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ABSTRACT 

The main focus of this thesis is to develop a practical signal processing method based 

on the synthetic array concept applied to handheld location systems to enhance signal 

detection and parameter estimation in multipath environments. The antenna array is 

synthesized by moving one or two antennas along an arbitrary spatial trajectory while 

snapshot data is being collected. The synthetic array concept is introduced to reduce cost 

and complexity, and to improve receiver portability. The synthetic array is implemented 

for two applications of the antenna array, namely as a diversity system to enhance signal 

detection performance in dense multipath environments, and in the form of an Angle Of 

Arrival (AOA) estimation application.  

Signal reception in indoor environments is susceptible to deep fading and signal 

attenuation. An antenna array utilizing spatial diversity can be implemented to reduce 

fading margins and to improve the signal detection performance. The indoor detection 

performance of narrowband signals based on a single moving antenna operating as a 

synthetic array, as compared to that of a static antenna, is investigated. The synthetic 

array provides a diversity gain through a combination of received signals at each 

synthetic antenna element. The processing gain achievable through spatial combining of a 

synthetic antenna is considered from a general theoretical perspective. The performance 

of the proposed method is theoretically analyzed in terms of the probability of false alarm 

and the probability of detection. Extensive sets of measurements based on CDMA-IS 95 

pilot signals and GPS L1 C/A signals using a static antenna and a synthetic array are used 

to experimentally verify these theoretical findings. 
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In specular multipath environments, in which case the multipath channel is correlated, 

an approach for AOA estimation based on the use of a synthetic array utilizing the 

Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT) 

algorithm is proposed. Taking advantage of the rotational invariance property of the 

ESPRIT algorithm, the antenna array is synthesized by moving a two-channel receiver. 

With this scheme, the synthetic array trajectory estimation, which is normally performed 

by using controllable moving motors or external aiding sensors, is removed. Simulation 

and experimental results verify the applicability of the proposed method.  
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CHAPTER 1: INTRODUCTION 

1.1 Background and Motivation 

The problem of interest in wireless location applications is detecting and estimating 

signal parameters such as the Time Of Arrival (TOA) and the Angle Of Arrival (AOA) 

propagated over a wireless channel (Caffery & Stuber 1998a, 1998b, Caffery 2000). 

Direct Sequence Spread-Spectrum (DS-SS) systems have been extensively implemented 

in variety of positioning systems such as Global Positioning System (GPS) (Kaplan & 

Hegarty 2006). In a DS-SS system, the transmitted signal is modulated with a Pseudo 

Random Noise (PRN) code that is known to the receiver. The property of a PRN 

sequence is that its cross-correlation is almost zero except at the zero lag. The objective is 

to find the instance at which the correlation of the local PRN code and the received signal 

provides the maximum value denoted as a correlation peak. If a transmitter and a receiver 

are synchronized, the estimated correlation peak can be considered as the propagation 

delay between the transmitter and the receiver antennas. Hence, the corresponding 

receiver correlates the received signal with a known PRN sequence to estimate TOA 

(Misra & Ennge 2001). The PRN code acquisition is a procedure to determine the 

received signal code phase with respect to the known replica code. Therefore, to exploit 

the advantages of DS-SS techniques, a receiver must synchronize a locally generated 

code with the received one. The acquisition process involves searching through the 

uncertainty phases of the PRN code (Kim 2004, Shin & Lee 2003). The TOA 
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(equivalently ranging) estimation concept and the correlation function for a 7-chip 

sequence is shown in Figure 1-1. 

 

Figure 1-1: Correlation process and TOA (range) estimation utilizing a 7-chip sequence 
(from http://www.amsat.org/amsat/articles/g3ruh/123.html, last accessed 29June 2009) 

 

TOA estimation of a signal is a fundamental observable in most positioning 

applications (Kaplan & Hegarty 2006, Sayed et al 2005). The position of a Mobile 

Station (MS) in a three-dimensional space can be estimated by four or more independent 

TOA measurements from transmitters that are spatially separated with known locations in 

the vicinity of the MS.  

Multipath is a propagation phenomenon that causes the transmitted signal to be 

received by the receiver from different paths to be characterized by different AOAs, time 

delays and phases. In indoors or in dense multipath environments in the absence of the 

Line Of Sight (LOS) component, the multipath propagation causes deep fades in the 

received signal strength that makes the acquisition process and TOA estimation a 

challenging problem (Caini et al 2004a, 2004b). In urban canyon environments the 
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coexistence of the multipath components along with the desired LOS signal typically 

causes errors in the estimation of the TOA observables, which maps into significant 

position errors. To meet the requirements of applications that require accurate position 

estimation on the part of the MS, lower deviation and bias of the TOA observables is 

required. To achieve this requirement, mitigation of the distortions caused by the 

existence of the multipath components is necessary. 

The use of multiple antennas that exploit the spatial dimension of wireless systems 

has generated much interest in improving the Signal-to-Noise Ratio (SNR) and spatial 

filtering. Multiple antennas are used either in the form of antenna arrays for AOA 

estimation and beamforming (Choi & Shim 2000, Fu et al 2003, Rensburg & Friedlander 

2004a, Seco & Fernández-Rubio 1997) or in the form of antenna diversity systems to 

alleviate the fading loss in dense multipath propagation environments (Rensburg & 

Friedlander 2004b, Parsons 2000). Figure 1-2 shows the AOA estimation and the 

beamforming and null-steering concepts. 

   

Desired 
signal 

(a) (b) 

Interferer 
signal 

 

Figure 1-2: (a) AOA estimation, (b) beamforming concepts 
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In some particular applications such as position estimation with handheld receivers, 

the size and shape of the antenna array limit the applicability of AOA estimation and 

beamforming. In order to overcome the limitations of conventional antenna arrays, this 

thesis proposes a new method to synthesize an antenna array with one or two antennas. 

Instead of using multiple antennas with a multi-channel receiver, which increases the cost 

and complexity of the receiver, the antenna array can be synthesized by moving an 

antenna along an arbitrary spatial trajectory while snapshot data is being collected. The 

synthetic array concept may be implemented as a diversity system to enhance signal 

detection performance in dense multipath environments (Broumandan et al 2009a, 

2009b) or in the form of AOA estimation and beamforming applications (Klukas 1993, 

Jong & Herben 1999, Broumandan et al 2007, 2008b, 2008c). 

 

1.2 Applications of the antenna array in dense multipath fading environments 

In terrestrial or indoor wireless location links, the signal typically propagates from the 

transmitter to the receiver over multiple reflective paths with a random variation in the 

complex amplitude of the received signal (Parsons 2000). When the antenna is located in 

a diffuse multipath scattering environment, fading appears to be a random function of the 

antenna location conforming approximately to the Rayleigh fading statistics with spatial 

decorrelation intervals of less than the signal carrier wavelength (Rensburg & Friedlander 

2004b, Van Trees 2002, Saleh & Valenzula, 1987).  
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(a) (b) 
 

Figure 1-3: (a) Multipath phenomenon, (b) received signal power in multipath 
environments 

 

The multipath scattering nature of the propagation medium causes the received power 

level to fluctuate when the receiver antenna moves as little as half the wavelength of the 

received signal. Hence, acquiring the signal in fading channels becomes a challenging 

problem. Figure 1-3 shows the multipath phenomenon and the received signal power by 

the antenna in a multipath fading channel.  

If the receiver uses a single static antenna, then a substantial fading margin is required 

to ensure reliable signal detection. To reduce the fading margin required, the receiver can 

use multiple spatially separated antennas that exploit the spatial diversity (Kim 2004, 

Shin & Lee 2003, Friedlander & Scherzer 2004) that are inherent properties of discrete 

antenna arrays. Numerous papers have evaluated the detection performance of the 

antenna in a Rayleigh fading channel (e.g. Rensburg & Friedlande 2004b, Hyeon et al 

2008). In (Hyeon et al 2008), a non-coherent combining called phase diversity system has 

been implemented to improve the detection performance of an antenna array for Code 

Division Multiple Access (CDMA) signals in indoor environments. The use of multiple 
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antennas can alleviate the fading problem to some degree by providing a means of 

diversity gain (Rensburg & Friedlander 2004b). Diversity techniques are established 

based on receiving statistically independent signals on each diversity antenna denoted as 

a diversity branch (Blaunstein & Andersen 2002). In practice, this may be implemented 

by utilizing spatially separated antennas in dense multipath environments, which results 

in spatial diversity (Colburn et al 1998, Kim 2004) or utilizing antennas with orthogonal 

polarization that maps into polarization diversity (Narayanan et al 2004). A comparison 

of the spatial diversity and the polarization diversity in the Rayleigh fading channel is 

investigated in (Valenzuela-Valdes et al 2006). The performance of the diversity system 

can be characterized by the correlation coefficient values among the diversity branches 

(Colburn et al 1998, Mahfuz 2008). In a multipath fading environment, the correlation 

coefficient decreases spatially where the decorrelation rate depends on the scatterer 

geometry and the array configuration. If multipath components arrive from a small sector 

in space, the antenna elements should have spacing of order of several wavelengths of the 

carrier frequency to yield spatial diversity gain, whereas in the ring of scatterers 

multipath model, half wavelength spacing is sufficient to ensure spatially uncorrelated 

samples. Hence, spatial correlation is a function of the channel model and the antenna 

spacing. The performance of diversity systems reduces by increasing the correlation 

coefficient among diversity branches (Rensburg 2001). 
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1.3 Application of antenna arrays for multipath and interference mitigation in 
specular multipath environments 

Position estimation in interfered and multipath environments is susceptible to errors 

due to signal attenuation and biases in the TOA estimation (Broumandan et al 2008a). 

Consequently, multipath and interference mitigation techniques are essential for high 

accuracy positioning using TOA observations (Brown & Gerein 2001, Zoltowski & 

Gecan 1995). There are several methods for multipath mitigation. As an example, at the 

arrival of the incoming signals, spatial multipath limiting antennas such as choke rings 

and multiple beam antennas can be used to block the multipath signals from entering the 

receiver. However, the most common approach is the utilization of antenna arrays in the 

context of multipath and interferer cancellation. Because of the robustness of the spatial 

filtering and the beamforming techniques for interference and multipath mitigation, an 

antenna array with a set of multi-channel receivers can be used to enhance signal 

reception. The performance of the spatial filtering and the beamforming techniques in 

improving the TOA measurements have been investigated in many references (Fu et al 

2003, Zoltowski & Gecan 1995). 

The beamforming and null-steering techniques are based on the assumption that the 

array manifold, which is characterized by the direction of arrival of incoming signals and 

array response (phase, gain and sensor geometry), is completely known (Charndran 2006, 

Allen & Ghavami 2006). In this case, the beamforming weights can be estimated 

accordingly to have a desired response for each wave front. If the directions of arrival of 

incoming signals are not known apriori, the array response should be modified 

accordingly to have the capability of receiving signals from any direction. In this case, 
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the array gain approaches zero. Therefore, in the practical application of multipath and 

interference mitigation, the AOA and the array steering vector information should be 

known apriori. In view of computational simplicity and high-resolution performance 

requirements, eigen-decomposition AOA algorithms such as the Multiple Signal 

Classification (MUSIC) (Schmidt 1986) and the Estimation of Signal Parameters via 

Rotational Invariance Techniques (ESPRIT) (Roy & Kailath 1989) have received 

significant attention. 

To overcome the portability issue of the antenna array, the latter can be synthesized 

by moving an antenna within a known trajectory (Jong & Herben 1999). The synthetic 

array concept has been an active research area for multipath and interference mitigation 

during recent years (Pany et al 2008, Soloviev & Van Graas 2009). Jong & Herben 

(1999) have shown an application of synthetic array with a Uniform Circular Array 

(UCA). They have used UCA-MUSIC to determine multipath contributions in wireless 

mobile propagation environments. In Jong (2001) a mechanical lever arm was used to 

synthesize a circular array by using a single rotating antenna with constant speed. In 

order to estimate the trajectory of the moving antenna, remove the hardware complexity 

and generalize the synthetic array signal processing problem for an arbitrary array 

geometry, Broumandan et al (2007) utilized auxiliary sensors called inertial measurement 

units (IMU), which consist of accelerometers and gyros. The problem of the previous 

work of AOA estimation and beamforming in the context of the synthetic array (e.g. Jong 

& Herben 1999, Jong 2001, Broumandan et al 2007) is that the antenna array is typically 

realized by using controllable moving motors or the antenna trajectory is estimated by 

utilizing external aiding sensors which indeed limits applicability of the synthetic array.  
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In this thesis, the advantages of the antenna array processing is sought but without the 

unwieldy hardware implications of a multi-antenna array. Hence, a synthetic array 

consisting of a single or two antennas conformal with the physical constraints of the 

handheld MS device is considered. 

 

1.4 Objectives and novel contributions 

As mentioned before, the size of a multi-element antenna array is incompatible with 

the small form factor of a handheld portable receiver, which is therefore typically limited 

to a single or two antennas. The only means of realizing the potential spatial processing 

gains is to physically translate the antenna as the signal is being captured by the receiver. 

This is equivalent to realizing a spatially distributed synthetic antenna array. The concept 

of a synthetic array based on a single moving antenna has been utilized in wireless signal 

parameter estimation and radar signal processing for many years (Stergiopoulos & Urban 

1992, Jong & Herben 1999).  

The primary objective of this thesis is to develop a practical signal processing method 

for handset-based location systems based on the synthetic array to enhance signal 

detection and parameter estimation in multipath environments. The synthetic array 

concept is considered for two different applications of the antenna array. In the first part, 

the detection performance of the synthetic antenna array in dense multipath fading 

channels where incoming signals are distributed over a large angular spread is 

considered. This problem is addressed in Chapters 3, 4 and 5. The second part deals with 

the AOA estimation problem utilizing the synthetic array where the transmitted source is 
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modeled as a point source. This problem is addressed in Chapters 3 and 6. The major 

original work is summarized as follows: 

 

1.4.1 Signal detection enhancement in fading environments utilizing the synthetic array 

In previous work relating to synthetic array implementation, the antenna trajectory 

has either been mechanically fixed or precisely measured during the signal snapshot 

using accurate inertial navigation devices (Jong & Herben 1999, Broumandan et al 2007). 

However, in the multipath fading scenario, the primary objective is to achieve diversity 

gain for which a rough approximation of the antenna trajectory is sufficient. Hence, 

mechanical constraint devices or precision inertial based sensors are not necessary. A low 

cost and physically small Micro Electro Mechanical Systems (MEMS) based 

accelerometer provides an adequate estimate of the antenna trajectory for the proposed 

method. The motion of the antenna during the signal sampling can be achieved by several 

means. There are two modes to be explored. In the first case, the user deliberately moves 

the receiver such that diversity gain results as described. Application of this would be 

when the user is attempting to acquire signals such as Global Navigation Satellite 

Systems (GNSS) or CDMA cellular network in environments subjected to multipath 

fading. In the second case, user generated motion through head or arm movements as 

well as walking or motion of a vehicle, can be exploited for diversity gain via the 

synthetic array. The user does not generate these motions deliberately to accommodate 

the synthetic array. Thus, the synthetic array in this context uses whatever motion of 

opportunity happens to be available.  
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This thesis proposes a new method for detecting a narrowband signal in a general 

case of the correlated Rayleigh fading (from uncorrelated to totally correlated fading) 

based on the synthetic array concept. The detection performance of a single moving 

channel receiver is compared to that of the equivalent receiver with a static antenna based 

on the diversity gain as a quantifiable metric. The synthetic array processing gain is 

defined as a reduction in the required average SNR for the moving antenna case to have 

the same detection performance as the static antenna. It is shown that if the antenna is 

held at a fixed position during the snapshot interval, then the signal is not subject to 

decorrelation as channel gain remains constant. However, the signal will be subject to 

fading losses, which are statistically large in the Rayleigh fading environment. 

Conversely, if the antenna is translated along some arbitrary trajectory during the 

snapshot interval, then the coherency of the signal will be compromised as the channel 

gain will change randomly but the snapshot data will contain spatial diversity that can 

effectively counter the spatial fading effects. Based on this, it is shown that the tradeoff 

between the increased diversity gain and the loss of signal coherency will result in an 

optimum processing gain.  

The primary assumption of previous work related to spatial diversity is receiving 

uncorrelated samples at each diversity branch that results in the Equal-Gain (EG) 

combining process (Hyeon et al 2008, Wang & Cruz 2001). While this is an optimal 

process for uncorrelated Rayleigh fading, it is not optimal when the fading is spatially 

correlated. However, in the synthetic array context, the uncorrelated spatial sample 

assumption is valid when the trajectory of the moving antenna and channel statistics are 

known. In this thesis the detection performance of the synthetic array in the context of a 
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diversity system for a general correlated Rayleigh fading is investigated. Therefore, the 

achievable processing gain of a synthetic array antenna where the single antenna is 

translated through an arbitrary trajectory of the spatially correlated Rayleigh faded signal 

is analyzed. The net processing gain of the synthetic array based on the optimum 

Estimator-Correlator (EC) combining (Kay 1998) is contrasted with that of the static 

antenna in an equivalently faded propagation environment. The processing gain 

advantage of EC is also compared with the Equal Gain (EG) combining for a range of 

spatial correlation. The sensitivity of the proposed method in terms of trajectory 

estimation errors is also considered. The environment of interest is indoor and dense 

urban areas where there is no well-defined LOS component and the multipath is diffuse. 

In addition, the signal bandwidth is narrow such that it is assumed to be less than the 

coherence bandwidth resulting in unresolved multipath components. The quantitative 

metric that is used for comparison is the SNR required at the receiver to achieve specific 

detection performance goals. That is, target values of the probability of detection (PD) 

and probability of false alarm (PFA) are fixed. The required SNR to achieve this detection 

performance is compared for the synthetic array with the EG and EC combining and the 

static antenna. The required SNR is initially determined theoretically based on the 

assumption of Rayleigh fading. Two operating scenarios are considered for the synthetic 

array in this thesis. In the first case it is assumed that the antenna is almost static in each 

subinterval of data collection and there are some time gaps between different spatial 

samples. This mode is defined as a discrete synthetic array. In the second case, the 

receiver continuously collects data while the antenna is moving and sequentially 

combines received signals based on a specific process. This mode is defined as the 
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continuous synthetic array in this thesis. Subsequently, experimental measurements based 

on CDMA IS-95 and GPS signals received indoor are utilized to partially validate the 

theoretical achievements.  

The main contributions of the signal detection enhancement utilizing the synthetic 

array are summarized as follows: 

- Designing and analyzing detection algorithms for synthetic array processing in a 

Rayleigh fading channel.  

- Evaluating the processing gain of the synthetic array over the static antenna in 

general Rayleigh fading environments. 

- Assessing the detection performance of an optimal detection scheme based on the 

EC detector in fading environments characterized by a ring of scatterers model. 

- Evaluating the detection performance of a sub-optimal detection approach based 

on the Equal-Gain (EG) combiner in a Rayleigh fading channel. 

- Comparing the detection performance and processing gain of the synthetic array 

and the static antenna utilizing the EG and EC combiners for different values of 

the channel correlation coefficient. 

- Determining an optimal extent of the synthetic array and the number of spatial 

samples that provide maximum synthetic array gain and the best detection 

performance. 

- Evaluating the coherent integration loss due to antenna motion in a Rayleigh 

fading environment. 

- Evaluating the channel correlation coefficient for the synthetic array case in the 

continuous mode. 
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- Determining an optimal velocity for the moving antenna in the continuous mode 

that provides the maximum processing gain over the static antenna. 

- Considering the practical implementation issues of the synthetic array in term of 

the accuracy of the trajectory estimation unit.  

 

1.4.2 AOA estimation utilizing the synthetic array  

High-resolution AOA estimation is an important issue in many applications such as 

radar, sonar, spatial filtering and location estimation. The AOA information can be used 

in the form of beamforming or null-steering to enhance the TOA estimation in multipath 

and interference environments (Fu et al 2003, Zoltowski & Gecan 1995) or may be 

utilized to estimate the location of a mobile station (Broumandan et al 2008d). There 

have been several high-resolution AOA estimation methods including the MUSIC 

(Schmidt 1986) and ESPRIT (Roy 1987) algorithms. Although the MUSIC algorithm is 

widely used, it has certain practical implementation issues in comparison with ESPRIT. 

The MUSIC algorithm requires prior calibration of the antenna elements, namely the 

phase, gain and the positions of the elements. In addition, a computationally expensive 

search is required over the processed parameter space (Roy 1987).  

To take advantage of the synthetic array concept and deal with the calibration and the 

moving antenna trajectory estimation problem, this thesis introduces an AOA estimation 

approach based on the synthetic array concept utilizing the ESPRIT algorithm. The 

ESPRIT array structure consists of different doublets, with each doublet composed of two 

identical pattern sensors (Roy & Kailath 1989). The array configuration of the ESPRIT 
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algorithm can be represented by two sub-arrays, with each doublet having a sensor in each 

sub-array. Therefore, each sub-array is the replica of the other one, separated by a known 

physical displacement d. In this scenario, each sub-array consists of sensors with arbitrary 

phase and gain characteristics. The ESPRIT algorithm for parameter estimation does not 

require the relative doublet position information. This structure can be utilized for the 

synthetic array implementation. The ESPRIT algorithm utilizes the rotational invariance 

property which is provided by an array of sensors with a translational invariance structure 

(Roy & Kailath 1989). Utilizing the ESPRIT algorithm in the context of the synthetic array, 

system complexity is reduced to a two-channel (doublet) receiver and removes the 

necessity of using any mechanical moving motors or external aiding sensors. However, the 

orientation of the antenna pair must be maintained as the handheld device is translated. 

This configuration can be installed in any rotationally invariant moving platform.  

The main contributions of AOA estimation based on the ESPRIT algorithm utilizing 

the synthetic array are summarized as follows: 

- Proposing a new approach for AOA estimation based on the ESPRIT algorithm 

which significantly reduces the complexity of the receiver. 

- Evaluating the ESPRIT AOA estimation performance under practical 

implementation limitations. 

- Demonstration of practicality of the proposed method. 

- Experimental results of AOA estimation utilizing the synthetic array in urban 

environments. 
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1.5 Thesis Outline  

The thesis consists of seven chapters that are related to each other in the manner 

shown in the Figure 1-4.  
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Motivation, Background, 
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Figure 1-4: Thesis flow graph 
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The remainder of this thesis is organized in the following way: 

In Chapter 2, the background knowledge for the spatial-temporal array processing 

problem including the signal model received by an antenna array and a beamforming 

approach are introduced. Signal propagation models in different multipath environments 

including the Rayleigh flat-fading channel are discussed. The performances of the 

beamforming technique in different multipath environments in terms of the array gain are 

analyzed. Diversity techniques are introduced as a remedy to alleviate the fading loss in 

dense multipath propagation environments. Finally, a brief overview of the detection 

problem of a complex signal embedded in circular white Gaussian noise is provided. 

Chapter 3 describes the synthetic array system model and wireless propagation 

channels for different multipath scattering environments. The various covariance matrices 

derived for the different signal types that are used in conjunction with the EC detector are 

described. The performance of the EC process in different multipath propagation 

environments is also evaluated.  

In Chapter 4, the detection performance of the moving receiver based on the synthetic 

array concept is compared to that of the equivalent receiver with a stationary antenna for 

the Rayleigh fading environment. Two operating scenarios for implementation of the 

synthetic array, namely discrete and continuous modes, are considered. The synthetic 

array detection procedure based on the EC and EG combiners is demonstrated. The 

processing gain advantage of the moving antenna is thereby quantified in uncorrelated 

and correlated environments. From this, the optimum spatial samples which maximize 

the processing gain of the synthetic array over the static antenna are evaluated. The 
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synthetic array practical implementation issues in terms of the accuracy of the trajectory 

estimation unit are also discussed in this chapter.  

Chapter 5 experimentally verifies the theoretical findings presented in Chapter 4 for 

the discrete and the continuous synthetic array modes in indoor fading environments. 

Two different CDMA signal structures, namely IS-95 and GPS signals are utilized to 

evaluate the synthetic array detection performance in different indoor multipath 

environments. The objective of the experimental measurements in this chapter is to 

determine the processing gain of the synthetic array over the static antenna for a selection 

of typical indoor locations.  

Chapter 6 considers signal detection performance in specular multipath environments 

where a plane wave has an unknown channel gain coefficient and an unknown AOA. An 

AOA estimation algorithm based on the synthetic array concept utilizing the ESPRIT 

algorithm is presented. Practical implementation issues including the array calibration 

and source number estimation are considered. Experimental results based on the 

reception of the downlink CDMA IS-95 pilot signals verify the applicability of the 

proposed method in the context of AOA estimation utilizing the synthetic array in 

specular multipath environments.  

Chapter 7 concludes with the key findings of the above investigations. The limitations 

of the proposed algorithms and recommendations for further investigations are provided. 

Finally, the appendices include some background information on selected relevant 

topics.  
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CHAPTER 2: ARRAY PROCESSING BACKGROUND 

This chapter describes basic definitions and assumptions of the temporal-spatial array 

processing problem which will be referred to extensively in the remainder of this thesis. 

The material represented in this chapter may be found in different array processing 

literature such as Haykin (1985), Pillai (1989), Steinberg (1976), and Johnson & 

Dudgeon (1993). However, the array processing background presented in this chapter 

mainly follows the notation of Van Trees (2002). 

An antenna array consisting of several sensors is utilized to filter signal and noise in a 

space-time field by exploiting its temporal-spatial characteristics and this filtering may be 

expressed as a function of the direction of arrival of impinging signals. The performance 

of an antenna array in terms of spatial filtering depends on several factors such as array 

geometry, number of sensors and signal-to-noise ratio (SNR). First of all, the response of 

an arbitrary geometry array to a plane wave far-field narrowband signal is described. 

Then the beamforming concept as a spatial filter and a main block of the array processing 

is explained. Antenna array performance metrics including array directivity and array 

gain are defined to quantify the beamformer performance in different propagation 

scenarios. In this chapter, signal propagation models in different multipath environments 

including the Rayleigh flat-fading channel which is widely referred to in this thesis are 

also introduced. Since the main focus of this research is dedicated to enhancing detection 

of a narrowband signal in multipath environments, the performance of beamforming 

techniques in different multipath environments are analyzed herein. To alleviate the 
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fading loss in dense multipath propagation environments diversity techniques have been 

widely used in practice. An overview of different antenna diversity techniques is also 

given in this chapter.  

 

2.1 Signal model received by an antenna array 

The coordinate system of interest is shown in Figure 2-1 where   is the azimuth angle 

measured from the x axis, and   is the polar angle with respect to the z axis. It will be 

assumed that the array will consist of M isotropic discrete sample points where the m-th 

sample point or antenna element is denoted as mp , which is a positional vector in the 

 , ,x y z  coordinate frame. This scenario is shown in Figure 2-2. 
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Figure 2-1: Spherical coordinate system 
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Figure 2-2: Spatial sampling by sensors (Van Trees 2002) 

 

The set of M element positions is denoted as 

 1...
T

M  0p p p . 2-1 

The signal received at M spatial sampling points is denoted as  

 
 

 

0

1

,

,

, M

s t

t

s t 

 
   
  

p

s p

p

 . 2-2 

Consider a plane wave propagation scenario in direction of a with a temporal frequency 

of  . If  s t  is the signal received at the origin of the coordinate system, then Eq. 2-2 

reduces to  

 
0

1

( )

,

( )M

s t

t

s t



 

 
   
  

s p   2-3 

where  
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m c
 

T
ma .p

. 2-4 

a is a direction vector defined by 

   
   

 

sin cos

sin sin

cos

 
 



 
    
  

a  2-5 

and c is the propagation speed.  

It is assumed that  , ms t p  is a bandpass signal defined by  

    , 2 Re , , 0,..., 1cj t
m ms t s t e m M  p p . 2-6 

 , ms t p  is the complex envelope and c  is the carrier frequency. It is also assumed that 

 , ms t p  is bandlimited.  

For the plane wave in Eq. 2-3, Eq. 2-6 becomes  

    ( ), 2 Re , 0,..., 1c mj t
m ms t s t e m M     p   2-7 

In this thesis, it is assumed that incoming signals are narrowband implying that the 

reciprocal of a maximum propagation delay across the array is much greater than the 

signal bandwidth, 

max

1
sB

T
  2-8 

where sB  is the bandwidth of the complex envelope and maxT  is the maximum 

propagation delay between two antennas in the array (Van Trees 2002). The narrowband 

assumption justifies  

    , 0,1,..., 1ms t s t m M    . 2-9 



 

 

24

Hence, in the narrowband case, Eq. 2-7 reduces to 

    , 2 Re , 0,..., 1c c mj t j
ms t s t e e m M    p  . 2-10 

In the narrowband signal model, the sensor wise propagation delay is approximated by a 

phase shift.  

A significant portion of the development in this thesis will involve plane waves with 

a propagation vector having a wavelength denoted as  . It is more convenient to define a 

wavenumber vector k  as  

   
   

 

sin cos
2 2

sin sin

cos

 
  
 



 
    
  

k a  2-11 

where a  is a unit vector in the direction of the incoming plane wave. It can be shown that 

the propagation phase difference in Eq. 2-10 is a function of the wavenumber and the 

antenna position: 

T
c m   mk p . 2-12 

Thus, Eq. 2-10 becomes  

    , 2 Re , 0,..., 1
T

cj t j
ms t s t e e m M   mk pp  . 2-13 

Specifically for the incident plane wave, corresponding to a propagation vector k , the 

signal outputs of the antenna elements are  

   , ( )t s t ks p v k  2-14 

where ( )kv k  is denoted as the array manifold vector and incorporates all spatial 

characteristics of the array, for the incident plane wave given as 



 

 

25

 
 

 1

exp

exp

T

T
M

j

j 

 
 

  
 

  

0

k

k p

v k

k p

 . 2-15 

 

2.2 Beamforming concept 

The beamformer is a fundamental building block of an array processor. In 

beamforming techniques, the sensor outputs are weighted with specific complex weights 

to pass desired signals without distortion, while mitigating interference and undesired 

signals (Litva & Lo 1996). Figure 2-3 shows the concept of a narrowband beamformer 

where 0 1 1, ,...,
T

Mw w w    w  is a complex beamformer weight vector. 

