
 

  

 

UCGE Reports 

Number 20382 

 

Department of Geomatics Engineering 

 
 Contributions to a Context-Aware High Sensitivity GNSS 

Software Receiver  
 

 

by 

 

Tao Lin 

 

August 2013 

 

 

 



UNIVERSITY OF CALGARY 

 

 

CONTRIBUTIONS TO A CONTEXT-AWARE HIGH SENSITIVITY GNSS 

SOFTWARE RECEIVER 

 

by 

 

Tao Lin 

 

 

A THESIS 

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF DOCTOR OF PHILOSOPHY 

 

 

DEPART OF GEOMATICS ENGINEERING 

CALGARY, ALBERTA 

August, 2013 

 

© Tao Lin  2013 



iii 

ABSTRACT 

GNSS have established themselves as the dominant positioning technology to provide 

location and navigation solutions with high reliability and accuracy with low-cost 

portable user devices. However, receiver performance can be significantly affected by 

operational environments. High attenuation and severe multipath fading degrade the 

signal tracking performance and limit the use of GNSS in indoor and urban 

environments. Therefore, this thesis focuses on enhancements of a context-aware high 

sensitivity software GNSS receiver.  

To improve the GNSS signal tracking sensitivity, three levels of effort have been 

made. Firstly, four signal integrators, namely bit aiding coherent integrator, bit extracting 

coherent integrator, magnitude non-coherent integrator and squaring non-coherent 

integrator are developed and tested in the high sensitivity GNSS software receiver 

GSNRx-hs
TM 

to increase the processing gain. While bit aiding coherent integrator utilizes 

time-tagged external data bit aiding, others do not require external data bit aiding. 

Secondly, three multi-correlator based frequency estimators, namely the FFT-based 

maximum-likelihood frequency estimator, the fast-slow frequency discriminator and the 

power-based frequency discriminator, are developed to improve the weak carrier 

tracking. Simulations show that these frequency estimators can provide about 4 to 5 dB 

gain compared to the traditional phase-different discriminators. The third effort is the 

development of the centralized vector-based tracking loops, the decentralized vector-

based tracking loop, and the navigation-domain tracking loop. Using a GPS only 

constellation, it is shown that vector tracking can provide 2 to 6 dB improvements over 

scalar tracking. From tests with hardware simulated data, even without data bit aiding, the 
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developed centralized and decentralized vector-based tracking loops with the multi-

correlator frequency discriminator and the navigation-domain tracking loops can track 

signals as low as 8 dB-Hz. Field test conducted in a typical North American house shown 

that the centralized vector-based tracking loop and the scalar-based tracking loop can 

successfully track signals in a basement and provide metre-level position. 

As the high sensitivity tracking techniques developed herein are different from 

conventional tracking methods, metrics that can be used to indicate the environment 

change and allow the receiver to have context-awareness are proposed and explored. 

From experiments conducted in residential homes, it is found that the sole use of C/N0 

values to detect the transition between outdoors and indoors is optimistic; in contrast, it is 

found that the Ricean K-factor, can detect outdoor-to-indoor transitions by capturing the 

C/N0 variation due to multipath fading and allow the receiver to adjust the processing 

strategy before the transition happen. 
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Chapter One: Introduction 

 

1.1 Background and Motivation 

Global Navigation Satellite Systems (GNSS) are systems of satellites that provide 

positioning with global coverage. Currently there are two fully deployed GNSS, the 

Global Positioning System (GPS) and the Globalnaya Navigatsionnaya Sputnikovaya 

Sistema (GLONASS).  

GPS was the first fully operational GNSS developed by the United States 

Department of Defense for military applications in the 1970s. The federal government 

made the system available for civilian use in 1983. GPS became fully operational in the 

mid-90s. It not only provides three-dimensional positioning information, but also 

provides precise timing for navigation and communication applications. There are 31 

GPS satellites at an altitude of 20,183 km (Gao 2008). They orbit on six planes at 

approximately 55° inclination with respect to the equator. 

