one epoch to the 

next one and the objective is to minimize the Bayesian minimum mean square error. The 

procedure of the loop can be described as follows (Kay 1993): 

Initialization: The initial estimate of the channel coefficients vector ( 0â ) is obtained by 

averaging the NML channel estimates computed by the MSML algorithm. Furthermore, 

the initial estimate of the error covariance matrix (M0) is selected as 

( )( )0 0 0

1

1ˆ ˆ ˆ ˆ ˆ
MLN

ML ML

i i

iML
N

Η

=

= = ∑a
M Q a -a a - a  (4.4) 

where ˆ ML

i
a is the i

th
 estimated channel coefficient vector in the most recent referral to the 

MSML stage. 

Estimator Update: The estimated channel is updated using the following equation: 

( )1 1
ˆ ˆ ˆ

k k k k M k′− −= + −a a K y G a . (4.5) 

In the above equation, k and k-1 are time indices and kK  is the Kalman gain matrix 

which can be represented as 

( )
1

1 1

T T

k k M M k M

−

′ ′ ′− −= +K M G Q G M G . (4.6) 

Bayesian Mean Square Error Matrix Update: The error covariance matrix is updated 

using the following recursive formula: 
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( ) 1k k M k′ −= −M I K G M , (4.7) 

Decision Making: 

The moving average of the MSE of the correlation function is used as a parameter to 

decide when it is the time to switch back to the ML-base mode of operation and can be 

expressed as 

( ) ( )
1

1
ˆ ˆ

ML

k

k i i M i i M

i k NML

q
N

Η

′ ′

= − +

= − −∑ y a G y a G . (4.8) 

This parameter is compared to a threshold that is computed using the following equation 

every time the MSML algorithm is performed: 

( ) ( )
1

1
ˆ ˆ

MLN
ML ML

i i M i i M

iML
N

γ
Η

′ ′

=

= − −∑ y a G y a G . (4.9) 

Any rapid change in the multipath channel will result in a sudden increase in the 

estimation error. The system will revert to the MSML algorithm if the moving average 

MSE of the correlation function passes the computed threshold which is adaptively set 

using  (4.9). The reason for using this threshold is that, unless a sudden change happens in 

the parameters of the channel being tracked as it will be shown in the simulation results, 

the MSE of the correlation function when the channel is being tracked by the LMMSE 

method is smaller than when it is estimated by the MSML algorithm without using any 

prior information. 

The block diagram of the system is shown in Figure 4-1.  
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Figure 4-1: The block diagram of the proposed system 

 

4.4 Simulation Results 

In this section, some simulation results are presented to analyze the performance of the 

MSML-LMMSE algorithm.  

In Figure 4-2, the estimated CIR is compared to the true CIR at four different instants of a 

simulation. In this simulation NML is set 6, therefore at k=7, the average of the 6 

estimated channels in the MSML stage is used as the initial estimate for the LMMSE 

recursion and it is shown in the first subplot. It can be observed that this initial estimate is 

not perfectly matched to the true CIR. However, the second subplot shows that after 50 

ms of applying the LMMSE, the estimated channel is quite close to the true CIR. At 
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k=100, the true channel has been changed. Therefore at k=101, 
k

q  passes the threshold 

and the system is switched back to the MSML. Again 6 CIRs are estimated and averaged. 

The averaged CIR is shown in the fourth subplot and is relatively similar to the true CIR. 

The updated CIR by the LMMSE after 50 ms is shown in the first plot on the second row. 

The true channel is again changed at k=200 and the system reverts back to the MSML 

mode of operation and the same procedure is  repeated. 

 

 

Figure 4-2: Estimated CIRs and the true CIR at different stages of the algorithm 
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of the system to sudden changes in the channel since these are the situations when the 

system switches between the two modes of operation. In the first subplot the simulated 

channel varies every 100 ms while in the second one, it changes every 500 ms and the 

third subplot zooms on a transition edge. In both cases, when the channel changes the 

moving averaged MSE passes the threshold and the MSML routine is called. In the third 

subplot, the blue arrow approximately shows the area that corresponds to MSML stage. It 

can be observed that the average MSE when the MSML stage is operating is considerably 

larger than in the LMMSE stage. The reason is that the LMMSE method uses the initial 

estimate of the channel and smoothly modifies it and therefore the corresponding MSE 

smoothly decreases. 

Figure 4-4 and Figure 4-5 show the LOS delay estimated RMSE and MSE, respectively, 

for the urban channel simulation scenario with the parameters introduced in Chapter 3 for 

three different processing methods, namely MSML-only, MSML-LMMSE and LMMSE-

only. 
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Figure 4-3: Moving averaged MSE and adaptive transition threshold when the 

simulated channel changes at some specific instances 
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even if the channel estimated by LMMSE at some specific time is in a good agreement 

with the true channel, when one considerably large path is added to or removed from the 

received signal because of obstacles, this algorithm is not able to deal with the large 

change and therefore a large bias appears in the estimated LOS delay. For the same 

reason, the channel MSE corresponding to the LMMSE method (Figure 4-5) is also 

significantly biased at some time intervals. It is also observed in Figure 4-5 that the MSE 

corresponding to MSML-LMMSE is smaller than both the MSM-only and LMMSE-only 

methods. This observation can be justified by two causes. Firstly, as explained before, the 

MSE corresponding to the LMMSE-only method is biased when the channel changes. 

Secondly, the MSE corresponding to the MSML-only method is larger than the MSML-

LMMSE since, as shown in Figure 4-5, the MSML algorithm does not use any initial 

estimates and results in relatively larger MSE values.  

 

Figure 4-4: Diagrams of LOS time of arrival estimation RMSE with three 

processing methods: (1) MSML, (2) MSML-LMMSE, and (3) LMMSE 
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Figure 4-5: Diagrams of the channel MSE for the three processing methods used in 

Figure 4-4 

4.5 Experimental Results 
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trajectory was during its first 600 m due to the building arrangement, is shown in Figure 

4-7. However the reference trajectory components are still better than 1 m, which is 

sufficient for the current analysis. These reference positions were employed to 

independently assess the positions obtained by the proposed techniques. The computed 

delay and Doppler parameters from the estimated reference data were then passed to a 

block processing software receiver (GNSRx.ss) (Petovello et al 2008, Lin et al 2011) and 

were used to define the centre of the search space.  

 A block diagram of the equipment configuration is shown in Figure 4-9. The GPS signal 

received by the vehicle-mounted antenna was split into two branches. The first branch 

was fed into a National Instrument (NI) RF front-end to be amplified, filtered, down-

converted and sampled at a rate of 12.5 MHz. The second branch was connected to an 

integrated GNSS-INS SPAN
TM

 system to generate the reference positions. Data from the 

GNSS portion of the SPAN system was collected by an NI data acquisition board with a 

sampling rate of 100 Hz. The antenna and the INS unit were mounted on the vehicle’s 

roof. GPS data was also collected under LOS conditions with another receiver at a base 

station (reference) for differential processing. 
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Figure 4-6: (a) Reference trajectory (b) Sky plot of the constellation (c) Speed of the 

vehicle (d) Data collection set up 
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Figure 4-7: An urban area with tall buildings (5 Avenue, Calgary)

The raw GPS samples were then processed using 

assistance information in the form of broadcast ephemeris, raw data bits and a reference 

trajectory are utilized to improve tracking sensitivity. The data bits are wiped off using 

the known data bit information. The sig

trajectory are used to reduce the search space.

includes position and velocity components, are used to generate the nominal code phase 

and carrier Doppler which are then p

of correlators is evaluated.

78   

An urban area with tall buildings (5 Avenue, Calgary)

The raw GPS samples were then processed using GSNRx-ss. In this software receiver, 

assistance information in the form of broadcast ephemeris, raw data bits and a reference 

trajectory are utilized to improve tracking sensitivity. The data bits are wiped off using 

the known data bit information. The signal parameters estimated from the reference 

trajectory are used to reduce the search space. At each epoch, the reference data, which 

position and velocity components, are used to generate the nominal code phase 

and carrier Doppler which are then passed to the signal processing channels where a grid 

of correlators is evaluated. The duration of the coherent integration time and the range 
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and resolution of the delay and Doppler values within the correlation grid can be set and 

the output correlation grids are centered on the true LOS delay that is provided by the 

aiding process. This prior knowledge of the true LOS delay was used to evaluate the 

performance of the approaches discussed. For all of the data processing results in this 

chapter, the coherent integration time was 40 ms. 

Figure 4-10 shows a specific example of different steps of the MSML technique in 

estimating the channel impulse response for the signal of PRN 17. 

 

 

Figure 4-8: Accuracy of reference trajectory 
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Figure 4-9: Data collection architecture 

 

 

 

Figure 4-10: MSML steps in estimating CIR, PRN 17, C/N0 = 25 dB-Hz 
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Since the value of the signal to noise ratio for this time period was small (6 dB), the first 

estimated peak (the highest peak in the ML profile) was actually a noise peak (since the 

delay value corresponding to LOS is known from the reference data, any peak that 

corresponds to smaller delay values is a noise peak). This peak is identified as a noise 

peak when GLRT is run (subplot 1). Since the estimation procedure is run only for visible 

PRNs, the algorithm attempts to find at least one signal component. Therefore, when the 

GLRT failed for the first peak, the algorithm removed this peak and found the next 

highest peak in the ML profile (subplot 2) and then the GLRT was assessed for the 

second peak. Since the GLRT performed successfully passed, the refinement procedure 

was run to estimate the amplitude and phase of the first signal path. As observed in 

subplot 2, it has a 0.2 chips lag from the LOS. At the next step, the effect of the recently 

updated CIR was removed from the signal ACF and the ML profile was formed for the 

second time. The highest peak of the updated profile, which is at a delay of 0.63 chips 

from the reference LOS, was then identified. This candidate also passed the GLRT 

successfully. The refinement stage was again applied to the two detected signal 

components and the refined CIR is shown in subplot 3. Finally, at the fourth run of the 

estimation/detection procedure, the third signal component, which turned out to be the 

LOS, was detected and its parameters were estimated. The final channel after the 

refinement stage is shown in subplot 4. After this refinement, the GLRT test was again 

performed but it failed, which resulted in the termination of the procedure for this part of 

data. 

For each PRN, the discussed MSML algorithm was applied over NML=6 successive time 

snapshots (each equal to the coherent integration time) and, after that, the NML estimated 
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CIRs were averaged to provide an initial estimate for the second mode of processing the 

data which is LMMSE tracking. 

Figure 4-11 shows the estimated ACF, the received ACF and their difference in addition 

to the estimated CIR for PRN 24 after tracking 200 ms of data with the LMMSE 

algorithm. 

 

 

Figure 4-11: Example of the estimated CIR and ACF for PRN 24 

The system keeps processing the data by tracking the channel using the LMMSE 

technique until the moving averaged MSE of the estimate ACF in  (4.8) is greater than the 

adaptively computed transition threshold in  (4.9). Figure 4-12 shows these two 

parameters as a function of time for some of the visible PRNs. 
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Figure 4-12: Moving average MSE and adaptive transition threshold for some of the 

visible PRNs 
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defined threshold is equal to the number of times that the system switches back to the 

MSML stage. In Table 4-1, the percentage of the total time that has been spent in the 

MSML stage ( MSML
T ) during the test time is shown for all visible PRNs. 

 

Table 4-1: Percentage of the total time that is spent in the MSML stage for different 

PRNs  

PRN 7 8 11 15 17 24 26 28 

MSML
[Percentage]T  17.1 9.75 9.50 10.31 3.01 12.43 13.79 1.67 

 

 A long time being spent in total in the MSML stage for a specific PRN compared to the 

other PRNs (such as PRN 7) indicates a poor signal quality for that PRN (low signal to 

noise ratio or large number of multipath components). 

Figure 4-13 shows the histogram of the number of detected paths for different PRNs 

during the test time. To each histogram, the approximately closest Poisson PDF curve has 

been fitted (using a second order curve fit). The corresponding mean values of the 

Poisson PDFs (
p

λ ) are shown in Table 4-2. 
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Figure 4-13: Histogram of the number of detected paths during the MSML 

procedure for different PRNs   

 

Table 4-2: Mean of fitted Poisson distribution curve for different PRNs 

PRN 7 8 11 15 17 24 26 28 

p
λ  3.3 2.6 1.6 2.1 1.4 1.2 2.5 2.6 

Elevation 

[degrees] 

20-25 50-55 30-35 25-30 30-35 25-30 45-50 80-90 
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distribution PDF curve. However the corresponding values of the PDF mean parameter is 

different for different PRNs.  

Table 4-3 tabulates the Poisson distribution mean values measured by Jahn et al (1996) 

for urban environments as a function of satellite elevation angles. 

 

Table 4-3: Measured Poisson distribution mean values for the number of paths in 

urban areas as a function of satellite elevation angles 

Elevation 

[degrees] 

15 25 35 45 55 

p
λ  1.2 4 3.5 3.6 3.8 

 

Comparing Table 4-2 to Table 4-3, it can be observed that although there seems to be a 

relation between the elevation angles and the number of paths, perhaps this parameter is 

not the only parameter that affects the distribution of the number of paths. For example, 

PRNs 11, 17 and 24 are very close to each other in elevation angle and their 

corresponding detected numbers of paths are also very close.  On the other hand, PRN 28 

is very close to zenith and the detected number of paths for this PRN is very close to PRN 

26 which is located at a very different elevation angle. Therefore, the azimuth of the 

satellites and the orientation of the streets with respect to the surrounding buildings also 

affect these statistical results. Table 4-3 does not include elevation angels above 55
°
and 

therefore it is not possible to compare the two tables for PRN 28. In general, for most 

PRNs, except PRN 7, the mean of detected number of paths is smaller than the measured 

values by Jahn et al (1996). The reason is that the very weak multipath components are 
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not detectable by the estimation/detection algorithms discussed in this chapter and in 

Chapter 3. However, the effect of these very weak components on the final ranging error 

is normally insignificant. 

Since the center of the delay range corresponds to the true LOS delay obtained from the 

reference trajectory, the distance of the estimated LOS to the center of the delay range 

obtained by the proposed algorithm in unit of metre determines the pseudorange error for 

the corresponding PRN at the current epoch. Figure 4-14 shows the pseudorange 

estimation errors computed by the proposed algorithm for all visible PRNs and the results 

are compared with the estimation errors produced by some of the classical DLLs 

introduced in Chapter 2, such as narrow correlator (NC), early-late-slope (ELS) or double 

delta correlator and high resolution correlator (HRC). In Figure 4-15, the RMS values of 

these pseudorange estimation errors are compared. 

The comparison of the pseudorange estimation errors computed by different techniques 

from Figure 4-15 shows that the RMS values of the estimation errors produced by the 

MSML-LMMSE algorithm is considerably smaller than the ones produced by the 

correlation-shape based DLLs for all of the PRNs. This improvement in estimation 

accuracy is at the cost of the additional computation load for estimating the CIR in the 

MSML stage of the algorithm. In fact, the three correlation-based DLLs have lost lock on 

the signal in most parts of the data during the first 600 m of the trajectory due to high 

buildings and severe multipath. Among the three conventional DLLs, the HRC has 

almost the best performance (for all of the PRNs except PRN17). The correlator spacing 

parameters for the DLLs were set to 0.13 and 0.26 chips. The RMS values of the 
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estimation error produced by the two double delta correlator techniques (HRC and ELS) 

are slightly smaller than the ones produced by NC.  