+ 

s(t-τ0) *
0w  

*
1w  

*
1Mw   

( )y t  s(t-τ1) 

s(t-τM-1)

 

Figure 2-3: Narrowband beamformer block diagram 
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Basically, a beamformer adjusts the phase and the gain at the output of each sensor to 

provide desirable beam-patterns. Utilizing Eq. 2-14 the output of the array in vector form 

becomes 

( , ) ( ) ( )Hy t s t kk w v k . 2-16 

There are several common criteria used for setting the weights of the beamformer 

depending on constraints and the objectives of optimization (Van Trees 2002). The most 

straightforward application is when there are M antenna elements with simultaneous 

outputs and the objective is to maximize the SNR. A general assumption is that the noise 

entering each element is independent and white Gaussian. Therefore the beamformer is 

essentially a spatial matched filter. The weights of the filter are given by 

( ) kw v k . 2-17 

The beampattern of an array is a critical definition for evaluating the array 

performance. The array beampattern is given for the plane wave propagation scenario, 

which is defined by (Van Trees 2002) as 

2
( , )

( , ) ( )H

k
B   



 


 k
a

w v k . 2-18 

An extremely useful concept with electro-magnetism is that of reciprocity whereby 

the beamformer can also be considered as a transmitting array. Consider a narrowband 

excitation with a frequency of c  . Define Tk  as the steering vector such that 

( ) k Tw v k . Hence, the beampattern generated by the antenna array defined in Eq.2-18 

can be considered as a transmitter radiation pattern. Note that it can also be referred to as 

the steering vector in the receiver mode such that the beampattern is given as 
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 : ( ) ( )H
cB T k T kk k v k v k . 2-19 

Specifically, cB  is denoted as the conventional beampattern. The related power-

pattern is denoted as 

    2
: :cP BT Tk k k k . 2-20 

As it is more convenient to describe these in terms of azimuth and elevation angles 

the power pattern becomes 

    2
, ,cP B     2-21 

where the mapping from  : Tk k  to  ,   is related through the wavenumber vector k  

defined earlier. 

 

2.2.1 Array performance metrics 

In this section, some array performance measures which characterize the response of 

the array to an incoming signal will be described.  

2.2.1.1 Directivity 

The directivity of an array is denoted as 

2

0 0

( , )
1

sin . ( , )
4

T TP
D

d d P
 

 

    




 
 

2-22 

where ( , )T TP    is the power pattern in the steering direction of ( , )T T  . The numerator 

represents the power of the signal arriving from ( , )T T  . The denominator of Eq. 2-22 

gives the noise power at the beamformer output due to isotropic noise. Hence, D can 
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represent the array gain in the presence of isotropic noise. For a uniform linear array with 

half-wavelength spacing the directivity becomes (Van Trees 2002) 

  1HD


 w w . 2-23 

 

2.2.1.2 Array gain 

The array gain is one of the most important array performance metrics which is 

defined by the SNR ratio at the output of the beamformer, outSNR , to SNR before 

beamforming inSNR  and can be written as 

( )

( )
out

in

SNR
AG

SNR




  2-24 

where inSNR  is the signal spectrum-to-noise spectrum ratio defined by  

( )
( )

( )
s

in
n

S
SNR

S




 . 2-25 

The output spectrum of the beamformer can be written as 

( ) ( )H
yS   xw S w  2-26 

where ( )xS  is spectrum of the correlation matrix at the output of each sensor. Hence, 

the output signal spectrum can be defined by 

( ) ( ) ( ) ( )
s

H H
y sS S  k s k sw v k v k w . 2-27 

If the distortionless constraint is imposed, i.e. 

( ) 1H k sw v k , 2-28 
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which emphasizes that any signal arriving through sk  will pass through the beamformer 

filter undistorted, then the output signal spectrum becomes 

( ) ( )
sy sS S  . 2-29 

The output spectrum due to noise is 

( ) ( )
n

H
yS   nw S w . 2-30 

( )nS  is the spectral matrix of the input noise. If the noise at the output of each sensor 

has identical spectra and is white then 

( ) ( )
n

H
y nS S  w w . 2-31 

Therefore, the output SNR is defined by 

( )1
( )

( )
s

out H
n

S
SNR

S





w w

. 2-32 

By using Eq. 2-25 and Eq. 2-32 in Eq. 2-24, the AG, which is the improvement in SNR 

using an array, can be written as 

1
H

AG 
w w

. 2-33 

Note that this result is valid for any arbitrary array geometry subject to a 

distortionless response. The maximum array gain possible is found by the Lagrange 

multiplier method based on the distortionless constraint  

 ( ) 1H HJ   k sw w w v k  2-34 

where   is Lagrange multiplier. Taking the complex gradient as zero, one gets 

( ) 0
H

J 
  

 k sw v k
w

 2-35 
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or 

( )  k sw v k . 2-36 

Satisfying the constraint gives 

( ) ( ) 1H k s k sv k v k  2-37 

such that 

   
1 1

H M
  
 

k T k Tv k v k
. 2-38 

Hence,  1

M
 k Tw v k  and the maximum array gain is maxAG M . Of course the 

validity of this result depends on the noise being spatially white. If the noise is from 

radiated sources then as the elements get closer together, this assumption is no longer 

valid. The array gain defined in this section will be utilized to evaluate the performance 

of the beamformer in different multipath environments.  

 

2.3 Multiple signal model in the presence of additive noise 

Now consider N impinging signals with N discrete and distinct wavenumbers 

received by an arbitrary geometry M sensor array. Signals are assumed to be narrowband 

processes where source bandwidth is smaller than the reciprocal of the maximum 

propagation delay along the array. Far-field sources are assumed. The complex output of 

the k-th sensor at time t can be written as  

1

( ) ( ) ( ) ( )
N

k k i i k k
i

x t v s t n t


    k . 2-39 

where ( )k iv k  is defined in Eq. 2-15. The narrowband assumption leads to 
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1

( ) ( ) ( ) ( )
N

k k i i k
i

x t v s t n t


  k  2-40 

where ( )k i k  is the propagation delay between the k-th sensor and the reference point of 

the array, and ( )k iv k  is the phase and gain response of the kth element of the array. The 

output of the array in vector form can be written as 

( ) ( ) ( ) ( )t t t x V k s n  2-41 

where ( )tx  is a M×1 observation vector, ( )ts  denotes the vector of a complex signal 

envelope at time t . ( )V k  is a M×N steering matrix and ( )tn  is a spatially and temporally 

white Gaussian circular complex noise vector with a variance of 2 . 

 

2.3.1 Narrowband snapshot model 

Consider a plane wave impinging on an array. The signal at the origin of the array 

coordinate is  

    2 Re .cj ts t s t e    2-42 

The received signal at the m-th antenna can be represented by 

    , 2 Re .c c mj t j
ms t s t e e  p   2-43 

Prior to time-domain processing, receivers normally perform a quadrature demodulation 

as shown in Figure 2-4.  
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LPF ×

× LPF 

2cos( )ct

2sin( )ct

 , ms t p

 ,I ms t p

 ,Q ms t p
 

Figure 2-4: Quadrature demodulation 

 

The complex output of the m-th antenna is  

   , .c mj
ms t s t e  p   2-44 

Hence, the complex output of the array after quadrature demodulation becomes  

    ( ).t s ts v k   2-45 

where ( )v k  is an array steering vector as defined earlier and  s t  is a zero-mean 

complex Gaussian random process. The signal covariance matrix can be defined as 

       .H H
s sE t t R   R s s v k v k    2-46 

where  0sR  is the signal power. The array output covariance matrix for N plane wave 

signals and additive noise is  

    2H
n sB x sR V k R V k I   2-47 

where  V k  is a steering matrix, sR   is a signal correlation matrix, and sB  is the 

bandwidth of the Low-Pass Filter (LPF) shown in Figure 2-4. If  s t  is bandlimited to 
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2 2
s sB Bs    Hz, the time domain signal snapshots can be obtained by sampling ( )tx  

in 1
sB  intervals. Hence, ( ),   1, 2,...,k k Kx  are snapshots of the complex envelope 

(Van Trees 2002).  

 

2.4 Uniform linear array 

The Uniform Linear Array (ULA) is an array configuration that has widely been used in 

practice. In this thesis, it will often be used. Figure 2-5 shows such an ULA 

configuration.  

The M-element uniform spacing sensors are located on the z-axis with spacing d. The 

locations of elements are 

,    0,1,..., 1

0
n

n n

z

x y

p nd n N

p p

  

 
. 2-48 
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Figure 2-5: Uniform linear array configuration 
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Hence, the array manifold can be written as 

2 ( 1)( ) 1, , ,...,z z zjk d j k d j M k d
zk e e e      kv  2-49 

where 

2
coszk


  


. 2-50 

Figure 2-6 shows the beampattern of an ULA with 10 elements and half wavelength 

spacing / 2d   . The distance of the nulls adjacent to the main lobe is referred to as the 

array null-to-null beamwidth BWNN. The BWNN defines the ability of the array to resolve 

two different plane waves coming from different directions which is known as the 

Rayleigh resolution limit (Van Trees 2002). Based on this definition, two plane waves are 

resolvable if they have an angular separation more than BWNN/2. The resolution of an 

array increases by increasing the number of sensors M and antenna spacing d. 
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Figure 2-6: Beampattern of a ULA, M=10 and / 2d    
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2.5 Signal propagation models in wireless channels 

As mentioned earlier, the main contribution of this thesis is enhancing signal detection 

performance in indoor and dense multipath environments. Hence, it is necessary to 

analyze the behavior of different multipath propagation channels and to characterize the 

received signal model. The received signal transmitted over a wireless channel is affected 

by several factors which can be grouped into two categories: large-scale propagation loss 

and small-scale fading. As a mobile station moves away from the transmitter by several 

carrier wavelengths of the signal the local average received signal power will gradually 

decrease resulting in a large-scale propagation loss. This large-scale phenomenon is 

characterized by the distance between transmitter and receiver (path loss), and shadowing 

and attenuation of the received signal power. The large-scale loss predicts the mean 

signal strength for an arbitrary transmitter-receiver distance in a typical built up area and 

can be utilized to determine the coverage of a wireless system. However, in a multipath 

fading environment, as the result of moving a receiver over a small distance, the 

instantaneous received signal strength will fluctuate rapidly, an effect known as small-

scale fading. This is due to the fact that in a dense multipath environment, the received 

signal is a contribution of several multipath components coming from different directions 

with different amplitudes. Hence, the received signal power may fluctuate up to four 

orders of magnitude (40 dB) in a typical fading environment when the receiver is 

displaced by a wavelength of the impinging signals (Rappaport 2002). Figure 2-7 shows 

small-scale fading. 
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  

 

Figure 2-7: Small-scale fading in a multipath environment 

 

In the following subsection the small-scale fading will be investigated in detail. 

 

2.5.1 Small-scale fading 

Small-scale fading or simply fading is a result of multipath propagation in a wireless 

channel. Multipath propagation received by a receiver antenna causes deep fades in the 

received signal strength, random frequency modulation due to Doppler spread on 

different multipath components and delay spread due to different times of arrival of 

multipath components. Hence, a received signal at any point in space in a multipath 

environment can be modeled by a combination of several plane waves resulting in a 

randomly distributed amplitude, phase and angle of arrival (Rappaport 2002). 
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An important factor influencing small-scale fading is the bandwidth of the 

transmitted signal. If the bandwidth of the transmitted signal is much greater than the 

coherence bandwidth of the channel, the received signal will be distorted. However, the 

received signal strength is not affected by small-scale fading. The coherence bandwidth 

of a channel is defined as the maximum frequency difference of the multipath channel 

where the amplitude of the received signal is noticeably correlated. On the other hand, if 

the transmitted signal bandwidth is smaller than the coherence bandwidth of the channel, 

the signal strength will change rapidly. However, the signal is not subject to distortion in 

time. Hence, the fading statistics depend on amplitude, phase and delay spread of 

multipath components which can be characterized by the geometry of reflectors as well 

as the bandwidth of the transmitted signal.  

Multipath channels are usually characterized by the power delay profile defined by 

the energy received by a receiver over the time duration of the multipath propagation 

(Rappaport 2002). The coherence bandwidth of a channel and root mean square (rms) 

delay spread are inversely proportional where the rms delay spread is the square-root of 

the second central moment of the power delay profile. The coherence bandwidth of a 

channel is a statistical measurement where in that frequency range, the channel can be 

assumed flat. As a rule of thumb the relationship between the coherence bandwidth and 

the rms delay spread is defined by (Lee 1989) 

1
Hz

5cB





 2-51 

where cB  and   represent the coherence bandwidth and the rms delay spread, 

respectively. The coherence bandwidth in Eq. 2-51 is defined as a multipath channel 



 

 

38

bandwidth where the frequency components have a correlation of more than 50 percent. 

The measurement results in (Saleh & Valenzula 1987) show that for a typical office 

building, the rms delay spread   is about 10-50 ns.  

As an example, consider a multipath propagation channel with the multipath power 

delay profile shown in the Figure 2-8.  

0 dB 

-10 dB

-20 dB

0 30 50 60 ns 

( )rP 

 

Figure 2-8: Multipath power delay profile 

 

The delay of each profile is represented with respect to the delay of the first detectable 

signal. The mean excess delay can be calculated by 

0 0.1 30 1 50 0.01 60 0.01
28 ns

0.1 1 0.01 0.01

      
  

  
. 2-52 

The second moment can be determined as  

2 2 2
2 20 0.1 (30) 1 (50) 0.01 (60) 0.01

858 ns
0.1 1 0.01 0.01

      
  

  
. 2-53 

Hence, the rms delay spread is 

2 2 858 784 8.6 ns        . 2-54 

The coherence bandwidth Bc can be easily determined by 
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1
23 MHz

5cB


 


. 2-55 

Any system with a signal bandwidth of less than 20 MHz can actually work without 

implementing an equalizer (Rappaport 2002). This is an example of a flat fading channel.  

 

2.5.1.1 Doppler spread and coherence time 

Channel coherence bandwidth and consequently delay spread are parameters which 

characterize the time dispersive nature of a wireless channel. However, these parameters 

do not provide any information about the time-varying nature of a wireless channel. 

Doppler spread and coherence time are parameters which take into account the time 

varying nature caused by changes in scatterer environment or relative motion between 

transmitter and receiver. Doppler spread denoted as DB  is a measure of frequency 

broadening of the received signal and it is defined by a frequency range where the 

Doppler spectrum is not zero. If a carrier frequency fc is transmitted the received signal 

frequency has components in the range of  :c d c df f f f   where df  is the Doppler 

frequency. Hence, DB  depends on the transmitter-receiver relative velocity and angle 

between direction of motion and angle of arrival. If the bandwidth of the transmitted 

signal is much higher than DB , the effect of the Doppler spread is negligible, which is 

known as a slow fading channel (Rappaport 2002).  

Channel coherence time, denoted as Tc, is inversely proportional to the Doppler 

spread which characterizes the frequency dispersive nature of a wireless channel in the 

time domain. Coherence time is a statistical measurement of a time period where two 
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received signals have a strong amplitude correlation. If the reciprocal signal bandwidth is 

greater than the coherence time, the received signal will be distorted. As a rule of thumb 

for modern digital communications, the relationship between maximum Doppler 

frequency /mf v   and coherence time can be defined by (Rappaport 2002) 

0.423
sc

m

T
f

 . 2-56 

As an example, consider a moving receiver capturing a signal in a fading 

environment. The carrier frequency is fc=1500 MHz and the receiver velocity has two 

values, namely v=1 m/s and v=50 m/s. The problem of interest is determining the proper 

spatial sampling intervals in which consecutive samples are correlated in time. This may 

be equivalent to the time intervals where the receiver can perform coherent integration.  

The coherence time can be easily calculated by using Eq. 2-56 

1

50

0.423 0.423
0.0850 

0.423 0.423
0.0017 

v

v

c
m c

c
m c

c
T s

f vf

c
T s

f vf





  

  
 2-57 

where c  is the propagation velocity. Taking time samples at half of the Tc ensures that 

the time correlation between spatial samples is preserved. Hence, the spatial samples for 

which received signal remains correlated in time can be determined by 

0.065
=4.25  

2 2
cT v

D cm    2-58 

which is about a quarter of the carrier wavelength.  

The Doppler spread can be calculated by 



 

 

41

1

50
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250 

c
D m

c
D m

v

v

vf
B f Hz

c
vf

B f Hz
c





  

  
. 2-59 

Time dispersiveness of a wireless channel causes the transmitted signals to undergo 

flat fading or frequency selective fading. In flat fading channels, the amplitude of the 

received signals varies randomly in time however the spectral characteristics of the signal 

are preserved. The Channel Impulse Response (CIR) in the flat fading channel can be 

approximately modeled by a delta function without any excess delay. In the frequency 

selective fading channel, the channel impulse response has a delay spread which is 

greater than the reciprocal of the signal bandwidth. Thus, the channel induces Inter 

Symbol Interference (ISI).  

Frequency dispersiveness of a wireless channel causes the transmitted signals to 

undergo slow or fast fading. In the fast fading channel the channel impulse response 

varies faster than the chip period of the signal. Hence, the chip period of the signal is 

larger than the coherence time. In slow fading, the CIR changes at a much slower rate 

than the signals change.  

It is clear that the type of fading depends on the signal characteristics with respect to 

the nature of the wireless channel. Depending on the signal parameters such as bandwidth 

and channel parameters such as delay and Doppler spread, a received signal may 

experience the following four different types of fading: 

1- Slow flat fading: 

The bandwidth of the signal is much smaller than the coherence bandwidth of the channel 

and the channel also varies slower than the signal variations (low Doppler spread). This is 



 

 

42

the typical model for indoor multipath environments with the signal bandwidth in the 

order of few MHz.  

2- Fast flat fading:  

The bandwidth of the signal is much smaller than the coherence bandwidth of the channel 

but there is high Doppler spread.  

3- Slow frequency selective fading : 

The bandwidth of the signal is greater than the bandwidth of the channel and the channel 

dynamics are smaller than the variations in the transmitted signal. 

4- Fast frequency selective fading: 

This fading type represents a situation where the signal bandwidth is greater than the 

bandwidth of the channel and the Doppler spread is high. 

 

2.5.2 Rayleigh fading  

In wireless radio systems Rayleigh fading is commonly used to describe the envelope of 

the received signal. Rayleigh fading is the envelope of the sum of two quadrature zero-

mean Gaussian components (Parsons 2000). The envelope ( )r t  of a complex signal 

( ) ( ) ( )x t I t jQ t   is  

2 2( ) ( ) ( )r t I t Q t   2-60 

where 2(0, )I N   and 2(0, )Q N   and  denotes the Probability Density Function 

(PDF) of the left hand side variable and  20,N   signifies a zero mean normal PDF 

with variance 2 . The PDF of ( )r t  is defined by 
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2

2 2
exp 0

( )   2
0

0
r

r r
r

p r
r

  
          



 2-61 

where 2  is the mean power and 2 / 2r  is the short-term signal power. The probability 

that the envelope does not exceed a value defined by R is given by  

2

2
0

( ) ( ) 1 exp
2

R

r r

R
P r R p r dr

 
      

 . 2-62 

The mean value of the Rayleigh distribution can be calculated by 

 
0

( ) / 2 1.253rE r rp r dr


      . 2-63 

The variance of the Rayleigh distribution given as 2
r  

 2 2 2 20.43r E r E r       . 2-64 

Figure 2-9 shows the Rayleigh PDF.  
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Figure 2-9: Rayleigh distribution 
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2.5.3 Signal model in fading environments 

Now consider the signal reception model in a typical fading environment. The model 

represented in Eq. 2-41 can be modified to demonstrate the fading effect as 

( ) ( , ) ( , ) ( ) ( )t s t t      x v n  2-65 

where ( , )    models changes in the received signal amplitude from the source ( )s t . In a 

multipath fading environment, each transmitted signal is received by the receiver antenna 

from different directions with a certain angular spread in space. Each multipath 

component is received with different directions of arrival, arrival time ( , )    and signal 

strength. Since the narrowband assumption is considered, a decomposition is made, 

( , )( ( , )) ( )s t e s t        2-66 

where the time delay is approximated by a phase shift   that is uniformly distributed 

over the interval [ , ]  , and the amplitude fading ( , )    is distributed according to the 

Rayleigh fading, which is an acceptable model for indoor and dense multipath 

environments. The total fading becomes 

 ( , ) 2( , ) ( , ) 0,e CN           2-67 
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which has a circularly complex normal distribution and  20,CN   signifies a zero mean 

circular normal PDF with variance 2 1 (Rensburg 2001). Hence, the signal model in the 

fading environment is 

 2

0 0

sin
( ) ( , ) ( , ) ( ) ( )

4
x t d s t d n t

  
       

  v . 2-68 

The channel gain is defined as 

2

0 0

1
sin ( , ) ( , )

4
A d d

 

        
   v . 2-69 

Thus, the array response in a fading environment is 

( ) ( ) ( )x t As t n t  . 2-70 

 

2.6 Performance of beamforming techniques in multipath fading channels 

The performance of beamforming techniques based on the plane wave assumption was 

described in Section 2.2.1. The array gain metric was used to quantify the SNR 

improvement of a signal at the output of an array. However, in practice the desired signal 

may come from a sector in space where the angular size of the sector depends on the 

scatterer’s geometry. As an example, Lee (1989) demonstrated that in cellular 

communication systems in urban environments where the BS antennas are about 1-2 km 

away, the angular spread is about 5 to 15 degrees. The problem of interest in this section 

                                                 

1 Random variable B u jv   distributed according to circularly normal PDF with zero mean and variance 
2 ,  , 2CN 0  , where u  and v  are independent zero mean normal random variables each with variance 
2 2 ,  20, 2u N   and  20, 2v N   
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is to investigate the performance of an array in terms of output SNR improvement in a 

multipath environment. The signal spectrum at the output of an array is  

( ) ( )
s

H
y sS S  Aw R w  2-71 

where  E H
AR AA  is the correlation matrix of the channel response and w  is the 

beamformer weight vector which is assumed to have unit norm, 1H w w . Hence the 

array gain becomes 

HAG  Aw R w . 2-72 

In the case of independent fading where AR I  and I  is an identity matrix, the array 

gain AG  become 1, emphasizing that there is no gain in beamforming in comparison 

with a single antenna. Whereas, in the case of a fully correlated fading channel, 

HAR vv  and  vw
v

. Hence, the array gain becomes 
2

AG M v . Thus, the 

array gain depends on the scatterer geometry and varies between 1 and M (Friedlander & 

Scherzer 2004). 

To evaluate the performance of beamforming techniques in a multipath environment, a 

uniform linear array with half-wavelength element spacing is considered. It is also 

assumed that the array and incoming signals are located in the same plane and signals are 

coming from a sector with an angular spread of s . Thus, the signal covariance matrix 

can be represented by  

2

2

1
( ) ( ) ( )

s

s

H

s

S d





   
 

 AR v v  2-73 
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where ( )S   is the spatial distribution of fading signals. Hence, the spatial signal 

covariance matrix is a function of the array geometry and angular spread of the incoming 

signals. Figure 2-10 shows spatial correlation coefficients for different values of s . In 

Figure 2-10,   is the mean direction of arrival of the sector with an angle spread of s . 

The spatial decorrelation is a function of angular spread and array geometry. Figure 2-11 

shows the ULA array gain defined in Eq. 2-72 for different values of M versus multipath 

angular spread s  for 0  . Figure 2-12 shows the ULA array gain for different values 

of M versus s  for 45  . Figure 2-11 and Figure 2-12 show that, by increasing the 

angular spread, the achievable array gain is reduced. The rate of the gain degradation is 

severe for higher values of M. For example when the angular spread is at least 20 

degrees, the array gain value for M=16 and M=8 becomes identical. 
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Figure 2-10: Spatial correlation coefficient for different values of s  and   
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However, the array gain for M=2 is almost insensitive to changes in angular spread and 

consequently to the correlation coefficient. 
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Figure 2-11: Array gain for different values of M vs multipath angular spread for 0   
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Figure 2-12: Array gain for different values of M vs multipath angular spread  for 45   
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Figure 2-13 shows the eigenvalues of the spatial covariance matrix defined in Eq. 2-73 

for a 10-element ULA with half wavelength spacing versus different values of angle 

spread for 0  . When the angular spread is small, there is only one nonzero eigenvalue. 

The signal subspace is spanned by the eigenvector of the nonzero eigenvalue. Since the 

signal subspace is a one-dimensional space the beamformer can co-phase all received 

signals from different antennas and maximizes the array gain. By increasing the angular 

spread the number of nonzero eignvalues and consequently the signal subspace 

dimension are increased. Hence, the array gain as it is shown in Figure 2-11 and Figure 

2-12 is decreased.  
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Figure 2-13: Eigenvalues of spatial covariance matrix for different values of s  
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2.7 Diversity techniques 

As shown in previous sections, in a multipath fading wireless channel the received signal 

envelope undergoes deep fades. If the receiver is using another independent source to 

process the received signal, the second path may have a strong signal which can strongly 

improve the detection procedure. The basic idea of the diversity system is to combine 

independent copies of the transmitted signal received by diversity branches. There are 

several methods to receive statistically independent faded signals and implement a 

diversity system which can be divided into three groups: time diversity, frequency 

diversity and antenna diversity systems (Parsons 2000). 

In antenna diversity systems, a receiver uses multiple antennas known as diversity 

branches to capture independent copies of the transmitted signal. Different techniques 

have been utilized to capture statistically independent signals in the antenna diversity 

system. Among them, spatial diversity and polarization diversity are widely utilized in 

practice. Spatial diversity systems are established based on the fact that in a multipath 

fading environment received signals on the diversity branches decorrelate spatially. In 

polarization diversity systems, antennas with approximately orthogonal polarization can 

be considered as a diversity system (Rappaport 2002). After receiving independent 

signals the problem of interest is how to combine these signal copies efficiently. Figure 

2-14 shows a general approach of the antenna diversity systems. 
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Figure 2-14: Block diagram of antenna diversity systems 

 

After capturing independent signal samples from different diversity branches, the signals 

must be combined to mitigate fading effects. In general, different combining methods 

such as selection, equal gain, and maximum ratio combiners have been widely 

investigated in the literature such as Parsons (2000) and Rappaport (2002). 

It is worthwhile to contrast the performance of the beamforming and diversity techniques. 

In the beamforming approach, the array gain is defined as an improvement in SNR at the 

output of the beamformer, however the diversity gain, which is an effect of multipath 

fading, is defined as the reduction in the required average SNR for given detection 

probability. The array gain is reduced by decreasing the channel correlation coefficient. 

However, the diversity gain which is a result of uncorrelated diversity branches is 

decreased by increasing the channel correlation coefficient.  
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2.8 Detection of a signal in noise 

In this thesis, a statistical approach for evaluating the performance of a moving receiver 

for detecting a narrowband signal in multipath environments is presented. In this section, 

an overview of the detection problem of a complex signal embedded in circular white 

Gaussian noise is provided. A more detailed description can be found in Kay (1998) and 

Van trees (2001).  

 

2.8.1 Matched filter 

Consider a detection problem of a known circular deterministic signal embedded in a 

Circular White Gaussian Noise (CWGN). The objective is to maximize the probability of 

detection denoted as PD subject to a constraint on the probability of false alarm PFA.  

The detector uses K uncorrelated samples to make a decision. The binary hypothesis test 

can be defined by 

 
 

1

0

( ) | ( )  0,1,..., 1

( ) |            0,1,..., 1

H

H

x k s k n k k K

x k n k k K

   

  
 2-74 

where ( )s k  is a known circular signal and   2(0, )n k CN  . The optimum Likelihood 

Ratio Test (LRT) chooses the H1 state if  

 
 

1

0

;
( )

;

p x H
L x

p x H
   2-75 

where  
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 

 
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  

      
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x s x s
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 2-76 

with (●)H being a complex conjugate transpose operator. After some manipulation the test 

statistic becomes  

 
1

0

Re

Re *( ) ( )

H

K

k

z

s k x k








 

    
 


s x

. 2-77 

It can be easily shown that the test statistic is distributed as 

 
 

2
0

2
1

0, / 2   under 

, / 2   under 

N H
z

N H

 

  





  2-78 

where   is the signal energy defined as H  s s . The performance of the matched filter 

can be written as 

  
2

1 2

/ 2

2 /

FA

D FA

P Q

P Q Q P


 

 

 
  

 

 

. 2-79 

Figure 2-15 shows the detection process of a matched filter (Kay 1998). 
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Figure 2-15: Detection process of a matched filter 
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2.8.2 Estimator-correlator 

Consider a binary detection problem where the binary hypothesis test can be defined by 

 
 

1

0

( ) | ( )  0,1,..., 1

( ) |            0,1,..., 1

H

H

x k s k n k k K

x k n k k K

   

  
 2-80 

where ( )s k  is a zero-mean circular Gaussian random process with covariance matrix sC  

and   (0, )ss k CN C  and   2(0, )n k CN  . The optimum LRT chooses the H1 state if  

 
 

1

0

;
( )

;

p x H
L x

p x H
   2-81 

where  

     

 
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  

     

    

x C I x
C I
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 2-82 

After some manipulation the log LRT test reduces to the following statistic 

ˆHz s   x  2-83 

where 

  12ˆ
s s 


 s C C I x  2-84 

is the Minimum Mean Square Error (MMSE) estimator of s. Figure 2-16 shows the EC 

detection process (Kay 1998). 
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Figure 2-16: EC detection process 

 

Consider a correlated signal case where the noise covariance is normalized such that 
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where SC  and I  are the signal and noise covariance matrices, respectively. The 

canonical form of Eq. 2-83 can be written in terms of the eigenvalues of SC  based on the 

eigen-decomposition of HSC QΛQ where Λ is the diagonal matrix of eigenvalues and 

Q  is the eigenvector matrix. Note that  

 
     
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x Q Λ Λ I Q x

y Λ Λ I y
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where  ...
TH

1 My y y Q x  and ,s m  is the mth eigenvalue of SC . Note that  

 

H H
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H H
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Hunder
E E
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Hence, for either H0 or H1, y  is a vector of independent CN random variables. The 

canonical form of the EC process is shown in Figure 2-17 (Kay 1998). 
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Figure 2-17: Canonical for of the EC process 

2.9 Summary 

This chapter described the background knowledge for the spatial-temporal array 

processing problem that will be used in the remainder of this thesis. The performance of 

the beamforming technique based on the plane wave assumption was described. The 

array gain metric was introduced to quantify the SNR improvement of a signal at the 

output of an antenna array. The array gain was evaluated for different scatterer angle 

spreads and array geometries. Signal propagation models in different multipath 

environments including the flat fading channel were described. To alleviate the fading 

loss and to enhance the detection performance of a narrowband signal in a dense 

multipath environment, different antenna diversity techniques were introduced. A brief 

overview of the detection problem of a complex signal embedded in circular white 

Gaussian noise including the Estimator-Correlator (EC) process was demonstrated. 
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CHAPTER 3: SYNTHETIC ARRAY MODEL AND CHARACTERIZATION 
OF THE PROPAGATION CHANNEL  

This chapter discusses the synthetic array concept and the signal model received by a 

moving antenna. The statistical properties of the signal components of the snapshot signal 

will be considered in detail. Discussions of deviations from the assumed multivariate 

Gaussian approximation, which are primarily due to the LOS component of the signal at 

an unknown angle and a partially known antenna trajectory, will be given. The various 

covariance matrices derived for the different signal types will be used in conjunction with 

the Estimator-Correlator (EC) to clearly demonstrate the performance achievable with the 

synthetic array in different multipath environments. In indoors or dense multipath 

environments, where the amplitude of the received signal is modeled by a Circularly 

Normal (CN) random process and multipath is diffuse and arriving from any direction in 

space, the EC process introduced in Chapter 2 gives an optimal solution. The signal and 

covariance model presented in this chapter will be used in Chapter 4 and Chapter 5 where 

the detection performance of the synthetic array in a dense multipath environment is 

considered. When the received signal is a plane wave with an unknown direction of 

arrival, the EC becomes a suboptimal approach. In this situation, the Generalized 

Likelihood Ratio Test (GLRT) method as well as nonlinear detection/estimation schemes 

such as the MUSIC and the ESPRIT subspace methods can be used to enhance detection 

and estimation performance. The direction of arrival estimation based on the synthetic 

array will be discussed in Chapter 6 using the signal and noise characterization described 

in this chapter. 
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3.1 Synthetic array system model 

Assume that the phase center of the moving single antenna is coincident with a point 

in a three-dimensional spatial coordinate system identified by the position vector ( )tp  

which is a function of time t . The complex baseband signal representation of the antenna 

output received signal is denoted by ( )r t . Under the H1 state where the signal and noise 

are present, the signal component of ( )r t  is denoted by   ,s t tp , which is a function of 

time t and the antenna position ( )tp  changing with time. The signal is assumed to be 

narrowband, which was explained in Section 2.2. The narrowband assumption justifies 

the decomposition of 

   , ( ) ( ) ( )os t t A t s tp p  3-1 

which implies that small delay changes due to ( )tp  are insignificant in the context of 

( )os t .  ( )A tp  is the channel response to the incident signal at the antenna position of 

( )tp  defined earlier in Section 2.5.3. The received signal is corrupted with additive noise 

which has an equivalent complex baseband representation denoted by ( )n t . It is assumed 

that ( )n t  is a circularly normal random process, independent of the signal and has a 

power spectral density (PSD) that is constant within the bandwidth of ( )os t  with a level 

of oN . The representations of ( )r t  can then be written as  

   ( ) ( ) ( )or t A t s t n t p . 3-2 
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To be rigorous, the additive noise component should also be written as a function of 

the position. However, as the noise is assumed to be decorrelated much faster temporally 

than spatially, the spatial correlation of the noise is negligible and therefore 

   , ( )n t t n tp . An exception to this is where the noise is an interference signal from a 

jammer that closely represents the pilot signal ( )os t  but has a different spatial correlation. 