GLONASS was developed by the former Soviet Union in the 1970s and is 

operated for the Russian Government by the Russian Space Forces. GLONASS was 

originally designed for military use only, but some GLONASS signals were open for 

civilian use in the late 1980s. Each satellite transmits the same standard precision code 

but in a different frequency sub-bands. Currently there are 24 GLONASS satellites at an 

altitude of 19,100 km and at an inclination angle of 64.8°. 

The European Union is developing its Galileo system. The Galileo system, named 

after the Italian astronomer Galileo Galilei, is an alternative and complementary 

counterpart to GPS and GLONASS. China was involved in the initial stage of the Galileo 
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project, and later began the development of its own system, Compass. Compass is also 

known as Beidou II. It will share many features with GPS and Galileo, providing the 

potential for low cost integration of all GNSS signals into GNSS navigation receivers. 

GNSS have established themselves as the dominant positioning technology to 

provide location and navigation solutions with high reliability and accuracy with low-cost 

portable user devices. The GNSS applications range from high precision survey to 

personal navigation and from high dynamic spacecraft attitude determination to 

ionospheric scintillation monitoring. However, receiver performance can be significantly 

affected by operational environments, because GNSS signals are extremely weak (e.g.,    

-160 dBW for GPS L1 C/A signals). High attenuation and severe multipath fading 

degrade the detection and estimation performance of signals and limit the use of GNSS in 

indoor and urban environments. Intentional and unintentional interference can easily jam 

receivers. Spoofing, which is a deliberate interference that aims to coerce receivers, is 

even more harmful than jamming since the target receivers might not be aware of this 

threat and might still be providing navigation solutions which seems to be reliable.  

The launch of new GLONASS and Compass satellites is improving satellite 

geometry substantially. As GNSS receiver chipsets become a required component for 

personal digital assistants (PDA), such as smart phones, navigation/communication 

integration has attracted significant attention. A few wireless companies have released 

their navigation/communication combo chipsets. In view of the modernization of GNSS 

and the availability of assistance or even augmentation from other positioning systems, it 

was decided herein to investigate new GNSS receiver architectures and processing 

strategies to allow GNSS receivers to operate robustly in signal challenged environments.  
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The choice of suitable or efficient GNSS receiver processing strategies is a 

function of receiver operation environments and signal dynamics. An efficient processing 

strategy in indoor environments might be different from that in open-sky environments. If 

a GNSS receiver knows when the environment switches from outdoors to indoors, it can 

select appropriate baseband processing strategies. Furthermore, if the receiver knows 

when it is in an urban canyon, the receiver can make use of an appropriate multipath error 

profile or select an appropriate measurement weighting scheme in navigation solutions 

(Kuusniemi 2005). Herein identifying the operation environment is beneficial to improve 

GNSS receiver performance. 

In recent years, GNSS receiver implementation has changed dramatically. The 

common technology to build GNSS chips is called application-specific integrated circuit 

(ASIC) technology. Because of complexity, tremendous development efforts and costs, 

usually redesign of an ASIC receiver is only affordable once every several years (Hein et 

al 2006). In addition, due to the very limited flexibility in ASIC, GNSS receivers 

implemented with this technology are application-specific.  Limited choices of receiver 

processing strategies are available in a traditional GNSS receiver implemented with this 

technology. The adoption of software-defined radio (SDR) has led to the development of 

GNSS software receivers. In a software receiver, the input is digitized as close to the 

antenna as possible by placing an analog-to-digital converter (ADC) at the earliest 

possible stage in the receiver. The main benefit of a GNSS software receiver is to allow 

as much digital signal processing on a programmable platform as possible to provide the 

receiver with greater flexibility in functionality, design and system updates. In addition, 

software receiver architecture involves relatively low development costs and short 
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product development cycles. In software receiver implementations, the entire receiver 

processing is handled by the programmable processor, which ranges from Field 

Programmable Gate Array (FPGA) to special purpose Digital Signal Processors (DSP) to 

general purpose Personal Computers (PC). FPGAs are re-programmable or re-

configurable ASICs. DSPs are dedicated digital data manipulators that are designed to 

achieve maximum performance with the highest speed. General purpose personal 

computers offer the greatest flexibility for software implementations. Advances in PCs 

processing power and speed allow the real-time implementations of GNSS receivers in 

PC platforms.  