 

Figure 4-14: Comparison of pseudorange estimation errors 
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Figure 4-15: RMS values of pseudorange estimation errors 

The estimated pseudoranges for all visible satellites were then used in the computation of 

the positions of the receiver (trajectory). Figure 4-16 shows the position errors for the 

four discussed techniques and the corresponding RMS values are compared in Figure 4-

17. As it was expected from the pseudorange error diagrams, the position solution 

produced by the MSML-LMMSE algorithm is considerably improved compared to the 

conventional techniques. It is important to mention again that this improvement is 

obtained at the cost of a large computational load. Although the complexity of the MSML 

algorithm is slightly smaller than similar ML-based methods, it is still much larger than 

conventional DLLs such as the ones in Figures 4-14 to 4-17. 
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In Chapter 5 a new class of estimation algorithms will be introduced to impose a 

considerably smaller computational load to receiver but they are comparable in terms of 

estimation performance to the ML-based techniques.   

 

Figure 4-16: Position errors 
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Figure 4-17: Comparison of position errors RMS values 

4.6  Summary 

A real-time channel estimation /tracking receiver structure was introduced to compensate 

for the effect of multipath in urban navigation applications. The proposed algorithm 

changes the mode of the operation of the receiver adaptively based on the severity of the 

variations of the wireless channel to make a trade-off between the complexity and 

reliability of the system. The simulation and data processing results demonstrated the 

effectiveness of the proposed algorithm in reducing the values of bias in estimated 

ranging and position solutions compared to the conventional delay lock loops.
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Chapter Five: Adaptive Equalizers 

5.1 Introduction 

In the previous chapters, the problem of LOS delay estimation was pursued through 

direct estimation of the multipath channel by means of some optimal estimation 

techniques. In this chapter, however, this problem is investigated through a different class 

of techniques based on adaptive equalization of the multipath channel. Using this class of 

techniques, instead of direct estimation of the multipath channel, its resulting distortion 

on the received GNSS signal is compensated for by passing the signal through an 

adaptive filter and then the LOS delay is estimated from the equalized signal.  

The optimal algorithms introduced in Chapters 3 and 4 have large computational 

complexities as a result of performing matrix inversion procedures. In some applications, 

this level of computational complexity may be expensive or impossible to implement. 

The channel equalization approaches that are introduced in this Chapter are sub-optimal 

techniques that employ a filter structure with relatively small computational complexities. 

5.2 Linear Estimation Problem 

The linear filter which is most often used for equalization has the structure shown in 

Figure 5-1 where 
j

c ’s are the equalizer coefficients. These equalizers are usually used to 

remove the effect of ISI (Inter-Symbol Interference) introduced by the multipath channel 

on the data symbols as a part of the bit detection procedure of digital communication 

systems. For such an application, the input to the filter is the received signal sequence 
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{ }k
v and its output, the estimate of the transmitted symbol { }k

I  which can be expressed 

as 

ˆ ,
K

k j k j

j K

I c v −
=−

= ∑  
(5.1)  

 

Figure 5-1: Linear equalizer 

In this thesis, however, the equalizer filters are employed to compensate for the multipath 

distortion on the autocorrelation sequence of the received signal. Therefore, for the case 

of this application, the input to the filter is the vector of the autocorrelation sequence of 

the received signal ( k
y ) which is a row vector with a length of N and its output is the 

estimate of the ideal autocorrelation function of the LOS signal ( ˆ
k

y ) which is a vector 

with the same size as k
y , which can be expressed as 

ˆ ,
k k

=y y C  (5.2) 

where C is an N by N matrix of the equalizer coefficients. Thus, the problem is to find an 

optimum value for the equalization matrix.  
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In the case of linear equalizers, there are two different criteria for determining the 

equalizer coefficients. These criteria are the peak distortion and the mean square error at 

the output of the equalizer and are introduced in the next sections. 

5.2.1 Peak Distortion Criterion  

To solve  (5.1), the minimization of the worst case of ISI at the output of the equalizer is 

called peak distortion criterion. This cost function can be expressed as (Proakis 1983) 

( )
1

0

,
n K L

j n j

n K j
n

D c c h
= + −

−
=−
≠

= ∑ ∑  (5.3) 

where n
h  are channel impulse response tap coefficients. Consequently, the peak 

distortion cost function for  (5.2) can be defined as 

( ) ,D
Τ′=C h G C  (5.4) 

where ′h  is a row vector with a length of L that contains the CIR tap coefficients on its 

elements except that it has zero on the element corresponding to LOS and the G  matrix 

was introduced by (3.8). The cost functions of  (5.3) and  (5.4) are based on the idea that in 

a distortionless system, the cascade of the channel and the equalizer are equivalent to a 

delta function. The solution to these optimization problems is the so called linear zero-

forcing equalizer which introduces the disadvantage of enhancing the additive noise at 

the output of the equalizer in its effort to compensate for the nulls in the channel 

frequency response (Ding & Li 2001). Hence, this criterion is not commonly used in 

practical systems. 
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5.2.2 Mean Square Criterion  

In the MSE criterion, the equalizer coefficients are adjusted so that to minimize the mean 

square value of the error at the output of the equalizer. Optimization based on this 

criterion is the focus of this chapter.  

For the problem of  (5.2) the cost function for this criterion can be represented by 

( ) ( )( )

( ) ( ){ }
{ }

2
ˆ

,

J E E

tr E

tr E

Η

Η

Η

 = − = − −
 

 = − −
 

 =  

C d y d yC d yC

d yC d yC

ε ε

 (5.5) 

where 
,, LOS kk LOS k

a τ
Τ=d g  in which 

mτg  is the vector of ideal correlation function shifted by 

m
τ  that was introduced by (3.6), 

,LOS k
τ  and 

,LOS k
a are the complex path gain and delay 

parameters associated to the LOS signal at the k-th signaling interval and ε  is the error 

vector and is represented by 

.= −ε d yC  (5.6) 

The equality in  (5.5) implies that in the MSE criterion, the cost function is a quadratic 

function of the equalizer coefficients and can be easily minimized with respect to C. 

Substituting  (5.2) into  (5.5) and taking the derivative with respect to C results in the 

orthogonal equation in mean square estimation and can be represented as (Guo et al 

2006) 

( ) 0.E
Η − = y d yC  (5.7) 
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The expression in (5.7) can be simplified to 

,=RC Γ  (5.8) 

where  E
Η =  R y y  is the Hermitian covariance matrix of the received signal and 

E
Η =  Γ y d . The solution of  (5.8) is 

1

o
,−=C R Γ  (5.9) 

and the residual MSE after substituting  (5.9) into  (5.5) is referred to as min
J  and can be 

represented by 

{ }1

min .J tr
Η −= −

d
R Γ R Γ  (5.10) 

where E
Η =  d

R d d . The solution in  (5.9) involves inverting the matrix R which incurs 

a considerable computational complexity. In the next sections, some recursive 

equalization approaches are introduced to avoid this complexity. 

5.3 Decision Feedback Equalizer 

In an adaptive equalization system with no training data (a blind equalizer), which is the 

case considered in this chapter, a hard decision is applied to the output of the equalizer. 

The output of this decision block is considered as a substitute for the training data in 

evaluating the error sequence. This error sequence is later fed back to the system to 

update the equalizer coefficients. The use of a decision device makes the equalizer a non-

linear device and, thus, susceptible to error propagation. 
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A Decision Feedback Equalizer (DFE), as shown in Figure 5.2, consists of two filters: a 

feedforward filter and feedback filter. In a data communication system, the shorter the 

length of the feedback filter is, the less the error propagation it imposes on the system 

(Ding & Li 2001).  

Herein, the input to the feed forward filter is the correlation sequence of the received 

signal and the input to the feedback filter is the output of the decision block. DFE uses 

previously detected data to subtract their contribution to the distortion in the current data 

to be detected. Therefore, the output of the feedforward filter can be represented by 

ŷ
k

= y
k
C

f
+ �d

k−1
C

b
,  (5.11) 

where �d
k−1

is the output of the decision block at the (k-1)-th time interval, and 
f

C  and 

b
C  are the matrices of the coefficients of feedforward and feedback filters, respectively.  

Given  (5.11), the MSE cost function for the DFE can be represented by  

( )( ) 2
ˆ ˆ .

k k k k k
E E ε

Η − − =
  

d y d y� �  (5.12) 

If the channel response changes, this change is reflected in the error signal, k
ε , since it 

depends on ˆ
k

y  and consequently on k
y  and on the channel response. Hence the filter 

coefficient matrix will change according to the change in the channel. 



 

 

98   

 

 

 

Figure 5-2: Decision feedback equalizer 

Before finishing this section, it is important to note that as the equality in  (5.11) indicates, 

the role of the backward filter is to remove the contribution of the last block of data from 

the equalized estimate of the current block. Although this is an important issue in data 

communication systems in which data units are short symbols, for GNSS signals the time 

interval between two consecutive blocks of data is at least one epoch (one code period). 

As discussed in Chapter 3, the length of the multipath channel is rarely longer than one 

chip for L1 signal and a few chips for the signals with higher chip rates. Hence, in GNSS 

systems two adjacent epochs of data do not impose ISI interference on each other and, 

therefore, the existence of a backward filter is unnecessary in the system. 

5.4 Steepest-Descent Technique 

The steepest-descent methods can be exploited here to solve the optimal MSE solution in 

a recursive fashion to avoid matrix inversion (Haykin 2001). This class of techniques can 

be applied to any other performance criteria as well as MSE, even those that cannot be 
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described in a closed-form optimal solution. Steepest-descent methods are studied in this 

section as the launching pad for the development of adaptive filters in the next sections. 

5.4.1 Steepest-Descent for MSE Criterion 

As represented by  (5.5), the MSE cost function is a scalar-valued quadratic function of C 

and have a unique global minimum at 1

o

−=C R Γwith the minimum value given by 

 (5.10). The objective of this section is to devise a procedure based on ( )J C , and with no 

prior knowledge about the location of its global minimum that starts from an initial guess 

for oC and then recursively improves upon it until converging to oC . Such a procedure is 

represented by the following form: 

1 ,
k k

µ−= +C C P  (5.13) 

where k
C  and 1k−C  denote the guess for oC  at iterations k and k-1, P is an update 

direction matrix and µ  indicates the step-size parameter which is a positive scalar. In 

order to lead the recursive procedure in  (5.13) to convergence, P and µ  should be 

selected so that to enforce the following condition: 

( ) ( )1k k
J J −<C C . (5.14) 

In this way, the value of the cost function will decrease monotonically as the iterations 

run on. Substituting  (5.13) into  (5.5) results in 
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( ) { }

( ) ( ) ( ) ( ){
( ) ( ) ( ){ }
( ) ( ){ }

1 1 1 1

2

1 1 1

2

1 1
2 Re .

k k k k k

k k k k

k k k

k k

J tr

tr

J tr

J tr

µ µ µ µ

µ µ µ

µ µ

Η Η Η

Η Η Η Η Η

− − − −

Η Η Η Η

− − −

Η Η Η

− −

= − − +

= − + − + + + +

= + − + − +

 = + − + 

d

d

C R Γ C C Γ C RC

R Γ C P C P Γ C P R C P

C C R Γ P P RC Γ P RP

C C R Γ P P RP

 

(5.15) 

The equality in  (5.15) can be further simplified by considering the gradient matrix of 

( )J C  as a function of C, which can be expressed as 

( )J Η Η∇ = −
C

C C R Γ . (5.16) 

Using  (5.16),  (5.15) can be re-written as 

( ) ( ) ( ){ } { }2

1 1
2 Re

k k k
J J tr J trµ µ Η

− −
 = + ∇ + C

C C C P P RP . (5.17) 

Therefore, since { }2 0trµ Η >P RP , a necessary condition for satisfying  (5.14) is 

( ){ }1
Re 0

k
tr J −

 ∇ < C
C P . (5.18) 

There are many choices of P that satisfy the inequality in  (5.18), among those the 

steepest-descent methods select the one that follows the general form of 

( )1k
J −

 = − ∇ 
H

C
P B C . (5.19) 

where B is any Hermitian positive definite matrix. A very common choice is B = I  and 

corresponds to the following direction matrix (Sayed 2008)  
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( )1 1k k
J − −

 = − ∇ = − 
H

C
P C Γ RC . (5.20) 

The equality in  (5.20) chooses the direction matrix to point to the opposite direction of 

the gradient matrix, hence the name `steepest-descent’. This choice of P reduces  (5.13) to 

the recursion 

[ ]1 1k k k
µ− −= + −C C Γ RC . (5.21) 

As mentioned, the inequality in  (5.18) is only a necessary but not a sufficient condition to 

guaranty the convergence of C. Therefore, the convergence of the recursive algorithm 

also depends on the choice of the step-size µ  that will be discussed in the next section. 

5.4.2 Condition on Step-Size for Convergence 

The recursion equation in  (5.21) can be re-written in an alternative form to represent the 

recursion of the weight error matrix k o k
∆ = −C C C . Subtracting both sides of  (5.21) 

from oC results in 

[ ]

[ ]

[ ]

[ ]

1 1

1 1

1 1

1

k k k

k k o

k k

k

µ

µ

µ

µ

− −

− −

− −

−

∆ = ∆ + −

= ∆ + + ∆ −

= ∆ + + ∆ −

= − ∆

C C Γ RC

C Γ R C RC

C Γ R C Γ

I R C

. (5.22) 

The equation in  (5.22) is a homogenous difference equation with coefficient matrix 

[ ]µ−I R . On the other hand, since R is a positive definite Hermitian matrix, it has an 

eigen-decomposition representation as 



 

 

102   

 

= H
R UΛU , (5.23) 

where Λ  is a diagonal matrix with positive entries which are the eigenvalues of R, 

{ }n
diag λ=Λ and U is a unitary matrix, that means 

Η Η= =UU U U I . The columns of U 

are the eigenvectors of R. Substituting  (5.23) into  (5.22) and multiplying the both sides in 

H
U  from left results in the following expression: 

[ ] 1k k
µ −= −Z I Λ Z , (5.24) 

where 
k k

Η= ∆Z U C  is the transformed weight matrix. Given that j

k
Z and j

k
∆C denote the 

j
th

 column of k
Z and k

∆C respectively,  (5.24) leads to j j

k k

Η= ∆Z U C . Therefore, j

k
Z  

uniquely determines j

k
∆C , since ( ) ( )

2 2
j j j j j j

k k k k k k

Η

∆ = ∆ ∆ = =
H

C C C Z Z Z . The same 

statement is valid about the rows of the two matrices. Furthermore,  (5.24) can be re-

written as 

[ ] ( ) [ ]1
, 1 ,

k n k
n j n jλ −= −Z Z , (5.25) 

where [ ],
k

n jZ is the (n,j)
th

 element of k
Z and consequently  

[ ] ( ) [ ]
1

1, 1 , , 0
k

k n
n j n j kµλ

+

−= − ≥Z Z . (5.26) 

where [ ]1
,n j−Z  is the initial value of [ ],

k
n jZ . Therefore, the necessary and sufficient 

condition to enforce the elements of k
Z  and consequently, the elements of k

∆C  tend to 

zero regardless of the initial condition is: 



 

 

103   

 

1 1, for all 1, 2,...,
n

j Nµλ− < = . (5.27) 

The condition in  (5.27) is equivalent to choosing µ  such that (Sayed 2008) 

max0 2µ λ< <  (5.28) 

where maxλ denotes the largest eigenvalue of R. Thus  (5.24) and  (5.27) indicate that 

convergence occurs when 1 1
j

µλ− < . However, if the difference between the smallest 

and the largest eigenvalues of R is large, even assigning a value close to the upper bound 

given by  (5.28) to µ  does not result in a desirable rapid convergence. The reason is that 

in this case, the convergence rate of the recursive algorithm will be defined by the 

smallest eigenvalue. Therefore, the convergence rate of the recursive algorithm depends 

on the ratio of the largest to smallest eigenvalues ( max minρ λ λ= ). At small values of this 

ratio, a convergence can be obtained by proper selection of µ .  