Because of the latter, it is separable from the desired signal provided that the receiver has 

knowledge of the desired and jammer signal covariance matrices.  

The receiver accumulates a temporal snapshot of ( )r t  over an interval  ', 't t T t   

where T  is the interval duration of the snapshot and t  is an arbitrary time offset. There 

is no loss in generality by assuming that ' 0t   such that the snapshot interval extends 

over the interval  0,t T . It is assumed that the signal snapshot of ( )r t  is collected in M 

subintervals, each of duration T  such that T M T  . Consider that the signal is 

sampled over a subinterval of T  as shown in Figure 3-1. 
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 mtp  

 mt T p  

antenna 

 

Figure 3-1: Diagram of moving antenna and positional vector definitions for snapshot 
collection for the m-th subinterval 

 

Define tm as the starting instance of the m-th subinterval that extends over the interval 

of  ,m mt t T  . Assume that 1m mt t   and 1m mt t T    for 2,3...m M . The collection 

of signals over the m-th subinterval is shown in Figure 3-1. T  is considered to be 

sufficiently small such that  ( )A tp  can be approximated as a constant over the interval 

of T  such that 

     ( ) ( ) ,m m mA t A t for t t t T   p p . 3-3 

The signal captured in each subinterval is correlated with *( )0s t , resulting in a set of 

M spatial array samples denoted by mx  and given as 
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  ( )
m

m

t T

m o
t

x r t s t dt


  . 3-4 

mx  can also be expressed as 

 ( )m m m mx A t s n p  3-5 

where 

*

( )

( ) ( )

m

m

m

m

t T
2

m 0

t

t T

m 0

t

s s t dt

n n t s t dt












. 3-6 

It follows that mx  forms a set of sufficient statistics of the accumulated snapshot 

signal in terms of optimal decoding between H0 and H1. The vector forms of the signals 

are defined as  1..
T

Mx xx ,  1..
T

Ms ss ,  1...
T

Mn nn  and    1( ) .. ( )
T

MA t A t   A p p . 

Due to the Rayleigh fading assumption, the individual components of the vector A  are 

circularly normal such that       20,m Am
A t CN A p  . With these definitions the 

detection problem is stated as 

  under 

              under 
1

0

H

H

 


x A s n

x n


 3-7 

where  denotes the Hadamard vector product operator.  

For convenience it will be assumed that  
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2
( )

m

m

t T

o

t

s t dt T


  . 3-8 

The validity of this approximation is based on T  being much longer than the reciprocal 

of the bandwidth of ( )os t . For the CDMA signal this is easily justified as the chip rate is 

greater than 1 Mcps and T  will be on the order of milliseconds. Based on Eq. 3-8, the 

signal vector becomes 

T  Ms 1  3-9 

where M1  is a column vector of M 1’s. With this, Eq. 3-7 is written as  

  under 

              under 
1

0

T H

H

  


x A n

x n
. 3-10

The optimal detection processing scheme based on the Neyman-Pearson (NP) 

likelihood Ratio Test (LRT) is defined Section 2.8. The LRT chooses H1 if  

 
 

|
( )

|
1

0

p H
L

p H
 

x
x

x
 3-11

where  | 1p Hx  and  | 0p Hx  are the conditional PDFs of x  given 1H  and 0H , 

respectively. If  | 1p Hx  and  | 0p Hx  are given, finding the optimal processing based 

on Eq. 3-11 is therefore trivial. If both  | 1p Hx  and  | 0p Hx  are multivariate 

Gaussian PDFs, then efficient linear or eigenvector based energy detection processing 
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results (Kay 1998). This is highly desirable as the implementation and the performance 

analysis can then take advantage of linear algebra constructs and formulations. When 

 | 1p Hx  and  | 0p Hx  are not multivariate Gaussian processes, then the processing 

implementation quickly becomes unwieldy and inefficient to implement. Hence, efforts 

are generally made to justify a Gaussian approximation to the conditional PDFs. For the 

synthetic array, it will be observed that  | 0p Hx  can be construed as multivariate 

Gaussian. However, for  | 1p Hx , typically only the marginal PDFs can be justified as 

being Gaussian. Approximating the joint components of x  as being Gaussian results in 

easily implementable detector processing but this is suboptimal, resulting in potential 

performance losses in some cases.  

From Eq. 3-6, *( ) ( )
m

m

t T

m o

t

n n t s t dt


   which is a zero mean circular Gaussian random 

variable where ( )n t  is independent of the signal. Essentially based on the spread 

spectrum nature of the despreading signal ( )os t , it can be assumed that the various 

components of mn  are uncorrelated. Therefore, the noise covariance matrix, denoted as 

nC , is given as 

H 1
E

M
   n MC nn I  3-12
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where MI  is the M×M identity matrix. The last step follows from 
2

( )
m

m

t T

ot
s t dt T


   

and the normalization 1
oTN M   where oN  is the PSD of ( )n t  within the bandwidth 

of ( )os t .  

 

3.2 Characterization of the channel gain vector 

In this section, the signal covariance matrix based on the synthetic array signal model 

presented in the previous section in different channel situations is described. The 

characterization of the channel gain vector A  is a function of the antenna trajectory and 

the multipath model. Meaningful results of the practical utilization of the synthetic array 

only emerge if different propagation scenarios are considered. In the following 

subsections, the following four different propagation scenarios and received signal 

models will be considered: 

Case 1: Plane wave, known Angle Of Arrival (AOA) and known channel gain 

Case 2: Plane wave, known AOA, and channel gain is circularly Gaussian 

Case 3: Plane wave, unknown AOA and channel gain is circularly Gaussian 

Case 4: Multiple plane wave, unknown AOA and channel gain is circularly Gaussian  
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3.2.1 Plane wave, known AOA and known channel gain 

Here, it is assumed that the incident signal is a plane wave with a known unit 

magnitude direction vector denoted by a  (defined in Section 2.1) and the noise is coming 

from an isotropic source. Consequently, the signal component defined in Eq. 3-1 is 

shown by 

 

   
   

( )
( , ( )) ( )

( )

exp ( )

T

o

o

T
o o o

t
s t t A t s t

c

A t s t

A jk t s t

 
  

 


 

a p
p p

p

a p

 
3-13

where the second step is a result of the narrowband assumption and 2 /ok   . 

Following the formulation introduced earlier, 

 exp ( ) .T
m o o mA A jk t  a p  3-14

Consequently, the channel gain vector A  becomes 

 
 

 

1

2

exp ( )

exp ( )

exp ( )

T
o

T
o

o

T
o M

jk t

jk t
A

jk t

 
 
 

  
 
 

  

a p

a p
A

a p


. 3-15

mx  can be expressed as 
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m m mx A T n   . 3-16

Note that  | 0p Hx  and  | 1p Hx  are both multivariate Gaussian, that is 

 

 

| , ,

| , ,

0

1

1
H CN CN

M

1
H CN CN T

M

   
 
   
 

M n M M

n M

x 0 C 0 I

x A C A I




. 3-17

Hence, the LRT results in the matched filter defined in Section 2.8.1. This results in a 

standard beamformer at the direction of a . In this case, the motion of the antenna 

(spatial-temporal process) does not accomplish any gain relative to keeping the antenna 

stationary (temporal process). A signal space interpretation is that the additive noise is 

already uncorrelated based on the fact that the noise is sampled at different times. Hence, 

n  is already a white vector and moving the antenna cannot decorrelate it further as the 

signal is totally known. From a signal space perspective, it consists of space-time 

dimensions. A stationary antenna focuses the signal space in time but not spatially. A 

moving antenna focuses the signal space in terms of beamforming in the spatial 

dimensions. The resulting gain is the same. Note that if the noise was an interference 

source from a given direction, then moving the antenna would be more powerful than the 

stationary antenna as a null can be placed in the direction of the interference. In this case, 

the moving antenna allows the noise spatial correlation to be exploited to help segregate 

it from the deterministic signal. 
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3.2.2 Plane wave, known AOA and unknown channel gain 

In this section, it is assumed that the incident signal is a plane wave with a known unit 

magnitude direction vector denoted by a  as before. However, the amplitude of the 

channel gain is random and unknown to the receiver. Consequently, 

   exp ( )T
m o o os A jk t s t  a p  3-18

where  

 20,o AA CN  . 3-19

As defined previously, A can be written as 

 
 

 

1

2

exp ( )

exp ( )

exp ( )

T
o

T
o

o o

T
o M

jk t

jk t
A A

jk t

 
 
 

  
 
 

  

a p

a p
A v

a p


. 3-20

Note that  | 0p Hx  and  | 1p Hx  are still multivariate Gaussian. However, without the 

deterministic mean, one obtains 

 

   

| , ,

| , ,

0

22
1 A

1
H CN CN

M

1
H CN CN T

M


   
 

     
 

M n M M

H
M A n M M

x 0 C 0 I

x 0 C C 0 vv I




. 3-21
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The LRT temporally is no longer a matched filter. After some manipulations of the 

LRT and removing deterministic scaling and additive constants the LRT reduces to the 

EC formulation (Kay 1998), introduced earlier in Section 2.8.2, and resulting in a single 

sufficient statistic given as  

  1H
ECz


 s s nx C C C x . 3-22

In this case 

M
 M

n

I
C , 3-23

and 

 22
A T  H

sC vv . 3-24

The test statistic by inserting Eq. 3-23 and Eq. 3-24 into Eq. 3-22 becomes 

     12 2H 2 2
EC A A oz T T N T 



    H H
Mx vv vv I x . 3-25

To simplify ECz , Hvv  can be written by 

M

0

0

 
 
  
 
 
 

H H Hvv Q Q QΛQ


 3-26
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where Q  is an eigenvector matrix and the first column is 
1

M
M1 . Then 

     12 2H 2 2
EC A A oz T T N T 



    H H Hx QΛQ QΛQ QQ x  3-27

and 

     
     
 

 

12 2H 2 2
EC A A o

12 2H 2 2
A A o

22 2M
A

m 22
m 1 A o

z T T N T

T M T M N T
M M

T
x

T M N T

 

 











    

         
   




  


H

H
M M

x Q Λ Λ Q x

1 1
x x . 

3-28

Ignoring the deterministic constant the test statistics becomes 

2M

EC m
m 1

z x


  . 3-29

The identical result is achievable by using Woodbury`s identity (Kay 1998). Note that 

the EC in this case is the same as the matched filter magnitude squared. Again there is no 

advantage of moving the antenna if the noise vector n  is white and the signal is spatially 

correlated. 
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3.2.3 Single plane wave, unknown AOA and channel gain is circularly Gaussian 

In this case it is assumed that the plane wave has an unknown channel gain 

coefficient and a completely unknown AOA. For the sake of simplicity in this subsection, 

a two-dimensional model is considered hence the direction vector a  becomes 

 
 

cos

sin

0




 
   
  

a  3-30

where   is random being uniformly distributed over all azimuth such that  

1
0 2

2
  


  . 3-31

It is interesting to note that the signal has three degrees of freedoms (DOF), namely 

two DOFs for the circular normal amplitude oA  and one DOF for the unknown  . Now 

assuming that the trajectory is known, there can only be three DOFs associated with ms . 

Clearly ms  is not jointly Gaussian but consider determining the covariance matrix sC . 

Now consider   ,m nsC  and define  

( ) ( )m nt t Δp p p . 3-32

Without loss of generality it is assumed that ( )nt p 0 . Then,  
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       ,
exp coso o om n

E A A jk    sC Δp . 3-33

Due to symmetry, Eq. 3-33 can be written as 

       ,
exp coso o om n

E A A jk    sC Δp . 3-34

Expanding the expectation one can write 

       
  

    

  

 

|,

2

2
2

0

22

0

2

exp cos

exp cos

exp cos

exp cos
2

oA o o om n

A o

A o

A
o

A o o

E E A A jk

E jk

f jk d

jk d

J k

 











 

   

  




     
   

 

 







sC Δp

Δp

Δp

Δp

Δp

. 
3-35

where 0J  is a zero-order Bessel function of the first kind. Suppose that the fact s  is not 

multivariate Gaussian is ignored. Then a detection scheme could be formulated based on 

the EC. However, for a given arbitrary AOA of a plane wave, sC  is a full rank matrix 

implying 2M DOFs. The difference between the 2M DOF and the actual three DOFs is 

the information loss that makes the EC suboptimal in this case. A GLRT approach (Kay 

1998) can be utilized to improve the detection performance since it tries to estimate the 

unknown AOA based on a Maximum Likelihood (ML) approach.  

Suppose that the SNR is high such that 2 2 1A n   , then nonlinear estimation 

techniques such as MUSIC and ESPRIT can be utilized to estimate the unknown AOA 
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associated with the plane wave incident on the array. Based on this, beamforming can be 

performed in the direction of a  corresponding to the actual plane wave. The detection 

performance can be almost as good as the case of a  being known to the receiver.  

The signal model explained in this section is a practical model of a channel in rural 

and suburban environments where the LOS component is available, the channel gain is 

modeled by a circular normal process and the direction of incidence is typically 

unknown. As it was explained, the EC process in this case suffers from the unknown 

AOA. The GLRT approach can alleviate this problem since it first tries to estimate the 

unknown AOA. The problem of AOA estimation based on the synthetic array will be 

discussed in Chapter 6. 

 

3.2.4 Multiple plane wave, unknown AOA and channel gain is circularly Gaussian 

In this case, it is assumed that the multipath consists of several plane waves, each 

with unknown channel gain coefficient and azimuth angle. This is the typical model of 

indoor and dense multipath environments. The channel characteristics and the signal 

covariance matrix for the synthetic array will be used in Chapter 4 to implement the EC 

formulation. Clearly as the number of independent plane waves increase, so does the joint 

Gaussianity of the signal vector. Now consider the case of diffuse multipath where there 

is a continuum of infinitesimal scattering reflection sources. From before, if the single 

plane wave at the known angle with CN random amplitude is propagated, then s  is 

jointly Gaussian. If the angle is random then s  is not jointly Gaussian. It follows that if 
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there is a multipath source with a given PDF, then the PDF of s  is not jointly Gaussian. 

However, if there is a continuous distribution of a large number of sources as in diffuse 

multipath, then s  approaches a jointly Gaussian distribution. This is an important 

distinction. Therefore, diffuse multipath from a finite angular sector that has a known 

PDF will lead to a jointly Gaussian signal. If there are finite possible angles of arrival and 

a random source at each angle with a CN amplitude PDF then s  is Gaussian. Hence, the 

EC formulation given in Eq. 3-22 becomes an optimal processing scheme.  

Consider a model of diffuse multipath scatterers that comes from an equivalent sphere 

in the far field of the antenna array. Consider a differential patch of reflection, denoted by 

 , ,ods t    that is received by an antenna element of position vector p such that  

    ( , ) , , exp ,T
o ods t ds t jk    p a p  3-36

where   is the azimuth angle,   is the polar angle and a  is the unit vector in the 

direction of the source patch to the center of the array. Note that, in this formulation, it 

has been assumed that the reflectors are in the far field of the array such that the 

component emanating from the signal patch is essentially a plane wave component when 

it arrives at the antenna array. A narrowband case is also assumed such that there is a 

single propagation constant ok  corresponding to the carrier frequency. The total received 

signal at the receiver element corresponding to position p is then  
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      
2

0 0
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( , ) , , exp ,

4
T

o os t d d ds t jk
  
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
  p a p . 3-37

The factor 
 

4

sin




 is introduced due to the use of spherical coordinates (Van Trees 2002). 

Next consider the correlation of two antenna outputs due to spatially white distributed 

sources with corresponding position vectors 1p  and 2p  such that 1 2Δp p p : 
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3-38

If the signals coming from different directions are uncorrelated,  

         
2
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1 1 2 2 2 1 2 1

4
, , , ,
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

      . 3-39

Hence,  
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Due to the symmetry of the problem, it can be arbitrarily assumed that Δp  is along 

the z axis such that  

   , cosT   a Δp Δp . 3-41

Then, 

      

    

 

22

0 0

2

0

1
2

1

2

sin exp cos
4

sin exp cos
2

1

2

sin

o

s
o

A
o

jk q
A

o
A

o

C d d jk

jk d

e dq

k

k

 



    


   









 

 





 



 Δp

Δp Δp

Δp

Δp

Δp

. 3-42

Note the signals decorrelate with Δp  on the order of half a wavelength of the carrier 

wavelength. 
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3.2.4.1 Ring of scatterers in the azimuth plane 

Next consider a ring of scatterers in the azimuth plane and that the array is also in the 

2   plane. From earlier, one has 

 
    
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However, 

       
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4
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sin 2 2
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. 3-44

Due to the symmetry in scatterer geometry, there is no loss in assuming that 
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3.2.4.2 Angular sector of scatterers in the azimuth plane from known relative offset  

Next consider an angular sector of scatterers in the azimuth plane, with the array also 

in the 2   plane. There is no loss in generality by assuming that  

0

0

0

 
   
  

1p  and 2 0

0

 
   
  

Δp

p . 3-46

Hence, based on the above formulation, 

        
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    Δp Δp . 3-47

However, 
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where  2
1A   is the spatial power density of the sectored multipath scattering which is 

assumed to be spatially white with respect to the angle. Substituting Eq. 3-48 into Eq. 3-

47 yields 
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It is interesting to let the angular sector become very small. Consider a linear array 

such that o  is the angle between the linear array and the narrow sector of multipath. 

Then, 

    2 exp cosf o oC jk Δp Δp . 3-50

If the sector is sufficiently narrow then the rank of the covariance matrix will be one 

resulting in a beamformer. This situation becomes identical to the case of Section 3.2.2, a 

signal with known plane wave direction and complex normal amplitude. 

 

3.3 Performance of EC in different multipath scenarios 

As it was shown in previous sections, in indoor and dense multipath environments the 

test statistic reduces to the EC formulation. In this section, the performance of EC based 

on the EC beampattern concept and beamforming capability will be given. The array 

consists of a linear uniformly spaced array of M elements with inter-element spacing of d 

as normalized by the carrier wavelength. The array is along the axis corresponding to the 

polar angle / 2  . The multipath is assumed to be distributed in azimuth with a 

angular spread denoted as s  and an offset of  . In addition additive white Gaussian 

noise is assumed which is normalized such that the weighting of the estimator correlator 

eigenvector projections is  2
s

s n


 

 where s  denotes the eigenvalue of the signal 

covariance matrix and 2
n  is the variance of the additive noise.  
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In previous sections, different channel propagation models along with the covariance 

matrices were discussed. The radiation pattern, introduced in Chapter 2, can be 

considered as the array performance against an isotropic noise. In the known AOA of a 

plane wave, the principal eigenvector can be considered as a beamformer weight, where 

the principal eigenvector is the eigenvector corresponding to the largest eigenvalue (Van 

Trees 2002). However, in a dense multipath environment where scatterers are modeled by 

a ring, the covariance matrix becomes full rank and conventional beamforming based on 

the principal eigenvector becomes suboptimal. The problem of interest here is comparing 

the detection performance of EC with conventional beamforming techniques for different 

multipath scenarios as explained earlier.  

In the following examples two superimposed plots for the radiation pattern are given. 

One is due to the principal eigenvector corresponding to the largest eigenvalue. This is 

given as 

  2 ,

2
,

s p
p

s p n

R



 




H
pv q  3-51

where the subscript p denotes the principal eigenvector and v  is the steering vector given 

as 

   2 cos 2 ( 1) cos1
T

j d j M de e      v  . 3-52

The other radiation pattern is the EC pattern given as 
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  2 ,

2
1 ,

M
s m

EC m
m s m n

R



 


 Hv q . 3-53

The radiation plots are also normalized such that the maximum response is 1, which 

makes the comparison of the plots easier. The principal eigenvector radiation pattern in 

Eq. 3-51 only considers the principal eigenvalue and eigenvector, whereas the EC 

radiation pattern in Eq. 3-53 takes advantage of all available eigenvectors and 

eigenvalues. For the case of the known AOA of a plane wave propagation represented in 

Section 3.2.2, the rank of the signal covariance matrix becomes one, therefore the 

radiation patterns of the principal eigenvector and EC become identical. If the AOA of a 

plane wave is unknown, the case of Section 3.2.3, or the moving antenna receives signals 

in a dense multipath environment, the case of section 3.2.4, the signal covariance matrix 

becomes full rank and the radiation pattern of the principal eigenvector and EC are not 

identical anymore. In the following the principal eigenvector and EC radiation patterns 

will be compared for different propagation scenarios discussed earlier.  

The first example is with 0.5d  , 10M  , 2s   degrees, 45   degrees and 

2 1n  . This is an example of plane wave propagation with CN amplitude represented in 

Section 3.2.2. The eigenvalues are plotted in Figure 3-2. Note that there is just one 

dominant eigenvalue. 
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Figure 3-2: Eigenvalues for 0.5d  , 10M  , 2s   degrees, 45   degrees and 
2 1n  . 

 

The compass plot of the principal eigenvector is shown in Figure 3-3. Note that the 

eigenvector is reasonable in that all of the values have a magnitude of 1 and essentially 

the phasing beamforms in the direction of the multipath source radiation. 



 

 

82

  0.5

  1

  1.5

30

210

60

240

90

270

120

300

150

330

180 0

 

Figure 3-3 Compass plot of principal eigenvector for 0.5d  , 10M  , 2s   

degree, 45   degree and 2 1n   

 

Figure 3-4 shows the two superimposed radiation patterns,  ECR   and  pR  . Note 

that now both  ECR  and  pR   beamform in the directions of 45 and -45 degrees. The 

reason for the split is that the linear array cannot discriminate between 45 and -45 

degrees. That is the radiation pattern will always be symmetric about the line 0  . Note 

that, despite the value of 2
n , the principal and EC radiation patterns are virtually the 

same. The reason for this is that the multipath spread is so small and the centroid angle of 

the PDF is known that only the principal eigenvalue has any value. The other eigenvalues 

are negligibly small. Note also that the EC or principal eigenvector beamforms in the 

direction of the desired signal. Next consider a situation where 2 0.1n  , implying an 

increased SNR. The emerging radiation patterns are shown in Figure 3-5. 



 

 

83

 

  0.2

  0.4

  0.6

  0.8

  1

30

210

60

240

90

270

120

300

150

330

180 0

 

 principal mode
EC sum

 

Figure 3-4: Radiation pattern for 2s   degree, 45   degree and 2 1n   
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Figure 3-5: Radiation pattern for 2s   degree, 45   degree and 2 0.1n    
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Note that now both  ECR  and  pR   beamform in the direction of 45 and -45 

degrees. Note also that the principal mode is a more focussed beam than the EC. The 

reason for this is that the noise is negligibly small and that the second largest eigenvalue, 

while being small relative to the principal eigenvalue, is still moderate relative to 2
n  

such that the weighting coefficient ,

2
,

s m

s m n


 

 is non-negligible.  

Next consider adding angular extent to the multipath radiation. For this example, 

10s  , 45   degrees, 2 1n  . Figure 3-6 shows the eigenvalues of the signal 

covariance matrix. The principal eigenvector is shown in Figure 3-7 and the radiation 

pattern in Figure 3-8. Note that the principal eigenvector is no longer confined to the unit 

circle and hence it is not just purely beamforming in the direction of 45 degrees. The 

radiation pattern shows the EC pattern broadened with respect to the principal eigenmode 

pattern. However, each still beamforms in the direction of +45 and -45 degrees. If the 

noise is reduced further such that 2 0.1n  , then the plot in Figure 3-9 results. Note that 

the EC pattern is even broader as more eigenmodes contribute. 
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Figure 3-6: Eigenvalues of signal covariance matrix 10s   degree, 45   degree 

and 2 1n   
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Figure 3-7: Principal eigenvector for 10s   degree, 45   degree and 2 1n   
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Figure 3-8: Radiation pattern for 10s   degree, 45   degree and 2 1n   
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Figure 3-9: Radiation pattern for 10s   degrees, 45   degrees and 2 0.1n   
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As an additional example, consider the case when the angle spread is increased to 

50s   degrees and the 2
n  is decreased further to 0.01. Then the pattern shown in 

Figure 3-10 emerges. Note that the EC radiation pattern is almost isotropic in azimuth. 

This occurs despite the fact that multipath only has an angle spread of 50 degrees. If the 

noise is increased substantially, in this case to 2 10n  , then the pattern in Figure 3-11 

emerges. Note that the  ECR   pattern is converging towards the principal eigenmode 

pattern of  pR  . 
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Figure 3-10: Radiation pattern 50s   degrees, 45   degrees and 2 0.01n   
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Figure 3-11: Radiation pattern  50s   degrees, 45   degrees and 2 10n   

 

In conclusion then, for low SNR and small angular spread of multipath, the EC is 

essentially a beamformer in the direction of the multipath radiation. As the angular spread 

increases, the beamwidth of the EC becomes broader especially if the SNR increases. If 

the SNR decreases, then the EC beamwidth decreases and the pattern converges to that of 

the principal eigenmode. An important caveat is that the PDF of the multipath radiation is 

assumed to be known implying that the centroid angle of the radiation relative to the 

array is known by the receiver. As discussed earlier, the case of the multipath angular 

cluster of an unknown centroid angle does not reduce to a Gaussian PDF and hence 

performance degradation will occur. 
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CHAPTER 4: SIGNAL DETECTION PERFORMANCE IN RAYLEIGH FADING 

ENVIRONMENTS WITH A SYNTHETIC ANTENNA ARRAY 

 

In the previous chapter, the synthetic array system model and detection scheme in 

different wireless propagation channels was described in detail. In this chapter, the 

detection performance of a moving receiver based on the Synthetic Array (SA) concept is 

compared to that of the equivalent receiver with a stationary antenna. In Chapter 2 and 

Chapter 3 it was shown that when a receiver is located in a diffuse multipath scattering 

environment such as indoors, fading appears to be a random function of the antenna 

location that spatially decorrelate in intervals of less than the carrier wavelength of the 

signal (Parsons 2000). The performance of beamforming techniques was also evaluated 

in Section 2.6. It was shown that in fading environments where wireless channels 

spatially decorrelates on the order of a carrier wavelength, the array gain decreases. 

Hence, in this chapter the diversity gain as a quantifiable metric is utilized to compare the 

detection performance of the static antenna with that of the synthetic array in fading 

environments. To simplify the analysis in order to obtain useful closed form expressions 

some assumptions regarding multipath fading are necessary. It will be assumed that the 

multipath is consistent with the Rayleigh fading model such that the channel gain 

becomes a circular Gaussian random process relative to the spatial dimensions. It is 

further assumed that the channel gain is static for the duration of the signal sampling 

which will be denoted here as the signal snapshot period. Based on these assumptions, if 
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the antenna is held at a fixed position during the snapshot interval, then the signal is not 

subject to decorrelation as channel gain remains constant. However, the signal will be 

subject to fading losses that are statistically large in a Rayleigh fading environment. 

Conversely, if the antenna is translated along some arbitrary trajectory during the 

snapshot interval then the coherency of the signal will be decreased as the channel gain 

will change randomly but the snapshot data will contain spatial diversity that can 

effectively counter the spatial fading effects. Based on this fact, it will be demonstrated 

that the trade-off between increased diversity gain and loss of signal coherency results in 

an optimum processing gain and number of spatial samples.  