In this thesis, the PLAN Group’s software receiver GSNRx™ (GNSS Software 

Navigation Receiver) is used as the major tool. GSNRx
™

 is a C++ class-based receiver 

software program capable of processing GPS/GLONASS/Galileo signal samples from 

one or more front-ends in post-mission or real-time modes. The context-aware high 

sensitivity receiver processing algorithms developed in the thesis are implemented in a 

modified version of GSNRx
TM

, namely GSNRx-hs
TM

. 

 

1.2 Literature Review and Limitations of Previous Work 

In this section, prior work in indoor/outdoor context awareness, high sensitivity signal 

tracking, and continuous wave interference awareness and mitigation is reviewed and 

discussed. 

 



5 

 

1.2.1 Indoor/Outdoor Context Awareness 

Despite the fact that the detailed design and implementations of signal and channel 

quality indicators in commercial high sensitivity receivers are not available in the public 

domain, it is known that carrier-to-noise density ratio (C/N0) is the key signal quality 

indicator (Pany 2011, Won 2011, Ma 2011). Skournetou & Lohan (2007) proposed a 

Level Crossing Rate (LCR) based C/N0 estimator as indoor/outdoor identification. In 

contrast to the conventional moment based and wideband/narrowband based C/N0 

estimator, this LCR-based C/N0 estimator has a relatively low complexity in terms of 

computation. As far as the border between indoor/outdoor environments in terms of C/N0 

values is concerned, to the best of the author’s knowledge, there is no theoretical value 

associated with it, since many factors such as building material can affect the situation. 

Van Diggelen (2001) considered this border to be about 19 dB-Hz. Enge (2003) and 

Ioannides & Aguado (2006) assumed that C/N0 values in indoor environments are less 

than 20 dB-Hz. In the GNSS industry, it is more common to investigate tracking or 

acquisition limits in terms of C/N0 values than operational environments (Niu 2011). In 

many commercial receivers, estimated C/N0 values are used for determining whether the 

tracking mode should switch from a phase-lock-loop (PLL) to a frequency-lock-loop 

(FLL) or perform re-acquisition, given that the tracking thresholds in terms of C/N0 

values are predefined in receivers (Ma 2011, Zhang 2011). As shown by Jing (2012), 

although the instantaneous C/N0 is commonly applied as an indoor/outdoor indicator, it 

might not be the ‘best’ indicator, since it does not indicate the fading level directly, which 

is an important quantity for indoor channels.    
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The multipath fading level is another useful metric to identify indoor/outdoor 

environments. When GNSS signals propagate in environments like urban canyons, 

indoors and forest canopies, signals experiences reflection, diffraction, attenuation, and 

scattering before reaching the antenna. The antenna will receive the superposition of 

multiple copies of the signal, namely multipath signals, wherein each signal would have 

experienced different attenuations, delays and phase shifts. Superposition of multiple 

signal waveforms with different delays and phase shifts can result either in construction 

or in destruction of the signal power. This time-varying construction/destruction of the 

signal power is known as fading (Rappaport 2001).  

In the GNSS industry, for wideband GNSS receivers, it is common to detect and 

mitigate multipath on code phase correlation via multiple code phase correlators. Phelts 

(2000) developed a sophisticated multi-correlator Signal Quality Monitoring (SQM) 

technique for “evil waveforms” and multipath detection. A real-time Tracking Error 

Compensator (TrEC) algorithm, based on the “multipath invariant” property of the 

correlator function of GPS signals, was also introduced by Phelts (2000). In contrast to 

detecting multipath at the correlation level, signal compression technology detects and 

observes multipath signals at the chip level (Weill 2007). In signal compression, a large 

number of baseband signal samples (chips) is coherently summed into one single PRN 

code chip for the received signal. If the number of signal samples used for signal 

compression is sufficiently large, the processing gain of compression is great enough to 

make the compressed signal visible with little noise, similar to the processing gain of 

coherent integration, so that small subtleties in the compressed chip waveform due to 

front-end filtering, multipath or other distortion can easily be seen (Weill 2007). This 
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technology is very beneficial for signal monitoring and multipath detection.  Fenton & 