It has been also shown by Widrow (1975) that in order to have the excess MSE 

introduced by noise, J∆ , smaller than minJ , µ  should be smaller than the ratio 

( )0 0

2

N N p+
where ( )0 0N p+ is the received signal plus noise power. Moreover, time 

variations of the statistics of the channel incur a third term to the total MSE. The reason is 

that when channel varies with time, the minimum of ( )J C  surface and the corresponding 

optimum coefficients will be also time-variant. Therefore, the steepest descent algorithm 

attempts to follow the moving minimum in the N-dimensional space but it is always 



 

 

104   

 

lagging behind due to its use of the estimated gradient matrix (Proakis 1983). This 

additional MSE due to the variations of the channel statistics, I
J , is referred to as the lag 

error and decreases with an increase in µ  (Proakis 1983). Specifically, the effect I
J  is 

considerable when the time variations of the channel occur rapidly. In such a case, since 

with an increase in the step-size, J∆  increases while I
J  decreases, the optimum choice of 

µ  is where the total error ( min I
J J J J∆= + + ) is minimum.  

It should be noted that for a general cost function, which is not necessarily a quadratic 

function of the coefficients matrix and it may have both local and global minima, proper 

selection of the initial value of the coefficients is crucial. It is also important to remember 

that guaranteed convergence of the SD algorithms regardless of initial values holds only 

for stationary data. Under non-stationary data conditions, the convergence of the 

algorithm is a probabilistic process and depends on many parameters.  

5.4.3 Newton’s Method 

In Section 5.2.1 it was mentioned that any positive-definite choice of the matrix B in 

 (5.19) can enforce ( ){ }1
Re 0

k
tr J −

 ∇ < C
C P , which was proven to be the necessary 

condition for convergence. It was also mentioned that setting B = I  leads to the steepest-

descent variant of  (5.21). However, there are other choices of B that guarantee 

convergence and lead to other steepest-descent algorithms with different properties. One 

useful choice is (Sayed 2008) 
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( )
1

2 1

1k
J

− −

−
 = ∆ = C

B C R . (5.29) 

The resulting steepest-descent recursion would be 

[ ]1

1 1k k k
µ −

− −= + −C C R Γ RC . (5.30) 

Subtracting both sides of  (5.30) from oC  and using  (5.9) results in the following 

coefficients error matrix recursion: 

( ) 11
k k

µ −∆ = − ∆C C . (5.31) 

In contrast to  (5.22), the autocorrelation matrix R does not appear in  (5.31). For this 

reason, the convergence of this algorithm is guaranteed for all choices of the step-size 

that satisfy 0 2µ< < , regardless of the eigenvalues of R.  

In cases where the covariance matrix is close to singular, it is common to employ 

regularization, wherein the Newton’s recursion is to be modified to the following form 

(Haykin 2001): 

( ) [ ]
1

1 1k k k
µ ε

−

− −= + + −C C R I Γ RC  (5.32) 

where ε  is a small positive scalar which is called the regularization parameter and the 

corresponding recursion algorithm is called the regularized Newton’s method. Similar to 

the step-size, the regularization parameter can be iteration dependent. 

There is no doubt that the complexity of the Newton’s method is larger than the steepest 

descent method since it requires a matrix inversion procedure. However, the usefulness of 
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this algorithm will become evident in Section 5.7 when it is used to devise some 

remarkable stochastic gradient variants. 

5.5 Transient Behavior  

In this section the evolution of the coefficients matrix and the resulting MSE as a 

function of time is discussed and an expression for the optimal step size is provided. 

5.5.1 Modes of Convergence 

It can be inferred from  (5.26) that the trend of the exponential decay of the element 

( ),n j  of Zk, ( )j

k
nZ , to zero depends on the value of 1 n

µλ− . For instance, when the sign 

of 1 n
µλ− is positive, the convergence to zero occurs monotonically whereas for negative 

values of this term, the decay of ( )j

k
nZ  to zero is oscillatory. For this reason, the 

parameters 1 n
µλ−  are referred to as the modes of convergence. Hence, for each value of

µ , there are N modes of convergence. 

5.5.2 Optimal Step-Size 

It is clear from  (5.26) that among the N modes of convergence, the one with the 

maximum magnitude exhibits the slowest convergence rate and determines the ultimate 

convergence rate of the system. Since different choices of µ  result in different slowest 

modes, it is possible to optimally select the value of µ  so as to minimize the slowest 

mode subject to the condition that 1 1 for all n 1,...,n Nµλ− < = . This optimal value of

µ , denoted by o
µ , should satisfy the following equality:  
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( )min max1 1
o o

µ λ µ λ− = − − ,   (5.33) 

which leads to 

min max

2
oµ

λ λ
=

+
. (5.34) 

By setting the step-size to the value in  (5.34), the system will have two optimal slowest 

modes with identical values but opposite signs which are equal to 

max min

max min

1
optimal slowest modes

1

λ λ ρ

λ λ ρ

− −
= ± = ±

+ +
. (5.35) 

Recall from Section 3.2 that k k
∆ =C UZ  and hence each element of k

∆C is a linear 

combination of the elements of k
Z  and can be represented as 

[ ] [ ] [ ] ( ) [ ] [ ]1

1 1

, , , 1 , ,
N N

k

k k l

l l

n j n l l j n l l jλ −
= =

∆ = = −∑ ∑C U Z U Z . (5.36) 

Therefore, [ ],
k

n j∆C  also tends to zero as k → ∞  if  (5.27) holds and its convergence to 

zero is determined by the slowest convergence mode among { }1
n

µλ− . Furthermore, 

since the convergence rate of the elements of k
∆C  is governed by a combination of 

modes, the choice of o
µ µ=  does not guarantee the fastest possible convergence during 

the entire recursion process. However, after the faster modes die out and the slowest 

mode is dominant, this choice will provide the fastest convergence compared to any other 

choice of µ . 
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It is important to mention here that in some cases it may be desirable to use a time-

varying step-size instead of a constant one in order to control the rate of the convergence 

of the algorithm.   

5.5.3 Learning Curves 

The convergence performance of a steepest-descent algorithm is usually characterized in 

terms of its learning curve. Assuming µ  is selected so that  (5.27) is met, the 

convergence of k
C within the steepest-descent recursion provides a converging sequence 

( ){ }k
J C that monotonically tends to minJ (Haykin 2001) or, in other words, 

( ) { }1

min
as and ,

k o k
k J J tr

Η −→ ∞ → → = −
d

C C C R Γ R Γ . (5.37) 

To demonstrate this, ( )kJ C  can be re-written as 

( ) ( ) ( ){ }
{ }

[ ]

( )
( )

[ ]

min

min

2

min

1

2 1 2

min 1

1

,

1 ,

H

k k o k o

H

k k

N

n k

n

N
k

n n

n

J J tr

J tr

J n n

J n n

λ

λ µλ

=

+

−
=

= + − −

= +

= +

= + −

∑

∑

C C C R C C

Z ΛZ

Z

Z

. (5.38) 

The last expression in  (5.38) confirms that if max2µ λ< ,  (5.37) holds irrespective of the 

initial values and the convergence of ( )k
J C  to minJ is exponential. The evolution of 

( )kJ C  as a function of k, referred to as the learning curve or a priori output estimation 
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error, provides valuable information about the learning behavior of the steepest-descent 

algorithm. 

5.6 Stochastic Gradient Algorithms 

In this section, adaptive filters are developed by introducing the Stochastic Gradient (SG) 

algorithms (Benvensite et al 1980), obtained from steepest-descent algorithms by 

replacing the required autocorrelation and cross-correlation matrices by suitable 

approximations. Different approximations result in different complexities and different 

performances. Substituting the actual gradient matrices by their estimates will lead to 

some random fluctuations in the resultant update directions, referred to as gradient noise. 

However, there are two important advantages in employing the SG algorithms. Firstly, 

they avoid the need to know the exact signal statistics, which are rarely available in 

practice. Secondly, these algorithms provide a tracking mechanism that enables them to 

track the variations in the signal statistics. For these two reasons, the SG algorithms are 

widely used in many applications. Some of the most well-known algorithms of this class 

are the Least Mean Square (LMS) algorithm (Widrow 1960), the Normalized LMS 

(NLMS) algorithm (Haykin 2001), the Affine Projection Algorithm (APA) (Slavakis & 

Theodoridis 2008) and the Recursive Least Squares (RLS) algorithm (Hayes 1996) that 

will be discussed in the next sections. 

5.6.1 The Least-Mean-Square Algorithm 

The simplest approximations to { },R Γ are the instantaneous values as follows:  
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ˆ Η=R y y , (5.39) 

Η=Γ y d . (5.40) 

This is equivalent to simply dropping the expectation operators in  (5.21) and replacing 

the random variables by their instantaneously observed ensembles. Employing this 

approximation, the gradient matrix in  (5.16) will be replaced by 

( )1

H

k k k k k k
J

Η Η

−
 − ∇ ≈ − C

C y d y y C , (5.41) 

and the corresponding recursion equation is 

[ ]1 1k k k k k k
µ Η

− −= + −C C y d y C . (5.42) 

Due to its computational simplicity, the stochastic-gradient approximation in  (5.42) is the 

most widely used adaptive algorithm in practice and is known as the Least Mean Squares 

(LMS) algorithm (Widrow 1960).  

The LMS algorithm in  (5.42) can be regarded as the exact solution (not approximate) to a 

local (as opposed to the global) optimization problem, as described in APPENDIX C. 

Finally, two estimation errors are defined in this context: the a priori estimation error 

vector 

1k k k k −= −e d y C , (5.43) 

and the a posteriori estimation error vector 
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1k k k k−= −r d y C . (5.44) 

It is important to note that since the LMS algorithm is a local optimization approach, as 

opposed to the steepest descent technique which was a global optimization technique, the 

convergence of the algorithm also depends on the choice of the initial values in addition 

to the step-size. 

5.6.1.1 LMS with Decision Feedback 

As mentioned in previous sections, in many practical applications such as the one studied 

in this thesis, there is no training data available to the system, in other words the value of 

k
d is unknown at the receiver side. In Section 5.3, it was shown that DFE-based adaptive 

algorithms are developed to solve this problem by adding a hard decision block to the 

system. This block provides an estimate of the transmitted data 
k

d�  which is used as a 

substitute of k
d  to update the coefficients of the adaptive equalizer filter. 

For the problem studied in this chapter, different structures can be considered for the 

decision block. The simplest choice is to set 
k

d�  as 
, ,ˆ ˆLOS k LOS kk

aτ τ
Τ=d g� where 

,
ˆ

LOS k
τ is the 

delay that corresponds to the maximum of the equalizer output, ˆ
k

y . This strategy is the 

same as the one used as the initial guess of the MEDLL algorithm introduced in Chapter 

3. However, since the output of the equalizer is supposed to be multipath-free in its 

steady state, the best estimate of the LOS peak from this data is the scalar ML estimate 

that was represented by (3.18) in Chapter 3. When using this strategy, the output of the 

decision block still has the form of 
LOS, LOS,ˆ ˆk kk

aτ τ
Τ=d g� in which 

LOS,
ˆ

k
τ  is the delay that 
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corresponds to the maximum of the equalizer output vector as before, but this time 
LOS,ˆ k

aτ

is represented by 

LOS,

LOS,

LOS, LOS,

1

ˆ

ˆ 1

ˆ ˆ

ˆ
k

k

k k

k
a

τ

τ

τ τ

Η −

Η −
=

g G y

g G g
. (5.45) 

Since G is a known matrix, its inverse is also known beforehand and hence the 

computation in  (5.45) does not increase the order of the computational complexity of the 

system. Therefore, for a DFE-based LMS system the recursion equation can be 

represented by 

C
k

= C
k−1

+ µy
k

Η �d
k

− y
k
C

k−1




. (5.46) 

This DFE structure is considered for all the other stochastic gradient algorithms that are 

introduced in the next sections.  

5.6.1.2 Ensemble-Average Learning Curves 

It was mentioned in Section 5.3.4 that the performance of the steepest Descent algorithms 

is characterized by means of their learning curves. Similarly, the performance of a 

stochastic gradient algorithm is evaluated by investigating its ensemble average learning 

curve. 

As shown in Section 5.2.2, the evaluation of ( )kJ C  requires knowledge about R, Γ and 

dR . However, in a stochastic gradient implementation this statistical information is not 

available. In contrast, the learning curve of a stochastic gradient algorithm is computed 

using the a priori estimation error sequence in  (5.43) as follows. First, the algorithm is 
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run for a number of iterations, namely K, so that the convergence is met. The error 

sequence { }ke and the corresponding squared error sequence { }2

ke are then produced. 

This squared error curve in denoted by 

( ){ }2
1

, 0
k

k K< <e , (5.47) 

wherein the superscript (1) indicates the results of the first experiment. The same 

stochastic gradient algorithm is then run for other Ne-1 times using data with the same 

statistical properties (either simulated data or real static data) and with the same initial 

condition. The ensemble average curve is then obtained by averaging over the 

experiments as 

( )
2

1

1ˆ
eN

i

k k

ie

J
N =

= ∑ e , (5.48) 

which is an approximation to the true learning curve. 

5.7 Normalized LMS Algorithm 

In the same way that the LMS algorithm is an approximation to the steepest descent 

recursion in  (5.21), the Normalized LMS (NLMS) algorithm is an instantaneous 

approximation of the regularized Newton’s recursion in  (5.32). Therefore, replacing the 

quantities ( )ε +I R  and ( )1k −−Γ RC  by their instantaneous approximations ( )k kε Η+I y y  

and [ ]1k k k k

Η
−−y d y C , respectively, the following stochastic gradient recursion is 

obtained: 



 

 

114   

 

[ ]
1

1 1k k k k k k k kµ ε
−

Η Η
− −

 = + + − C C I y y y d y C . (5.49) 

This form of NLMS recursion requires inverting the ( )k kε Η+I y y
 
matrix at each iteration. 