The design of the detection algorithm is based on target values of the probability of 

detection ( DP ) and the probability of false alarm ( FAP ) for the static and moving 

antennas. Assuming that the statistics of the signal and noise components are known, then 

the target detection performance requirements of  ,FA DP P  map into a specific required 

average signal-to-noise ratio denoted by  . A precise definition for   will be given in 

Section 4.1. Regardless of further algorithm details, the goal is to optimize the moving 

antenna processing such that the required   is minimized. In this chapter, the net 

processing gain for the moving antenna will be analyzed resulting in an optimum number 

of spatial samples. The resulting value of  , determined for the spatially translated 

antenna will be compared to the corresponding required value of   for the static antenna. 

The difference gives a quantitative indication of the performance advantage realized by 

moving the antenna during the signal snapshot. 
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Two operating scenarios are considered for the synthetic array. In the first mode it is 

assumed that the antenna is almost static in each subinterval of data collection and there 

are some time gaps between different spatial samples. This mode is defined as a discrete 

synthetic array (Broumandan et al 2009e, 2009f). In the second mode, the receiver 

continuously collects data while the antenna is moving and sequentially combines 

received signals based on a specific process. This mode is defined as continuous synthetic 

array in this chapter (Broumandan et al 2009d). 

This chapter is organized as follows. In Section 4.1, a description of the single 

antenna receiver system is given along with the optimum processing for the static 

antenna. In Section 4.2 the synthetic array system model and signal statistics in discrete 

mode are discussed. Section 4.3 describes the synthetic array signal model in continuous 

mode. In Section 4.4, a detection procedure based on the Estimator-Correlator (EC) and 

Equal-Gain (EG) combiner is demonstrated. The processing gain advantage of the 

moving antenna is thereby quantified in uncorrelated environments. From this, the 

optimum number of spatial samples is evaluated. Section 4.6 and Section 4.7 provide the 

synthetic array performance and processing gain in Rayleigh fading channels for discrete 

and continuous modes respectively. Section 4.8 describes related practical 

implementation issues. Finally, conclusions are presented in Section 4.9. 

 

4.1 System model and detection performance of the static antenna 

Part of the initial acquisition of the received signal is a multi-hypothesis search 

typically performed over a pre-defined search window of unknown parameters (Caini et 
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al 2004a, 2004b). The design of the acquisition algorithm is generally based on target 

values of the DP  and the FAP  associated with each search hypothesis. If the locally 

generated signal matches that of the incoming signal, then the hypothesis being tested 

corresponds to a H1 state where the signal is present and DP  can be evaluated. Likewise, 

if the parameters selected for the locally generated signal are mismatched with respect to 

those of the incoming signal, then the hypothesis being tested corresponds to a H0 state 

where there is no signal present from which FAP  can be evaluated. To avoid complexities 

that obscure the essence of the comparison between the static and moving antennas, the 

multi-hypothesis process is idealized such that for the evaluation of DP , the locally 

generated signal is assumed to be perfectly synchronized with the incoming signal. 

Wireless communication and GNSS signals typically consist of some known structure 

with unknown parameters used for signal acquisition and synchronization (e.g. GSM, IS-

95, IS-136 and CDMA 2000). For instance the Global Positioning System (GPS) 

Coarse/Acquisition (C/A) code has essentially a deterministic structure except for 

unknown delay and Doppler frequency parameters and additional low rate unknown data 

bits. In this chapter, the desire was to focus specifically on the performance difference 

between a moving and a stationary antenna. Hence, a known structure signal is assumed 

with the despreading signal appropriately aligned in terms of delay and frequency offset 

(As in the GPS demodulation, this would be established by a multi-hypothesis search.). 

The scenario considered is that of a single receiver antenna immersed in a Rayleigh 

fading environment, which is captured over a finite time interval of  0,t T  where T  

denotes the duration of the signal snapshot. This signal snapshot is processed to decode 
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between the H0 and H1 states. It will be assumed that the multipath is temporally 

unresolvable and is constant over the snapshot duration of T  (flat fading). This is a valid 

assumption for indoor environments for signals with a bandwidth of 1-2 MHz (Rappaport 

2002). However, the multipath will vary randomly with the spatial position of the 

antenna. Thus, the channel gain between the transmitter and the receive antenna phase 

centre can be represented by a scalar variable denoted by A  introduced in Chapter 2, 

which is a random process with regards to spatial variables but is static with regards to 

time (Friedlander & Scherzer 2004). As it was demonstrated in Section 2.5, flat fading is 

a reasonable model for indoor environments where multipath signals have unresolvable 

components.  

The representation of the received signal ( )r t  for a static antenna located at a position 

p  is expressed as  

   ( ) ( )0r t A s t n t p  4-1 

where  A p  is the channel gain and ( )0s t  is the deterministic complex baseband 

component of the signal that is known to the receiver and ( )n t  is circularly normal 

random additive noise, independent of the signal. 

The receiver accumulates a temporal snapshot of ( )r t  over the snapshot interval of 

 0,t T  as introduced beforehand. Based on the Rayleigh fading assumption,  A p  is a 

zero-mean circularly normal random variable (Rensburg & Friedlander 2004) such that 

   20, AA CN p   where  denotes the Probability Density Function (PDF) of the left 
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hand side variable2. As ( )0s t  is known to the receiver, and  A p  is circularly normal and 

( )n t  is spectrally white within the bandwidth of ( )0s t , the optimal Neyman-Pearson (NP) 

detection processing (Kay 1998) is a matched filter based on correlation with *( )0s t  

followed by a magnitude squared operation as illustrated in Figure 4-1 where  *  

represents the complex conjugate operator (refer to Section 2.8).  

( )os t   
0

T

dt   

w(t) 

z0 

Channel 

 A p  

Receiver 

( )r t  

  2
  

xT 

( )*os t  

 

Figure 4-1 Static antenna channel model and subsequent NP processing 

 

This processing results in the decision variable denoted as 0z  which is expressed as 

 *
( )

2

0 T

T

T 0

0

z x

x r t s t dt



 
 4-2 

where the intermediate variable Tx  is defined for convenience. The signal energy of ( )0s t  

is normalized such that ( )
T 2

00

1
s t dt 1

T
 . As    *

( ) ,
T

0 0

0

n t s t dt CN 0 TN   it follows that 

the PDF of Tx  conditioned on  A p  is given as 

                                                 

2 Random variable B u jv   distributed according to circularly normal PDF with zero-mean and variance 
2 ,  , 2CN 0  , where u  and v  are independent zero-mean normal random variables each with variance 
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    | ,T 0x A CN TA TNp p . 4-3 

The SNR of Tx  for a given T is denoted as T  which conditioned on  A p  is  

   2

|T
o

TA
A

N
 

p
p . 4-4 

Hence, the expected value of T  is given as 

 
2
A

T
o

T
E

N

   4-5 

where  E   is the expectation operator. Based on this, it is convenient to define   as the 

average SNR as 

2
A

o

T

N

  . 4-6 

This definition will be used throughout the remainder of this chapter. Without loss of 

generality, the normalization of 1oTN   can be imposed such that 2 2
AT   which 

simplifies the expressions that follow. 

 

4.1.1 Static antenna detection performance 

In the static antenna case the antenna is located at a position p  throughout the 

interval  0,t T . Based on the above definitions and normalizations, the PDF of Tx  

conditioned on H0 and H1 is 

                                                                                                                                                 

2 2 ,  20, 2u N   and  20, 2v N   (Kay 1988). 
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 
 

,
~

,
0

T
1

CN 0 1 under H
x

CN 0 1 under H

 

. 4-7 

Consequently, the PDF of 0z , defined in Eq. 4-2, conditioned on H0 and H1 is Chi-

Squared central with two Degrees Of Freedom (DOF)3. Hence, 

~

0

0

z
0

z
0

1
1

e under H

z 1
e under H

1
















. 4-8 

Assuming that 0z  is compared with a threshold   then the FAP  and DP  can be 

determined by 

 exp

exp

FA

D

P

P
1






 

 
   

. 4-9 

Let s  denote the value of   for the static antenna, which can be expressed explicitly in 

terms of the given target values of FAP  and DP  using Eq. 4-9 as  

 
 

ln

ln
FA

s
D

P
1

P
   . 4-10 

s  is the average SNR required to meet the target values of FAP  and DP  for a static 

antenna assuming Rayleigh fading. 

                                                 

3 If  ~ , 2B CN 0  , 2
B is distributed according to    2 2 2

2

1
expf B B 


   (Papoulis & 

Pillai 2002). 
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4.2 Synthetic array system model in discrete mode 

The moving antenna is now considered whereby the antenna is translated along an 

arbitrary trajectory while the snapshot data is being collected. The position vector to the 

antenna location at time t from the origin is now denoted as ( )tp . The signal component 

of the complex baseband signal ( )r t  is written as  , ( )s t tp , which is a function of time t, 

and the antenna position ( )tp , which in turn is a function of t. It is assumed that the 

signal snapshot of ( )r t  is collected in M discrete subintervals, each of duration T . For a 

direct comparison with the static antenna, the constraint T M T   will be imposed. 

Define tm as the starting instance of the m-th subinterval that extends over the interval 

 ,m mt t T   for  1, 2,...,m M . It is assumed that there are arbitrary time gaps between 

the subintervals such that 1m mt t T   . These time gaps are selected based on the 

receiver velocity to capture statistically independent spatial samples and maximize 

diversity gain. The collection of signals over the m-th and (m+1)-th subintervals in 

discrete mode is illustrated in Figure 4-2.  

antenna 

 mt T p   mtp  

 1mt p  
 1mt T  p  

antenna  
trajectory 

spatial 
coordinates  

Figure 4-2: Moving antenna and positional vector definitions for snapshot collection for 
the m-th and (m+1)-th sub-intervals each of duration T  in discrete mode 
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T  is considered to be sufficiently small such that  ( )A tp  can be assumed constant over 

the interval of T  such that 

     ( ) ( ) ,m m mA t A t for t t t T   p p . 4-11 

For this approximation to be valid, ( ) ( )m mt T t  p p  must be small relative to the 

wavelength of the carrier. This assumption places a limit on how large T  can be and 

also on how fast the antenna can be moved in the discrete synthetic array mode.  

The signal reception model of the synthetic array was described in Chapter 3. For 

convenience here an overview of the synthetic array model is given. The signal captured 

in each subinterval is correlated with *( )os t  resulting in a set of M spatial array samples 

denoted by mx and given as 

  *( )
m

m

t T

m o
t

x r t s t dt


  . 4-12 

mx  can also be expressed as 

 ( )m m m mx A t s n p  4-13 

where 

*

( )

( ) ( )

m

m

m

m

t T
2

m 0

t

t T

m 0

t

s s t dt

n n t s t dt












. 4-14 

It follows that mx  forms a set of sufficient statistics of the accumulated snapshot 

signal in terms of optimal decoding between H0 and H1. The vector forms of the signals 
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are defined as  1..
T

Mx xx ,  1..
T

Ms ss ,  1...
T

Mn nn and    1( ) .. ( )
T

MA t A t   A p p . 

Due to the Rayleigh fading assumption, the individual components of the vector A  are 

circularly normal such that       20,m Am
A t CN A p  . With these definitions the 

detection problem is stated as 

    

                
1

0

under H

under H

 


x A s n

x n


 4-15 

where  denotes the Hadamard vector product operator.  

The optimal detection processing based on the NP Likelihood Ratio Test (LRT) (Kay 

1998) chooses H1 if 

 
 

|
( )

|
1

0

H

H

p
L

p
 

x
x

x
 4-16 

where  |
1Hp x  and  |

0Hp x  are the conditional PDF’s of x  given 1H  and 0H  

respectively and   is a threshold. As both A  and n  are zero-mean multivariate 

circularly Gaussian random vectors, so is x . Hence, ( )L x  is a function of the covariance 

matrices of A s  and n . The noise covariance matrix is denoted nC  and given as 

H 1
E

M
   n MC nn I  4-17 

where MI  is the M×M identity matrix. The last step follows from the normalization 

0TN 1  and the relationship ( )
m

m

t T
2

0

t

T
s t dt T

M



   . The signal covariance matrix is 

denoted sC  and is given as 
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 H 2E T    s AC A s A s C   4-18 

where AC is the covariance matrix of A . 

As stated previously, the individual components of the vector A  are circularly 

normal such that       20,m Am
A t CN A p  . The signal covariance matrix in a 

Rayleigh fading environment with a ring of scatterer models was defined earlier in 

Section 3.2 by  

 

2 2

2 2

0,

2

A

i j

T

M M

J

 




   

    
 

s

i j

C

p - p

 4-19 

where   denotes the normalized correlation coefficient matrix which is a function of 

antenna position, 0J  is zero-order Bessel function of the first kind and   is the carrier 

wavelength. Thus, the PDF of x  conditioned on H1 and H0 is 

 

 

, ,  

~

, ,

2
n 12

2
n 0

1
CN 0 CN 0 under H

MM

1
CN 0 CN 0 under H

M





        


      

sC I I

x

I I

. 4-20

 

4.3 Synthetic array system model in continuous mode 

The model discussed in the previous section was based on the assumption that the 

antenna movement in each subinterval is negligible and spatial samples are collected 

sufficiently apart that uncorrelated spatial samples can be assumed (Figure 4-2). Thus, 

this model puts a limit on how large T  can be and also how fast the antenna can be 
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moved. However, in some applications the stationarity assumption of the antenna in each 

subinterval cannot be considered. Hence, the proposed model should be adapted 

accordingly to accommodate this situation as well. For instance, if a receiver is moving 

with a velocity of 1 m/s, and 100 ms integration is required in each subinterval, for a 

carrier wavelength of 20 cm, antenna displacement during each subinterval becomes half 

of the wavelength and cannot be ignored.  

In this section, the signal covariance model for continuous synthetic array mode is 

considered. The receiver accumulates a temporal snapshot of ( )r t  over the snapshot 

interval  0,t T . During the snapshot interval, the antenna moves with an 

approximately constant velocity. The signal snapshot of ( )r t  is collected by the receiver 

and despread by the locally generated copy of ( )os t . In the proposed method T is divided 

into M uniform subintervals, each of duration T . As will be revealed later M is a 

function of the antenna velocity and the multipath model. 

To facilitate the derivations, it is necessary to consider the signal snapshot as a set of 

discrete samples. Assume that each discrete sample is derived by despreading ( )r t  with a 

locally generated signal for a subinterval duration of T . It will be assumed that each 

subinterval is of the same duration as T  and that the total snapshot interval of T  

consists of M  subintervals such that T M T  . Figure 4-3 represents the data 

collection scenario with M subintervals for T seconds for continuous mode synthetic 

array. 
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 ( 1)m T p  

 m Tp  

antenna  
trajectory 

spatial 
coordinates

antenna 
m-th 

M-th 

1-th 2-nd 

 

Figure 4-3: Moving antenna and positional vector definitions for snapshot collection for 
continuous mode synthetic array 

 

Comparing Figure 4-2 with Figure 4-3 one can easily contrast the differences in 

discrete and continuous sampling modes. Define ( 1)m T   as the starting instance of the 

m-th subinterval that extends over the interval of  ( 1) ,m T m T   . The signal captured 

in each subinterval is correlated with ( )os t  resulting in a set of M spatial array samples 

denoted by mx  and given as 

 
( 1)

( )
m T

m om T
x r t s t dt

 

 
  . 4-21 

mx  is expressed as 

 ( )m m m mx A t s n p  4-22 

where 
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2

( 1)

*

( 1)

( )

( ) ( )

m T

m om T

m T

m om T

s s t dt

n n t s t dt



 



 








. 4-23 

M is a function of the snapshot aperture and the multipath model which will be discussed 

in the next section. Clearly T  should be small enough that the decorrelation due to the 

changing  ( )A tp  over the subinterval should not be of significance.  

To simplify the following development and notation it is assumed that 

 2

( 1)
( ) 1, 2...

m T

om T
s t dt T for m M



 
   . 4-24 

This is a valid assumption where a signal bandwidth is broad relative to 1T  . Based on 

this assumption and that the PSD of the additive noise is oN , the covariance matrix for 

the additive noise is defined as 

E    
H

nC nn . 4-25 

The elements of nC  are given as 

  '

'

* *
2, '

2

2

. '

1
( ) ( ) ( ) ( )

( )

m m

m m

m

m

t T t T

o om m t t

t T
o

ot

o
m m

E n t s t dt n t s t dt
T

N
s t dt

T
N

T


 



      







 



nC

. 4-26 

Consequently, oN T n MC I  where MI  is the M×M identity matrix. The signal 

covariance matrix is a function of the scatterers’ geometry as well as the antenna 

trajectory. Diffuse multipath is assumed and is considered a continuum of infinitesimal 

scattering reflection sources each of which results in a circularly normal random 

amplitude component. Results given here are adopted from the detailed derivation given 
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by Van Trees (2002). The covariance matrix is defined based on the multipath signal 

model in Eq. 4-15 as 

  E    
H

sC A s A s   4-27 

with elements given as 

     

 

' **
2, ' ( 1) ( ' 1)

, '

1
( ) ( ) ( ') ( )

m T m T

o om m m T m T

m m

E A t s t dt A t s t dt
T

 

   

     


 s

A

C p p

C
. 4-28 

The last step follows from the normalization given in Eq. 4-24. Hence, 

     

 

    

'

, '
( 1) ( ' 1)

'
2

0

( 1) ( ' 1)

2
0

0

( ) ( ') '

2 ( ') '

2 2 ( ')

m T m T

m m
m T m T

m T m T

A

m T m T

T

A

E A t A t dtdt

J v t t dtdt

T u J v u m m T du

 

 

 

   

 

   



   

 

     

 

 



sC p p

 4-29 

where 0J  is zero-order Bessel function of the first kind resulting from the ring of 

scattering model (Van Trees 2002, Fulghum et al 2002) and v  is receiver velocity 

normalized by the carrier wavelength. 

Define the distance between sample points normalized by the carrier wavelength as 

d v T    such that 

      
1

2
0, '

0

2 1 2 ( ')Am m
q J d q m m dq     AC  4-30 

where q u T  is introduced for notational convenience.  

For the numerical calculation it is convenient to normalize the signal and noise 

covariance matrices by oN T  such that n MC I  and  
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      
12

0, '
0

2
1 2 ( ')A

m m
o

T
q J d q m m dq

N

 
    sC . 4-31 

Next, define the average SNR as the signal energy in the T  second interval to the noise 

PSD as 
2
A

T
o

T
N

   . Hence, the signal covariance matrix can be defined as  

      

 

1

0, '
0

, '

2 1 2 ( ')Tm m

T m m

q J d q m m dq 







    



sC

Ψ

 
4-32 

where Ψ  is the SA normalized signal correlation coefficient defined by 

      
1

0, '
0

2 1 2 ( ')
m m

q J d q m m dq    Ψ . 4-33 

This cannot be integrated in closed form and hence must be done numerically.  

The PDF of x  conditioned on H1 and H0 is 

   
   

, ,     
~

, ,    
T 1

0

CN CN under H

CN CN under H

   
 

s n

n

0 C C 0 Ψ I
x

0 C 0 I
. 4-34 

Equation 4-32 is the key relation in further analyses as it contains all the relevant 

information regarding the receiver motion and channel model. If the antenna is static then 

0d   and 0 (0) 1J   resulting in   , '
1

m m
Ψ . Thus, the signal covariance matrix in the 

static case becomes 

static
s T TC 11  4-35 

where 1  is the M×1 vector of ones. 
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4.3.1 Coherent integration loss due to antenna motion in Rayleigh fading 

In this section for the static antenna case it is assumed that during the signal snapshot T 

the channel is stationary (other decorrelation effects such as oscillator instability are 

ignored). Hence, the optimum process is coherent integration for T seconds with M=1. In 

this case, the signal covariance matrix represented in Eq. 4-32 becomes a scalar equal to 

T . The problem of interest is assessing the coherent integration loss due to antenna 

motion relative to the static antenna when M=1. 

By developing the signal covariance matrix in 4-32 it is possible to analyze the 

integration loss due to antenna movement in a Rayleigh fading environment. Assume a 

receiver that accumulates the received signal for a snapshot interval of T. Hence, the 

correlation coefficient matrix Ψ  represented in Eq. 4-32 is a scalar and for the static 

antenna becomes one. Therefore, the signal covariance matrix in the static case can be 

considered as an average SNR during the signal snapshot T . If the signal covariance 

matrix in the moving case is defined as a function of the normalized velocity v and the 

snapshot interval T as  ,T v T  , the coherent integration Gain Degradation (GD) due to 

the receiver motion with a constant velocity v can be defined as 

   ,
,T

T

v T
GD v T





   . 4-36 

As seen in Eq. 4-36 the GD value is completely characterized by  ,v T . Figure 

4-4a shows GD for different values of v when the receiver coherently integrates the signal 

snapshot for one second (T=1 s). Since T=1, the horizontal axis in Figure 4-4a may be 

considered as the antenna normalized aperture during the signal snapshot. As an example, 
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coherent integration for T=1 s and v=0.5 (half-wavelength aperture) results in a GD value 

being reduced to 0.8, implying a 20 percent loss relative to the ideal integration gain of 

the static antenna. Figure 4-4a shows observations that are relevant for system design 

issues. For instance, if the coherency of the channel during each snapshot should be 

preserved to within 95 percent, the spatial extent of the moving antenna should be kept to 

less than 0.25 of the carrier wavelength in a Rayleigh fading channel. 

Next the receiver velocity is kept constant and T is varied. The Normalized 

Integration Gain (NIG) metric which is the ratio of the integration gain of a moving 

antenna to the integration gain of the static antenna for T=1 (defined as 1 ) 

 
1

,TNIG v T



  . 4-37 

Figure 4-4b shows the NIG value for 1v  . As shown in Figure 4-4b, in the range of 

 0,0.5T  , the integration gain is almost linearly increasing by T. Hence, increasing 

integration time enhances the process gain. However, due to receiver motion and signal 

decorrelation, increasing T further causes a decorrelation of signal samples. Thus, after 

approximately one second of coherent integration, the processing gain remains constant 

and becomes independent of T. Note that the integration gain of T=1 for the moving 

antenna with 1v   in the steady state case (after one second) is almost 30 percent of that 

of the static antenna. Note also that if the receiver is static, in the ideal case the NIG value 

given in the Figure 4-4b will linearly increase with a slope of one.  
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Figure 4-4: a) Correlation coefficient of a moving receiver versus receiver velocity for 
T=1 s and M=1, b) normalized integration gain versus T for constant 1v   and M=1 

 

It is interesting to determine the limit of the NIG for different values of v when 

T  . In Appendix A, it is shown that  

1
lim  
T

NIG
v

 . 4-38

Hence, the higher the velocity, the smaller the limit of NIG which is an intuitive result. 

For instance, if a vehicle navigation system is operating in a dense multipath environment 

with a velocity of 10 m/s (53 wavelength per seconds for GPS L1 signals), the 

lim  0.006
T

NIG


 .  
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4.3.2 Selecting M for a given aperture in the Rayleigh fading model 

An important issue in the development of the proposed method is the most favorable 

selection of M, which provides a good compromise between coherency loss and diversity 

gain. For a given extent of the moving antenna aperture normalized by the carrier 

wavelength d and a multipath model, if M becomes one, as shown previously the 

coherency of the channel will decrease resulting in an integration loss. On the other hand 

if M is too large, the matrix operations in the process becomes unwieldy. Hence, the 

optimal value of M may be selected that results in the diagonal elements of the 

correlation coefficient matrix Ψ  being near one with negligible values for off-diagonal 

elements.  

Assume a signal snapshot T and antenna velocity v so that the product of T and v 

provides the antenna aperture d by assuming linear motion. The problem of interest is to 

determine the signal correlation coefficient for a given aperture d and different values of 

M. Figure 4-5 shows the correlation coefficient Ψ  for 1d   and different values of M. 

When M=40, the diagonal elements of the Ψ  matrix become one. However, the adjacent 

samples are strongly correlated. By decreasing M the correlation of each snapshot by 

itself decreases which results in a coherent integration loss; however the adjacent samples 

become approximately uncorrelated and diversity gain can be achieved. Figure 4-5 also 

shows that for M=4 and M=2 the diagonal elements of the Ψ  matrix are 0.91 and 0.68, 

respectively. Interestingly, the off-diagonal values for the two cases are almost the same. 

Hence, by comparing different correlation coefficients for different values of M, M=4 per 

wavelength can be considered as a practical choice since it has an autocorrelation value 

of greater than 0.9 and a cross correlation of less than 0.4.  
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Figure 4-5: Correlation coefficient for different values of M 

 

4.4 Detection process of a narrowband signal in Rayleigh fading  

In this section, the narrowband signal detection performance in a Rayleigh fading 

environment is investigated. Two approaches are considered herein. The first method is 

based on the EC, which takes into account the signal covariance matrix and provides an 

optimum detection process in the Rayleigh fading channel introduced earlier. The second 

approach is developed based on the EG detector, which combines spatial samples with 

equal weights.  
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4.4.1 Optimum detection performance of a narrowband signal in Rayleigh fading based 
on the Synthetic Array 

In Section 4.2 and Section 4.3 the signal covariance model sC  of the discrete and 

continuous synthetic array were developed. In this section, sC  is utilized for detecting a 

signal embedded in white Gaussian noise. Assuming that sC  and nC  are available, the 

PDF of x  conditioned on H0 and H1 can be written as 

 
 

  

 

| exp

| exp

1

0

1H
H

H 1
H

1
p

2

1
p

2









     

   

s n

s n

n

n

x x C C x
C C

x x C x
C

. 4-39 

The optimal detection processing based on LRT was introduced in Section 3.2.2. It 

was shown that the LRT reduces to the EC formulation resulting in a sufficient statistic 

given as  

 ( )
1H 2

EC nz 


 s sx x C C I x . 4-40 

Since sC is a Hermitian matrix, the eigen-decomposition of sC  can be represented as 

H
s sQ C Q = Λ  4-41 

where  , , 1 2 MQ q q ... q  is the orthogonal matrix of columnwise eigenvectors and sΛ  is 

the diagonal matrix of eigenvalues where the m-th eigenvalue is denoted by 
ms . In 

Section 2.8.2 it was demonstrated that the EC test statistics can be shown as  

( ) m

m

M
2s

EC m2
m 1 s n

z y


 


y  4-42 
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where Hy = Q x . The vector  , ,...,
T

1 2 My y yy  consists of M independent circular 

Gaussian random variables such that 

 
 

,
~   

,

1

0

CN 0 under HM
under HCN 0 M

 



s
IΛ

y
I

. 4-43 

Therefore, the test statistics represented in Eq. 4-42 ECz  becomes a scaled factor of 

Chi-Squared distribution. Figure 4-6 shows the EC processing model. 

 

Figure 4-6: Synthetic antenna channel model and subsequent EC processing 
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Next consider the calculation of the FAP  and DP . The characteristic function of ECz  

conditioned on H1 and H0 is given as 

 

 

|
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m 1 m
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z H
m 1 m

1

1 j

1
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where 
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,
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H
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The values of FAP  and DP  can be determined by taking the Fourier transform of the 

characteristic functions. For a given threshold of   applied to ECz , the following is 

obtained: 
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4-46 

To determine a closed form expression for FAP  and DP  in the case of distinctive 

eigenvalues of sC , using a partial fraction expansion, it can be shown that (Kay 1998) 

  ,
i

i i

HM M
m

H H
m 1m 1 m m

A1
i 0 1

1 j 1 j   

 
   4-47 

where 
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and iH
m  is defined in Eq. 4-45. For the general case of i

M
H 2
m m

m 1

z x


  where iH
m  are 

distinct with iH
m 0  , and 2

mx  are IID with PDF of Chi-Squared with two DOF, the PDF 

of z  is given by 
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Thus, the performance of EC can be represented in closed form as 

exp

exp

0

0
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
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. 4-50 

 

4.4.2 Detection performance of the EG combiner in the Rayleigh fading channel based on 
the synthetic array 

As shown in Eq. 4-42 EC emphasizes the stronger signal components corresponding 

to those with larger eigenvalues. EC formulation requires approximate knowledge of the 

signal and noise covariance matrices in order to compute the eigenvalues. This may not 

be usable in many practical applications. When nC  and sC  are not known apriori, the EG 

combiner is a practical suboptimal alternative that may be applied. Note from Eq. 4-42 
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that the EG combiner becomes asymptotically optimal when the signal components 

become more uncorrelated. On the other hand, the EG combiner is an optimal approach 

for signal detection in an uncorrelated Rayleigh fading environment. This is because 

 m m

2
s s    in Eq. 4-42 becomes identical for all spatial samples and this leads to the 

EG formulation. The test statistic of the EG combiner can be represented by  

2

1

M

EG m
m

z x


 Hx x . 4-51 

As shown in Eq. 4-51, the test statistics of the EG combiner are independent of sC . 

The channel model and subsequent EG processing is shown in Figure 4-7.  
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Figure 4-7: Channel model and equal-gain combining receiver processing for the moving 
antenna 
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4.4.2.1 EG combiner detection performance in uncorrelated Rayleigh fading 

In this section, the detection performance of a discrete mode synthetic array in a 

Rayleigh fading environment is described. Note that if the subinterval sample points are 

sufficiently far apart such that    i jt tp p  for  , 1, 2,...,i j M  and i j  is larger than 

the carrier wavelength then 2
AA MC I , and 

2 2

2 2
AT

M M

 
 s M MC I I . 4-52 

sC  is therefore available based on the assumption of the Rayleigh fading model and on 

the approximate estimate of the physical distance between the M spatial sampling points. 

As will be discussed further, the performance of the synthetic array is typically robust in 

terms of errors in these estimated distances. nC  is based on the modeling of the noise 

which is typically construed as being spatially white. After some manipulation and the 

removal of deterministic scaling and additive constants, the LRT in uncorrelated 

Rayleigh fading reduces to the EG combiner defined as  

H
EGz  x x  4-53 

where the scaling coefficient of 2 2 1
M M
   

 
 has been ignored.  

The decision variable output of the EG combiner, EGz , has a PDF that is Chi-Squared 

central with 2M DOFs under both H0 and H1. If the variance per DOF is taken as 2  then 

the PDF of the test statistics becomes (Hyeon et al 2008, Papoulis & Pillai 2002) 
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where  M  is the Gamma function and for the integer M,   ( 1)!M M   . The PDF 

of EGz  conditioned on H0 and the assumption of spatial white channel noise with 

2 1

2M
   is given by 

   
|
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z2MM M
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f z z e
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which simplifies to 

   
|

0

M
M 1 zM

z H

M
f z z e

M
 


. 4-56 

For H1, 
2

2

1 1
1

2 2 2M M M M
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 
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The FAP  and DP  can be determined for a threshold   as 

 2
2M

FA x
P Q 2M  4-58 

and 

2
2M

D x

2M
P Q

1
M




 
 

  
 
 

 4-59 

where (Kay 1998) 
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The threshold can be scaled to simplify these expressions to  

 2
2M

FA x
P Q   4-61 

and 
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  
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 

. 4-62 

The target detection parameter FAP  is used in Eq. 4-61 to determine the threshold  . 