Jones (2005) and Weill (2007) have theoretically and experimentally shown that 

multipath signals are easier to observe and mitigate at the chip level than the correlation 

level. Signal compression has been successfully applied in the Multipath Mitigation 

Technology (MMT) by Weill (2007) and the Vision Correlator Technology by Fenton & 

Jones (2005). Although the algorithms described above perform well for high precision 

GNSS receivers, they are not very suitable for high sensitivity GNSS receivers due to the 

following limiting factors: 

1. They work with wideband receivers. 

2. They work with strong signals, since carrier phase tracking is usually 

required. 

3. They perform best for deterministic or static multipath signals. 

Instead of detecting multipath distortion on the code phase correlation of a chip, 

indoor/outdoor environments can be classified via measuring environment fading. 

Satyanaraya (2011) characterized the amplitude of real GPS signals in urban, sub-urban, 

foliage and indoor scenarios, and concluded that a composite Ricean/Log-Normal model 

is able to effectively capture the behaviour of the indoor signal amplitude. This 

conclusion agrees with the channel characterization literature in mobile communication. 

In Broumandan (2009), Zaheri (2010), Dehghanian (2011), and Sadrieh (2012), 

Probability Density Functions (PDF) and multipath fading parameter, and Ricean K-

factor estimations were used to verify the channel model in indoor environments. 

However, they were estimated from a large dataset, and not on-the-fly. Lin et al (2010) 

has shown that the Ricean K-factor is more suitable as an indoor/outdoor awareness 
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indicator than the algorithms described above. This thesis will provide in-depth details on 

the design and implementation of the Ricean K-factor in GSNRx-hs
TM

 and consistently 

demonstrate the efficiency of this proposed approach for indoor/outdoor awareness 

processing. 

 

1.2.2 High Sensitivity Signal Tracking 

In degraded signal environments, namely urban canyons, indoors, or forestry canopies, 

GNSS receivers usually encounter signal attenuation, self-interference due to stronger 

GNSS signals, multipath fading, and possible radio frequency interference. Moreover, 

during periods of deep signal attenuation, changes in channel characteristics impose rapid 

carrier phase fluctuations which in turn cause difficulty for carrier phase recovery. 

Special algorithms and techniques are required to acquire and track the signal indoors, 

where the signal is typically weaker by 10 to 35 dB as compared to the nominal or LOS 

signal strength. 

 

1.2.2.1 Scalar-Based Tracking 

Standard GNSS receivers are scalar-based (SB) receivers. They acquire and track GNSS 

signals on a satellite-by-satellite basis. A substantial amount of research has been 

conducted to improve the sensitivity of SB tracking. Psiaki (2001) and Psiaki & Jung 

(2002) re-designed the SB tracking loop via a square-root Kalman filter (KF) for weak 

signal tracking. Yu (2006) further investigated the performance of this square-root KF 

based tracking loop with extensive Monte-Carlo simulations. Petovello & Lachapelle 

(2006) implemented a correlation based KF tracking loop and compared its performance 
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with discriminator-based KF tracking loops using attenuated real/simulated GPS signals. 

As shown in Patapoutian (1999) and O’Driscoll et al (2010), the conventional PLL and 

the discriminator based KF PLL are mathematically equivalent. The main benefit of a KF 

based tracking loop compared to a conventional tracking loop is the feasibility of tracking 

loop design for specific scenarios (O’Driscoll 2010). Researchers at Cornell and Austin 

Universities have been developing carrier phase tracking loops under scintillation by 

integrating their empirical amplitude and phase scintillation model into the square-root 

Kalman filter based tracking loop model (e.g Psiaki & Jung 2002). 