However, this inversion can be avoided using the following matrix inversion lemma 

(Graybill 1969): 

( )
2

1
1

21
1

k k k k

k

ε
ε ε

ε

−
−

Η − Η

−
+ = −

+
I y y I y y

y
. (5.50) 

Multiplying both sides of  (5.50) by 
k

Ηy  from the right results in 

2
1 21

2 21
1

k
k k k k k k

k k

ε
ε ε

ε ε

Η−
−

Η Η − Η Η

−
 + = − = 

+ +

y
I y y y y y y

y y
. (5.51) 

Substituting  (5.51) into  (5.49), a simpler equivalent of the NLMS recursion is obtained as 

[ ]1 12k k k k k k

k

µ

ε

Η

− −= + −
+

C C y d y C
y

. (5.52) 

This form of the recursion is referred to as ɛ-NMLS.  Comparing ɛ-NMLS with the LMS 

algorithm illustrates the fact that in the LMS algorithm the correction term to 1k−C  is 

proportional to the norm of 
k

Ηy  . Therefore, an input vector with a larger norm results in a 

more substantial change to 1k−C . Adversely, in the NLMS algorithm the correction term 
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is normalized to the squared norm of k
y . Moreover, the recursive equation in  (5.52) can 

be considered as an LMS recursion with a time-variant step-size so that 
2k

k

µ
µ

ε
=

+ y
.  

5.8 Affine Projection Algorithm 

The LMS and ɛ-NMLS algorithms were obtained by employing instantaneous 

approximation of autocorrelation and cross-correlation matrixes. However, it is possible 

to derive more sophisticated approximations for these two matrices, which will result in 

stochastic gradient approaches with improved convergence properties but at increased 

computational costs. One such approximation uses the K most recent epochs of data in 

the computation of the correlation matrices in which K is a positive integer smaller than 

N. This approximation can be represented by 

1

1ˆ
k

k k

j k KK

Η

= − +

= ∑R y y , (5.53) 

1

1 k

k k

j k KK

Η

= − +

= ∑Γ y d . (5.54) 

The equalities in (5.53) and (5.54) can be represented in a more compact form as 

1ˆ
k k

K

Η=R Y Y , (5.55) 

1
k k

K

Η=Γ Y D  (5.56) 
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where 

1 1

1 1

and

k k

k k

k k

k K k K

− −

− + − +

   
   
   = =
   
   
   

y d

y d
Y D

y d

� �
. (5.57) 

Substituting the approximation in  (5.57) into the Newton’s equation, the following 

recursion will be obtained:  

( ) [ ]
1

1 1k k k k k k k k
µ ε

−Η Η

− −= + + −C C I Y Y Y D Y C . (5.58) 

The recursion in  (5.58) requires inverting a N N×  matrix ( )k k
ε Η+I Y Y . Alternatively, 

the matrix inversion lemma can be invoked to verify that 

( ) ( )
1 1

k k k k k k
ε ε

− −Η Η Η Η+ = +I Y Y Y Y I Y Y , (5.59) 

and the corresponding recursion would be 

( ) [ ]
1

1 1k k k k k k k k
µ ε

−Η Η

− −= + + −C C Y I Y Y D Y C . (5.60) 

This form of recursion requires inverting the smaller K K×  matrix ( )k k
ε Η+I Y Y . This 

matrix is invertible even when 0ε =  since K<N. The recursion in (5.60) is referred to as 

the Affine Projection Algorithm (APA) (Slavakis & Theodoridis 2008). In particular, it 

can be verified that when K=1, the APA algorithm reduces to the ɛ-NMLS algorithm. In 

general, the integer K is referred to as the order of the APA filter. 
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5.9 The RLS Algorithm 

Another example of a stochastic gradient algorithm that employs a more sophisticated 

approximation of the covariance and cross-covariance matrices is the Recursive Least 

Squares (RLS) algorithm (Hayes 1996). This algorithm can be also derived as the exact 

solution to the problem of optimizing the least-squares cost function. However, in this 

chapter it is motivated as a stochastic gradient algorithm.  

The approximation that the RLS algorithm uses for the covariance matrix can be 

represented as 

0

1ˆ
1

k
k j

j j

jk
λ − Η

=

=
+
∑R y y , (5.61) 

which are exponentially weighted sample averages of the instantaneous matrices.  In the 

above equalities, λ  is a scalar that should be selected in the range of 0 1λ ≤� . For the 

special case of 1λ = , the above approximation is equivalent to averaging all the past 

samples up to the present time. When a value smaller than unity is assigned to λ , the 

recent samples are associated with larger weights than the previous ones. This strategy 

enables a tracking mechanism for the adaptive system.  

To better fit the approximation in  (5.61) into the Newton’s equation in  (5.32), it is 

assumed that the step-size and the regularization parameter are chosen as (Sayed 2008) 

11
,

1 1

k

k k
k k

ε
µ ε λ += =

+ +
. (5.62) 
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With these choices, the regularization disappears as time progresses. Substituting the 

approximation in  (5.61) into the Newton’s recursion, the following stochastic gradient 

recursion is obtained: 

[ ]
1

1

1 1

0

k
k k j

k k j j k k k k

j

λ ε λ

−

+ − Η Η

− −
=

 
= + + − 

 
∑C C I y y y d y C . (5.63) 

In order to represent the above recursion in a simpler form, consider the following 

variable change:  

1

0

k
k k j

k j j

j

λ ε λ+ − Η

=

 
Φ = + 

 
∑I y y . (5.64) 

Then it can be easily verified that 

1 1
,

k k k k
λ εΗ

− −= + =Φ Φ y y Φ I . (5.65) 

Now let 1

k k

−=P Φ . Then employing the matrix inversion lemma, the recursion in  (5.65) 

can be represented as 

1
1 11 1

1 11

1

,
1

k k k k

k k

k k k

λ
λ ε

λ

− Η
− −− −

− −− Η

−

 
= − = 

+ 

P y y P
P P P I

y P y
. (5.66) 

Applying  (5.65) and  (5.66) into  (5.63), the RLS recursion equation can be represented as 

[ ]1 1k k k k k k k

Η

− −= + −C C P y d y C . (5.67) 

Implementing the recursion in  (5.67) along with the recursion in  (5.66) provides an RLS 

filter that only requires to have knowledge about { }1 1, , ,k k k k− −y C d P  at each time instant 
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k, in contrast to  (5.63) that required the knowledge about all previous samples together at 

a time. Moreover this form of recursion avoids the matrix inversion in  (5.63).    

5.10 Other Stochastic Gradient Algorithms 

It is important to consider the fact that the idea of employing the instantaneous 

approximations of the steepest descent methods to devise stochastic gradient algorithms 

is not restricted to the quadratic cost functions. Some of the well-known stochastic 

gradient algorithms with non-quadratic cost functions include the Error-Sign LMS (ES-

LMS) algorithm (Ding & Li 2001) that minimizes the absolute value of the error vector 

in  (5.6), the Leaky-LMS algorithm (Mayyas & Aboulnasr 2002) that minimizes 

{ } 2
trα Η + Ε −

 
CC d yC  where is α a positive constant and the Least Mean Fourth 

(LMF) algorithm (Walach & Widrow 1984) that minimizes 
4

Ε −d yC . Among these 

algorithms we only compare the performance of the ES-LMS algorithm to the previously 

introduced SG algorithms in some of the simulations. The recursive equation of this 

algorithm can be represented by (Sayed 2008) 

[ ]1 1
csgn

k k k k k k
µ Η

− −= + −C C y d y C . (5.68) 

In the above, the csgn(x) operator outputs the sign of a complex number r ix x jx= +

defined as 
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( ) ( ) ( ) ( )
1 if 0

csgn sign sign where sign 1 if 0

0 if 0

r i

a

x x j x a a

a

+ >


= + = − <
 =

. (5.69) 

and the csgn of a vector is a vector of the csgn of its entries. 

5.11 Computational complexities 

The computational complexities of the stochastic gradient algorithms introduced above 

are compared in Table 5-1. For computing costs the following general considerations 

have been made: 

1) The summation/subtraction of two vectors with a length of N and complex entries 

requires 2N real scalar summations 

2) The summation/subtraction of two matrices with a size of N N×  and complex 

elements requires 2
2

N  real scalar summations 

3) The inner product of two vectors with a length of N and complex entries requires N 

complex scalar multiplications and N-1complex scalar summations which is equal to 

4N real scalar multiplications and 4N-2 real scalar summations 

4) The multiplication of two matrices with a size of N L×  and L M×  is equivalent to 

an N M× inner product of vectors with the length of L which is equivalent to 

4 L N M× × × real scalar multiplication and ( )4 2L N M− × × real scalar summations 

5) The multiplication of scalar to a matrix with a size of N N×  requires 
22N real 

scalar multiplications 

6) The norm of a vector with a length of N is equal to the inner product of two vectors. 
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7) The outer product of two vectors with a length of N requires 
2

N complex 

multiplications which is equivalent to 
24N  real scalar multiplications and 

22N  real 

scalar summations. 

8) The inversion of a matrix with a size of N N× requires N
3
 summations and N

3
 

multiplications. 

Table 5-1: Comparison of the computational cost of different SG algorithms 

Algorithm Real Scalar 

Summation 

Real Scalar 

multiplication 

Real Scalar 

Division 

Real Scalar 

Sign 

LMS 8N
2
 10N

2
 - - 

NLMS 8N
2
+4N 10N

2
+4N-1 1 - 

APA K
3
+8N

2
K+8NK

2
-

2NK 

K
3
+8N

2
K+8NK

2
 - - 

RLS 4N
3
+16N

2
+2N-1 4N

3
+20N

2
+4N 1 - 

ELMS 8N
2
+4N 10N

2
+4N-1 1 2N 

 

5.12 Simulation Results 

In this section, a set of simulation results is presented to analyze the behavior of the 

introduced SG algorithms and compare their performance under different operational 

conditions. 

In Figure 5-3, the correlation function of the received signal, the output of the equalizer 

and the output of the decision block for four of the most common SG algorithms at three 
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different time instants of a same simulation are shown. In this simulation, the impulse 

response of the channel has totally changed at time index k=200 from the one shown in 

Figure 5-4(a) to the one in Figure 5-4 (b). The first column of the subplots in Figure 5-3 

shows that all of the four algorithms are successfully locked at time index k=20 since the 

decision outputs are correctly aligned to the zero delay lag which here corresponds to 

LOS. In the second column, the shapes of the correlation functions have changed as a 

result of the changes in the CIR. The output of the equalizers (green curves) have been 

adaptively modified in the time duration between k=201 to k=250 so that the decision 

outputs are again correctly aligned to the true LOS delay at k=250. 

 

Figure 5-3: Correct equalization of the correlation function by different adaptive 

algorithms 
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Figure 5-5 shows an example similar to Figure 5-3. This time the CIR has changed at 

time index k=600. Again after 50 epochs all algorithms have converged. However, it can 

be observed in the second column of the figure that in this example, the decision outputs 

of the LMS and NLMS algorithms are not centered on the true LOS delay. This means 

that these two algorithms have converged to a local minimum instead of the global 

minimum. This will result in a bias in LOS delay estimations. This convergence to global 

minima is possible in SG algorithms because they are indeed approximations to the 

steepest descent algorithms. 

The CIRs associated with Figure 5-5 are shown in Figure 5-6. 

 

 

Figure 5-4: CIRs associated to Figure 5-3 
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Figure 5-5: Biased equalization of the correlation function by some of adaptive 

methods 

 

 

Figure 5-6: CIRs associated to Figure 5-5 
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5.12.1 The Effects of Different Parameters  

In this section, the effects of different design parameters on the performance of the 

discussed SG algorithms are investigated through simulations. 

5.12.1.1 The Effect of the Step-Size 

Figure 5-7 shows the learning curves of the LMS algorithm for different values of the 

step-size which are all selected in a range that leads to convergence of the algorithm. The 

value of C/N0 was 40 dB-Hz for this simulation, the integration period was 1 ms, and the 

sampling rate was 20 MHz. This learning curve has been obtained by averaging over 100 

instantaneous curves. 

 

Figure 5-7: Learning curves of the LMS algorithm with different step-size values 

It can be observed in this figure that as the selected value for the step-size increases, the 

convergence rate of the algorithm increases as well. However, any choice of 0.023µ >

would result in divergence of the algorithm. 
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The time constant of convergence for the LMS algorithm can be approximately computed 

as (Haykin 2001): 
{ }sec

1 1

2 2
m

Y
tr R P

τ
µ µ

=� , wherein PY is the tap input power of the 

filter. For this simulation, the time constant should be 1-3 ms ( 35
Y

P � ) which is verified 

by the learning curves in Figure 5-7. 

In Figure 5-8 the RMS errors of LOS delay estimation and the minimum of the cost 

function for the same simulation as a function of the step-size are shown. 

 

Figure 5-8: Averaged RMSE and minJ  as a function of the µ for LMS algorithm 

It is obvious that as opposed to steepest descent algorithms, finding an optimum value for 

the step-size is not quite straightforward in SG algorithms. However, it can be observed 

that both the minJ
 
and RMSE diagrams have a minimum around 0.01µ = . Therefore, this 

choice of step-size is used in all simulations in the following sections.  

The diagram in Figure 5-9 shows the variations of minJ as a function of µ  for the ES-

LMS algorithm. This diagram monotonically increases by increasing the value of µ . For 

a choice of 0.015µ ≥ , the ES-LMS algorithm would diverge. 
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Figure 5-9: Minimum MSE for the sign-error LMS algorithm as a function of step-

size 

 

5.12.1.2 Effect of the Regularization Parameter in ɛ-NMLS 

In this section the effect of the regularization parameter on the convergence behavior of 

the ε-NLMS algorithm is investigated. The simulation scenario is the same as that of 

Section 5.12.1.1. As before, all the curves have been obtained by averaging over 100 

sample learning curves. It is observed that the choice of 0.07ε =  has resulted in the 

fastest convergence and the choice of 0.1ε =  has led to divergence of the algorithm. In 

Figure 5-11 the diagrams of the variation of the RMSE and minJ  as a function of the 

regularization parameter are shown. Again it is observed that the minimum minJ  is 

associated to the choice of 0.07ε = . However, the RMSE of the algorithm seems to be 

monotonically increasing with ε . 
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Figure 5-10: Learning curves of the ɛ-NLMS algorithm for different values of the 

regularization parameter 

 

 

Figure 5-11: Averaged RMSE and Jmin for ɛ-NLMS algorithm as a function of the 

regularization parameter 
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It is obvious that in cases where the statistics of the channel does not rapidly change with 

time, increasing the design parameter K will result in a more accurate approximation of 

the covariance matrices which in turn results in a smaller RMS estimation error and a 

smaller Jmin at the cost of increased computational complexity and sometimes a slower 

initial convergence. All of these results can be verified from these two figures.  