This is used in Eq. 4-62 with the target parameter DP  to determine the average SNR   

required. Let m  denotes the average SNR required for the synthetic array. 

 

4.4.2.2 EG combiner detection performance in correlated Rayleigh fading 

To determine the performance of EG in correlated Rayleigh fading, it is convenient to 

perform the following transformation which decorrelates the signal covariance matrix: 

2

1

EG

M

m
m

z

y


 

 

H H H

H

x x x QQ x

y y
 4-63 

where Hy = Q x , Q  being the eigenvectors of the signal covariance matrix defined 

earlier. The distribution of y  is given in Eq. 4-43. Consequently, 
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where iH
m  is the m-th eigenvalue of xC  under the Hi state and 2

2  denotes a Chi-Squared 

distribution with two DOFs. For a general signal covariance matrix sC , the characteristic 

function of EGz  conditioned on H1 and H0 is given as 
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where  

1

0

1

1

m

H
m s

H
m

M

M

 



 


. 4-66 

The values of FAP  and DP  can be determined by replacing Eq. 4-65 and Eq. 4-66 into 

Eq.4-46.  

In summary the following points are made: 

- In a correlated signal environment, if signal and noise are jointly circular 

Gaussian over the 2M dimensions the optimum detector reduces to the EC, for which the 

test statistic is given in Eq. 4-42. This procedure requires apriori knowledge of the 

covariance matrix and signal power. The EC performance was determined by inserting 

Eq. 4-44 into Eq. 4-46. The closed form expressions for the EC performance for 

distinctive eigenvalues of the signal covariance matrix were given in Eq. 4-50.  
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- When the multipath fading is such that the channel gains associated with the M 

samples of the synthetic array become uncorrelated then EC reduces to the EG combiner. 

In this case, the test statistic becomes a random variable with a central Chi-squared PDF 

with 2M DOF, where M is the number of spatial samples. 

- When the multipath fading is such that the channel gains associated with the M 

samples of the synthetic array become fully correlated, then the EC combining reduces to 

that of a matched filter followed by a magnitude squaring operation. In this case, the test 

statistic is random with a central Chi-square PDF of two DOF. The test statistic and 

performance are therefore equivalent to that of the static antenna as represented by Eq. 

4-9 and Eq. 4-10. 

- When sC  and nC  are unknown, a suboptimal solution is provided by the EG 

combiner. The performance of the EG combiner in correlated Rayleigh fading was 

demonstrated by inserting Eq. 4-65 into Eq. 4-46.  

 

4.5 Discrete mode synthetic array detection performance and processing gain in 
uncorrelated Rayleigh fading  

In previous sections, the detection performances of static and moving antennas were 

formulated. Given target detection parameters FAP  and DP , the average SNR required for 

the static and the moving antenna, denoted as s  and m  respectively, can be evaluated. 

In this section, s  and m  are compared for various scenarios such that the advantage of 

moving the antenna can be quantified. Figure 4-8 shows s  and m  as a function of the 

target parameter DP  for 0.01FAP   and M=4.  
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Figure 4-8: Required average SNR for a static and moving antenna versus PD 

 

For larger values of DP , the required average SNR of the moving antenna is 

consistently less than that of static antenna, demonstrating the advantage of the moving 

antenna compared to the static one. Also evident in Figure 4-8 is that this advantage 

decreases as DP  is reduced. When DP  is sufficiently low, s  is less than m  indicating 

that the moving the antenna is actually detrimental. However, the range where s m   is 

of negligible practical significance as DP  is low.  

Figure 4-9a shows the required average SNR as a function of M for the static and the 

moving antenna cases with the interesting observation that there is a global minimum. 

Hence, there is an optimum value of M for which m  is minimum, which is denoted as 

optM . 
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Figure 4-9: (a) Required average SNR for a static and moving antenna versus M (b) 
Achievable gain by moving antenna (PD=0.95 and PFA=0.01) 

 

It is convenient to define  10log s mG    as the processing gain of the moving 

antenna process relative to the static antenna. In Figure 4-9b, G is plotted as a function of 

M for the corresponding case represented in Figure 4-9a. As expected, G has a global 

maximum at optM , emphasizing the optimum choice of M. For this analysis, uncorrelated 

samples of the channel gain were assumed which implies that the trajectory of the 

moving antenna is such that it can accommodate optM  uncorrelated channel samples. As 

M is increased for the moving antenna, the diversity gain increases. However, the 

incremental diversity gain also decreases to small values as M becomes large. To satisfy 

the T M T   constraint as M is increased, the coherency of the snapshot signal with 

coherent integration of T  seconds is reduced as each of the M subinterval components 
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constituting the overall snapshots are essentially noncoherently combined. This 

eventually becomes the dominant loss factor as M becomes larger. The consequence of 

these factors is the existence of an optimum value for M. 

Figure 4-9a also demonstrates that for larger values of M, 0md

dM


  which is proven in 

Appendix B. 

Figure 4-10 shows the required average SNR as a function of the PD and the number 

of synthetic array elements M for a given 0.01FAP  . M=1 indicates the static antenna 

case. By increasing M, the required SNR for target values of PFA and PD initially 

decreases which shows the advantage of utilizing a synthetic array. For larger values of 

PD, the advantage of the synthetic array compared to the static antenna becomes 

dominant. In Figure 4-11, G  is plotted as a function of M and PD. As expected, G  has a 

maximum at optM , emphasizing the optimum choice of M. The black curve in Figure 

4-11 shows the corresponding value of optM  for given PD values with the interesting 

observation that optM  increases for larger DP  values. 
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Figure 4-10: Synthetic array required average SNR versus PD and M for PFA=0.01 

 

Figure 4-11: Synthetic array gain with respect to static antenna versus PD and M for 
PFA=0.01. The black line represents the optimum M as a function of PD 
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Figure 4-12a shows the optimal value of G as a function of DP  for a given 0.01FAP  . 

As indicated earlier, G increases as DP  is increased, which is due to the increased 

significance of diversity gain as the target DP  is increased. 
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Figure 4-12: (a) Optimum processing gain versus PD, (b) Mopt versus PD (PFA=0.01) 

 

This is equivalent to the increased significance of the diversity gain for lower Bit 

Error Rate (BER) in communication systems (Proakis 2001). Figure 4-12b shows the 

corresponding value of optM  with the interesting observation that optM  increases for 

larger DP . This implies that the trajectory of the antenna has to be larger to achieve more 

uncorrelated spatial samples of the channel gain. Note from Figure 4-12a that an optimal 

G of 11 dB gain is attainable when 0.99DP   which is a practical target specification. 
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optM  for this case is 10, which maps into a reasonable trajectory size for carrier 

frequencies in the 1 to 2 GHz range. 

The Mean-Acquisition Time (MAT) is a metric to evaluate the performance of 

acquisition systems. It is shown in Holmes & Chen (1977) that for a single dwell code 

searching system based on the flow graph method, the MAT,T  can be represented by 

   D FA

D

2 2 P q 1 1 P
T T

2P

    
  4-67 

where q is the number of cells to be searched,   is a penalty factor due to false alarm and 

T  is the integration or dwell time.  

Consider fixed target values of PD and PFA for a synthetic array and a static antenna, 

respectively. Figure 4-11 showed the additional required SNR for the static antenna to 

meet these targets. Hence, by assuming a coherent signal model for the static antenna and 

uncorrelated noise samples in each snapshot, the static antenna has to increase the 

coherent integration time T by a quantity dictated by G in Figure 4-11 in order to have the 

same performance as a synthetic array. For example, if G is 3 dB, in order for the static 

antenna to achieve the same performance (in terms of PD and PFA ) as the synthetic array, 

its integration time T needs to be increased by a factor of two, which increases the MAT 

by a factor of two. Hence, the processing gain represented in the Figure 4-11 can be 

directly used to compare MAT performances of the static antenna and synthetic array. 

For comparison, the ratio of the required processing time between the static antenna and 

the synthetic array to have the same performance, static
ratio

synthetic

T
T

T
 , is shown in Figure 

4-13. 
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Figure 4-13: MAT ratio of static antenna to synthetic array 

 

The Receiver Operating Characteristics (ROC) curve is a metric to evaluate the 

detection performance of a receiver. A ROC is a plot of DP  as a function of FAP  for 

specific values of  . Figure 4-14 shows the ROC curves for different values of M (M=1 

represents the static antenna case) for a given 16 dB  . Figure 4-14 shows there is a 

significant gain in increasing M from one to 10, resulting in diversity gain. However, 

there is no advantage to increase M further because the coherency of the process becomes 

the dominant loss factor causing degradation in the processing performance.  
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Figure 4-14: ROC curves for different values of M, SNR=16 dB 

 

4.6 Discrete mode synthetic array detection performance and processing gain in 
correlated Rayleigh fading 

In this section, the detection performances of a receiver using a static antenna and a 

discrete mode synthetic array are investigated for a correlated Rayleigh fading 

environment. Both the EG and EC combiners are considered for the synthetic array. The 

covariance matrix of the signal samples sC  is assumed to be known. If the signal samples 

are totally correlated such that the rank of sC  is one, then the EC processing results in the 

magnitude squared of the coherent sum over the M epoch samples resulting in the same 

performance as that of the static antenna. At the other extreme, if the M epoch samples 

are totally uncorrelated such that sC  is full rank with equal magnitude eigenvalues, then 

the EC combining reduces to the EG combining.  
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The performance comparison of the static and synthetic array antennas receivers for 

correlated Rayleigh fading will be achieved using the following approach: 

- Assume fixed target values for FAP  and DP . 

- Determine the average SNR,  , required to meet these target objectives. These 

will be denoted as s , EG , and EC  for the static antenna, synthetic array with EG 

combining and synthetic array with EC combining, respectively.  

- The performance advantage of the synthetic array with the EG or EC combining 

over the single static antenna is then given as  10logEG s EGG   , 

 10logEC s ECG   , respectively.  

While the formulation presented thus far is for an arbitrary number of samples M of 

the synthetic array, the special case of M=2 is considered in detail as this is compatible 

with the experimental results given in Chapter 5. For M=2, using Eq. 4-19, the signal 

covariance matrix is given as  

1

14

r

r

  
  

 
sC  4-68

where r is the correlation coefficient which is a function of antenna spacing.  

The left column of Figure 4-15 shows the average SNR required to achieve different 

target values of FAP  and DP  given the correlation coefficient, r, which varies between 

zero and one. The right column of Figure 4-15 also reveals the corresponding gain of the 

synthetic array processing schemes, ECG  and EGG  from which several significant 

observations can be made.  
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Figure 4-15:(a), (c) and (e) show the required SNR for the stationary and synthetic 
antenna with EC and EG for target values of PFA and PD; (b), (d), and (f) show the 

processing gain of a synthetic array for the EC and EG combiner 

 

The required average SNR for a single antenna is significantly higher than that of the 

synthetic array schemes. For the uncorrelated case, 0r  , the gain is about 4 dB for 

0.05FAP   and 0.95DP  . This is essentially a result of the diversity gain possible. Note 

that there is no suppression of the channel noise for the dual antenna schemes possible 

when 0r   as the signal samples emerging from the antennas are uncorrelated. Hence, 
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the observed gain corresponding to 0r   is strictly diversity gain. When r  approaches 1, 

the signal components emanating from the pair of antennas are correlated and there is no 

diversity gain. In this case, there is identical gain on the EC scheme with a static antenna. 

This is a result of the averaging of the pair of uncorrelated noise samples due to the 

coherent combining of the EC. When high system performance is required there is a 

negligible advantage of the EC processing over the EG processing for realistically 

encountered values of the correlation coefficient. This phenomenon is shown in Figure 

4-15a and b. Only when r  becomes close to 1 there is an advantage in using EC over EG. 

This has a practical significance in that the parameters   and r do not have to be 

estimated by the receiver. By decreasing the probability of detection and increasing the 

probability of false alarm, the advantage of using EC becomes more evident. As it is 

shown in Figure 4-15c, d, e and f, the achievable gains from EC and EG are identical 

only when the correlation coefficient r is less than 0.8 and 0.7, respectively for 

( 0.1FAP  0.9DP  ) and ( 0.15FAP  0.85DP  ). Figure 4-15 demonstrates that the 

performance of the synthetic array with the EC process is better or identical to that of the 

static antenna for all range of r.  

Figure 4-16 represents ROC curves versus r for given values of SNR (16 dB) and 

M=2.  
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Figure 4-16: ROC curves for given SNR and r 

 

By increasing the correlation coefficient r, the performance reduction due to 

correlation becomes more apparent. As expected in moderate correlated cases the 

performances of EC and EG are identical. Figure 4-16 also shows ROC curves for an 

almost coherent case where r=0.99. In this case the performance of EC is superior to that 

of the EG.  

Figure 4-17 shows the synthetic array processing gain based on the EG combiner over 

the static antenna as a function of DP  and the correlation coefficient r for a given value of 

0.01FAP   for M=2.  
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Figure 4-17: Synthetic array gain for M=2 versus different values of r and PD 

 

As expected there is a higher gain in the case of the synthetic array for higher values 

of PD. For r=0 this gain is about 7 dB for 0.01FAP   and 0.99DP  . When r approaches 1, 

the signal components emanating from the pair of antennas are correlated and hence, 

there is no diversity gain.  

 

4.7 Processing gain of the synthetic array in the continuous mode 

In Section 4.3, the continuous mode synthetic array signal model in a Rayleigh fading 

environment was demonstrated. The problem of interest in this section is quantifying the 

processing gain utilizing the SA method when the receiver has a process signal snapshot 

of T seconds.  
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The conditional probabilities of test statistics under H0 and H1 z , namely  | 0p z H  

and  | 1p z H , will map into a detection performance measured by  ,FA DP P  which need 

to correspond to the given target specifications. In the analysis the value of average SNR 

for the static and the moving antenna, denoted here as s  and m  respectively, can be 

evaluated. Consequently, m  can be expressed in terms of its functional dependence on 

these variables as  , , , , ,m FA DT M v P P  sC . The value of m  can then be compared for 

different detection schemes. Here, a performance comparison with respect to the 

stationary antenna with  2
0, 1, , , |s A FA D v MT P P     is of interest. Consequently, a specific 

metric denoted as the normalized processing gain, which is represented by G , is defined 

as 

 
 

2
0, 1, , , |

10 log
, , , , ,

s A FA D v M

m FA D

T P P
G

T M v P P

 


 

 
 
  sC

. 4-69

If T  is too long, significant coherent integration losses will occur. M can be 

increased to avoid this but at the detriment of increased computational complexity on the 

part of the SA utilizing the EC (SAEC) process and performance loss in the SA utilizing 

the EG (SAEG) combiner. Of interest is to determine the appropriate size of M. 

Figure 4-18a shows the required average SNR m  for SAEC as a function of the 

target parameters 0.95DP   and 0.01FAP   versus a constant velocity of the receiver v 

with the interesting observation that there is a global minimum. Hence, there is an 

optimal value of v for which m  is minimum. In Figure 4-18b, G  is plotted as a function 

of v for the case represented in Figure 4-18a. As expected, G has a global maximum 
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emphasizing the optimum choice of v. In this performance investigation the value of M is 

chosen as 4
dM      where d is the normalized aperture of the array and     rounds up 

to the nearest integer. Figure 4-18c shows M for different values of v. As v is increased 

for the moving antenna, the diversity gain increases. However, the incremental diversity 

gain also decreases to small values as v becomes large. To satisfy the T M T   

constraint and as M is increased, the coherency of the snapshot signal with coherent 

integration of T  seconds is reduced as each of the M subinterval components 

constituting the overall snapshots are essentially non-coherently combined. This 

eventually becomes the dominant degradation factor as M becomes larger. The result of 

these factors is the existence of an optimum value for v. It should be noted that the 

required average SNR m  in the range of [0,0.25)v  is slightly increased. This is due to 

the fact that in this range, M is 1. Hence, there is a coherency loss due to the antenna 

motion but the receiver does not take advantage of the potential diversity gain. The result 

of this is increasing in the m . As long as M becomes two at v=0.25, the m  drops by 3 

dB as a result of diversity gain.  
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Figure 4-18: a) Required average SNR, b) Gain, and c) number of M versus different 

values of v 

 

Figure 4-19 shows the PD of SAEC process for T=1, 0.05FAP  , and 15 dB   

versus receiver velocity and different values of M. As it is shown for M=1, by increasing 

the receiver velocity the detection performance degrades. This is due to the coherency 

loss. By increasing M the detection performance improves because the spatial snapshots 

now contain spatial diversity, which can enhance the detection performance.  
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Figure 4-19: PD of a moving receiver for given T=1, 0.05FAP  , and 15 dB   versus 

velocity of the receiver and different values of M 

 

An interesting observation is that for each value of M there is a specific value of v 

that provides maximum PD, which is approximately identical to 4
Mv T . Figure 4-20 

shows the probability of detection versus receiver velocity and SNR for a given 

0.05FAP  . As expected, DP  has a maximum for each value of SNR, emphasizing the 

optimum choice of v. The black curve in Figure 4-20 shows the corresponding value of v 

denoted here as optv  for given FAP  values with the interesting observation that optv  

increases for larger SNR values. 
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Figure 4-20: PD versus receiver velocity and SNR for a given 0.01FAP   and T=1 s 

 

Next consider that the target performance metrics are fixed at 0.01FAP   and 

0.95DP  . The problem of interest is determining the minimum value of T for different 

receiver velocities and SNR per second. Figure 4-21 shows required T versus v and SNR 

per second.  

Consider a moving antenna scenario where a single antenna captures spatial-temporal 

samples. For a given trajectory of the antenna, it is insightful to compare the performance 

of the EC and the EG combining for different values of M. To this end, consider a 

multipath channel, which is characterized by the ring of scatterers model. Figure 4-22 

shows the ROC curves of EC for different values of M.  
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Figure 4-21: Required T versus v and SNR per second for detection targets of 0.01FAP   

and 0.95DP   
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Figure 4-22: ROC curves of EC, SNR=10 dB and d   
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As mentioned before, in the ring of scatterers model, the covariance matrix has 

approximately 4d  non-zero eigenvalues and corresponding eigenvectors. When M is 

one, the EC process does not use all DOFs available in the signal snapshots, resulting in a 

performance loss. By increasing M the performance of EC becomes better as the number 

of spatial samples M approaches 4d . As it is shown in Figure 4-22, the performance of 

EC does not change for 4M d .  

The PDF of the test statistics of EC for the given scenario presented in Figure 4-22 is 

shown in Figure 4-23. For a given trajectory size and signal covariance model, the PDF 

of the EC test statistics under H0 and H1 for M=1 to M=4 changes with a Chi-Squared 

distribution with 2 DOFs to 8 DOFs. This change provides diversity gain and hence 

enhancement in detection performance. However, by increasing the spatial samples M 

from 4 to 16, the PDF shape does not change. On the other hand, EC combines different 

spatial samples somehow to provide optimum diversity and coherency gain.  
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Figure 4-23: PDF of EC for different values of M 

 

Figure 4-24 shows the performance of the EG combiner for a given trajectory and 

signal covariance model versus different values of M. When 4M d , both EC and EG 

have the same performance. In this area, the performance of EC and EG combiner 

improves by increasing M. The best performance of the EG combiner is achievable when 

4M d . For 4M d  the detection performance of EG decreases. The reason for this is 

that for a given trajectory and channel model, there is a maximum diversity gain 

characterized by the number of relevant eigenvalues of the signal covariance matrix. In 

this example, the rank of the signal covariance matrix does not go beyond four when 

increasing M. Hence, by increasing M not only there is no diversity gain but also the 

performance suffers from a loss of signal coherency. The PDF of test statistics of EG for 

average SNR 10 and d   is shown in Figure 4-25. 
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Figure 4-24: ROC curves of the EG combiner, SNR=10 dB and d   
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Figure 4-25: PDF of EG for different values of M 
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4.8 Synthetic array implementation considerations  

The main assumption of a diversity system is the reception of statistically 

independent signals in each diversity branch. Thus, in a spatial diversity system the 

antenna spacing should be selected accordingly to satisfy this assumption. Based on this 

assumption, the optimum processing gain and the number of spatial samples for the 

moving antenna were determined. As it was revealed previously, the optimum processing 

based on the LRT with a Gaussian signal model results in the EC formulation of Eq. 4-42 

that is completely defined by Cs and Cn, the signal and noise covariance matrices given 

by Eq. 4-17 and Eq. 4-18, respectively. In the Rayleigh fading channel, which is modeled 

by ring of scatterers, the signal covariance matrix is defined by Eq. 4-19. Hence, the Cs 

depends only on pair wise distance between spatial sampling points, denoted here as d , 

which is determined by the approximate velocity and time interval between samples. 

Thus, no matter the array shape and configuration, as long as any pairs of spatial samples 

have a spacing more than approximately half of the wavelength (based on the signal 

covariance matrix model), the processing gain values presented in Section 4.1 are valid. 

Hence, the proposed method is applicable to an arbitrary geometry synthetic array with 

uniform and non-uniform spacing. This resolves the problem of precise trajectory 

estimation and array calibration, which are practical implementation difficulties 

associated with beamforming techniques (Van Trees 2002). However, in practice the 

receiver requires a rough estimate of the motion velocity such that it can reject highly 

correlated samples due to insufficient spatial separation. This can be accomplished by 
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using a consumer grade accelerometer device to estimate the spatial distance between 

samples by integrating the acceleration measurements twice.  

To analyze the sensitivity of the SA method to a trajectory estimation error, a 

scenario with two antenna positions is considered. Since the signal correlation matrix is a 

function of the antenna spacing, considering some errors in the trajectory estimation unit, 

the processed spatial samples may become correlated. Hence, the EG detector is no 

longer an optimal process. However, the EG combiner has numerous implementation 

benefits and it is preferred for implementation in practice. The performances of the EC 

and the EG combiner for different correlation coefficient values of the Rayleigh channel 

were compared in Section 4.6. It was shown that for moderate correlation coefficient 

values, the performances of the EC and EG combiner are almost identical. Hence, the EG 

combiner is utilized herein. The EG combining detection performance for correlated 

channels was given in Section 4.4.2.2. Based on this, the processing gain of the moving 

antenna with respect to the static antenna can be evaluated for different channel 

correlation coefficients. 

Normalized gain degradation (NGD) is defined as a designing metric to quantify the 

performance degradation of a diversity system due to correlated fading. NGD is defined 

by the percentage of the diversity gain difference between uncorrelated and correlated 

processes normalized by the diversity gain in the uncorrelated case  

, [ , ]
r 0 r q
EG EG

r 0
EG

G G
NGD 100 q 0 1

G

 



 
   
 

 4-70 

where r 0
EGG   is the EG combiner processing gain for the uncorrelated case. 



 

 

145

Figure 4-26a shows the relative processing gain of the moving antenna with respect to 

the stationary one denoted as G for different values of the correlation coefficient r versus 

the probability of detection PD. Figure 4-26b gives the NGD due to signal correlation. 
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Figure 4-26: (a) Processing gain, and (b) normalized gain degradation for different values 
of r versus PD 

 

Figure 4-26, also shows that, by increasing r, the performance of the proposed 

method degrades. This performance reduction is more severe for low values of PD. For 

nominal detection performances of 0.01FAP   and 0.99DP  , NGD values are about 1, 2 

and 3 percent for r =0.1, 0.2, and 0.3, respectively, which is negligible.  

Figure 4-27 shows NGD for the desired range of PD and correlation coefficients.  
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Figure 4-27: NGD for different values of correlation coefficients and PD  for PFA=0.05 

 

As it was expected, increasing r results in performance degradation. This 

performance reduction is more severe for low values of PD. Figure 4-27 also gives a 

designing perspective regarding the performance degradation. As an example if a 

synthetic array diversity system must work within 90 % of the maximum diversity gain, 

the amount of the correlation coefficient, which the diversity system can tolerate, could 

be determined directly from the figure. For a nominal detection performance of 

0.98DP  , to have NGD value within 10 percent, the correlation coefficient should be 

less than 0.45, which means the antenna spacing should be more than one quarter of the 

carrier wavelength in a ring of scatterers model. Hence, by appropriate design of the 
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trajectory estimation unit, the gain degradation due to a trajectory estimation error can be 

minimized. 

Although the performance of the EG combiner in moderate correlation cases has 

almost the same performance as the EC, in highly correlated circumstances the 

performance of the EG combiner becomes worse than that of the static antenna which 

means there is no advantage in moving the antenna. This happens when the processing 

gain of the EG combiner shown in Figure 4-15 goes below 0 dB. Thus, it is interesting to 

determine values of r for which zero crossing occurs. Figure 4-28 shows values of 

correlation coefficient for a range of target detection performance metrics  ,D FAP P  for 

which the detection performance of the synthetic array based on the EG combiner 

become worse than the use of a static antenna.  
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Figure 4-28: Values of the correlation coefficient where the performance of EG combiner 
becomes worse than static antenna 
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By requiring higher detection performance, the zero crossing occurs at higher values 

of the correlation coefficient. As an example when PD=0.99 and PFA=0.01 the zero 

crossing happens at r=0.98; however for PD=0.8 and PFA=0.1, the zero crossing occurs at 

r=0.8. Figure 4-28 shows upper boundaries of the correlation coefficient values for which 

the EG combiner provides the gain respect to the static antenna. Based on the results of 

the Figure 4-28, if the correlation coefficient is less than 0.8, the synthetic array utilizing 

the EG combiner provides some processing gain over the static antenna. To satisfy this 

condition in a Rayleigh fading environment with the ring of scatterers model, pair wise 

antenna spacing must be greater than 0.15 wavelength. 

 

4.9 Conclusions 

The detection performance of a narrow bandwidth wireless signal subjected to 

Rayleigh fading has been considered for a single antenna handheld receiver. Of specific 

interest was to determine the merits of moving the antenna while capturing a snapshot of 

the signal. This provides diversity gain but also incurs a loss due to the spatial 

decorrelation of the signal. Two operating modes for the synthetic array, namely discrete 

and continuous, were considered. It was shown that a substantial processing gain is 

possible by moving the antenna relative to maintaining the antenna in a static position. 

For a practical usage case, up to 11 dB processing gain relative to a static antenna was 

demonstrated as being achievable. Furthermore it was demonstrated that there is an 
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optimum spatial samples and receiver velocity to utilize that is a function of the target 

parameters FAP  and DP .  

The performance enhancement of a synthetic antenna array as compared to a static 

antenna subjected to a correlated Rayleigh fading environment demonstrated in Section 

4.4.2.2. It was shown that, in such fading environments, a synthetic antenna with two 

elements for practical target performance values provides a net gain advantage of 4 dB, 

which is comprised essentially of diversity gain. More spatial samples would provide 

further gains due to further diversity gains. If the correlation of the signal samples is 

increased then the diversity gain diminishes eventually to the point where the moving 

antenna has no advantage over the static antenna. Of interest was the determination of the 

performance degradation of the EG combiner due to the correlation with respect to an 

optimal EC approach. The results show that in moderate correlation environments, the 

performance of EC and EG combiners are almost identical. The detection performance of 

the synthetic array in continuous mode was demonstrated in Section 4.7. In Section 4.8 

the synthetic array sensitivity to trajectory estimation was investigated. 

The synthetic array concept introduced in this chapter can be applied to the wireless 

locations systems to enhance signal detection and parameter estimation in indoor and 

dense multipath environments.  
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CHAPTER 5: EXPERIMENTAL RESULTS OF SIGNAL DETECTION 
ENHANCEMENTS IN INDOOR FADING ENVIRONMENTS 

 

In the previous chapter, the theoretical gain of the synthetic array relative to the static 

antenna was determined based on the idealized Rayleigh fading model with the 

assumption that the channel gain  A p  is a circular normal random process with respect 

to the antenna position p  but temporally static with respect to the snapshot interval T. 

This led to usable expressions for the relative processing gain G . The experimental 

measurements described in this chapter attempt to partially validate the application of 

these assumptions in the context of the synthetic array for indoor environments. The 

objective then is not the modeling of indoor fading environments, which has been aptly 

and extensively published (Rensburg & Friedlander 2004, Colburn et al 1998, Hyeon et 

al 2008). Rather, the objective of the experimental measurements is to determine the 

processing gain G  for a selection of typical indoor locations (otherwise selected at 

random) and compare it with its theoretical value represented in Chapter 4. Experimental 

measurements involving indoor multipath scenarios are plagued with the issue of 

attaining statistical significance.  

The theoretical aspects presented so far are developed for a general narrowband 

signal. In this chapter, the theoretical findings will be verified based on two different 

Code Division Multiple Access (CDMA) signal structures, namely the IS-95 (Liberti & 

Rappaport 1999) and Global Positioning System (GPS) (Kaplan & Hegarty 2006) signals. 

In Section 5.1 experimental results of the discrete mode synthetic array based on the 

CDMA IS-95 signals are presented. Section 5.2 gives experimental results of GPS 
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detection enhancement utilizing the discrete mode synthetic array. The field 

measurements results of GPS signals in indoor environments based on the continuous 

mode synthetic array are represented in Section 5.3. 

 

5.1 Field measurements of the discrete mode synthetic array detection 
performance in indoor environments utilizing CDMA IS-95 signals 

 

Experimental measurements represented in this section are based on indoor reception 

of CDMA IS-95 pilot signals. These signals are used to verify that the processing gain 

determined for the moving antenna based on the derived theoretical formulations are 

indeed representative of performance in typical indoor conditions. 

 

5.1.1 CDMA IS-95 signal structure and receiver architecture 

 

The CDMA IS-95 standard is one of the most widely deployed CDMA cellular 

technology in North America (Liberti & Rappaport 1999). This standard includes the IS-

95A standard operating at 800 MHz and the JSTD-008 standard designed for 1900 MHz 

Personal Communications Service (PCS) systems. The forward channel of the IS-95 

standard includes four sub-channels: Pilot channel, Sync channel, Paging channel, and 

Traffic channel. The pilot channel continuously broadcasts a known signal to provide 

mobile stations a robust time, frequency, and phase reference for demodulation in other 

channels (Liberti & Rappaport 1999). In the IS-95 cellular system all base stations (BS) 

transmit signals at the same frequency with the same Pseudo Random Noise (PRN) 
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sequence. However, each BS transmits pilot signals with a specific offset which is known 

to the MS receiver. This offset is a multiple of 64 chips. The length of the pilot sequence 

is 32768 chips with the chip rate of 1.2288 Mchip/s. Hence, each period of the pilot 

signal takes 26.67 ms. The pilot channel has no data modulation and consists of only in-

phase and quadrature phase PRN codes. Typically, 15-20 % of the total BS power is 

allocated to the pilot channel. Due to strength and data-less property of the pilot channel, 

it is a desirable signal for channel parameter estimation and position estimation 

applications. All BSs in the IS-95 system are synchronized with the GPS 1 Pulse Per 

Second (PPS) signal. Table 5-1 provides the characteristics of the pilot CDMA IS-95 

signals. 