Extending the integration time period is one way to improve receiver sensitivity, 

although it increases the workload exponentially. This has been commonly used by the 

GNSS industry, especially for signal acquisition. Watson (2005) and Watson et al (2006) 

successfully detected real GPS signals indoors utilizing a software-based serial correlator 

architecture with long coherent integration time period up to 5 s and assistance 

information including available satellites, navigation data bits, and satellite Doppler 

information. In these experiments, high-end receiver oscillators (i.e. rubidium oscillators) 

were used, and only the static user case was considered. However extending integration 

time was not as straightforward as expected. The stability of PLL is a function the 

product of the PLL bandwidth (Bn) and the coherent integration time (T). It was found 

that the PLL is stable for 0<BnT<0.34, marginally stable for 0.34<BnT<0.5 and unstable 

for 0.5<BnT (Progri et al 2007). Kazemi (2008), Kazemi et al (2008), and Kazemi (2010) 

re-designed a pure digital PLL to ensure that the PLL works robustly for large BnT 

values. The loop filter in this PLL was designed such that the transfer function of the loop 

corresponds to the optimum filter for the input phase/delay, which is optimum in the 
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sense that it minimizes the minimum mean square errors (MMSE). This coherent PLL 

has been tested for a static antenna placed indoor near windows.  

Borio & Lachapelle (2009) introduced a non-coherent architecture for GNSS 

digital carrier phase tracking loops. In contrast to extending coherent integration time, the 

integration time was extended after a squaring operator for correlator outputs. This non-

coherent PLL was tested for a static antenna in indoor environments with live GPS 

signals. From the preliminary test results, it still does not provide carrier phase 

observations with acceptable low numbers of cycle slip occurrences in indoor scenarios; 

although it can maintain frequency tracking. This squaring non-coherent operator has 

been applied in this thesis for tracking weak signals when data bit aiding is not available. 

The tracking algorithms described above are usually referred to as sequential 

tracking architecture (Krasner 2003, van Graas et al 2005). Krasner (2003) provides a 

system description of a batch tracking architecture, which is known as open loop 

tracking. Various forms of multi-correlator based discriminators are described in detail in 

Krasner (2003). van Graas et al (2005) demonstrated that a batch tracking architecture 

with a longer coherent integration time period and more correlators improved the tracking 

margin by at least 8 dB when compared to a standard sequential tracking architecture. In 

this batch architecture, there is no loop filter in each tracking channel. The coherent 

integration time period is extended to 1 s to suppress noise before estimating signal 

parameters by discriminators. The Fast Fourier Transform (FFT) approach described in 

van Nee et al (1990) is applied in this approach to cover the entire code phase search 

space. The key benefit of the batch tracking architecture described in van Graas et al 

(2005) is the robustness improvement due to the use of a large amount of correlators. 
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This architecture has not been tested directly. Instead, the GPS/INS deep integration 

receiver described by Soloviev et al (2004), which is based on this batch tracking 

architecture, was tested with attenuated live GPS signals, and live GPS signals collected 

in a downtown environment. Chiang & Psiaki (2010) applied this multi-correlator 

concept to improve the fast re-acquisition performance of their Kalman filter tracking 

loop. Given the benefits of using multi-correlator for tracking discussed above, this thesis 

further investigates the performance benefits of frequency tracking using multiple 

correlators for tracking weak signals. 

 

1.2.2.2 Vector-Based Tracking 

Vector-based (VB) tracking algorithms are advanced methods of processing GNSS 

signals. They have attracted a significant amount of attention over the past two decades 

because they can track weaker GNSS signals, especially in urban canyon environments 

where partial GNSS signals are highly attenuated or blocked, than SB tracking loops 

(Bhattacharyya & Gebre-Egziabher 2009). The benefits of SB tracking architectures are 

the relative ease of implementation and a level of robustness that is gained by not having 

one tracking channel corrupts another one. However, the fact that the signals are related 

via the receiver’s position and velocity is completely ignored. In a SB tracking loop, the 

possibility for one tracking channel to aid other channels is impossible (e.g. Petovello et 

al 2006). In contrast to a SB tracking architecture which tracks GNSS signals separately, 

a VB tracking architecture tracks GNSS signals jointly by combining the signal 

processing and navigation solution into one step so that one processing channel can aid 

other channels via the estimated receiver’s position, velocity, clock bias, and clock drift.  
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The concept of VB tracking originated in the early 1980’s (Copps et al 1980, 