 

 

Figure 5-12: Learning curves of the APA algorithm for different values of K 

 

0 100 200 300 400
0

1

2

3

4

5

6
x 10

-4

M
S

E

Time [ms]

Learning Curves

 

 

K=1

K=5

K=10

K=15

K=20

K=25



 

 

130   

 

 

Figure 5-13: Minimum MSE cost function and RMSE diagrams as a function of K 

for the APA algorithm 

 

5.12.1.4 Effect of λ in RLS 

Figure 5-14 shows the learning curves of the RLS algorithm for different values of λ and 

Figure 5-15 shows the corresponding RMSE and Jmin diagrams as function of λ . It is 

observed in this figures that the choice of 0.97λ =  results in the smallest min
J  and 

slowest convergence. In contrast, the choice of 0.95λ = results in the smallest RMSE 

whereas the corresponding values of averaged min
J  and the convergence rate are still 

relatively small. Therefore, this value of λ will be used in all of the simulations in the 

upcoming sections. It is important to mention here that in selecting a proper value for λ  

the rate of the variations of the channel should be also considered. In a slow varying 

channel, it is possible to set λ very close to unity for improved estimation accuracy. The 

reason is that smaller values of λ will result in associating smaller weights to the past 

data. In contrast, in fast varying channels this parameter can be set closer to 0.9. Setting 

values smaller than 0.85 for λ  may result in instability or divergence of the system. 
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Figure 5-14: Learning curves of the RLS algorithm for different values of λ 

 

Figure 5-15: Averaged RMSE and MSE for the RLS algorithm as a function of λ 

5.12.2 Convergence Comparison 

After setting proper values for the design parameters, the learning curves of the different 

introduced SG algorithms are inter-compared in Figure 5-16 under a slow varying 

channel condition. The value of K was set to 20 for these simulations. The learning curve 

of the ES-LMS algorithm has been compared to the APA and LMS algorithms in Figure 

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6
x 10

-4

M
S

E

Time [ms]

Learning Curves

 

 

λ =1

λ =0.97

λ=0.95

λ =0.9

0.85 0.9 0.95 0.97 1
10

-10

10
-8

10
-6

10
-4

10
-2

λ

J
m

in

0.8 0.85 0.9 0.95 1
15

20

25

30

35

λ

R
M

S
E

 [
m

]



 

 

132   

 

5-17 (because of the different scales of the diagrams a separate figure has been used). It 

can be observed from these two figures that the LMS and RLS algorithms converge at 

considerably faster rates than the other algorithms whereas the ES-LMS algorithm has the 

slowest convergence rate. 

 

Figure 5-16: Comparison between the learning curves of different stochastic 

gradient algorithms 
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Figure 5-17: Comparison between the learning curve of the error-sign-LMS 

algorithm and some other SG algorithms 

 

In Figure 5- 18 the corresponding minimum MSE cost function of the above algorithms 

are compared. It can be observed in this figure that the RLS algorithm has converged to 

the smallest min
J  whereas the ES-LMS algorithm has ended in the largest value of the 

MSE cost function. 
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Figure 5- 18: Comparison between the minimum MSE of different SG algorithms 

 

In Figure 5- 19 the learning curves of the algorithms are compared in fast varying 

channel (Although this simulation does not necessarily represent a realistic fast fading 

channel; it only changes the channel parameters at certain periods to study the response 

of the SG algorithms). In this simulation the simulated channel has been subject to 

serious changes every 200 ms to study if the algorithms are able to go back to 

convergence after losing lock on the data. It can be observed that all of the algorithms 

successfully returned to convergence. However, these rapid variations in the channel 

have led to some jumps in the learning curves of the algorithms. It is also observed that 

the RLS algorithm shows the smallest jumps in its learning curve and, for this reason, this 

algorithm is known to be a good option for tracking the signal in fast fading channels. 
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Figure 5- 19: Response of different SG algorithms to rapid changes in the channel 

5.12.2.1 Effect of Initial Conditions 

The effects of different initial conditions on the behavior of the SG algorithms are shown 

in Figure 5-20. As before, in this simulation the value of C/N0 was 40 dB-Hz, the 

integration period was 1 ms, the sampling rate was 20 MHz and the simulated channel 

had three multipath components with random amplitudes, phases and Doppler shifts 

associated with each component. As it was discussed before, with SG algorithms 
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form of 1 N N
α− ×=C 1  can be used to obtain the convergence where N N×1  is an N N×  all 

ones matrix.  

In all simulations and data processing results in the following section, the choice of 

1 N N− ×=C I  has been used for all algorithms. 

 

Figure 5-20: Effect of different initial conditions on SG algorithm convergence  
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Figure 5-21: Comparison between the LOS estimation RMSE of different SG 

algorithms as a function of C/N0 for a simulated urban channel 

 

 

Figure 5-22: Comparison between the mean MSE of different SG algorithms as a 

function of C/N0 for a simulated urban channel 

20 30 40 50 60
0

50

100

150

200

R
M

S
E

 [
m

]

C/N
0
 [dB-Hz]

Urban

 

 

LMS

NLMS

APA

RLS

ES-LMS

20 25 30 35 40 45 50 55
0

1

2

3

4

5

6
x 10

-4

M
e

a
n

 M
S

E

C/N
0
 [dB-Hz]

Urban

 

 

LMS

NLMS

APA

RLS



 

 

138   

 

The diagrams corresponding to the APA and ALS algorithms in Figure 5-21 show that 

although the RMSE values of delay estimation for these two algorithms for 

C 26dB-Hz0/ Ν <
 

are very large, when C 26dB-Hz0/ Ν ≥
 

these two methods are 

comparable to MLE-based algorithms. As shown in Table 5-1, the computational costs of 

these two algorithms are considerably larger than LMS and NLMS algorithms. Moreover, 

it is observed that the performance of the NLMS algorithm is not as good as the ML-

based methods but not too far away from them. However, the computational complexity 

of this algorithm is much smaller than ML-based methods. 

It can be observed in Figure 5-22 that the averaged MSE corresponding to the RLS 

method is considerably smaller than all of the other methods and the averaged MSE 

corresponding to NLMS is considerably larger than the other methods. 

5.13 Real Data Results 

In this section, data processing results are presented to further compare the performance 

of the introduced SG algorithms under real test field conditions. The data used in this 

Chapter is the same as that used in Chapter 4.  

Figure 5-23 shows the learning curves of the SG algorithms for two visible satellites. 

Several jumps can be observed in the learning curves of all of the SG algorithms.  

Figure 5-24 compares the minimum MSE cost function achieved by different SG 

algorithms for all of the visible PRNs. It is verified from this figure that the smallest 

values of min
J correspond to the RLS algorithm and the largest ones correspond to the 
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NLMS algorithm. Moreover, it can be observed from Figure 5-23 that APA and RLS 

converge very fast whereas NLMS has the slowest convergence rate.  

 

Figure 5-23: Learning curves of different methods in a real urban environment 

 

Figure 5-24: Comparison between the minimum MSE cost function for different SG 

methods under urban conditions 
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Figure 5-25 pseudorange estimation error diagrams for different SG algorithms for some 

of the visible PRNs are plotted and in Figure 5-26, their corresponding RMS values are 

compared.   

 

Figure 5-25: Pseudorange estimation errors for different SG algorithm for some of 

the visible PRNs 
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Figure 5-26: Comparison between the RMSE of the pseudorange estimation errors 

for different SG methods for an urban environment 

 

It can be observed in Figure 5-25 that almost all of the error curves corresponding to the 

LMS algorithm are biased during some parts of the test duration. The reason is that this 

algorithm cannot track sudden changes in the signal and, therefore, it is not suitable for 

equalizing fast varying channels. Figure 5-26 also implies that the performances of the 

RLS algorithm and APA algorithm with K=25 in terms of RMSE are very similar for all 

of the visible PRNs. However, for this value of K, the computational complexity of APA 

is smaller than RLS. In contrast, RLS is much faster than APA in convergence and it 

converges to a smaller value of the cost function.  The NLMS algorithm shows larger 

RMSE compared to RLS and APA and its convergence is slower but its computational 

cost is considerably smaller than the two algorithms. 
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The existence of the jumps in the MSE curves of the SG algorithms in Figure 5-23 

implies that the channel encountered in a vehicular application in an urban environment 

is sometimes a fast varying channel. For example, when the vehicle passes along a tall 

building with a high speed (54 km/h), the wireless channel from some of the satellites to 

the receiver instantly changes. One example of such an area with tall buildings 

corresponds to the time duration between 60 to 120 s of the data in Figure 5-23 and 

Figure 5-25. This part of data relates to the 5 Avenue in downtown of Calgary and was 

shown previously in Figure 4-7. It can be observed from these two figures that this 

duration of data corresponds to large MSE and RMS errors for all of the SG algorithms. 

However, even for this part of data, the error values produced by APA and RLS are 

considerably smaller than the ones produced by LMS. 

5.14 Summary and Conclusions 

In this chapter, some of the algorithms from the class of stochastic gradient approaches 

were adapted to be used for the purpose of GNSS multipath mitigation. The LOS delay 

was then estimated from the equalized signal at the output of the filter. An optimum 

decision block was designed to be used in the feedback loop that adaptively modifies the 

filter coefficients.  

The simulations and data processing results showed that at moderate to high values of 

C/N0, two of this SG algortithms, namely RLS and APA, show LOS delay estimation 

performances that are comparable to ML-based algorithms. Although these two 

techniques are more complex than LMS and NLMS, but their computational costs are 

still smaller than the ML-based algorithms. Among the four techniques RLS converges 
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with the fastest rate and provides smallest steady state cost function error. It was also 

shown that the convergence of the algorithms in this class is sensitive to the choice of the 

initial values of the tap coefficients and their convergence rate is dependent to different 

design parameters such as the step-size parameter. 
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Chapter Six: High Resolution GNSS Delay Estimation for Vehicular Navigation 

Utilizing a Doppler Combining Technique 

 

6.1 Introduction  

In order to improve the accuracy of the delay estimation in severe multipath scenarios 

(e.g. urban environments where the number of signal reflections is normally large and 

some of these might be stronger than LOS), this chapter analyzes high resolution 

subspace based-TOA estimation techniques in an effort to achieve a higher TOA 

estimation accuracy. These techniques estimate the multipath delays in two steps. In the 

first step, a low-resolution channel profile, e.g., a PN correlation profile (Bouchereau et al 

2001) or a frequency response (Li & Pahlavan 2004) is obtained and used to compute the 

signal covariance matrix. Next, the resolution of the channel profile is enhanced by a high 

resolution technique, such as the MUltiple Signal Classification (MUSIC) technique. A 

more precise TOA is thus determined from the first peak detected on the enhanced 

channel profile. This methodology provides an estimation accuracy improvement. 

Subspace based methods require a full-rank signal covariance matrix, which exists if the 

LOS and the multipath reflections are uncorrelated. However, in many cases, the rank of 

this matrix reduces to unity due to signal coherency (Bouchereau et al 2001). Therefore, 

different techniques such as diversity reception have been employed in practice to combat 

signal coherency. Common diversity techniques include antenna diversity, time diversity, 

frequency diversity and polarization diversity. Diversity techniques take advantage of the 

random nature of the radio propagation channel by combining uncorrelated signal 
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versions. However, most of the diversity techniques have been reported in the literature 

to be ineffective for the purpose of signal decorrelation (e.g. Li & Pahlavan 2004). For 

example, in time diversity the path gain coefficients remain unchanged together with path 

delays and in spatial and polarization diversities, radio channels from the transmitter to 

different diversity branches of the receiver are most likely not the same. Bouchereau et al 

(2001) have applied frequency diversity to de-correlate multipath signals. However, most 

of the commercial GPS receivers are single frequency receivers. Furthermore, the 

presence of atmospheric errors decreases the effectiveness of using this diversity (Ziedan 

2011).  

A fast fading wireless channel, where the receiver or the surrounding objects are in 

motion, such that the coherence time of the channel is smaller than the symbol period of 

the received signal (Rappaport 2002), intrinsically provides another opportunity to 

combat the problem of signal coherency. This means that the received signal consists of a 

linear combination of independent frequency shifted copies of the transmitted signal 

(Sadowsky & KafedZiski 1998). These independent copies of the signal produced by the 

wireless channel provide an inherent mechanism (Sayeed & Aazhang 1999) that can be 

exploited for the purpose of signal decorrelation via appropriate signal processing. The 

goal of this chapter is to use a framework to fully take advantage of this opportunity in 

urban vehicular navigation. In this way, a trade-off can be made between the coherent 

integration time of the receiver and the number of available signal copies depending on 

the speed of the vehicle. Herein, the channel is assumed to follow the Rician fading 

model with a few strong multipath components and numerous weak reflections 
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representative of most typical urban environments (Steingass & Lehner 2004). This 

implies that the LOS is assumed to be present but may be weaker than some of the signal 

reflections.  

In this chapter, the Doppler spectrum broadening of the fast fading channel resulting from 

the motion of the receiver is utilized to decorrelate signal reflections and increase the 

rank of the signal covariance matrix in a subspace based multipath delay estimation 

technique. In the proposed algorithm, delay-domain correlator outputs at different 

Doppler frequencies will be combined in the computation of the signal covariance matrix. 

Simulations and real data processing results will be then presented to compare the 

performance of the proposed method with other high performance algorithms. 

6.2 Signal and Channel Model 

This section provides the time-frequency based channel and signal models that underlie 

the development presented herein. The specular multipath channel considered here is 

assumed to be Wide Sense Stationary (WSS). Recall from Chapter 2 that the baseband 

signal at the transmitter side
 ( )s t

 
can be represented by 

( ) ( )b q p

q

s t E b p t qT= −∑  (6.1) 

where Tp is the code period duration, b
E  is the bit energy and 's

q
b  are the navigation data 

bits. ( )p t
 
is the spreading waveform  with the chip interval of c

T and the  autocorrelation 

function of ( )g τ . The signal bandwidth is 
1

c

B
T

≈  and the spreading factor of the system 
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is N
c

=
T

p

T
c

≈ T
p
B�1. The complex baseband signal ( )x t at the output of the channel is 

related to the transmitted complex baseband signal ( )s t  by 

( ) ( ) ( ) ( ),x t h t s t d n tτ τ τ= − +∫  (6.2) 

where ( ),h t τ  is the time-varying impulse response of the channel and ( )n t is zero-mean, 

additive white circular Gaussian noise. The specular multipath channel with time variant 

coefficients can be modeled as  

( ) ( )
1

,

0

,
M

m t m

m

h t τ α δ τ τ
−

=

= −∑  
(6.3) 

where ( ).δ  denotes the Dirac delta function, M is the number of multipath components,  

,m t
α  and m

τ are the complex attenuation factor and the propagation delay of the m
th

 path, 

respectively.  

An equivalent representation of the channel can be described in terms of the spreading 

function ( ),ψ θ τ , defined as  

( ) ( ) 2, , .j t
h t e dt

πθψ θ τ τ −= ∫  (6.4) 

Under the assumption that the observation time (integration time) is smaller than the 

coherence time of the channel, (6.4) will result in 

( ) ( )
1

,

0

,
M

m m

m

θψ θ τ α δ τ τ
−

=

= −∑  
(6.5) 
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where 
2

, ,t

j t

m m
e

π θ
θα α −= ∫ . The spreading function quantifies the time-frequency 

spreading produced by the channel, θ  corresponds to the Doppler shifts introduced by the 

channel temporal variations and τ  corresponds to the multipath delays. The time-varying 

channel impulse response ( ),ψ θ τ is often modeled as a stochastic process and the wide-

sense stationary uncorrelated scatters (WSSUS) model is widely used (Bello 1963). In 

this model, the temporal variations in ( ),ψ θ τ  are represented by a stationary Gaussian 

process and the channel response at different lags are assumed independent (Proakis 

1995). The second order statistics characterizing the channel are given by 

( ) ( ){ }

( ){ } ( ) ( )

1 1 2 2

2

1 1 1 2 1 2

, ,

, .