Table 5-1: CDMA IS-95 pilot characteristics 

Chip rate Bandwidth Modulation Code length Code period 

1.2288 Mch/s 1.25 MHz QPSK 32768 chip 26.67 ms 

 

The corresponding receiver correlates the received signal with a known PRN 

sequence to estimate signal parameters. The PRN code acquisition is a procedure to 

determine the received signal code phase with respect to the known replica code. The 

PRN code designed to modulate the transmitted signal is a periodic code with the length 

of L. One property of PRN sequences is that the cross-correlation of the PRN sequence is 

almost zero except in the zero lag. The objective is to find the instance at which the 

correlation of the local PRN code and the received signal provides the correlation peak. 

The estimated correlation peak gives an estimate of the Channel Impulse Response 
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(CIR). This searching procedure is often referred to as PRN code acquisition. The 

baseband received signal can be represented as  

 ( ) ( ) j 2 f
0r k Ps k e n k     

5-1

where P  denotes the total average received power and f  is the frequency difference 

between transmitted and received signals. This frequency offset may be due to a relative 

motion between the transmitter and receiver (Doppler effect) or to a difference in the 

transmitter-receiver local oscillators. This frequency offset can be removed by a 

maximum likelihood search over the range of the frequency offset. The received signal is 

correlated with the replica code to estimate the code phase. The m-th output of the 

correlator is  

*( ) ( ) ( )
2L 1

o
i 0

1
x m r i s i m

L





   5-2

Figure 5-1 shows the block diagram of the IS-95 PRN acquisition scheme where 
Ios  and 

Qos  represent two orthogonal pilot PRN sequences transmitted with QPSK modulation.  
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Figure 5-1: Down conversion and PRN code despreading 

 

The acquisition process utilized in this thesis is based on the Fast Fourier Transform 

(FFT) approach which is shown in Figure 5-2 (Mogaddam 2007).  

FFT 

FFT 

 × 

Conjugate

IFFT ( )r k  ( )R f

( )os k  ( )oS f *( )oS f

Squaring ( )x m

 

Figure 5-2: FFT based correlation method 
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The acquisition procedure in general is a two-dimensional search in both code and 

frequency. Figure 5-3 shows a typical output of the correlation function of actual CDMA 

IS-95 signals. It shows a two-dimensional space over code delay and frequency offset. 

The acquisition results shown in the figure are for the static receiver case. Hence, all BSs 

peak at approximately the same frequency offset 25 Hzf    and different time delays.  

Figure 5-4 shows the normalized correlation output for one period of CDMA IS-95 

signals. Each strong peak represents a distinct BS.  

 

 

Figure 5-3: IS-95 correlation function over two-dimensional hypothesis search 
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Figure 5-4: Normalized correlation outputs for a period of a CDMA IS-95 signal 

 

As mentioned earlier, in the CDMA IS-95 systems all BSs are synchronized with a 

GPS 1PPS signal. Hence, after despreading by knowing the chip offset allocated to BSs, 

each BS can be uniquely identified. As shown in Figure 5-4, two strong BSs namely 

UofC (University of Calgary) and Market Mall near the data collection setup are 

detected. 

 

5.1.2 Data collection and experimental results based on the CDMA IS-95 pilot signals 

 

In this experiment a commercial receiver is tuned to capture CDMA signals at 1947.5 

MHz. CDMA signals received at the antenna are amplified, filtered, down-converted and 
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sampled by a 10 MHz digitizer board. The utilized receiver is a National Instrument (NI) 

which down-converted the CDMA signals to an Intermediate Frequency (IF).  

Figure 5-5 shows the data collection setup. A vertically polarized omni-directional 

antenna in the horizontal plane was mounted on a linear motion table to capture the 

CDMA pilot signals. Figure 5-6 represents the vertical pattern of the antenna. Theoretical 

findings presented in previous sections were based on the ring of scatterers model. 

Although in general the indoor propagation model may be characterized by a sphere of 

scatterers, due to the vertical pattern of the antenna shown in Figure 5-6, the scatterers 

geometry can be approximately characterized by a ring of scatterers model (Van Trees 

2002).  
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Figure 5-5: Data collection setup 
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- 

Figure 5-6: Vertical plane pattern of the antenna 

 

Two sets of data were collected at different locations in a three-story office building 

on the University of Calgary campus, namely the CCIT building, which is an annex of 

the Schulich School of Engineering complex.  

Figure 5-7 shows the data collection locations. 

 

Set 1 

Set 2

 

Figure 5-7: Layout of office floor with the hashed area indicating the locations used for 
collecting experimental data 
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Figure 5-8 shows a photograph of the data collection environments and measurement 

equipment used. Table 5-2 gives the characteristics of the data collection scenarios. The 

acquisition process for each code delay can be formulated as a binary hypothesis test 

problem where the objective is to determine the correct code phase between the received 

and replica signals and discarding all incorrect code phases under the constraint of a 

tolerable rate of false detections. The condition where the code phase of the locally 

generated despreading signal is different from that of the incoming signal corresponds to 

the H0 state where equivalently there is no discernable signal. 

 

Antenna 

Receiver 

Linear Motion
Table 

(a) (b) 

Receiver 

Antenna 

 

Figure 5-8: Data collection environment and measurement equipment (a) data set 1 (b) 
data set 2. 

 

Table 5-2: Characteristics of IS-95 data collection scenarios 

 Date Sampling rate IF Frequency Data collection 
duration 

Data set 1 1 June 2008 5 MHz 500 KHz 300 s 

Data set 2 29 August 2008 10 MHz 3.5 MHz 300 s 



 

 

160

In this state the FAP  can be evaluated. Likewise, if the code phase of the locally 

generated despreading signal is the same as that of the incoming signal, then it 

corresponds to the H1 state where the signal is present from which the DP  can be 

evaluated.  

 

5.1.3 Experimental results of data set 1 

 

The experimental measurements in this section are based on the indoor reception of a 

terrestrial CDMA IS-95 pilot signal emanating from the UofC BS shown in Figure 5-4. 

To conveniently obtain results from a variety of locations, a linear motion table, shown in  

Figure 5-8, was used. For each measurement set, the linear motion table was placed with 

a random orientation and location in the middle of the laboratory room of size 10 m by 30 

m. The captured signals were amplified and down-converted to IF. The received signal is 

known to the emulated receiver processing with the exception of the code delay and a 

random channel gain coefficient. The code delay is determined by a standard search 

routine and applied to the despreading operation resulting in a set of despread and 

coherently integrated samples.  

The aggregate set of measured signals was initially used to verify that there was no 

appreciable temporal decorrelation over the snapshot interval T  and to determine that the 

spatial correlation complied with the expectation based on the Rayleigh fading model 

with the ring of scatterers. The second set of experimental measurements was aimed at 

producing the receiver operating characteristics (ROC). The results obtained for the static 
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and moving antennas were then compared with calculations based on the theoretical 

expressions for DP  and FAP  derived earlier. 

The spatial samples were taken while the antenna was moving at a constant velocity 

of 0.1 m/s. Figure 9 shows a typical response of the correlation peak as a function of the 

code delay in indoor environment for T=100 μs.  
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Figure 5-9: Typical code delay correlation function of the CDMA pilot signal 
processing 

 

The peak corresponds to the correct code delay for which the statistics of the H1 case 

were extracted. The other mismatched code delays were used to generate statistics for the 

H0 case.  

As mentioned before, diversity gain is a result of receiving statistically independent 

signals at diversity branches. Thus, in a spatial diversity system the antenna spacing 
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should be selected accordingly to satisfy this assumption. In Figure 2.10 it was shown 

that spatial decorrelation is a function of the scatterers geometry. For the ring of 

scatterers model, the channel correlation coefficient was presented in Eq. 4.19. Figure 

5-10 shows the spatial correlation results obtained, as averaged over a large number of 

measurements based on the experimental setup. The complex correlation coefficient for 

two despreading output samples 1x  and 2x is defined by 

*

* *

1 2

1 1 2 2

E x x
r

E x x E x x

  
      

. 
5-3
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Figure 5-10: Indoor channel normalized correlation coefficient 
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These measured spatial correlation results are compared with the theoretical model 

presented in Chapter 3, and given by  0 2 /J d   (Fulghum et al 2002) where d  is the 

antenna spacing and   is the carrier wavelength of the pilot signal. The reasonable 

agreement of the measured and theoretical results provides some degree of confidence in 

using the Rayleigh fading model for the analysis of the synthetic array antenna. 

Furthermore, the measurements indicate that the spatial samples used will be sufficiently 

uncorrelated provided that they are taken with a separation on the order of a half 

wavelength (or more) of the carrier. Figure 5-11 shows the measured and fitted Rayleigh 

PDFs of test statistics under the H1 state.  
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Figure 5-11: Measured and fitted PDF of the test statistics under H1 state 
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The MATLABTM dfittool toolbox was utilized to provide the best Rayleigh fit to the 

measured test statistic amplitude under the H1 state. To evaluate the detection 

performance of a moving antenna, an extensive data set was collected at various locations 

in the laboratory and with the equipment shown in Figure 5-8 and the conditional PDFs 

corresponding to the H0 and H1 states were calculated. The experimental results 

represented in this part compare the performance of the static antenna with the moving 

antenna with two, four and eight spatial samples. Approximately 40,000 samples were 

utilized for statistical detection performance evaluation. 

Figure 5-12 shows the measured PDFs of test statistics under H0 and H1 for the 

moving antenna case when M=2. For comparison, the PDF of a Chi-Squared central 

distribution with four DOF are overlaid.  
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Figure 5-12: Estimated PDF under H0 and H1 states for moving antenna M=2 
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The Chi-Squared PDF and variance 2  was defined in Eq. 4-54. The match with the 

theoretical Chi-Squared density functions, which results from the Rayleigh fading 

assumption, is reasonable and provides further confirmation of the validity of the 

Rayleigh fading model used. The measured PDF of the test statistics for the static and 

moving antenna with four and eight spatial samples are evaluated similarly with similar 

close agreements to experimental results, although these were excluded from Figure 5-12 

to avoid clutter.  

The corresponding variance parameters under H0 and H1 can be estimated from the 

test statistics under H0 and H1. These values can be normalized by 
0

2 1
H M

   and 

1

2 1
1H M M

    
 

, respectively, as per (Eq. 4-20). It can be shown that 

1

0

2

2
1H

H M

 


   
 

. Hence, the average SNR and   can be extracted from the estimated 

variances. Based on measurement results for the static and the moving antennas with two, 

four and eight spatial samples, the estimated average SNR is approximately 12 dB  .  

Figure 5-13 shows the numerically evaluated ROC curve resulting from the estimated 

PDFs of Figure 5-12. The theoretical ROC curve is also shown in the figure.  
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Figure 5-13: Theoretical and numerically evaluated ROC curves based on 
measurements for moving antenna M=2 

 

An interesting observation is the comparison of the experimental measurement curves 

with the equivalent theoretical results given in Section 4.4.2. The theoretical ROC curves 

are based on matching the average SNR values with the experimental curves which 

corresponded to 12 dB   for this set of measurements. The theoretical ROC curves can 

be evaluated utilizing Eq. 4.62 and Eq. 4.63. 

Based on the measured sample set, the experimental output of the synthetic array two, 

four and eight spatial samples were calculated for the H0 and H1 cases. From this, the 

ROC curves shown in Figure 5-14 were generated. The corresponding ROC curve for the 

static antenna can be generated in a similar manner based on coherent summations. This 

curve is also shown in Figure 5-14. As expected, the synthetic array outperforms the 

static antenna. 
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Figure 5-14: Measured ROC curves for the static and moving antenna 

 

An interesting observation is that for the given target performance of PFA=0.01, the 

moving antenna with four spatial samples (M=4) has the best performance relative to the 

static and the moving antennas with two and eight spatial samples. This is due to the fact 

that, by increasing the number of spatial samples, the diversity gain increases. However, 

as explained earlier, increasing spatial samples results in coherency loss. Hence, there is a 

compromise between increasing spatial samples and loss of signal coherency which 

results in the existence of an optimum processing gain and number of spatial samples. 

The experimental results in Figure 5-14 can be directly compared with the theoretical 

findings of Figure 4-12 for target performances of PFA=0.01 and PD=0.85. The optimum 

theoretical spatial sample, resulting from Figure 4-12b with PFA=0.01 and PD=0.85, is 4 



 

 

168

which agrees with the experimental finding. For evaluating the processing gain, the 

average SNR of the static antenna is increased (by increasing T) to have the same target 

performances of PFA=0.01 and PD=0.85. This crossing point is shown in Figure 5-14. 

This was achieved by increasing by approximately 3 dB the average SNR of the static 

antenna. Hence, 3 dB of processing gain can be directly compared with the theoretical 

results of target detection performances of PFA=0.01 and PD=0.85 shown in Figure 4-12a. 

As observed, the theoretical and experimental results match very well. Table 5-3 

summarizes the experimental detection performance and processing gain of the moving 

antenna for different PFA values.  

 

Table 5-3: Processing Gain of the moving antenna over static antenna for different 
spatial samples for data set 1 

 ρ 

(dB) 

DP  Processing Gain 

(dB) 

.FAP 0
 

FAP 0
 

.FAP 0
 

FAP 0
 

M = 1 12 0.79 0.86 0 0 

M = 2 12 0.83 0.93 1.5 2 

M = 4 12 0.86 0.95 3 4.5 

M = 8 12 0.85 0.95 2 4.5 
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5.1.3.1 Synthetic array detection performance for different values of T 

 

In this experiment, the detection performance of the synthetic array for different 

values of T was investigated. The statistical results presented in this part are based on the 

signal received by the UofC BS.  

In the first experiment, the snapshot interval was T=40 μs, which is equivalent to 200 

digitized samples (5 MHz sampling rate). In this case, the static antenna coherently 

integrates 40 μs. The synthetic array processor with two spatial samples, namely M=2, 

non-coherently integrates two spatial samples each with a coherent integration of 20 μs. 

Figure 5-15 and Figure 5-16 show the calculated PDFs based on measurements under the 

H1 and the H0 states for the static and synthetic array, respectively. For comparison, the 

PDFs of the test statistics of the static antenna with non-coherent combining are also 

shown in Figure 5-15b and Figure 5-16b, which are based on the same processing of the 

synthetic array. However, in the synthetic array case two spatial samples are statistically 

uncorrelated, whereas in the static non-coherent case two snapshots are fully correlated. 

The difference in the detection performance between the synthetic array and the static 

antenna with non-coherent process gives the synthetic array processing gain based on the 

equal-gain (EG) combiner for two extremes: uncorrelated and coherent channel 

situations. Figure 5-15 shows that the measured PDFs of the static coherent and the 

synthetic array have approximately a Chi-Squared distribution with two and four DOFs. 



 

 

170

 

Figure 5-15: Calculated PDFs under H1 state based on measurements of a) static, 
coherent integration b) static non-coherent integration c) synthetic array M=2 

 

However, the test statistics under H1 in the static case (Figure 5-15b) has a Chi-

squared PDF with 2 DOFs implying that the non-coherent combining does not provide 

additional DOFs. However, in the synthetic array case (Figure 5-15c) non-coherent 

combining provides additional DOFs, a result of the diversity gain. Comparing Figure 

5-16b with Figure 5-16c, one realizes that the test statistics of the static non-coherent 

process and the synthetic array conform to the Chi-Squared PDF with 4 DOFs. This 

result further confirms the decorrelation of noise samples temporally. 
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Figure 5-16: Calculated PDFs under H0 state based on measurements of a) static, 
coherent integration b) static, non-coherent integration c) synthetic array M=2 

 

Figure 5-17 shows ROC curves for the static and the synthetic array for M=2 and 

T=40 μs. As it is shown in Figure 5-17, the detection performance of the synthetic array 

for a given PFA is better than that of the static antenna. Several interesting observations 

can be made from Figure 5-17. Section a in Figure 5-17 shows the trade-off between the 

coherency loss and the diversity gain. For the static non-coherent combining there is no 

diversity gain, hence section b signifies the coherency loss in non-coherent combining. 

Section c in Figure 5-17 shows the upper and the lower bounds of the synthetic array 

detection performance based on the EG combiner for PFA=0.1 and given average SNR.  
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Figure 5-17: ROC curves for static coherent integration, static non-coherent process 
and the synthetic array, T=40 μs. 

 

Table 5-4 gives the experimental detection performance and the processing gain of 

the moving antenna for different PFA values.  

Table 5-4: Processing Gain of the moving antenna over the static antenna for different 
spatial samples, UofC BS, T= 40 μs 

 ρ 
(dB) 

DP  Processing Gain 
(dB) 

.FAP 0
 

FAP 0
 

.FAP 0
 

FAP 0
 

M = 1, 
Coh 

11 0.58 0.83 0 0 

M=2, 
Static Non-

coh 

10 0.48 0.75 - - 

M=2, 
Synthetic 

10 0.66 0.9 0.5 1.5 



 

 

173

Next the case of T=80 μs is considered. Figure 5-18 shows the ROC curves for the 

static antenna coherent process, static antenna non-coherent process and the synthetic 

array. Table 5-5 gives the experimental detection performance and processing gain for 

the static antenna and synthetic array for different PFA values for T=80 μs. 
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Figure 5-18: ROC curves of static coherent integration, static non-coherent process 
and the synthetic array, T=80 μs 

 

Table 5-5: Processing Gain of moving antenna over static antenna for different spatial 
samples, UofC BS, T=80 μs 

 ρ 
(dB) 

DP  Processing Gain (dB) 

.FAP 0 01 .FAP 0 1 .FAP 0 01  .FAP 0 1

M=1, Coh 14 0.81 0.94 0 0 

M=2, Static 
Non-coh 

13.1 0.72 0.88 - - 

M=2, 
Synthetic 

13.2 0.96 0.99 2 4 
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Figure 5-19 shows the ROC curves for the static antenna coherent process, static 

antenna non-coherent process and the synthetic array for the case of T=160 μs. Table 5-6 

provides the experimental detection performance and processing gain for the static 

antenna and synthetic array for different PFA values. 
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Figure 5-19: ROC curves of static coherent integration, static non-coherent process 
and the synthetic array, T= 160 μs 

 

Table 5-6: Processing Gain of moving antenna over static antenna for different spatial 
samples, UofC BS, T= 160 μs 

 ρ 
(dB) 

DP  Processing Gain (dB) 

.FAP 0 01 .FAP 0 1 .FAP 0 01  .FAP 0 1

M = 1, Coh 17 0.92 0.97 0 0 

M=2, Static 
Non-coh 

16.6 0.87 0.95 - - 

M=2, 
Synthetic 

16.5 1 1 4 6 
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Comparing the synthetic array detection performance for the different values of T 

summarized in Table 5-4, Table 5-5 and Table 5-6, one observes that, by increasing T (or 

equivalently, increasing the average SNR), the processing gain of the synthetic array over 

the static antenna increases. This phenomenon was discussed in Chapter 4 and shown in 

Figure 4-8. 

As mentioned before, the peak value of the correlation function is chosen as a 

detection variable under H1. Hence, the instantaneous SNR can be defined by the peak 

value to side level ratio. This metric can be used to represent the fading effect at different 

points of the indoor channel. The instantaneous SNR (ISNR) is defined as  

   
 

2

1 0

0

( ) | ( ) |

var ( ) |

E T x H E T x H
ISNR

T x H

   . 5-4

where  E   defines the expectation operator,  1( ) |E T x H  is the peak value of the 

correlation function,  0( ) |E T x H  is the mean value of the test statistics under H0 as it 

was shown in Figure 5-9 and  0var ( ) |T x H  gives the variance of the test statistics under 

H0. Figure 5-20 shows the cumulative distribution function (CDF) of ISNR for T=160 μs. 

Comparing the ISNR CDFs for the coherent and non-coherent processing of the static 

antenna, one observes that they have the same pattern with a shift in the mean value. 

Hence, the non-coherent process in the static case decreases the average SNR without 

providing diversity gain. Comparing the ISNR CDF of the moving antenna with the static 

antenna, one can see that the CDF shape is changed as a result of the diversity gain. 
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Figure 5-20: Instantaneous SNR for the static antenna and the synthetic array 

 

Statistical results of the synthetic array represented so far were based on the signal 

reception of the UofC BS. A similar process was performed based on receiving signals 

transmitted from the Market Mall BS. The synthetic array detection performance utilizing 

signals from Market Mall BS is shown in Appendix C.  
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5.1.4  Experimental results of data set 2, synthetic array experimental results in a 
correlated Rayleigh fading 

 

In Chapter 4 it was shown that the processing gain due to the synthetic array 

processing diminishes with an increasing correlation coefficient, the latter being a 

function of antenna spacing and diffuse multipath characteristics. It was also shown that 

the performance of the suboptimal EG is almost the same as that of the optimal EC 

combiner in cases where the channel gain is moderately correlated. In this section, the EG 

combiner is utilized to validate the theoretical results presented in Section 4.6. The 

objective of the experimental measurements is to determine the processing gain and the 

synthetic array performance for a selection of typical indoor locations and compare these 

with corresponding theoretical values.  

The experimental measurements are based on the indoor reception of a terrestrial 

CDMA IS-95 pilot signal emanating from an outdoor base station. As mentioned earlier, 

diversity gain results due to the independency of spatially separated samples. Therefore, 

it is essential to evaluate the channel spatial correlation coefficients. To this end, the 

spatial covariance matrix is estimated based on all spatial samples measured on the linear 

moving table. The measurement results agree fairly well with the theoretical model of 

ring of scatterers defined in Chapter 4. Thus, based on the measurement results, arrival 

signals onto two spatial samples separated by half of a wavelength are approximately 

uncorrelated.  
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The second set of experimental measurements was aimed at producing ROC curves. 

The results obtained for the static antenna and the synthetic array for different antenna 

correlations, a process controlled by choosing different antenna spacings, were then 

compared with calculations based on the theoretical expressions for DP  and FAP  derived 

earlier. The spatial samples were taken while the antenna was moving with a constant 

speed of 0.1 m/s. To evaluate the detection performance of a moving antenna, 

comprehensive data collections at various locations in the hallway were performed and 

the conditional PDFs corresponding to the H0 and H1 states were numerically calculated 

based on the measured sample set. Figure 5-21 shows the measured PDFs of test statistics 

z0 under H0 and H1 of the static antenna. For comparison, the PDF of central Chi-Squared 

distributions with two DOF ( 2
2 ) are overlaid.  

Figure 5-22 shows measured and theoretical PDFs of test statistics for the moving 

antenna (zEG) under H0 and H1 when M=2 and / 2d   where   is the carrier 

wavelength. The theoretical PDFs in Figure 5-22 are Chi-Squared central distributions 

with four DOF ( 2
4 ). The match with the theoretical Chi-Squared density functions, 

which results from the uncorrelated Rayleigh fading assumption, is reasonable and 

confirms the validity of the Rayleigh fading model. Based on the fitting to the Chi-

Squared PDFs of Figure 5-21 and Figure 5-22, the average SNR can be extracted from 

the overlaid theoretical PDFs. Based on measurement results for the static and the 

moving antennas, the average SNRs are approximately 10.2 dBs   and 10 dBEG  , 

respectively. Figure 5-23 shows numerically calculated ROC curves based on 

measurements for the synthetic array and static antenna.  
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Figure 5-21: Numerically calculated PDFs under H0 and H1 states for a static antenna 
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Figure 5-22: Numerically calculated PDFs under H0 and H1 states for a moving 
antenna 
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Figure 5-23: Numerically calculated ROC curves in an uncorrelated case 

 

The detection performance of the synthetic array with two statistically uncorrelated 

sensors is significantly better than that of the static antenna. To determine the synthetic 

array gain over the static antenna in terms of the required average SNR, the measured 

ROC curves of a synthetic array with average SNR of 8.6 dBEG   are also plotted in 

Figure 5-23, which fits the ROC curves of the static antenna. The average SNR is 

decreased by adding noise to the process. From this, the synthetic array gain over the 

static antenna can be obtained and is about = 1.6 dBEGG . The target performance of 

0.15FAP   and 0.85DP   is nearly located on the ROC curve of the static antenna, as 

shown in Figure 5-23. The theoretical gain of the synthetic array with target values of 

0.15FAP   and 0.85DP   was shown in Figure 4-15e and f. The theoretical gain for the 
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uncorrelated case (r=0) is about 1.6 dB, which agrees fairly well with the measurements 

results.  

Figure 5-24 shows theoretical and measured PDFs for the synthetic antenna array 

under H1 state for different antenna spacings d in terms of carrier wavelength  . The 

theoretical PDFs can be evaluated based on the discussion given in Section 4.4.2.2. 

 

 

Figure 5-24: PDFs of the synthetic array under H1 state for different antenna spacings. 

 

Figure 5-24 shows that, by decreasing antenna spacing or increasing the correlation 

coefficient, the mean value of the detection variable decreases. This phenomenon causes 

a loss of the diversity gain. Figure 5-24 also shows that by increasing the correlation 

coefficient, the test statistics PDFs moves from a central Chi-Squared with four DOFs 2
4  

toward a central Chi-Squared with two DOFs 2
2  which again results in a lower diversity 
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gain. Another observation is that the measured PDFs agree fairly well with theoretical 

PDFs for different correlation coefficients and antenna spacings. 

Figure 5-25 shows ROC curves obtained with different synthetic antenna spacings d. 

The corresponding ROC curves for the static antenna are generated in a similar manner 

based on coherent summations of stationary samples and are also shown in the figure.  
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Figure 5-25: Measured ROC curves for static antenna and synthetic array 

 

As expected the synthetic antenna with a synthetic element spacing of / 2  with 

approximately uncorrelated samples outperforms all other scenarios. Figure 5-25 shows 

that, by decreasing antenna spacing, the performance of the EG combiner degrades due to 

the correlated signal covariance matrix. It is also shown that the performance of the 

coherent integration in the static case is almost the same as that of the synthetic antenna 
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array with a spacing of / 8 . By decreasing the antenna spacing to / 20 , the 

performance worsens, which demonstrates that there is no advantage in using a synthetic 

array in this case. 

 

5.2 Experimental results on the detection performance of GPS signals in indoor 
environments based on the discrete synthetic array process 

 

The objective of the experimental measurements in this section is to determine the 

processing gain for a selection of typical GPS indoor locations and compare these with 

corresponding theoretical values given in Chapter 4.  

 

5.2.1 Signal model  

GPS uses a Direct-Sequence Code Division Multiple Access (DS-CDMA) structure. 

Each satellite transmits a unique PRN with low cross-correlation with that of other 

satellites. The civilian GPS Coarse/Acquisition (C/A) code utilizes Gold codes with a 

code length of 1023 chips and a chipping rate of 1.023 MHz. Hence, each period of the 

GPS C/A code takes 1 ms. This structure allows all satellites to transmit signals at the 

same time and in the same frequency band. The PRN codes are known to the receiver, 

which correlates the received signal with the replica code to estimate the channel impulse 

response. The GPS L1 signal is modulated by 50 Hz navigation data bits. The navigation 

data includes timing and satellite orbital information (Kaplan & Hegarty 2006). Finally, 

the GPS C/A L1 signal is up-converted to the carrier frequency of 1575.42 MHz. For 
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more details on the GPS signal structure and receiver processing, readers are further 

referred to Kaplan & Hegarty (2006), Misra & Enge (2006) and Parkinson & Spliker 

(1996). Table 5-7 summarizes the GPS L1 C/A characteristics. 

Table 5-7: GPS L1 C/A characteristics 

Chip rate Bandwidth Modulation Code length Code period Carrier 

frequency 

1.023 MCPS 1.023 MHz BPSK 1023Chip 1 ms 1575.42 

MHz 

 

Consider a GPS signal detection scenario in a flat Rayleigh channel (e.g. indoor). The 

complex signal received by an antenna position can be represented by 

 ( ) ( ) ( )or t A s t n t p  5-5

where 

( )( ) ( ) ( )j 2 ft
os t e D t c t       . 5-6

 A p  is the complex channel gain as a function of the antenna position p  relative to a 

fixed coordinate system, D(t) is the navigation data modulation, c(t) is the PRN code and 

 n t  is a complex additive white Gaussian noise. The received signal ( )0s t  is known to 

the receiver except for the navigation data, the code phase  , the carrier frequency offset 

f  and the initial phase offset  . Hence, successful signal detection includes navigation 

bit removal, Doppler and code phase estimation. Due to the signal attenuation and path 

loss, the received GPS signal is buried below the noise floor. Hence, it requires extensive 

processing to extract transmitted information from the weak signal. 
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As mentioned earlier, the acquisition process is the initial procedure for signal 

detection and coarse channel parameters estimation (e.g. propagation delay and Doppler 

frequency). This procedure is normally accomplished by a two-dimensional search over 

the code phase and Doppler domain. The searching range in the code domain is 

associated with the length of the code and the sampling frequency. The search range in 

the Doppler domain for the static receiver is typically ±5 kHz with a step size of 2/(3T) 

where T signifies the coherent integration time (Kaplan & Hegarty 2006). 

 

5.2.2 Data collection Setup 

The experimental measurements are based on the indoor reception of GPS L1 C/A 

signals. An active patch Right-Hand Circular Polarization (RHCP) antenna mounted on 

the precise linear moving table described earlier is utilized to implement a synthetic array 

during raw GPS data collection. A commercial synchronized dual-channel RF front-end 

is exploited to down-convert GPS raw data to an intermediate frequency of 3.42 MHz. 

The data collection scenario consists of 45 minutes of IF GPS L1 data sampled by a 10 

MHz digitizer with 8-bit quantization. A single stable Temperature Controlled Crystal 

Oscillator (TCXO) was utilized to provide reference frequencies for down-conversion 

and digitization (Broumandan et al 2009c).  