Sennott 1984). In the 1990’s, Sennott and Senffner from Bradley University published 

several papers on applying coupled signal tracking channels to improve GPS signal 

tracking performance (Sennott and Senffner 1997, Sennott and Senffner 1995, Sennott 

and Senffner 1992). Spilker (1996) exposed the benefits and the theoretical formulation 

of the Vector Delay Locked Loop (VDLL). However, few of these publications provided 

details on implementation. In the 2000’s, the analysis and implementation of VB tracking 

in GNSS software receivers became a hot topic in the GNSS academic community. 

Bhattacharyya & Gebre-Egziabher (2009) and Lashley & Bevly (2009) utilized 

mathematical models and insightful analysis to explain the benefits of the VDLL/VFLL. 

Pany et al (2005) and Pany & Eissefeller (2006) implemented the VDLL and the Vector 

Frequency Locked Loop (VFLL) in their software receiver and demonstrated the superior 

robustness of VDLL/VFLL compared to DLL/FLL with live GPS signals collected in 

downtown and indoor environments. In the above approaches, the coherent integration 

time period was limited to 20 ms.  

Despite that VB tracking loops have been successfully applied in code phase and 

carrier frequency tracking, it is exceedingly difficult to apply the VB tracking to carrier 

phase tracking. It is impossible to modify VDLL to a Vector Phase Locked Loop (VPLL) 

by replacing the code phase discriminators with the carrier phase discriminators, and 

replacing the code Numerical Controlled Oscillator (NCO) by the carrier NCO. This is 

because besides the common disturbances that are present in all tracking channels, there 

are also individual disturbances (i.e. ionospheric delay and satellite oscillator errors) in 

each tracking channels, which are not common to the other channels and cannot be 
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completely corrected by using the forecasted navigation information or tracked by the 

navigation solution feedback loop. The timing shifts caused by these individual 

disturbances are on the order of several nanoseconds in the alignment between the 

satellite signal and the reference signal of the corresponding tracking channel 

(Zhodzishsky et al 1998). These individual disturbances on code phases can be captured 

by code phase discriminators; however, time shifts of several nanoseconds, which 

correspond to several cycles of carrier phase, will lead to errors of several cycles of the 

carrier phase due to the periodic nature and the very short linear region (i.e. about 19 cm 

for GPS L1 signals) of carrier phase discriminators. In view of this, Zhodzishsky et al 

(1998) proposed a Co-Op tracking architecture for carrier phase. In a Co-Op tracking 

loop, two types of PLLs are utilized. One wideband (about 15 – 20 Hz) PLL tracks the 

apparent dynamics of the receiver due to satellite/receiver motion and internal oscillators, 

while several narrowband (about 1 – 2 Hz) PLLs track the residual dynamics of each 

channel individually. Zhodzishsky et al (1998) reported that the Co-Op tracking loop 

provides an order of magnitude improvement in tracking capability. 

In Petovello & Lachapelle (2006), a cascaded VB tracking loop was designed and 

implemented. In this cascaded VB tracking loop, a correlator-based KF channel filter is 

utilized to track the signal amplitude, the code phase error, the carrier phase error, the 

carrier frequency error, and the carrier frequency rate error. The code phase errors are 

then applied to correct the pseudoranges generated based on the prompt correlator, while 

the carrier frequency error and the carrier frequency rate error are applied to correct the 

Doppler measurements. The code phase and the carrier frequency of the NCO are 

controlled by the navigation solution via VDLL and VFLL. Similar to the Co-Op 
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tracking, carrier phase tracking is controlled by the KF channel filer in each channel 

individually. The concepts behind the Co-Op tracking loop and the cascaded VB tracking 

loop are identical, although they have slightly different implementations.  