E

E

ψ θ τ ψ θ τ

ψ θ τ δ θ θ δ τ τ

∗ =

− −
 

 

(6.6) 

The function ( ) ( ){ }2

, ,Eϕ θ τ ψ θ τ=  is called the scattering function (Sadowsky & 

KafedZiski 1998) and represents the distribution of channel power as a function of 

multipath and Doppler shifts. The support of this function over τ denoted by m
T  is the 

delay spread of the channel and its support over θ , denoted by d
B , is the channel’s 

Doppler spread. The Doppler spread of the channel is linearly proportional to the speed 

of the receiver and can be expressed as 
d

v
B

λ
=  (Rappaport 2002) where v is the speed of 

the receiver and λ  is the wavelength of the signal. 
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6.3 Doppler-Delay Representation of Multipath Signal 

Considering the definition in (6.6), the received signal at the receiver consists of a linear 

combination of time shifted and frequency shifted copies of the transmitted signal. The 

Doppler frequency shifted copies of the transmitted signal produced by the fading 

channel (caused by user or scaterer’s motion) provide an inherent mechanism that can be 

exploited to improve the delay estimation accuracy via appropriate signal processing 

schemes. A representation of the received signal that provides a framework for exploiting 

this opportunity can be described as (Sayeed et al 1998) 

( ) ( ) ( ) ( )2

0

,

0 ,

K M
j kt T

m m

k K m

k
x t p t e n t

T

t T

πψ τ τ
=− =

 
≈ − + 

 

≤ <

∑ ∑  

(6.7) 

where dK B T=     and T is the coherent integration period. Considering the assumption 

of the statistical independence of the channel coefficients, ( ),ψ θ τ , the expression in 

(6.7) effectively decomposes the channel into 2 1K +
 
independent flat fading channels by 

appropriately sampling the multipath-Doppler plane. The number of these available 

channel copies is proportional to dB T . For fixed channel parameters, this number is 

proportional to the time-bandwidth product of the signaling waveform. The 

approximation in (6.7) can be made arbitrarily close by increasing the number of terms in 

the summation. However, virtually all the signal energy is captured by 2K+1 Doppler 

components. Using (6.7), the incoming signal after correlation with a replica of the 

modulated PRN code and sampling at the rate of 1
s s

F T=  can be expressed as 
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(6.8) 

where n and i are the delay and frequency indexes respectively, T

s

T
N

T

 
=  
 

 and w  is the 

noise term at the output of the correlator with a variance of 2 0
2

w

s

N

T
σ = . A matrix 

representation for the relation in (6.8) can be expressed as 

,= +Y GΨ W
 

(6.9) 

where Y is a ( )2 1N K× + matrix
 
in which 

[ ],
, ,

n i
y n i=Y

 
(6.10) 

and 
p

s

T
N

T

 
=  
 

. G  is a N M× matrix wherein 

( )( ), ,
n m s

g n m T= −G
 

(6.11) 

Ψ  is the ( )2 1M K× +  matrix described by 

,

1
, ,

m i m

i K

T
ψ τ

− − 
=  

 
Ψ

 

(6.12) 
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and finally W is the ( )2 1N K× +  matrix of the noise samples at the output of the 

correlator with a covariance matrix of 2

w
σ ′=Q G  where ′G  is a L L×  matrix so that 

( )( ),n m s
g n m T′ = −G . 

6.4 Subspace-Based Multipath Delay Estimation 

In the previous section, it was shown that the output of the correlator in a fast fading 

channel can be represented as a matrix of independent samples for different values of the 

delay and Doppler shift. This matrix was shown to be linearly proportional to the matrix 

of scattering function of the channel. In this section, this time-frequency representation of 

the channel is employed to estimate the multipath times of arrival using the MUSIC 

technique. 

In (6.9), every row of the scattering function matrix corresponds to one of the true 

multipath delays ( s
m

τ ). Given that the true multipath delays are not known to the receiver 

beforehand, (6.9) is rewritten for the receiver side considering an equi-spaced search 

region with a duration of { }1
max ,...,

M
τ τ∆ >  including 

s

L
T

 ∆
=  
 

samples so that 

≈ +Y GΨ W� � .
 

(6.13) 

In (6.13), assuming that the sampling period is small enough, the ( )2 1L K× +  matrix Ψ� is 

formed by adding some all-zero rows to Ψ  at the position of delays that do not 

correspond to the true multipath delay. Then, the k-th column of Ψ� , namely 
kΨ
� , that 
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contains the channel impulse response at the frequency shift of 
1k K

T

− −
, by considering 

(6.5), can be expressed as 

1, 2, L,
...

T

k k k k
a a a =  Ψ� ,

 
(6.14) 

in which  

{ }m, 1

,

if ,...,
.

0 otherwise

k s m M

i k

iT
a

α τ τ τ ∈
= 


�

 

(6.15) 

Also G� in (6.13) is a N L×  matrix so that �G
n,m

= g n − m( )T
s( ) . 

Taking these into account, the rows of Ψ�  can be grouped into two sets. The first set 

includes the rows that correspond to the true multipath delays ( m
τ ’s) and the second set 

includes the rest of the rows consisting of zero elements. Consequently, Ψ� can be 

separated into two subsections as ( )1
Ψ�  (with M rows) and ( )2

Ψ�  (with L M− ), 

corresponding to the first and second sets, respectively. 

The MUSIC algorithm uses a coarse estimate of the Fourier transform of the 
k

Ψ� ’s to 

find an estimate for the multipath delays (Li & Pahlavan 2004). Assuming H to be a 

( )2 1L K× +  matrix whose k
th 

column is the Fourier transform of 
k

Ψ� , a coarse estimate 

of this matrix (which can be obtained by a simple spectrum division (Klukas 1997)) is 

expressed as 

ˆ ,′≈ +H FΨ W�
 

(6.16) 
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where F is the L L×  Discrete Fourier Transform (DFT) matrix  so that ,

jkl

L
k l

e
−

=F  and

′W  is the ( )2 1L K× +  noise matrix with a covariance matrix 2

w L
σ′ =Q I , where k

I

indicates a k k×  identity matrix. Considering the two subsections of Ψ� , since the 

elements of 
( )2

Ψ� are zero, (6.16) can be written as 

 

( ) ( ) ( )1 2 1

1 2 1
ˆ ,′ ′≈ + + = +H FΨ F Ψ W FΨ W� � �

 
(6.17) 

where 1F  is a subsection of  F including those columns of  F that correspond to the rows 

of
( )1
Ψ� .The other subsection of F that includes the columns of F corresponding to the 

rows of 
( )2

Ψ� is referred to as 2F . Moreover, since the columns of a DFT matrix are 

orthonormal, it can be shown that 

( )

( )

1 2

2 1

M L M

L M M

Η

× −

Η

− ×

=

=

F F 0

F F 0  

(6.18) 

 where a b×0  stand for a b×  all zero matrix, and the superscript H denotes the Hermitian 

matrix transpose.  Considering (6.18), the estimated autocorrelation matrix of the 

measured data can be expressed as 

2

1 1
ˆ ˆ ˆ H H

w
σ= = +R HH F AF I

 
(6.19) 

where A is a M M×  matrix defined as 

( ) ( )( ) ( ) ( )( )1 1 1 1
,

k KH H

k k

k K

=−

=−

= = ∑A Ψ Ψ Ψ Ψ� � � �
 

(6.20) 
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Eq. (6.18) demonstrates the contribution of the channel frequency response at different 

Doppler frequency shifts in constructing the channel autocorrelation function and 

increasing its rank.  

In rest of this section the Music algorithm is explained for two different cases: where A is 

non-singular and ten singular.   

6.4.1 6.4.1 A is Non-Singular 

MUSIC super-resolution techniques are based on the eigen-decomposition of the 

autocorrelation matrix in (6.19). In the case where A is non-singular ( 2 1K M+ ≥ ), since

1F  has a full column rank, the rank of 1 1

HF AF is M. Therefore, in this case, the L M−  

smallest eigenvalues of R̂  are equal to 
2

w
σ  and their corresponding eigenvectors (EVs) 

are called noise EVs, whereas EVs corresponding to the M largest eigenvalues are called 

signal EVs. Thus, the L -dimensional subspace that contains the signal vectors Ĥ can be 

split into two orthogonal subspaces, known as the signal subspace S
U and the noise 

subspace
N

U , by the signal EVs and noise EVs, respectively. Taking this into account, the 

autocorrelation matrix in (6.19) can be written as 

[ ]
2

2

0ˆ ,
0

SH S w M

S N

Nw L M

σ

σ −

 +  
= =    

  

UΛ I
R UΛU U U

UI  

(6.21) 

where S
Λ  is a diagonal matrix containing the signal eigenvalues on its diagonal. The 

signal and noise subspace matrixes have the following properties: 
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0

H H

S S N N L

H H

N S S N

+ =

= =

U U U U I

U U U U  

(6.22) 

and (6.19) can therefore be rewritten as 

2 2ˆ .H H H

S S S w S S S w L
σ σ= + = +R U Λ U UU U Λ U I

 
(6.23) 

Comparing (6.23) with (6.19) results in  

1 1
.H H

S S S
=U Λ U F AF

 
(6.24) 

Hence, since A was assumed non-singular, the columns of 1F  span the signal subspace 

and are orthogonal to the noise subspace. Therefore, the projection matrix of the noise 

subspace, 
N N N

H=
U U U

P U U , is orthogonal to 1F  which is expressed as 

1
0

N
=

U
P F .

 
(6.25) 

 The equality in (6.25) implies that those columns of F that correspond to the true 

multipath delays are orthogonal to the noise subspace. Thus, the multipath delays,

1,..., M
τ τ , can be determined by finding the delay values at which the following MUSIC 

Super-resolution Delay Profile (SDP) achieves its maximum values, namely 

( ) 2 2

1 1 1

i N i
N i i

i H
H

N

SDP
τ ττ τ

τ = = =
U

U
F P FP F U F

 
(6.26) 

where 
iτF denotes the i-th column of F that corresponds to i s

iTτ = . It should be noted here 

that (6.25), which is the basis of multipath delay estimation by the function in (6.26), 

holds only when the matrix A is non-singular. This is valid when the number of linearly 

independent copies of the signal that contribute to the computation of the autocorrelation 
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matrix, which is the number coarse estimates of CFR on the columns of Ĥ , is larger than 

the number of multipath components. This is how independent estimates of CFR at 

different Doppler frequencies aim to increase the rank of A. It is important to consider at 

this point the problem that arises if A is singular.  

It should be noted at this point that when applying the various diversity techniques, (6.26) 

is used exactly in the same way. The only difference is in the formation of the 

autocorrelation matrix in (6.19). For example, in time diversity the columns of Η̂ are the 

coarse estimates of CFR at consecutive time snapshots with a duration of T and for 

spatial diversity they are the coarse estimate of CFR at the different receiver antennas. 

Spatial-temporal diversity is the same as time diversity when the receiver is in motion 

(Broumandan et al 2011). Taking this into account, in the next section, the experimental 

results for the Doppler combining technique will be compared with the ones for the 

spatial-temporal diversity technique. 

A block diagram of a receiver employing Doppler combining in super-resolution 

multipath delay estimation is shown in Figure 6-1. The delay-Doppler grid of the 

received signal is first formed at the output of the correlator filter. Next, a rough estimate 

of the channel frequency response (CFR) is computed for the signal at each Doppler 

branch (each column of Y in (6.13)) by spectrum division (Klukas 1997).  The resultant 

coarse CFRs are combined using (6.19) to form the channel autocorrelation matrix for 

each distinct peak (the estimated rough CFRs are located on the columns of Ĥ ). Next, a 

singular decomposition (SVD) is applied to the estimated autocorrelation matrix to 
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separate signal and noise subspaces and form the 
NU

P matrix. Finally the super-resolution 

algorithm is used to transform the channel autocorrelation matrix to the super-resolution 

delay profile, as defined in (6.26). The estimate of the LOS time of arrival (TOA) is then 

found by detecting the first peak of the delay profile obtained by applying MUSIC to 

each local maximum of the correlation grid. The final estimate of the TOA will be 

selected as the minimum of the estimated TOAs for all distinct peaks. 

 

 

Figure 6-1: Block diagram of proposed method 

 

 In Figure 6-2, the output of the SDP function is evaluated and plotted for a simulated 8-

path channel profile for different values of the rank of the signal autocorrelation matrix. 

As can be observed, the height of the maxima of the function decreases with a decreasing 

rank of the autocorrelation matrix. This effect can be so severe that at low SNR values, 

the peaks due to noise may be even larger than the peaks due to multipath signals, leading 

to incorrect delay estimation. 
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Figure 6-2: (a) CIR of an 8-path channel profile, (b-d) Normalized outputs of the 

SDP function at SNR values of 20, 10, 5 and 0 dB, respectively 

 

6.4.2 6.4.2 When A is Singular 

Consider the case where the matrix A in (6.19) is singular with the column rank of

2 1M K M′ = + < . In this case, S
U  and N

U  have column rank of M ′  and L M ′− , 

respectively. Since (6.24) still holds, multiplying both sides of this equation by 
NU

P  

results in 

1 1
0.

N

H =
U

P F AF  (6.27) 

By multiplying both sides of (6.27) by 1F  from the right side and using (6.18), one 

obtains 
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1 0.
N

=UP F A  (6.28) 

Moreover, A can be expressed in its singular decomposition form as 

,H

A A A
=A U Λ U  (6.29) 

where the M M ′× matrix 
AU  is the vector of the eigenvectors of A and 

AΛ  is a 

M M′ ′×  diagonal matrix with the singular values of A on its diagonal. Substituting 

(6.29) into (6.28) results in 

1
0

N A
=

U
P F U  (6.30) 

Since the matrix A
U  has the full column rank of M ′ , (6.30) implies that 

NU
P is 

orthogonal to M ′  independent linear combinations of the columns of 1F . In other words, 

the column rank of 1 A
FU  is M ′ , which is the same as the column rank of the signal space.  

This fact results in the conclusion that the projection of the matrix 1 A
FU is equal to the 

projection of the signal space (the columns of 1 A
FU  span the signal space or

{ } { }1 A Sspan span=F U U ), which can be expressed as 

 
1 1

.H H H

A A s s
=F U U F U U  (6-31) 

On the other hand, by substituting H H

N N S S
= −U U I U U  from (6.22) to the denominator of 

(6.26), the SDP function can be rewritten as 

( )
( )

( )

1 1

1

1

i N i i i

i i

i H H H

S S

H H

S S

SDP
τ τ τ τ

τ τ

τ

τ

= =
−

=
−

U
F P F F I U U F

F U U F

 

 

(6.31) 
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 Substituting (6.30) into (6.31) results in 

( )
1 1

1
.

1
i i

i H H H

A A

SDP
τ τ

τ =
− F F U U F F  

 

(6.32) 

Evaluating the normalized SDP function at different values of the delay while 

considering that the columns of F are orthonormal results in 

( )
( ) ( )( )

{ }

{ }

1

1 1

1

1 1

1 1
1 ,...,

1 1

1
1 ,...,

1

m m

i i

i m MHH H H
m m

A A
A A

i

i MH H H

A A

if

SDP

if

τ τ

τ τ

τ τ τ τ

τ

τ τ τ


= > = ∈ − −

= 


= ∉ −

F F U U F F U U

F FU U F F

 

 

(6.33) 

where ( )m

A
U  is the m-th row of A

U . Therefore, the denominator of the SDP function is 

minimized but non-zero at the delays corresponding to the true multipath delay when A is 

not full rank and consequently the SDP function is maximized at these points. In other 

words, in the case where A is rank deficient, the poles of SDP function are no more 

located on the unit circle. As the rank of A becomes closer to the number of multipath 

components, the denominator of the SDP function approaches zero. 