Figure 5-26 shows the test setup and utilized equipment at the indoor and the 

reference stations.  
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Figure 5-26: Reference and indoor data collection setup 

 

The measurement setup and the geometry of the visible satellites and data collection 

location are shown in Figure 5-27. Shown in Figure 5-27 is the indoor measurement 

location, which was a hallway on the third floor of the CCIT building described earlier. 

The windows are covered with a conductive film resulting in an estimated 20-30 dB 

penetration loss of the received GPS signals.  
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(c) 

Figure 5-27: a) Measurement setup, b) geometry of visible satellites and data 
collection location, c) Layout of office floor with the hashed area indicating the area used 

for collecting experimental data 

 

Hence, a coherent integration time more than 20 ms was required to overcome this 

loss. To conveniently account for the navigation data modulation, reference signals from 

a static antenna located on the rooftop directly above the measurement area of Figure 

 

Data collection
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5-27a with a clear sky view of the GPS satellites were sampled in a synchronous fashion 

with the indoor signals. 

Figure 5-28 shows the demodulation process utilizing the reference antenna. The 

estimated navigation data bits and Doppler frequency from the reference channel were 

used to demodulate the indoor GPS L1 signals. 
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Figure 5-28: Demodulating process utilizing the reference signal 
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5.2.3 Measurement results  

As demonstrated in Section 4.6, if the spatial samples are relatively uncorrelated, the 

EC process can be approximated by the EG combiner. Hence, in this section the 

performance of the EG combiner will be investigated. The experimental results presented 

in this section compare the performance of the static antenna with the synthetic array for 

M=2 and M=4. Each output sample of the measurement results is based on 400 ms of 

processing of the GPS PRN 18, 21 and 24 L1 C/A code. Thus, the static antenna 

coherently integrates 400 ms signal samples whereas the synthetic array with two and 

four antenna positions non-coherently integrates two and four spatial samples, each 

processed with 200 ms and 100 ms coherent integration times. The statistical results 

represented in this section are based on the processing of 45 minutes of data. Hence, the 

statistical results are based on 7000 samples under H1. In the sequel, the measurement 

results of PRN 21, which are representative of all PRN, will be discussed in detail. The 

measured processing gain of PRN 18 and 24 are tabulated at the end of the section. Table 

5-8 shows the characteristics of data collection scenarios.  

Table 5-8: Characteristics of indoor GPS data collection scenarios  

Date Sampling 
rate 

IF 
Frequency 

Data 
collection 
duration 

Antenna 
velocity 

7 Oct 2008 10 MHz 3.42 MHz 45 min 2 cm/s 

 

Figure 5-29 shows a typical response of the GPS correlation process as a function of 

the code delay. The peak corresponds to the correct code delay for which the statistics of 

the H1 case were extracted. The other mismatched code delays were used to generate 
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statistics for the H0 case. The first experiment was performed to measure the indoor 

channel characteristics. 

Figure 5-30 shows the numerically evaluated PDF envelopes based on the indoor GPS 

measurements and theoretical Rayleigh PDF. As shown in Figure 5-30, the GPS indoor 

signal reception agrees well with the Rayleigh distribution.  
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Figure 5-29: Correlation outputs and test statistics under H0 and H1 for GPS PRN 21 
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Figure 5-30: Measured amplitude PDF and theoretical Rayleigh PDF for GPS 
measurements 

 

To evaluate the detection performance of the synthetic array, comprehensive data was 

collected with the linear table at various locations and the conditional PDFs 

corresponding to the H0 and H1 states were numerically calculated based on the measured 

samples. Figure 5-31 shows the measured PDFs of test statistics under H0 and H1 for the 

static antenna (M=1) and the synthetic array (M=2 and M=4). For comparison, the PDF of 

Chi-Squared central distributions are overlaid. The theoretical PDF shown in Figure 5-31 

is a Chi-squared density function with 2M DOF defined by 

   
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The match with the theoretical Chi-Squared density function provides further 

confirmation of the validity of the Rayleigh fading model used and confirms the 

theoretical processing gain presented in Chapter 4.  
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Figure 5-31: Estimated PDFs under H1 (a, c and e) and H0 (b, d and f) states for GNSS 
static antenna (a and b) and synthetic array with M=2 (c and d) and synthetic array with 

M=4 (e and f) 
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Based on the experimental output of the EG combiner for a static antenna, a synthetic 

array with M=2 and M=4, half wavelength spacing between sample points (r=0), PD  and 

PFA was evaluated for the H0 and H1 cases. From this, the ROC curves shown in Figure 

5-32 were generated.  
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Figure 5-32: Estimated ROC curves based on GNSS measurements for the static 
antenna and the synthetic array with 2 and 4 elements for uncorrelated and coherent cases 

 

As expected, the synthetic array outperforms the static antenna. The ROC curves for 

the fully correlated case (r=1) for the synthetic array with M=2 and M=4 are also shown 

in Figure 5-32. Based on the results of Figure 5-32 for a given PFA=0.01, the PD for the 

static antenna and synthetic array with M=2 and M=4 are 0.92, 0.96 and 0.98, 

respectively. By comparing these experimental results with the theoretical results of 
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Section 4.5, the achievable gain with the use of a synthetic array is found to be about 4 

and 8 dB for M=2 and M=4 respectively, which is indeed significant.  

Figure 5-33 shows the measured ISNR values (defined in Eq. 5-4) for the static 

antenna and a synthetic array with M=2 and M=4 for a 100-second signal processing 

interval. From Figure 5-33 it is evident that the static antenna has higher maximum ISNR 

values as expected. However, the ISNR values are susceptible to deep fades and lost peak 

detection. By increasing M, the ISNR mean decreases although the ISNR values are 

immune to deep fades. Figure 5-34 shows the Cumulative Density Function (CDF) of the 

ISNR values with the interesting observation that the slope of the CDF curves becomes 

steeper when increasing M, which leads to the removal of fading effects. 

 

Figure 5-33: Instantaneous SNR for static antenna and synthetic array with M=2 and 
M=4 
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Figure 5-34: Instantaneous SNR cumulative density functions 

 

Table 5-9 shows the PD and processing gain of the synthetic array for two and four 

antenna positions for a given PFA=0.01 based on the measurement results of PRN 18, 21 

and 24. The measured average SNR for a 400 ms integration time is also given. These 

results further verify the theoretical findings of Chapter 4.  
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Table 5-9: Processing Gain and MAT ratio of the synthetic array over the static 
antenna for different PRNs 

 
Average 

SNR (dB) 

DP  Processing Gain 
(dB) 

M=
2 

M
=4 

M=2 M=4 

PRN 
18 

15 
0.9

2 
0

.96 
3.5 7 

PRN 
21 

16 
0.9

6 
0

.98 
4 8 

PRN 
24 

17.5 
0.9

7 
0

.99 
5 11 

 

5.3 Experimental results of detection performance of GPS indoor signals based 
on the continuous synthetic array  

In Section 4.7 the gain advantage of the SA algorithm in the continuous mode was 

determined based on the Rayleigh fading model with the assumption that the signal 

channel gain  A p  is a circular normal random process with respect to the antenna 

position p  but temporally static with respect to the snapshot interval. This resulted in 

practical expressions for establishing the relative processing gain. The experimental 

measurements described in this section validate these assumptions in the context of GPS 

signal detection in indoor environments. The objective of these experimental 

measurements is to determine the processing gain of the synthetic array in continuous 

mode for a selection of typical indoor locations and compare these with corresponding 

theoretical evaluations.  
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5.3.1 Data collection setup 

Two indoor environments were considered for data collection. The first data set was 

collected in the same laboratory as described earlier and as shown in Figure 5.35a. The 

second data collection was performed in a larger laboratory, as shown in Figure 5.35b. 

The utilized equipment and data collection parameters were described in Section 5.2.2. 

Table 5-10 shows the GPS data collection parameters for the continuous synthetic array.  
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Figure 5-35: Measurements setup a) in the medium size laboratory b) in the large size 
laboratory 

Table 5-10: Characteristics of indoor GPS data collection scenarios in continuous 
mode 

 Date 
Sampli

ng rate 
IF 

Frequency 

Data 
collection 
duration 

Anten
na velocity

Mid size Lab 
(Section 5.3.2) 

7 
March 09 

10 
MHz 

3.42 
MHz 

30 min 
50 

cm/s 

Large 
size lab 
(Section 
5.3.3) 

S
et 1 

20 May 
09 

10 
MHz 

3.42 
MHz 

10 min 2 cm/s 

S
et 2 

20 May 
09 

10 
MHz 

3.42 
MHz 

10 min 1 m/s 
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5.3.2 Measurement results of data collection in medium size laboratory  

The experimental results presented in this section compare the performance of the 

moving antenna for different values of M. During data collection, the antenna was 

moving with a constant velocity of 50 cm/s. Each output sample of the measurement 

results are based on 400 ms processing of the GPS PRN 7, 8 and 19 L1 C/A codes. 

Hence, in 400 ms the antenna moved about a wavelength of the GPS L1 signal. Thus, 

based on the discussion of Section 4.7, M=4 is a proper choice which provides maximum 

SA gain. In this section, the detection performance of the moving antenna with M=1, 

M=2 and M=4 is compared. The statistical results presented herein are based on the 

processing of 30 minutes of data. Hence, the statistical results shown in this part are the 

results of 4500 samples under the H1 state. As a consequence, the PRN 8 measurement 

results, which are representative of other PRNs, will be discussed in details. The 

measured processing gain of PRN 7 and 19 are tabulated at the end of this section. 

As mentioned in previous sections, the receiver correlates the received signals with 

the known replica codes through the correlation process. The peak of the correlation 

process corresponds to the correct code delay and Doppler for which the statistics for the 

H1 case were extracted. The other mismatched code delays were used to generate 

statistics for the H0 case. Figure 5-36 shows the measured PDFs of the test statistics under 

H0 and H1 for different values of M. For comparison, the PDFs of Chi-Squared central 

distributions are overlaid.  
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Figure 5-36: Measured PDF under H0 (a, c and e) and H1 (b, d and f) states for M=1 (a 
and b), M=2 (c and d) and M=4 (e and f) 

 

The theoretical PDF shown in Figure 5-36 is a Chi-squared density function with 2M 

DOFs defined in Eq. 5-7. The match with the theoretical Chi-Squared density function 

provides further confirmation of the validity of the Rayleigh fading model. The variance 

parameters of the measured test statistics under H0 and H1 can be estimated based on the 

maximum likelihood approach. Then, the corresponding variance parameters under H0 

and H1 can be normalized by 
0

2 1H   and 
1

2 1H M

    
 

 respectively such that 
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. Hence, the average SNR,  , is extracted from the measurements. The 

estimated average SNR values for M=1, M=2 and M=4 are 20 dB, 21.5 dB and 22.5 dB, 

respectively. As it is clear, increasing M enhances the SNR values. Note that the match of 

measurement results with the Chi-squared PDF with two DOFs under H0 and H1 for M=1 

shown in Figure 5-36 a and b confirms the Rayleigh fading assumption. In addition, 

matching experimental PDFs with the theoretical Chi-squared PDF with four (Figure 

5-36c, d) and eight DOFs (Figure 5-36e, f) for M=2 and M=4 confirms signal 

decorrelation and multipath model used. After calculating the PDFs under H0 and H1 

based on measurements, the ROC curves were generated and are shown in Figure 5-37.  
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Figure 5-37: Estimated ROC curves based on measurements for the moving antenna 
for different values of M 

 

As expected, increasing M improves the detection performance. However, a more 

interesting observation is the comparison of the experimental measurement curves with 
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the equivalent theoretical results. As observed, the theoretical and experimental results 

match very well, which further confirms the theoretical analysis presented earlier in 

Section 4.3 and Section 4.7. Figure 5-38a shows the measured ISNR for a moving 

antenna with different values of M for a 16-wavelength antenna displacement. It is 

evident that the moving antenna with M=1 has the lowest ISNR values as a result of 

coherency loss. In addition, ISNR values are susceptible to deep fades and loss of peak 

detection. By increasing M, the ISNR mean value increases and the ISNR values become 

resistant to deep fades. Figure 5-38b shows the CDF of ISNR with the interesting 

observation that the slope of the CDF curves becomes steeper by increasing M, which 

leads to the removal of fading effects. 
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Figure 5-38: a) ISNR for the moving antenna for different values of M, b) CDF of 
ISNR for different values of M 
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For instance, the probability of ISNR values which goes below 15 dB for the M=4 

case is one order of magnitude less than that for M=1. 

Table 5-11 summarizes the detection statistics of the moving antenna for different 

values of M for GPS PRNs 7, 8, and 19. The table also provides measured average SNR 

values for a 400 ms processing interval, number of misdetections, percentage of 

misdetections and DP  for two different values of FAP . A misdetection occurs when the 

maximum value of the correlation function based on the measurements is not in the 

correct cell. Table 5-11 shows that, utilizing the synthetic array process for different 

PRNs with different target detection performances, the misdetection percentage can be 

considerably reduced.  

Table 5-11: Moving antenna detection statistics for PRN 7, 8 and 19 

P
RN 

ρ
 

(dB) 

Num
ber of 
miss 

detection

Percenta
ge of 

misdetection 
(%) 

DP  

.FAP 0
 

FAP 0
 

7 

1 12.5 1295 28 0.71 0.76 

2 14 730 16 0.84 0.86 

4 14.7 582 13 0.85 0.89 

8 

1 20 218 5 0.965 0.977 

2 21.5 45 1 0.992 0.995 

4 22.5 20 0.5 0.995 0.996 

19 

1 15.5 1002 22 0.78 0.83 

2 17.4 504 11 0.89 0.92 

4 18.3 367 8 0.92 0.94 
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5.3.3 Measurement results of data collection in large size laboratory 

In Section 5.3.2, the detection statistics of the synthetic array in continuous mode 

were compared with the theoretical values presented in Section 4.7 for different values of 

M in a medium size laboratory. In this section, the detection performance of the moving 

antenna will be compared with that of the static antenna for different values of M in a 

large size laboratory. Data collection consisted of two sets: set1 in a pseudo static mode 

and set2 in a moving mode. In the case of set1, the antenna was moving with a constant 

velocity of 2 cm/s. In the moving scenario, set2, the antenna was moving 1 m/s. For each 

data collection set, the test statistics and detection performances were calculated for 

T=100 ms and T=200 ms using the C/A code of PRN 31. Hence, in the set2 case, the 

antenna was displaced 10 cm (T=100 ) and 20 cm (T=200) respectively, which is either a 

half or one full wavelength of the GPS L1 carrier. In this part, the detection performance 

of the static and moving antennas are compared for M=1, M=2 and M=4. Figure 5-39 

shows ROC curves for set1 and set2 for different values of M and for T=200 ms. In set1, 

increasing the number of spatial samples M results in performance degradation. This 

phenomenon is tagged as a in Figure 5-39. Hence, as expected M=1 provides the best 

detection performance in this case. However, when the antenna moves with a 

displacement of a wavelength of the carrier in each snapshot, M=1 gives the worst 

detection performance. This is due to coherency loss of the channel, tagged as b in Figure 

5-39. Increasing M while the antenna is moving increases the detection performance. This 

detection enhancement relative to the static antenna is tagged as c in Figure 5-39. Figure 

5-40 shows the ISNR CDFs for set1 and set2. In the case of set1, increasing M reduces 

the ISNR values.  
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Figure 5-39: ROC curves of the static set1 and moving set2 antenna for T=200 ms 
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Figure 5-40: ISNR CDFs for (set1) and moving (set2) antennas for T=200 ms 
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However, the patterns of the ISNR CDF for different values of M are almost identical 

and they all have the same slope. In set2 when M=1, ISNR suffers from a channel 

coherency loss. By increasing M, the detection process takes advantage of the diversity 

gain and counteracts the fading effect. Hence, the patterns of the ISNR CDF in the set2 

with M=2 and M=4 have steeper slopes than those for the static antenna case. 

Table 5-12 and Table 5-13 summarize the detection statistics of the static and the 

moving antenna tests for different values of M, PRN 31 for T=100 ms and T=200 ms. The 

measured average SNR values for a 100 ms processing interval, percentage of 

misdetection and DP  for two different values of FAP  are also given. 

 

Table 5-12: Detection statistics of the moving antenna for PRN 31 (T=100 ms) 

 M 
ρ 

(dB) 
Percentage of 
misdetection 

DP  

.FAP 0 0
 

.FAP 0 1
 

Set 1 

1 
20.

55 
3.6 0.971 0.982 

2 
20.

4 
4.1 0.965 0.977 

4 
20.

4 
5 0.96 0.972 

Set2 

1 19 5 0.962 0.978 

2 20 2.1 0.986 0.992 

4 
20.

1 
2.5 0.982 0.99 
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Table 5-13: Detection statistics of the moving antenna for PRN 31 (T=200 ms) 

 M 
ρ 

(dB) 
Percentage of 
misdetection 

DP  

.FAP 0 0
 

.FAP 0 1
 

Set1 

1 
23.

5 
0.53 0.982 0.989 

2 
23.

4 
0.55 0.98 0.987 

4 
23.

3 
0.7 0.975 0.984 

Set2 

1 20 1.5 0.95 0.97 

2 22 0.12 0.995 0.997 

4 
22.

5 
0.08 0.996 0.998 

 

Based on the results of Table 5-12, for M=2 the detection performance of the moving 

antenna (set2) is maximum and has the lowest misdetection rate. This phenomenon is 

expected since, for 100 ms signal snapshots, the antenna was displaced by about half of 

the carrier wavelength. For the moving antenna when T=200 ms (Table 5-13, set2), the 

lowest misdetection and the highest PD occur when M=4.  

Comparing the average SNR values ρ for the static antenna in Table 5-12 and Table 

5-13, a 3 dB difference occurs. This is due to the use of two times more data with 200 ms 

signal snapshots. This result ensures that in this case the channel remains coherent and 

coherent integration gain can be achieved.  
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To compare the processing gain of the EG algorithm relative to that of the static 

antenna, the ROC curves for the moving antenna with M=2 and T=100 ms compared with 

the static one with different T values are shown in Figure 5-41.  
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Figure 5-41: ROC curves of the static and moving antennas for different values of T 

 

The performance of the moving antenna with M=2 and T=100 ms is superior to that 

of the static antenna. The PD performances of the moving and the static antenna with 

T=400 ms in the range of  0.04 : 0.1FAP   are identical. The estimated average SNR   

for each experiment is also shown. Based on these, for detection target parameters of 

PD=0.99 and  0.04 : 0.1FAP 
 
there is a gain of about 6 dB. This gain could significantly 

reduce the mean acquisition time of GPS receivers. For instance, based on the 

experimental results of Figure 5-41, the performance of the moving antenna utilizing the 
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EG process becomes identical to the static antenna using four times less data. This may 

be considered as a reduction in the mean acquisition time performance by a factor of four.  

5.4 Conclusions 

In this chapter, experimental results of the detection performance of the synthetic 

array in different indoor fading environments were presented. Two different signals, 

namely CDMA IS-95 and GPS, were utilized to verify the theoretical findings presented 

in Chapter 4. The comprehensive set of measured signals was used to verify the Rayleigh 

fading and spatial correlation models. 

The detection performance of the discrete synthetic array under uncorrelated Rayleigh 

fading was discovered and compared with the theoretical values represented in Chapter 4. 

It was shown experimentally that, for given target detection parameters in terms of PFA 

and PD, there is an optimum number of spatial samples that provides maximum 

processing gain of the synthetic array over the static antenna. The detection performance 

of the discrete mode synthetic array was also investigated under correlated fading 

environments and verified with the theoretical values. A good agreement between the 

experimental and theoretical results was obtained.  

In Section 5.3, experimental results of the detection performance of GPS signals 

utilizing continuous mode synthetic array were demonstrated. It was shown 

experimentally that there exists an optimum antenna velocity that provides maximum 

processing gain. Experimental results reveal that for a practical range of PD and PFA the 

synthetic array receiver results into a 6 dB gain advantage relative to the static receiver 

case. This significant gain translates in a reduction of the mean acquisition process by a 
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factor of four, which is very important when tracking attenuated GPS signals in urban 

canyons and indoor. 

Table 5-14 summarizes the synthetic array field measurement experiments for 

different signal structures. 

Table 5-14: Summery of field measurement experiments 

Signal Data set Objectives 

IS-95 
(Section 5.1) 

Data set 1 

- Verification of Rayleigh fading assumption 

- Channel correlation coefficient estimation 

- Evaluation of processing gain of the synthetic 
array over the static antenna for different values 
of T in uncorrelated fading environments 

- Verification of the existence of an optimum 
value of M 

Data set 2 

- Analysis of the synthetic array gain in correlated 
Rayleigh fading 

- Verification of the test statistics PDFs with 
different spatial spacing and comparison with 
theoretical values 

GPS in 
discrete mode 
(Section 5.2) 

 

- GPS indoor channel statistics and correlation 
coefficient measurements 

- Evaluation of processing gain of the synthetic 
array over the static antenna in uncorrelated 
indoor GPS environments based on the discrete 
mode synthetic array 

GPS in 
continuous mode  

(Section 5.3) 

Data set1 

- Analysis of the detection performance of the 
indoor GPS utilizing the synthetic array in the 
continuous mode 

- Comparison of the detection statistics with the 
theoretical values 

Data set 2 

- Comparison of the detection performance of the 
synthetic array in continuous mode for different 
receiver velocities 

- Verification of the existence of the optimum 
velocity and M which provides maximum gain 
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Chapter 6: AOA ESTIMATION BASED ON THE SYNTHETIC ANTENNA 
ARRAY 

 

The approach for detecting a narrowband signal utilized in Chapter 4 and Chapter 5 

was based on the assumption that the received signal consists of diffuse multipath where 

there is a continuum of infinitesimal scattering reflection sources. This is a typical model 

of the indoor and dense multipath environments. Based on this the signal covariance 

matrix for the multipath Rayleigh fading model described in Section 3.2.4 and the 

detection performance and processing gain based on the Estimator-Correlator (EC) 

detector were investigated theoretically and practically in Chapter 4 and Chapter 5 

respectively. 

However, in specular multipath environments (described in Section 3.2.3) where a 

plane wave has an unknown channel gain coefficient and an unknown Angle Of Arrival 

(AOA), the detection algorithm presented in Section 4 utilizing the EC formulation is not 

optimal. In this case, a Generalized Likelihood Ratio Test (GLRT) approach (Kay 1998) 

can be utilized to improve the detection performance since it attempts to estimate the 

unknown AOA based on a Maximum Likelihood (ML) approach. If the SNR is high, a 

nonlinear estimation technique such as MUltiple Signal Classification (MUSIC) (Schmidt 

1986) and Estimation of Signal Parameters via Rotational Invariance Techniques 

(ESPRIT) (Roy & Kailath 1989, Rao & Hari 1989) may be utilized to estimate the 

unknown AOA associated with the plane wave incident on the array. Based on the 

estimated AOA, the beamforming and null steering approaches can be implemented to 
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improve detection performance of the desired signal and reject multipath and interference 

signals.  

In this chapter, an approach for AOA estimation based on the synthetic array utilizing 

the ESPRIT algorithm is described and tested with actual CDMA IS-95 signals. Physical 

size constraints of handheld devices typically exclude the possibility of using multiple 

antennas. By taking advantage of the rotational invariance property of the ESPRIT 

algorithm, an antenna array can be synthesized by moving a single doublet (a two-

channel receiver) (Broumandan et al 2008b). The advantages of the proposed method 

compared to the previous work of AOA estimation based on the synthetic array (Jong & 

Herben 1999, Jong 2001, Broumandan et al 2007) is that the synthetic array trajectory 

estimation, which is normally performed by using controllable moving motors or external 

aiding sensors, is relaxed. This configuration can be used with any rotational invariance 

moving platforms (i.e. during the data collection the doublet does not rotate) such as 

moving vehicles. With this configuration, system complexity is considerably reduced.  

 

6.1 AOA estimation problem 

In this section the problem of AOA estimation of impinging signals on an antenna 

array is considered. Assume N signals from distinctive spatial locations are received by 

an arbitrary geometry array consisting of M sensors. Signals may be samples of a 

stationary random stochastic process or deterministic function of time (Roy & Kailath 

1989). Signals are assumed to be narrowband processes which implies the source 

bandwidth is much smaller than the reciprocal of the maximum time delay across the 
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array. Far-field sources which are not coherent (perfectly correlated) are assumed. 

Consequently, the received signal is a combination of the LOS and reflected plane wave 

signals. It is also assumed that the number of incoming signals is less than the number of 

sensors (N<M). The transmission-reception medium is assumed to be isotropic and non-

dispersive such that the propagated signals are received by the receiver via a straight line 

(Roy 1987). Hence, signals received are a combination of plane wave signals. 

The complex output of the k-th sensor at time t is represented by  

1

( ) ( ) ( )
N

k k i i k
i

x t v s t


     6-1

where k  is the propagation delay between the k-th sensor and the reference point of the 

array coordinate, N is the number of signals and ( )k iv   is the phase and gain response of 

the k-th element of the array to the signal coming from direction i . The narrowband 

assumption leads to 

1

( ) ( ) ( )
N

k k i i
i

x t s t


  v . 6-2

The output of the array in vector form can be written by 

( ) ( ) ( ) ( )t t t  x V s n  6-3

where x(t) is a M×1 observation vector, ( )ts  denotes a N×1 vector of complex signal 

envelope at time t . ( )V  is a M×N steering matrix for signals coming from directions 

θ={θ1,θ2,…,θN} and 

 1 2( ) ( ), ( ),..., ( )
def

N    V v v v . 6-4
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It is assumed that the matrix ( )V  is a full rank matrix and the incoming signals are not 

coherent. n(t) is spatially and temporally white Gaussian noise with a variance of 2 . 

 

6.1.1 Array manifold and signal subspace 

Consider the noise free signal model defined by  

( ) ( ) ( )t tx V θ s . 6-5

The columns of ( )V  , ( )iv , are elements of a set which are composed of array 

responses for the entire range of incoming signals. This set is known as an array 

manifold. The array manifold is completely defined by the array phase and gain response 

from all possible signal directions and the array geometry. To evade the ambiguity in the 

AOA estimation, the mapping from  1,..., N  θ  to the range of ( )V θ  should be one to 

one, which can be accomplished by proper array design (Roy 1987). The received signal 

vector in the absence of noise is constrained to the N-dimensional subspace known as 

signal subspace, which is spanned by the columns of ( )V θ . 

The signal subspace can be determined by the intersection of the measured signal 

subspace and calibrated array manifold. In the absence of noise, the outputs of the array 

span a N-dimensional subspace by the columns of the array manifold. Once the signal 

subspace is known, the intersection of the array manifold and signal subspace gives a set 

of vectors from the array manifold that spans the signal subspace.  

In practical applications where noise is present, the signal subspace is not known 

apriori and has to be estimated based on the noisy samples. Assuming an unknown 

deterministic signal embedded in white Gaussian noise, a Maximum Likelihood (ML) 
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estimator can be applied (Roy 1987). The problem with the ML estimator is that it 

requires multidimensional search over entire parameters which for most practical 

applications is computationally prohibitive. Instead, Schmidt (1986) developed a two-

step approach for this problem. First, an unconstrained estimate of the signal subspace 

based on N vectors that best fits the measurements is found. Then the projection of the 

space spanned by this vector into the array manifold is determined. It is shown that the 

Schmidt’s suboptimal approach is asymptotically an unbiased estimator (Roy 1987). 

The objective is to define N linearly independent vectors from noisy measurements 

which span the signal subspace. Such vectors can be estimated from the eigenvectors of 

the received signal covariance matrix. The covariance matrix of the signal is given by 

2{ }
def

sE   H H
xR xx VR V I  6-6

where sR  is the signal covariance matrix. The N eigenvectors of xR  corresponding to the 

N largest eigenvalues given by  1 2, ,...,s NE e e e , provides N independent vectors which 

spans the signal subspace. In real applications, the covariance matrix is not known and 

must be estimated from measurements. An estimate of the measured signal covariance 

matrix may be defined by 

^

1

1 1
( ) ( )

K
H H

k

k k
K K

 xR x x XX  6-7

where K  is the number of snapshots and X is the M K  data matrix. In this case the M-

N smallest eigenvalues of the covariance matrix are not exactly equal to 2  but are only 

clustered around it. In this situation, sophisticated algorithms based on the Likelihood 

Ratio Test (LRT) can be used to estimate the signal and noise dimensions. For more 
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details of array manifolds and the signal and noise subspaces, readers are referred to Van 

Trees (2002). 

 

6.1.2 AOA estimation based on the MUSIC algorithm 

In the absence of noise, signal parameters (e.g. AOA) can be determined by finding 

the intersection of the array manifold with the signal subspace. The signal parameters can 

also be determined by finding elements of the array manifold which are orthogonal to the 

noise subspace. In the absence of noise, finding the intersection of the array manifold and 

signal subspace is computationally costly and requires a multi-dimensional search. 

However, in the presence of noise, this procedure becomes even worse due to the fact 

that there is no intersection between the signal subspace and the array manifold. Hence, 

vectors of array manifolds, which are closest to the signal subspace should be taken as a 

potential solution. Schmidt (1986) proposed the following criterion for defining the 

elements of array manifold which are closest to the signal subspace: 

     
   *

H

MUSIC H
N N

P
 

 
 

v v

v E E v
 6-8

where  1,...,N N ME e e  are the M-N eigenvectors of xR  corresponding to the M-N 

smallest eigenvalues of Rx. This relation is known as the MUSIC spectrum. In the 

absence of noise, for the correct AOA Eq. 6-8 goes to infinity. In the presence of noise, 

the MUSIC spectrum gives some peaks for the closest approach of the array manifold to 

the signal subspace (Schmidt 1986). 
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6.1.3 ESPRIT angle of arrival estimation algorithm 

This section briefly describes the Total Least Squares (TLS) ESPRIT algorithm. For 

simplicity consider a planar array consisting of M doublets with an arbitrary geometry, 

phase and gain response. The ESPRIT array geometry for three doublets is shown in Figure 

6-1. 

 

d

d

d Doublet 1 

Doublet 2 

Doublet 3 

First 
subarray 

Second 
subarray 

 

Figure 6-1: ESPRIT array geometry 

 

d is the distance between two sensors in each doublet and is identical for all doublets. 

Sensors in each doublet have the same phase and gain characteristics. However, different 

doublets may have different phase and gain responses. In addition, doublet sensors 

connection axes are parallel for all doublets (translation invariance property). Shown in 

Figure 6-1 is the ESPRIT array structure which consists of different doublets, with each 

doublet composed of two identical pattern sensors (Roy & Kailath 1989, Swindlehurst et al 
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1992, Ottersten et al 1991). The array configuration of the ESPRIT algorithm can be 

represented by two sub-arrays, with each doublet having a sensor in each sub-array. 