 It should be noted that the above result was derived based on the assumption that the 

columns of F were orthogonal to each other. If instead of the DFT matrix, we had chosen 

F to be the matrix of shifted versions of the ideal autocorrelation function of the PRN 

code, as it is the case in many references (e.g. Bouchereau et al 2001), (6.33) would not 

apply.  In Figure 6-3 these two cases are compared for an 8-path simulated channel. It is 

observed that since the number of diversity branches (NB = 3) is smaller than the number 
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of multipath components (M=7), for the case where the columns of F are the shifted 

version of the PN correlation function and are not orthogonal (SDPC), the resulting 

supper-resolution delay profile does not follow the true simulated channel.  

 

Figure 6-3: Comparison between two cases where the columns of F are orthogonal 

(SDPD) and non-orthogonal (SDPC) 

 

6.5 Experimental Results 

In the previous sections, the possibility of taking advantage of frequency shifted copies of 

the signal in a fast fading channel for the purpose of signal decorrelation in a MUSIC-

based delay estimation technique was discussed. In this section, the performance of the 

proposed estimation technique is assessed by processing the data described in Chapter 3 

where estimated reference data was used to define the centre of the search space by using 

a software receiver. The output file of the software receiver contains a set of adjustable 
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Doppler-delay correlation grids for each time interval equal to the coherent integration 

time. These correlation grids are centered on the true LOS delay which is provided by the 

aiding process.  

The output correlation grids produced by the software receiver were used for the 

computation of coarse CFR estimates by applying simple spectrum divisions at each 

Doppler branch (delay-domain correlation functions corresponding to each Doppler bin) 

and for each time interval. The outer products of each estimated CFR vector with itself 

were then computed and averaged depending on each combination approach to form the 

autocorrelation matrix. In the Doppler combining approach, the self-outer-products of the 

estimated CFRs on B
N adjacent Doppler branches around each distinct peak were 

averaged to form the autocorrelation matrix whereas in the spatial-temporal diversity 

approach, the outer product of the estimated CFRs at the main peak over each NC
N  

consecutive time snapshots (each equal to the coherent integration time) were averaged to 

form this matrix. Therefore, the computation of the autocorrelation matrix based on these 

two techniques can be written as 

( )
1

BN
H

k k k

D i i

i=

=∑R H H  
(6.34) 

 ( )
1

NCN
H

ST n n

n=

=∑R H H  
(6.35) 

where k

D
R  is the autocorrelation matrix computed by the Doppler combing technique for 

the k-th distinct peak, ST
R  is the autocorrelation matrix computed by the spatial-temporal 
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diversity technique and k

i
H ’s and n

H ’s are the vectors of estimated CFRs. The ranks of 

the signal sub-space of k

D
R and ST

R  are smaller than or equal to B
N  and ST

N , 

respectively, and the equality holds only if k

i
H ’s (or n

H ’s) are statistically independent 

(independence of only the magnitudes or only the phases of the element of H ‘s suffices).  

The MUSIC algorithm was finally applied to the estimated autocorrelation matrices to 

form the super-resolution delay profiles (SDP) from which the estimates of the LOS 

times of arrival were obtained. Among all of the peaks in the output SDP that pass a 

threshold equal to the average magnitude of the SDP, the one that corresponds to the 

minimum delay is selected as the LOS signal. The difference between the estimated 

TOAs by the three algorithms discussed above and the one obtained from the SPAN data 

(the centre of the correlation function), measured in units of length (metres), determines 

the estimated pseudorange error. The values of estimated pseudoranges for all of the 

visible satellites were finally used to compute the position solution. 

It is important to notice that, in practice, during the time interval that it takes to compute 

every estimate of the autocorrelation matrix from (6.34) or (6.35) and result in a single 

estimate of the LOS delay, the true value of the delay slightly varies. Therefore, the final 

estimate is indeed an average of the true delay values within this time period. 

Figure 6-4 shows an example of the Doppler-delay correlation function obtained by 

processing the received signal of PRN 15. In this figure, since the coherent integration 

time (120 ms) was longer than the coherence time of the channel, three distinct peaks 

appeared at the correlation surface. These peaks are highlighted in subplot (c). The delay-
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domain autocorrelation functions corresponding to each peak are shown in subplot (b). 

Each of these peaks corresponds to a cluster of multipath signals. The speed of the 

vehicle at the time corresponding to this figure was approximately 9 m/s. For every 

independent peak, 3
B

N =  delay-domain correlation functions around the main peak 

were selected for use in the computation of the CFRs. In Figure 6-5, the super-resolution 

delay profiles that correspond to each of the three Doppler branches of peak 1 in Figure 

6-4 and the SDP resulting from their combination using (6.19) are depicted. As can be 

seen, the curve representing the combination of Doppler branches includes a clear peak at 

the center of the delay range, corresponding to the true LOS time of arrival. 



 

 

165   

 

 

Figure 6-4: (a) Example of a Doppler-delay correlation curve with three distinct 

peaks shown in (c), the delay-domain autocorrelation functions corresponding to 

each independent peak are shown in (b) 

 

Referring to Section 6.2, the maximum number of effective Doppler branches is
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= ≈  , where v   is the average speed and λ  is the wavelength of signal 
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branches and the approximated frequency step size for some different values of coherent 

integration time.  

Table 6-1: Effective numbers of Doppler branches for some different values of T 

Coherent integration 

time (ms) 

Effective value of NB Doppler Step Size 

(Hz) 

120 7 8 

80 5 12 

60 3 16 

40 3 25 

20 1 - 

 

Herein, the range and the resolution of the code delay in the correlation grid were set to 

1±  chips (300 m) and 0.03 chips (10 m) respectively, and the range and the resolution of 

Doppler frequency were set to 28±  Hz and 4 Hz, respectively. Therefore, the size of the 

correlation grid was 61 by 15. For the first analysis, the coherent integration time of the 

software receiver was set to 60 msT = . According to Table 6-1, for this value of coherent 

integration time, the maximum number of effective Doppler branches is NB = 3. In order 

to have comparable results for the Doppler diversity and spatial-temporal diversity 

techniques, the value of NC
N  should be equal to B

N . 

Since a slight overestimation of the rank of the signal subspace in the evaluation of (6.26) 

does not have a significant effect on the output of the function in practice, B
N   and NC

N  

have been considered as the rank of the signal subspace of k

D
R   and ST

R in the 

computation of (6.26).  
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Figure 6-6 shows the estimated pseudorange errors for all visible PRNs, computed by the 

(1) Doppler combining based SDP algorithm (SDPD), (2) SDP based on spatial-temporal 

diversity (SDPST) and (3) the double delta correlator technique. 

 

 

Figure 6-5: SDPs corresponding to each of the three Doppler branches on peak 1 in 

Figure 6-4 and the resulting SDP from their combination  

 

The correlator spacing parameters for the double delta correlator algorithm was set to 0.1 

and 0.2 of a chip (Irsigler & Eissfeller 2003). The coherent integration time for all of the 

techniques was 60 ms but for the double delta algorithm, the signals on every three 

successive time snapshots were again coherently averaged for the sake of comparability 

to the other two combining techniques. 

The vehicle entered the high building zone marked by the yellow rectangle in Figure 4-6 

at 2000 s. Large errors occurred in the estimated pseudoranges for most PRNs as seen in 
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angles, such as PRN 7, were blocked in some parts of the trajectory. The performance 

comparisons of the three techniques in terms of pseudorange errors in Figure 6-6 imply 

that although exploiting the spatial-temporal diversity could slightly improve the 

performance of the subspace based method, this improvement, especially in terms of 

error bias, is not considerable. For example in Figure 6-6, large biases can be observed in 

the values of estimation errors produced by this technique during the time interval 2600-

3200 s for PRN 15.  The reason is that, in a fast fading situation, the wireless channel 

observed from the receiver rapidly changes as the antenna moves in the dense multipath 

environment. For some PRNs such as PRN 15 and 24, even the conventional double delta 

technique outperforms the temporal diversity based SDP. On the other hand, taking 

advantage of only three Doppler branches and combining them in the computation of the 

signal autocorrelation matrix could result in a noticeable decrease of the estimated biases. 

Although the resulted improvement is not dramatic for some PRNs, such as 17, a 

considerable improvement can be observed for PRN 11 and 7. For PRN 28, the 

estimation errors produced by all the three techniques are very small for the entire test. 

The reason is that this satellite was located at the zenith during the test time as shown in 

Figure 4-6, and this results in a strong LOS signal and insignificant multipath 

components. 

In Figure 6-7, the RMS values of the computed pseudorange errors for all available PRNs 

during the yellow area of the test are compared.  Figure 6-8 shows the corresponding 

least squares position solution errors using the three methods and in Figure 6-9, their 

RMS values are compared. 
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Figure 6-6: Values of estimated pseudorange errors obtained with the three 

methods 
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Figure 6-7: Estimated pseudorange error RMS values for the three methods 

 

 

Figure 6-8: Position solution errors computed by the three algorithms 
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Figure 6-9: Comparison of the position error RMS values computed by the three 

methods 
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Figure 6-10: Comparing pseudorange estimation errors for three different values of 

receiver’s coherent integration time   
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Figure 6-11: RMS values of the pseudorange estimation errors in Figure 11 
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and lower channel coherence time, long integrations have an adverse effect. For the 

signals of these satellites, the performance of the receiver can be improved by decreasing 

the coherent integration and increasing the number of Doppler branches instead. 

Therefore, depending on the relative velocity between the receiver and a satellite, 

optimum values for the integration time and the number of diversity branches can be 
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found. For the case of Figure 6-11, if a fixed integration time is to be considered for all of 

the satellites, 60
c

T ms=  seems to be the best choice among the three tested values of the 

integration time. 

 It is important to mention here that for those portions of data that corresponded to the 

sub-urban environment, where the effect of multipath was insignificant, the performance 

of the three techniques in the sense of pseudorange and positioning errors was similar (as 

it can be observed from the first 500 seconds in Figure 6-6 and Figure 6-8) and the 

maximum error produced by all of the three techniques was less than 20 m. The 

complexity of a subspace-based method such as MUSIC (regardless of whether it is 

based on Doppler combining or spatial-temporal diversity) is considerably larger than a 

conventional correlation-shape-based method such as the double-delta-correlator, which 

requires only five correlators. Therefore, the optimum choice of a signal processing 

technique is dependent on the application and environment. Specifically, the type of the 

propagation channel and the expected maximum speed of the mobile device are the main 

parameters that should be considered.  

6.6 Summary and Conclusions 

The idea of exploiting the spectral broadening of the Doppler spectrum in fast fading 

channels for high resolution estimation of multipath delays was explored and an in-depth 

theoretical analysis of the problem was presented. A real data test was used to assess the 

performance of the proposed approach and to compare it to the case where spatial-

temporal diversity is applied and to the conventional correlation based double delta 

correlator method. The data analysis results revealed that the spatial-temporal diversity 
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based subspace method did not provide a considerable advantage over the classical 

correlation based method for most of the tested signals. On the other hand, the Doppler 

combining based method could considerably decrease the amounts of bias in the 

estimated pseudorange values and decrease the total position error. These results indicate 

that proper sampling of the signal correlation function in the Doppler and code phase 

domains and combining the delay-domain outputs at different Doppler bins can be 

effective in combatting the signal coherency and rank deficiency of the autocorrelation 

matrix. In other words, this helps to some extent to compensate for the loss due to the 

limitation of the effective coherent integration time in a fast fading channel. 
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Chapter Seven: Conclusions and Recommendations 

 

This thesis has proposed a number of different multipath mitigation techniques and has 

analyzed their performance under realistic scenarios. This chapter summarizes the results 

and provides the conclusions. Recommendations for possible future work in this context 

are then presented to further extend and develop the proposed methods. 

7.1 Conclusions 

It was shown in Chapter 2 that un-resolvable signal reflections encountered in severe 

multipath environments not only distort the shape of the correlation function of the 

received GNSS signals, but also they may result in shifting its peak. It was shown that 

under these severe conditions the conventional correlation-shape-based delay 

discriminators produce biased estimates. This necessitates the application of some post 

correlation signal processing remedies for multipath high resolution. Performance and 

computation complexity are the two important indicators that are considered in studying 

and evaluating these techniques. 

In this thesis, four different advanced multipath mitigation techniques were analyzed and 

tested. The first class of techniques studied was the maximum-likelihood-based 

estimators for their superior estimation performance.  

In chapter 3, a novel ML-based delay estimation technique was proposed that targeted 

some of the primary limitations of contemporary ML-based algorithms. The proposed 

algorithm, namely MSML, uses one important key point to increase performance. That 

key point is that increasing the number of parameters to be estimated decreases the 
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estimation accuracy of an ML estimator. For this reason the algorithm estimates the 

multipath components one by one in a sequential manner. The novel algorithm adds a 

detection procedure before estimating each path to avoid applying the estimation 

procedure when there is no more significant multipath component and to make sure all 

the present components are estimated. This strategy results in an improved estimation 

performance compared to MEDLL. Moreover, since the structure of the refinement stage 

in MSML is not iterative, it is less complex than MEDLL. MSML considers the effect of 

all of the previously estimated components when trying to estimate a new component. 

This is why its performance is considerably superior to SML that assumes that only one 

component is present every time it tries to find a new path. The simulation results shows 

that the proposed MSML algorithm outperforms the other techniques in the sense of LOS 

delay estimation RMSE, in particular for lower values of signal-to-noise ratios under the 

three urban, suburban and rural simulation scenarios.  

Although the MSML technique is less complex than MEDLL, it is still complex since it 

designed based on maximum likelihood estimation principles to find the parameters of 

each path. For this reason, in Chapter 4 it was suggested to multiplex MSML with a less 

complex tracking approach, namely the sequential LMMSE technique. The idea is that 

the two algorithms switch turns based on rate of the variation of the channel. 

Furthermore, the estimation performance of the system is compared for three different 

cases where MSML-only, LMMSE-only, and MSML-LMMSE techniques are applied. 

Those results show that the performance of MSML-LMMSE in terms of LOS time of 

arrival estimation RMSE is very close to MSML-only technique at values of C/N0 larger 
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than 32 dB-Hz. Moreover, in terms of channel MSE, MSMSL-LMMSE always 

outperforms MSML-only. A set of real data processing results was presented to compare 

the performance of MSML-LMMSE with some classical delay DLLs in terms of ranging 

and positioning errors. Those results also verified the superiority of MSML-LMMSE to 

the classical delay estimation approaches in terms of estimation RMSE. Moreover, in 

Chapter 4, the distribution of the number of paths for the visible satellites was compared 

to the theoretical distributions for the number of paths in urban environments. The results 

show a reasonable fit between the histograms of the number of paths extracted from the 

real data and the Poisson distribution. However, the mean parameters measured from 

these histograms are usually smaller than those predicted in theory. It was concluded that 

the very weak multipath components are not detectable by the discussed 

estimation/detection algorithm. 

In Chapter 5, a set of channel equalization algorithms, stochastic gradient (SG) 

techniques, were modified to be applicable to GNSS multipath mitigation. It was shown 

that the computational complexity of these sets of approaches is smaller than the 

previously discussed ML-based algorithms. However in terms of estimation performance, 

some of them are very close to the ML-based techniques. The simulation results in this 

chapter show that the convergence of SG algorithms depends on the choice of the initial 

value and the step-size. The simulation results for an urban channel scenario showed that 

the RLS and APA approaches outperform the rest of the SG algorithms in terms of LOS 

delay estimation RMSE and minimum MSE cost function. However, these two 

approaches are the most complex ones. It was shown that the LMS algorithm, which is 
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the simplest approach, is not able to track channel variations and produces biased 

estimates when these variations are fast. The NLMS algorithm, however, is a trade-off 

between estimation performance and computation complexity. 

When a receiver is in fast motion, the received signal de-correlates fast in time. This 

phenomenon limits the duration of the effective coherent integration time that the 

receiver can use. However, when a signal shrinks in one of the frequency or time 

domains it spreads in the other domain. This simple rule is the basic idea behind the work 

of Chapter 6.  In this chapter, the Doppler frequency spreading of signals when the 

receiver is in fast motion is used to compensate the performance loss due to reduced 

receiver’s coherent integration time. In other words, the shifted copies of the received 

signal in the Doppler-domain were used in the computation of the correlation matrix to 

enhance the rank of this matrix and improve the estimation accuracy of the sub-space-

based MUSIC algorithm. Although, a sub-space-based algorithm is normally too complex 

to be implemented in a hand-held GNSS receiver, it can be used as a high resolution 

algorithm for the purpose of channel characterization. The data processing results 

presented in this chapter showed that Doppler-combining could make a considerable 

difference in the delay estimation performance of MUSIC as compared to the diversity 

technique (such as temporal or spatial diversity techniques).  

Finally, as a general comparison between all of the algorithms discussed in this thesis, it 

was observed that the ML-based algorithms present the best estimation performance and 

they are the most complex ones. The subspace algorithms are as complex as the ML-

based algortithms but their estimation performance is not as good as the ML-based 
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techniques. On the other hand, the stochastic gradient algorithms impose a considerably 

smaller computational load to the receiver than the ML-based techniques.  However, it 

was shown that at moderate to high values of C/N0, the performance of the RLS and APA 

algorithm was as good as the ML-based techniques. For these reasons, the RLS and APA 

algorithms can be considered as the best trade-off between the LOS delay estimation 

accuracy and system’s complexity.  In Table 7.1, the position estimation RMSE of four 

groups of multipath mitigation techniques for the data explained in chapter four is 

compared. 

Table 7-1: Range of position estimation RMSE for the techniques within different groups of 

multipath mitigation methods 

Method RMSE,  East  [m] RMSE,  North  [m] RMSE,  Up [m] 

Classic DLLs 22-44 34-76 41-125 

SG Algorithms 13-51 27-66 45-98 

MSML-LMMSE 10.1 18.3 41.1 

Subspace 21-36 25-39 44-67 

  

It is important to recall that the software receiver that was applied here for processing the 

data used assistance information such as the data bits and the reference trajectory to limit 

the search space to two chips around the maximum of the received correlation function. 

This limited search space was used for all of the algorithms including the ones used as the 

bench mark to be compared to the proposed algorithms. However, limiting the search 

space might affect different algorithms in different ways and impact the overall 

comparisons. 
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7.2 Recommendations  

Considering the presented work and the experimental results in this thesis, we suggest the 

following recommendations for future work: 

1. In this thesis, simulations and real data tests were limited to GPS L1 signal. 

Although the principles based on which the proposed algorithms were developed 

and the general methodologies are the same for other GNSS signals, different 

modifications and considerations may be required for each case. Modifying the 

proposed methods for other GNSS signals, as well as simulating and performing 

real data tests for these signals, are recommended as further developments and 

confirmation of the research presented herein.  

2. In Chapter 3 it was mentioned that the threshold of detection for the MSML 

approach is set based on a certain value of the probability of false alarm. It was 

suggested that as more multipath components are detected and estimated, the 

probability of false alarm is decreased based on the CDF of Poisson distribution 

to decrease the probability of detection according to the measured statistics of the 

channel. It was shown in this chapter that the mean of this Poisson distribution 

depends on the type of the environment, e.g. Urban, suburban or rural. One 

interesting recommendation for future work can be preparing a set of look-up-

tables that provide the values of the detection threshold as a function of the 

number of the multipath component that is going to be tested through GLRT for 
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different environments. When the receiver has access to these look-up tables, the 

computational complexity of the receiver is greatly reduced.  

3. In Chapter 4, the proposed MSML approach was used to provide a statistical 

characterization for the number of multipath components for a data collected in an 

urban area. In a similar way, the MSML algorithm can be used to characterize 

some other statistics of the channel such as the distribution of the relative delays 

and/or amplitudes of the signal reflection for different environments. 

4. In Chapter 4, the Wiener filter was used to track the estimated channel by the 

MSML approach with low complexity when the channel variations are slow. 

Other low complexity tracking techniques can be used instead of the Wiener 

filter. One very suitable option for a low complexity tracking technique is the 

LMS algorithm introduced in Chapter 5.  It was mentioned in Chapter 5 that the 

only problem with LMS is that it cannot track the fast variations of the channel, 

which is the same issue with LMMSE. However, the complexity of LMS is even 

lower than LLMSE. Therefore, this technique can be reset and initiated by the 

MSML algorithm whenever a sudden change happens in the channel. The same 

methodology that was used in Chapter 4 can be used in this system to switch 

between the two modes of operation of the receiver. 

5. In Chapter 3, the covariance matrix of the noise was estimated and updated 

sequentially as part of the proposed algorithm. This approximation introduces 

some performance loss to the system. The effect of this loss on the performance 

of LOS delay estimation can be studied. 
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6. In was mentioned in Chapter 4 that the length of the sliding window used in the 

computation of the averaged MSE that determines when the transition between 

the two modes of operation takes place, affects the ratio of time durations that the 

system spends in the two modes. This in turn affects the trade-off of between the 

accuracy/reliability of the system and its computational complexity. In the 

simulation and data processing results in Chapter 4 the value of this parameter 

was fixed.  The effect of this parameter can be studied by using simulations and 

real data processing wherein the value of this parameter is changed within a 

reasonable range to figure out whether an optimum value can be found. 

7. In Chapter 6, the effect of Doppler-combining algorithm on the estimation 

performance of the MUSIC algorithm was studied. However, Doppler combing 

can aid any other subspace method in the same way. The effect of this strategy on 

other subspace method such as signal parameters via rotational invariant 

technique (ESPRIT) (Groh & Sand 2011) can be studied. 

8. The received signal on GPS L1 and L2 pass through the same wireless channel 

since they arrive from the same transmitter and are received by the same receiver. 

These two signals can be used as two branches of frequency diversity to enhance 

the de-correlation of multipath components in sub-space algorithms. 
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APPENDIX A:  THE ESTIMATION ACCURACY AND THE NUMBER OF 

PARAMETERS TO BE ESTIMATED 

In this appendix we prove that when the number of parameters to be estimated is and 

therefore the fisher information matrix (FIM) is expanded, the variance of estimation of 

the original parameters decreases. 

Assume that ( )1
I a is the FIM of the original parameters. Then we extend 1a  to 2a  by 

adding more parameters to be estimated. For simplicity and without loss of generality we 

assume that these new parameters have been inserted to end of 1a . Considering the fact 

that the FIM is a symmetric matrix, ( )2I a  can be represented as 

( )
( )

( )
1

2

3

,
T

 
=  
 

I a B
I a

B I a
 (A.1) 

where 3a  is the vector including only the newly added parameters. Therefore, the 

estimation covariance matrix for 2a , 
2a

C , can be represented as (Lu & Shiou 2002, 

Puntanen & Styan 2005). 

( )
( )

( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

2

1

1

3

1 1
1 1 1

1 3 1 3 1

1 1
1 1 1

3 1 3 3 1

.

−

Η

− −
− Η − Η −

− −
− Η − Η Η −

 
= = 
 

 − − −
 
 
− −  

a

I a B
C

B I a

I a BI a B I a B I a B I a B

I a B I a BI a B I a -B I a B

 (A.2) 
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Thus, the part of the covariance matrix that is related to the primary set of the parameters 

is ( )( )
1

1

1

−− Η−I a BA B . We refer to this matrix as 
1

′
a

C . Furthermore, this matrix can be 

rewritten as 

( ) ( )( )

( ) ( ) ( ) ( )( ) ( )

( )( )

1

1 1 1 1

1
1

1 3

1
1 1 1 1

1 1 1 3 1

1

3

−− Η

−
− − Η − Η −

−
Η Η

′ = −

= + +

= + +

a

a a a a

C I a BI a B

I a I a B B I a B I a B I a

C C B B C B I a B C

 (A.3) 

In the second term of (A-3), ( )
1 3

H +aB C B I a  is a positive definite (PD) matrix (because 

both of the FIM matrix and the covariance matrix which is the inverse of FIM matrix are 

PD) and so is its inverse. Therefore, the quadratic form term 

( )( )
1 1 1

1

3

−
Η Η+a a aC B B C B I a B C  has real positive elements on its main diagonal. Hence, 

the diagonal elements of 
1

′
a

C  which are the variances of estimation of the original set of 

the parameters are greater than corresponding diagonal elements of
1a

C  and therefore, the 

variance of estimation of the primary parameters have been increased after inserting the 

new set of the parameters to be estimated. 
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APPENDIX B: GLRT WHEN PREVIOUSLY ESTIMATED PARAMETERS ARE 

ASSUMED KNOWN 

In Chapter 3, the problem of detecting the (m+1)-th multipath component through GLRT 

when the parameters of the first m signal components are considered as nuisance 

parameters was discussed. In this appendix a simplified version of the GLRT presented in 

Chapter 3 is developed which is based on the assumption that at time of performing the 

GLRT for the (m+1)-th path, all of the m previously detected paths have been correctly 

estimated and their parameters can be considered as deterministic.  

A new path (path m+1) is assumed present if the following test ratio passes the threshold: 

(H1) 

( )( )
( )( )

( )( )
1

0

ˆ; ,

;

m

m

m

p H
L

p H
γ= >

y s
y

y
 (B.1) 

where 

( ) ( )
1

ˆ ˆ ,
m

m

i i

i

a g t τ
=

= − −∑y y  (B.2) 

and 

( )

( ) ( ) ( )
( ) ( )

1 1

1

1 1

1

1 1

ˆ ˆ ˆ

ˆ ˆ

ˆ ˆ

m m
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m m

m m

a τ τ

τ τ τ τ

τ τ τ τ
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Η −

+ +

= −

− −
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s g

g Q y g

g Q g
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which is the estimation for next potential signal component wherein 1
ˆ

ma +  is obtained from 

(3.18) . (B.1) can be expanded as 

( )( )
( )( ) ( )( )

( )( ) ( )( )

1

1

1
ˆ ˆexp

2
.

1
exp

2

m m

m

m m

L γ

Η
−

Η
−

 
− − − 
 = >
 

− 
 

y s Q y s

y

y Q y

 (B.4) 

Taking the logarithm of both sides of (B.4) and retaining only the data dependent terms, 

it simplifies to  

( )( ) ( )( ) 1 11
ˆ ˆ ˆ .

2

m m
T γ

Η
− Η − ′= − >y y Q s s Q s  (B.5) 

After substituting ŝ  from (B.3) into (B.5) and simplifying the scalar constant coefficients, 

(B.5) can be represented as 

( )( )

( ) ( ) ( )( ) ( )1 1

1 1
ˆ ˆ
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m m

m m

T

τ τ τ τ γ
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 (B.6) 

Applying the variable change of 
( )( ) ( )1

1
ˆ

m

m
z τ τ

Η
−

+= −y Q g , the sufficient statistics can 

be expressed as ( )T z z zΗ= . z is a complex Gaussian scalar random variable and its 

statistics under the two hypotheses can be expressed as 

( )
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2

1 0

2

1 1 1

0, under
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m

m m
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σ

λ σ
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where ( ) ( )( )1

1 1 1 1m m m m
aλ τ τ τ τΗ −

+ + + += − −g Q g  and 2

1m
σ +  can be obtained as 
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Therefore, ( )T z follows a Chi-squared distribution with two degrees of freedom and can 

be expressed as 

( )
( )

2

2 0

2 2
1 2 1 1

under
~

underm m

T z χ

σ χ λ+ +

 Η


′ Η
∼  (B.9) 

Given (B.9), the probability of false-alarm can be expressed as  

( )

2
2

2 2

1 1
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1 1
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exp .
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m m

m m

T z
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σ σ

γ γ

σ σ

+ +

+ +

 ′′
= > 

 

   ′′ ′′
= = −   

   

 (B.10) 

Thus, for a certain amount of probability of false-alarm, the threshold of detection can be 

determined as 

( ) ( ) ( )1

1 12 ln .m m FAPγ τ τ τ τΗ −
+ +

′′ = − − −g Q g  (B.11) 

Therefore, the presence of the (m+1)-th multipath component is accepted if ( )T z  passes 

the threshold in (B-11). 
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APPENDIX C: LOCAL OPTIMALITY OF LMS 

Given the two different error types introduced in (5.43) and (5.44), the local optimization 

problem is defined as 

( ) ( ){ } ( )2

1 1min subjec to 1
k

k k k k k k ktr µ
Η

− −− − = −
C

C C C C r y e . (C.1)  

The idea behind ( )2
1

k k k
µ= −r y e  is to have

k k
<r e , assuming that µ  is small 

enough to satisfy 
2

1 1
k

µ− <y . To proceed with the illustration, let 1k k
δ −= −C C C , then 

[ ] [ ]
1

1

2

k k k k k

k k k k k k

k k k k

δ

µ

−

−

= −

= − + −

= − + =

y C y C y C

y C d d y C

r e y e

. (C.2)  

Considering (C.2),  0 can be represented as 

{ } 2
min subject to

k
k k k

tr δ δ δ µΗ =
C

C C y C y e . (C.3)  

It is easy to find that one solution to 
2

k k k
δ µ=y C y e is  

o k k
δ µ Η=C y e , (C.4)  

so when both sides of (C.4) are multiplied by k
y , the result is 

2

k o k k
δ µ=y C y e . 

However, there are infinitely many other solutions to (C.3) that can be represented as 

o
δ +C D. Replacing this general solution into the condition in  0 results in: 

( )
2

k o k k
δ µ+ =y C D y e , which after substituting  0 leads to: 0

k
=y D . This means that 
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all solutions to 
2

k k k
δ µ=y C y e  can be obtained by adding a matrix to o

δC which is 

orthogonal to 
k

y . Substituting this general solution in { }tr δ δΗC C results in:  

( ) ( ){ } { } { } { } { }

{ } { }

{ }

0 0

.

o o o o o o

o o

o o

tr tr tr tr tr

tr tr

tr

δ δ δ δ δ δ

δ δ

δ δ
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C C

 

(C.5)  

Therefore, o
δC  is the optimum solution to  0 and leads to: [ ]1 1k k k k k k

µ Η

− −= + −C C y d y C , 

which is the LMS recursion as introduced in  (5.42). 