Therefore, each sub-array is the replica of the other one, separated by a known physical 

displacement d. In such case, each sub-array consists of sensors with arbitrary phase and 

gain characteristics. Doublets and sub-arrays are shown in Figure 6-1.  

The output of each doublet can be represented by  

( ) ( ) ( )

( ) ( ) ( )

t t t

t t t

 
 

1 1

2 2

x Vs n

x VΨs n
 6-9 

where ( )ts  is the N×1 received signal vector and ( )t1n  and ( )t2n  are M×1 noise vectors at 

the output of each sub-array. Ψ  is defined as a N×N matrix that relates the measurements 

from the first sub-array to the second. Ψ  is defined as 

1
2 2

sin sin
, ,

N
j d j d

diag e e
 

 
 

 
  

 
Ψ   6-10 

where   is the wavelength of the impinging signals and θi is the AOA of the ith signal 

relative to the doublets connection vector. Combining the outputs of the sub-arrays in a 

single vector yields 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

t t
t t

t t

t t

    
      

    
  

1 1

2 2

x nV
z s

x nVΨ

V s n

. 6-11 

The ESPRIT algorithm similarly to the MUSIC AOA estimator relies on the estimation 

of the signal subspace. The signal subspace can be estimated through an eigen analysis of 

the covariance matrix defined by 

2H   z sR V R V I . 6-12 
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The N eigenvectors corresponding to the N largest eigenvalues span the signal subspace 

denoted as  s 1 2 NE e ,e , ,e . The range of sE  is equal to the range of V  (Roy & 

Kailath 1989). Hence, there is a nonsingular matrix T to satisfy sE = V T . sE  can be 

decomposed as (Roy 1987) 

   
   
   

1

2

x

s
x

E VT
E =

E VΨT
 6-13 

where the ranges of 
1xE  and 

2xE  are equal to the range of V. Since the ranges of 
1xE and 

2xE  are the same, the rank of matrix 
2

   1x xE E  becomes N. This implies that there is a 

2N×N matrix, namely  

 
 
  

1

2

x

x

P
P =

P
 6-14 

with rank N that spans the null-space of 
2

   1x xE E , which implies  

2

2 2

2

0    
 

 

1

1 1

1

x x

x x x x

x x

= E E P

E P E P

VTP VΨTP

. 6-15 

Eq. 6-15 can be written as 

VTF VΨT . 6-16 

where 1
1 2x xF = P P , which assumes that 

2xP is full rank. From Eq. 6-13 and 6-16 

#
1 2x xF = E E  where #( )  is the pseudo inverse operator. Hence, it can be shown that (Roy 

1987) 
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-1Ψ = TFT . 6-17 

Eq. 6-17 shows that Ψ  and F  are similar and they have the same eigenvalues, which are 

the diagonal elements of Ψ . Therefore, the AOA can be estimated from the eigenvalues of 

F . In the following, steps toward AOA estimation by the TLS ESPRIT algorithm are 

described (Roy & Kailath 1989): 

1) Estimate the correlation matrix from K independent measurements 

2) Calculate the signals subspace dimension 

3) Estimate the signal subspace Es from partitioning the eigenvectors 

4) Compute the eigenvectors of  

 
      

x1

x1 x2
x2

*

*
*

E
E | E = EΛE

E
 6-18 

and partition E as 

 
 
 

11 12

21 22

E E
E =

E E
 6-19 

5) Estimate eigenvalues ˆ k  of -1
12 22Φ = -E E   

6) The AOA can be estimated by  

 1 ˆarg( )ˆ sin 2
k

k d
      6-20
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6.1.4 AOA estimation based on the synthetic array utilizing the ESPRIT algorithm 

Eq. 6-17 revealed that, for AOA estimation with the ESPRIT algorithm, array manifold 

information is not required. This property has several benefits in the context of the 

synthetic array including: 

1) Array calibration is a critical procedure in high-resolution AOA estimation. Several 

articles (e.g. Pierre & Kaveh 1991, See 1994, 1995) have discussed methods to mitigate 

phase and gain differences among different channels of the sensor array. In the ESPRIT 

algorithm context, the calibration process is reduced to the doublet phase and gain 

adjustment. Experimental results showed that AOA estimation by the ESPRIT algorithm is 

not sensitive to gain differences which decrease the number of parameters to be estimated 

(Li & Vaccaro 1992, Soon & Huang 1992). 

2) Eq. 6-17 is the key relationship in the development of the ESPRIT algorithm which 

suggests that eigenvalues of 
x 21

#
xF = E E  are equal to the diagonal elements of Ψ . Utilizing 

the ESPRIT algorithm, the AOA is estimated relative to the vector d shown in Figure 6-1. 

Hence, the calibration process of doublet geometry is relaxed. This property increases the 

flexibility of the array geometry and aperture extension with a fixed number of sensors.  

The specific properties of the ESPRIT algorithm make it a proper candidate for AOA 

estimation with the synthetic antenna array. In this case, just one doublet is required for 

synthesizing the whole array. During the data collection, the receiver collects spatial and 

temporal samples. The only constraint in the synthetic array realization utilizing the 

ESPRIT algorithm is the rotational invariance displacement. Neither a rotating arm with 

mechanical motor nor external sensors is required to estimate the trajectory of the antenna. 
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6.2 Simulation results of AOA estimation based on the synthetic array 

In this section Monte-Carlo simulations are carried out to determine the performance 

of the ESPRIT algorithm in the context of AOA estimation. The problem of interest is 

estimating the AOA of far field narrowband sources. Various scenarios considering 

implementation issues of the ESPRIT AOA estimator based on the synthetic array 

including source correlation, and source number estimation, are considered. Throughout 

the simulations, it is assumed that each antenna in the doublet has a constant gain and 

phase response in the range of interest (omni-directional pattern). 

 

6.2.1 Baseline simulation  

In all simulations, M denotes the number of sensors in each sub-array, N is the number 

of sources, and K is the number of snapshots used to estimate the signal covariance 

matrix. It is assumed that the number of sources N is known unless stated to the contrary. 

Since ESPRIT does not depend on the location of doublets, the arbitrary geometry array 

shown in Figure 6-2 is utilized. As a baseline case, two uncorrelated sources at 50 and 60 

degrees with equal powers (SNR=20 dB) are assumed. The sensor array is shown in 

Figure 6-2 where the doublet spacing is half of the wavelength. Figure 6-3 shows AOA 

estimation based on the ESPRIT algorithm for 5000 independent runs where K=20.  
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Figure 6-2: Array configuration utilized in the simulation 

 

Figure 6-4 shows the estimated AOA PDF and overlaid Normal fit for the scenario 

presented in Figure 6-3. Figure 6-4 also shows the mean and variance values of AOA 

estimation utilizing the ESPRIT algorithm. 
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Figure 6-3: AOA estimation by the ESPRIT algorithm for 5000 runs 
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Figure 6-4: Estimated and fitted PDFs of AOA estimation 

 

6.2.2 Sensitivity of the ESPRIT algorithm to the model order estimation 

In the baseline simulation, it was assumed that the number of sources is known. 

However, in practical cases the number of sources should be estimated from the received 

signal. This subsection examines the performance of the ESPRIT AOA estimator in the 

presence of errors in model order estimation. The scenario considered here is the same as 

that of the baseline simulation except for the assumption of the number of sources. Figure 

6-5 shows the histogram of AOA estimation for the situation when just one incoming 

signal is assumed (signal subspace is one).  
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Figure 6-5: Histogram of AOA estimation by the ESPRIT algorithm, model order is 
underestimated (true angles are 50 and 60 degrees) 

 

The actual directions of arrivals are 50 and 60 degrees. In this scenario the ESPRIT 

algorithm cannot correctly estimate even one direction.  

Figure 6-6 shows the AOA estimation for the situation where the ESPRIT algorithm 

is assuming three impinging signals (overestimated case).  
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Figure 6-6: AOA estimation by the ESPRIT algorithm, model order is over estimated 

 

Simulation results showed that, when the number of incoming signals is 

underestimated, the ESPRIT algorithm cannot correctly estimate even one direction. 

However, in the over estimation case (results of Figure 6-6), the actual AOA of the 

impinging signals can be correctly estimated. This phenomenon is also reported in (Jong 

2001).  

 

6.2.3 AOA estimation in correlated signal environments 

One issue which limits the accuracy and performance of the high resolution AOA 

estimation algorithms is source correlations. If some signals impinging on the antenna 

array are correlated, the signal covariance matrix tends to be ill conditioned (near singular 
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in correlated cases and singular in coherent cases) and cannot be used to estimate the 

AOAs of the signals (Reddy et al 1987). In wireless communication, correlated or 

coherent signals exist due to multipath propagation (Haykin 1985). In this section, the 

performance of the ESPRIT AOA estimation in correlated signal environments is 

considered. 

Figure 6-7 shows the PDFs of the estimated AOA for a signal correlation coefficient 

of 0.9exp( / 4)r j   . 
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Figure 6-7: PDFs of the estimated AOA in correlated signal environment 

 

By increasing the correlation coefficient, one observes that the variance of the AOA 

estimation increases (compared to the results of Figure 6-4). Table 6-1 summarizes the 

means and variances of AOA estimation for different values of signal correlations for the 

same scenario of the baseline example.  
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Table 6-1: Means and variances of AOA estimation for different values of signal 
correlations 

Correlation Mean Variance 

True AOA=50 True AOA=60

r=0.25 50 60 0.32 0.26 

r=0.5 50 60 0.41 0.33 

r=0.75 50 60 0.72 0.56 

r=0.9 50 60 1.9 1.5 

r=0.99 48.9 64 120 280 

 

The results show that, by increasing the correlation coefficient, the variance of the 

ESPRIT AOA estimator increases. However, for moderate and high correlation 

coefficient cases (r≤0.9) and for the given scenario, the ESPRIT algorithm provides an 

unbiased estimation. 

 

6.3 Practical considerations and experimental results  

In this section, practical considerations and implementation issues of AOA estimation 

utilizing ESPRIT including signal subspace dimension estimation and calibration process 

are explained. Then, experimental results of AOA estimation of the synthetic array with 

actual CDMA IS-95 pilot signals are demonstrated.  
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6.3.1 Estimation of signal subspace dimension  

High-resolution subspace-based AOA estimation algorithms rely on the estimation of 

signal subspaces (or equivalently noise subspaces). In an ideal case, the M-N smallest 

eigenvalues of the sensors output covariance matrix are all identical and equal to 2 . Based 

on this fact the signal/noise subspace can be easily estimated. However, in practice the 

covariance matrix is estimated by a finite number of samples. In such a case, all 

eigenvalues of the covariance matrix become different. Hence, it is difficult to estimate the 

signal subspace size. Simulation results in Section 6.2.2 revealed the importance of correct 

estimation of the signal subspace dimension. In this section, a principle based on Akaike’s 

Information Criterion (AIC) (Wax & Kailath 1985) is used to estimate signal subspace 

dimension. The AIC principle is defined by  

/( )

ˆ

( ) ( ) ln ( )
ˆ

1 M KM

l
l N 1

M

l
l N 1

AIC N K M N N 2M N
1

M N







 

 

  
  
       
 

  




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where M, N, and K are the number of sensors, incoming signals and snapshots, 

respectively. î  is the i-th eigenvalue of the estimated covariance matrix. The estimated 

number of source signals ( N̂ ) is chosen to minimize the AIC criterion as 

 ˆ arg min ( )AIC
N

N AIC N . 6-22 



 

 

229

 

6.3.2 Calibration process 

Although high-resolution techniques for AOA estimation such as MUSIC and 

ESPRIT have superior accuracy over conventional parameter estimation algorithms and 

less complexity over the Maximum-Likelihood (ML) approach, these algorithms are 

sensitive to array perturbation errors in the array manifold. As a result, to achieve a 

super-resolution performance, array calibration is required. These deviations from an 

actual array manifold are the result of gain and phase differences between different 

channels of a multi-channel receiver, mutual coupling between antennas, and I/Q 

imbalance in quadrature receivers.  

With array manifold parameterization, the array calibration procedure can be 

approached as an estimation problem (Kay 1993). Different approaches for array 

calibration based on ML and subspace algorithms are proposed in the literature (Ng et al 

1996, Pierre & Kaveh 1991). Experimental results in Soon & Huang (1992) have shown 

that the ESPRIT algorithm, as opposed to the MUSIC estimator, is not sensitive to the 

sensor gain errors. Hence, phase calibration is sufficient. In this section, a phase estimator 

is utilized to compensate for the element phase differences in each doublet. 

 

6.3.2.1 Phase estimator  

In Section 6.1.3 it was shown that, by taking advantage of the ESPRIT algorithm, the 

antenna array can be synthesized by moving a single doublet without using controllable 

moving motors or external aiding sensors. This property reduced the array configuration 
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into a two-channel receiver. However, as discussed in Section 6.1.3 the sensors in each 

doublet should have the same phase response. Hence, before implementing the synthetic 

array utilizing the ESPRIT algorithm, one should calibrate the two-channel receiver. 

In Section 5.1 it was mentioned that the correlation function of the PRN codes 

provides sufficient statistics for estimating signal parameters received by the array. 

Hence, the complex value at the peak position of the correlation function denoted here as 

x  is utilized for the calibration process. The correlation function for one period of 

CDMA IS-95 signals was shown in Figure 5-4. The phase estimation may be defined by 

1 ( )
tan 1, 2

( )
i

i
i

imag x
i

real x
  

   
 

. 6-23

i  gives the estimated phase of each channel at the output of the correlation function 

(Kay 1993). The calibration process adjusts the phase differences of the two-channel 

receiver with respect to the calibration source. For example if the calibration source is 

perpendicular to the doublet connection axis, the calibration process equalizes phases at 

the output of two sensors.  

 

6.3.3 Experimental results 

Experimental measurements represented in this chapter are based on reception of the 

downlink CDMA IS-95 pilot signals. The characteristics of the CDMA IS-95 signals were 

described in Section 5.1.1. The utilized synthetic array method based on the ESPRIT 

algorithm consists of a two-channel receiver. Due to using different electrical components 

in different channels, each channel has a distinctive phase and gain response. In the AOA 
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estimation concept, the directions of incident signals are estimated based on the phase 

differences among different antennas. Therefore, the relative measured phase of sensors 

with respect to that of a reference sensor is utilized for the calibration process. Hence, in 

the calibration process the first channel was considered as the reference antenna and the 

phase of the second channel adjusted accordingly.  

The data collection site was the roof of the CCIT building at University of Calgary 

where access to LOS signals from two CDMA BSs, namely Market Mall and UofC, is 

possible. The measurement site and experimental setup are shown in Figure 6-8. In 

CDMA wireless communication systems, signals received by the antenna are normally 

below the noise floor. To extract signal parameters, an acquisition process is required. 

The acquisition process of the CDMA IS-95 signal was described in Section 5.1.1. 

Signals at the peak of the correlation function are used for the calibration process and 

AOA estimation. The true angle of incidence was estimated by knowing the exact 

position of the BSs, measurement location and doublet orientation. This information then 

was used to verify the AOA estimation results. Two sensors with half wavelength spacing 

were placed on the linear moving table shown in Figure 6-8 to synthesize the antenna 

array. Table 6-2 shows the characteristics of data collection scenarios.  

Table 6-2: Characteristics of indoor GPS data collection scenarios  

Date Sampling rate IF Frequency Data collection 

duration 

Antenna 

velocity 

11 Sep 2008 10 MHz 500 KHz 10 min 5 cm/s 

 

 



 

 

232

 

Figure 6-8: Measurement setup on the roof of the CCIT building 

 

 

Figure 6-9: Topology of the receiver and BSs 
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Before estimating the AOA of incoming signals, the receiver was calibrated based on 

the phase estimation and compensation method described in Section 6.3.2. Calibration in 

the field due to the multipath propagation in the presence of noise is not a deterministic 

process. Figure 6-10 shows unwrapped estimated phase values at the output of each 

antenna element for signals arriving from the UofC BS. During the data collection, the 

doublet was moving with a velocity of 5 cm/s. 

Figure 6-11 shows phase differences of two antennas at the output of the correlation 

peak for 45,000 signal snapshots. 
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Figure 6-10 Estimated phase values of two antennas at the calibration point 
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Figure 6-11: Phase differences of estimated phase values between two antennas at the 
output of the correlation function 

 

The mean value of the phase differences shown in Figure 6-11 is utilized as the 

estimate of the phase difference. The PDF of the estimated phase differences of the 

doublet is shown in Figure 6-12, which also shows the Normal fit to the PDF of the 

measured phase differences. 
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Figure 6-12: PDF of phase differences between two channels and normal fit 

 

It is interesting to analyze the AOA estimation degradation due to phase calibration 

errors which can be modeled by an uncorrelated random process. In Soon & Huang 

(1992) is shown that the MSE of AOA estimation for two incoming signals can be 

simplified by  

 
2

2 22

2 cosk
k

E
M d 

 
    

  6-24 

where M is the number of sensors, 2
  is the variance of the phase mismatch error, d is 

doublet spacing and   is the carrier wavelength.  

Figure 6-13 shows the root MSE of AOA estimation by the ESPRIT algorithm for a 

given variance in the phase estimation. 
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Figure 6-13: Root MSE for AOA estimation degradation due to phase mismatches in the 
calibration process 

 

As mentioned in the previous section, the ESPRIT AOA estimator assumes that the 

number of incoming signals is known or can be estimated. In Section 6.3.1 the AIC 

criterion was introduced to estimate the number of sources and signal subspaces. Figure 

6-14 shows the output of the AIC criterion for real data measurements. Based on the 

results of Figure 6-14, the minimum of the AIC function occurs at 1, which emphasizes 

the number of incoming signals. 
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Figure 6-14: AIC criterion as a function of the number of sources  

 

The topology of the receiver and BSs were previously shown in Figure 6-9. Based on 

this, the correct AOAs can be compared with the estimated ones, which for the Market 

Mall and UofC BSs, are 97 and 113 degrees respectively. Figure 6-15 shows AOA 

estimation results of Market Mall BS for M=30 and K=20 for 18,000 snapshots. Figure 

6-16 shows the PDF of AOA estimation for the results given in Figure 6-15. For 

comparison a normal fit is also overlaid. The statistics of the AOA estimation are also 

given in Figure 6-16. Based on the averaging of 18,000 independent snapshots, the mean 

value of AOA estimation is 97.8 degrees with a standard deviation (STD) of 0.28 

degrees. 
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Figure 6-15: Estimated AOA from Market Mall BS, M=30, K=20 
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Figure 6-16: AOA estimation PDF and normal fit for 18000 snapshots 
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Figure 6-17 shows the PDF of AOA estimation for the UofC BS signals for M=10, 

K=1. 
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Figure 6-17: AOA estimation PDF and normal fit for 18000 snapshots, UofC BS, 

M=10, K=1 

 

Figure 6-18 show the PDF of AOA estimation for UofC BS signals when M=20, K=1. 

The corresponding PDF when M=30, K=1 is shown in Figure 6-19. 
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Figure 6-18: AOA estimation PDF and normal fit for 18000 snapshots 
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Figure 6-19: PDF of estimated AOA from UofC BS, M=30, K=1 



 

 

241

 

By comparing the results of Figure 6-16 to Figure 6-19, one sees that the variance of 

AOA estimation decreases when increasing the number of spatial samples M. 

Figure 6-20 shows the PDF of AOA estimation for the UofC BS signals for M=20 

and K=20. 
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Figure 6-20: PDF of Estimated AOA from UofC BS, M=20, K=20 

 

Figure 6-21 shows the PDF of AOA estimation results of UofC BS signals for the 

case of M=30 and K=20. 
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Figure 6-21: PDF of estimated AOA from UofC BS, M=30, K=20 

 

Comparing the results of Figure 6-20 and Figure 6-21, one sees that increasing the 

number of snapshots K decreases the variance of AOA estimation. Table 6-3 summarizes 

the AOA estimation results utilizing the synthetic array for the Market Mall and UofC 

BSs. 

For more experimental results based on the synthetic array concept utilizing the 

ESPRIT algorithm readers are further referred to (Broumandan et al 2008b) 
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Table 6-3: Summary of experimental results of AOA estimation 

BS Snapshots M K Mean Variance 

Market Mall 18,000 30 20 97.8 0.08 

UofC 18,000 10 1 113.5 1.05 

UofC 18,000 20 1 113.3 0.25 

UofC 18,000 30 1 113.5 0.07 

UofC 18,000 20 20 113.35 0.17 

UofC 18,000 30 20 113.5 0.04 

 

 

6.4 Conclusions 

In this chapter, a high-resolution AOA estimation methodology based on the ESPRIT 

concept was developed and tested. During data collection, a doublet was moved to create 

a synthetic array. Utilizing this method the previous constraints including array trajectory 

estimation could be relaxed. Neither a mechanical moving motor with constant speed nor 

auxiliary sensors are required. The synthetic ESPRIT algorithm is highly suitable for 

rotational invariance movements such as vehicle AOA estimation. Experimental results 

based on the actual CDMA IS-95 signals revealed that the proposed method is usable for 

high-resolution AOA estimation. 
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Chapter 7: CONCLUSIONS AND RECOMMENDATIONS 

This chapter provides conclusions pertaining to the synthetic array signal detection 

and parameter estimation performance in different multipath environments presented in 

the thesis. This is followed by recommendations for future work. 

 

7.1 Conclusions 

The detection performance of the static and moving antennas in multipath fading 

environments characterized by Rayleigh fading was investigated. Two operating 

scenarios for implementation of the synthetic array, namely discrete and continuous 

modes, were demonstrated. It was shown that a substantial processing gain is possible by 

moving the antenna relative to maintaining the antenna in a static position. For a practical 

application case, more than 10 dB of processing gain relative to a static antenna was 

demonstrated as being achievable. Furthermore it was demonstrated that there is an 

optimum spatial sample and receiver velocity to utilize, which is a function of the target 

detection parameters FAP  and DP . The detection performance and processing gain of the 

synthetic antenna array were compared to that of the static antenna subject to correlated 

Rayleigh fading. It was shown that if the correlation of the signal samples is increased 

then the diversity gain diminishes, eventually to the point where the moving antenna does 

not provide any gain over the static antenna. The performance degradation of the EG 

combiner due to correlated fading with respect to an optimal EC approach was 

determined. The results showed that in moderate correlated signal environments, the 

performance of the EC and EG combiners are almost identical. The detection 
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performance of the synthetic array in continuous mode was also demonstrated based on 

the EC and EG combiners. The coherent integration loss due to antenna motion in the 

Raleigh fading channel was characterized. A limit for the coherent integration gain versus 

the velocity of the receiver in Rayleigh fading environment was presented. The synthetic 

array sensitivity to the trajectory estimation error and practical implementation issues 

were discussed.  

Experimental measurements were used to validate the theoretical findings in the 

context of the discrete and continuous modes of the synthetic array in indoor fading 

environments. The objective of the experimental measurements was to determine the 

processing gain advantage of the synthetic array over the static antenna. Two different 

CDMA signal structures, namely IS-95 and GPS signals were utilized to evaluate the 

synthetic array detection performance in different indoor multipath environments. 

Experimental measurements were performed to verify the assumption of Rayleigh fading 

and the channel correlation coefficient. The detection performance of the discrete 

synthetic array under the correlated Rayleigh fading was investigated and compared with 

the theoretical values. It was empirically demonstrated that for the given target detection 

parameters in terms of PFA and PD, there is an optimum number of spatial samples that 

provides maximum processing gain and detection probability of the synthetic array over 

the static antenna. It was shown experimentally that there is an optimum antenna velocity 

to use that provides the maximum processing gain. Experimental results of the synthetic 

array in the continuous mode revealed that for a practical range of PD and PFA the 

processing gain advantage of the synthetic array over the static antenna is of the order of 
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6 dB. This significant gain translates in a reduction of the mean acquisition process by a 

factor of four.  

AOA estimation results utilizing the synthetic array based on the ESPRIT algorithm 

was introduced and tested. Practical implementation issues including the array calibration 

and source number estimation were considered. Experimental results based on the 

reception of the downlink CDMA IS-95 pilot signals verified the applicability of the 

proposed method in the context of the AOA estimation utilizing the synthetic array in 

specular multipath environments. 

 

7.2 Recommendations  

Owing to the broad nature of the synthetic array concept, the research presented herein 

primarily focused on specific aspects of signal detection and parameter estimation for 

particular signal and channel models. Considering the theoretical and experimental 

results presented, the following recommendations are made to extend the scope of this 

research and identify the limitations of the proposed methods.  

 

7.2.1 Signal detection performance in dense multipath environments 

- The assumption utilized herein was based on Rayleigh fading where there is not a 

well defined Line Of Sight (LOS) signal component. Based on this assumption 

the synthetic array processing gain over the static antenna was determined. The 

results presented herein may be generalized by considering the presence of the 

LOS component and taking into consideration Rician type fading. 
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- It was assumed that received signals are narrowband relative to the coherence 

bandwidth of the propagation channel. This is reasonable as the coherence 

bandwidth of indoor channels is typically several MHz in excess of the equivalent 

bandwidth of the pilot CDMA IS-95 and GPS L1 C/A signals. Consequently, it 

can be assumed that the signal undergoes flat fading which implies that multipath 

is unresolvable. If the coherence bandwidth becomes less than the bandwidth of 

the signal, which is typical of dense outdoor urban propagation environments, 

then multipath becomes frequency selective. In this case, there are several 

resolvable components of the multipath which tend to fade independently. This 

result in additional diversity could be exploited to further enhance signal detection 

performance. The analysis presented herein could be generalized to include the 

possibility of resolvable multipath. 

- The temporal clock instability which effectively reduces the equivalent channel 

coherence time was ignored. The finite channel coherence time degrades the 

processing performance of the stationary antenna more than that of the synthetic 

array. Hence, the relative processing gain of the synthetic array actually increases 

if the clock instability is taken into account in the analysis. Thus, the synthetic 

array gain over the static antenna may be generalized by considering the clock 

instability for low cost handheld receiver applications. 

- Although the synthetic array concept presented herein was basically introduced 

for a spatial diversity system where the antenna motion provides the diversity 

gain, the synthetic array formulations, the detection performance and the 

processing gain may be applied to other antenna diversity systems such as 
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polarization diversity. For instance, in a polarization diversity system utilizing the 

synthetic array concept, instead of using several orthogonally polarized antennas, 

diversity gain may be realized by changing the orientation of a single antenna. 

- Comparing to the spatial diversity where the antenna spacing is the limiting factor 

to receive independent signals, two closely spaced antennas with orthogonal 

polarization can receive independent signals. To enhance signal detection 

performance in dense multipath environments utilizing a handheld receiver one 

may extend the synthetic array concept investigated herein to a system with a 

dual-polarized antenna. In this case, the signal detection performance and 

robustness of the diversity system will be further improved.  

 

7.2.2 AOA estimation and signal detection performance in specular multipath 
environments 

 

- The field measurement results of AOA estimation presented herein were based on 

data collection on the roof top of a building with access to LOS signals. Further 

data collection is required to evaluate the performance of the proposed method for 

different multipath scenarios.  

- The AOA estimation concept utilizing the synthetic array presented here was 

established based on the rotational invariance property of the ESPRIT algorithm. 

However, in practical applications of the synthetic array utilizing the ESPRIT 

method, the doublet orientation may change. This phenomenon can be 

investigated to further evaluate the performance of the proposed method in the 
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presence of doublet alignment errors. A rate gyro may be considered to estimate 

the doublet rotation and compensate for this effect.  

- Since AOA estimation utilizing the ESPRIT algorithm does not require any array 

manifold information, it can be used to estimate the synthetic array manifold. It 

would be of interest to analyze the accuracy of the array manifold estimation 

utilizing the proposed method. 

- Once the array manifold is estimated, the beamforming and null-steering 

approaches may be implemented to enhance signal parameter estimation (e.g. 

TOA) and remove multipath and interference. One can take this into account and 

evaluate the beamforming and null-steering performances in the presence of the 

synthetic array manifold estimation errors. 
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APPENDIX A: LIMIT OF NIG FOR DIFFERENT VALUES OF V WHEN T   

Adopting Eq. 4-32 for the case of M=1 and considering ( )T  as the integration output of 

a moving antenna as 
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the last term in Eq. A-2can be expressed as 
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APPENDIX B: FOR LARGER VALUES OF M 0md

dM


  

This can be shown analytically with the following argument. As noted in the previous 

section, the PDF of 1z  conditioned on H0 or H1 is Chi-Squared central with 2M DOF. As 

M becomes larger, these conditional PDFs approach the Gaussian PDF such that 4 
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where  2,N    denotes the Gaussian PDF of mean  and variance 2 . FAP  is therefore 

given approximately by  
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where 
2
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v
erfc v e dt

    is the complementary error function (Kay 1998). 

Combining Eq. B-2 and Eq. B-3 gives a useful asymptotic implicit expression for m  

in terms of FAP  and DP  as 
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1

M

i
i

z x
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  where 2~ (0, )ix N   for large values of M can be approximated by 
2 4~ ( , 2 )z N M M   due to central limit theorem (Kay 1998) 
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The variation of m  with respect to M for large M and given (constant) values of FAP  

and DP  can be determined from  
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Evaluating the total derivative of Eq. B-5 with M and m  as variables results in the 

observation that 0md

dM


  for large M, indicating that m  must increase as M increases.  
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APPENDIX C: SYNTHETIC ARRAY DETECTION PERFORMANCE 
UTILIZING SIGNALS OF MARKET MALL BS 

 

Figure C-1 shows ROC curves of the Market Mall BS for T=400 μs. Table C-1 shows the 

processing gain of the synthetic array for the Market Mall BS for T=400 μs. 
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Figure C-1: ROC curves of static coherent integration, static non-coherent process 
and the synthetic array for T=400 μs receiving from the Market Mall BS 
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Table C-1: Processing Gain of the moving antenna over the static antenna for 
different spatial samples, Market Mall BS, T=400 μs 

 ρ 

(dB) 

DP  Processing Gain (dB) 

.FAP 0 01 .FAP 0 1 .FAP 0 01  .FAP 0 1

M = 1, Coh 13.5 0.77 0.94 0 0 

M=2, Static 
Non-coh 

13.3 0.62 0.89 - - 

M=2, 
Synthetic 

14 0.92 0.98 2 4 

 

 


	20296
	Ali_PhDThesis_29Sep09_department.pdf