Henkel et al (2009), Giger et al (2010, 2011) proposed a VPLL to track multi-

satellite carrier phase jointly. In their approach, the ionospheric delay and the zenith 

tropospheric delay are estimated in the navigation filter and then projected to the LOS 

direction of each satellite. However the performance of this tracking loop has been 

verified in simulations only.  

It would be very desirable to provide GNSS carrier phase measurements with high 

quality to support high precision in the indoors. However, carrier phase tracking is often 

not possible, and in some scenarios, only multipath signals exist, or LOS signals are too 

weak to be acquired or tracked due to hardware limitations (i.e. oscillator). Therefore, the 

Co-Op tracking loop, the cascaded VB tracking loop and the joint tracking loop are not 

suited to indoor applications. In general, carrier phase measurements are not required for 

mass market applications. Thus, many commercial high sensitivity receivers do not track 

carrier phase in high sensitivity mode (Ma 2011, Zhang 2011).  

Although VB tracking provides significant performance improvement over 

traditional techniques, its performance is theoretically sub-optimal because the 

measurement residuals are independently estimated by discriminators for each satellite 

signal as discussed by Weill (2010), who proposed a navigation domain (ND) 

architecture to further improve the performance of traditional vector-based receivers. The 

ND tracking loop eliminates the use of discriminators in each channel by transforming 

and integrating the correlation values from the signal parameter domain to the navigation 
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state domain for all satellites in view. To date, the performance of the ND receiver 

architecture has been explored to a limited extent and only via computer simulations. 

Such architecture has not yet been implemented in a GNSS software receiver and 

assessed with live signals in urban and deep indoor environments. Moreover, the 

performance of a ND receiver was shown for a GPS-only constellation (Weill 2010). In 

fact, the ND receiver architecture provides a new way to combine signals from different 

GNSS systems (i.e. GPS and GLONASS). Because the correlation in a ND receiver is 

constructed in the navigation state domain, correlation values for signals from different 

GNSS systems can be directly and synchronously combined. This is fundamentally 

different from conventional GPS/GLONASS integration in the measurement or position 

domain. In view of these opportunities, this thesis also seeks to explore the 

implementation and assess the performance of a ND tracking loop and assesses its 

performance in indoor environments. 

 

1.2.2.3 Ultra-Tight Integration 

Ultra-Tight (UT) integration can be considered as a VB receiver integrated with an 

Inertial Measurement Unit (IMU). The main difference between them is that UT 

integration utilizes a GNSS/INS integrated navigation solution instead of a GNSS only 

navigation solution.  With decoded ephemeris and the high rate IMU measurements, most 

satellite motion and user motion can be removed; therefore, narrow tracking loop filter 

bandwidth and long coherent integration times are possible in UT integration. Petovello 

et al (2007) showed that UT integration outperforms SB tracking loops in carrier phase 

tracking. Pany et al (2009) demonstrated successful indoor navigation with a UT 
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architecture that can support long coherent integration times. This thesis will explore the 

performance benefits of a UT architecture compared to a VB architecture for low 

dynamic with live GNSS signals collected in indoor environments. 

 

1.3 Research Objectives and Contributions 

Some state-of-the-art GNSS signal processing strategies and receiver architectures were 

introduced in the previous section. In view of the limitations of the scalar-based receiver 

architecture and the context-aware requirement for choosing optimal strategies and 

processing parameters, e.g. integration time, a context-aware vector-based receiver 

architecture with sophisticated channel processing strategies and navigation solutions is 

proposed to expand upon the research described above with the ultimate goal of 

developing a unique receiver architecture for GNSS applications in signal degraded 

environments. 

 

The main objectives of this research are outlined as follows: 

1. Develop high sensitivity tracking loops and implement and test them in the GNSS 

software navigation receiver GSNRx
TM

 to track weak and faded signals under 

foliage and in indoor environments. GSNRx
TM

 has advantages regarding 

flexibility and multi-constellation GNSS signal processing; however it was not 

initially developed for processing weak and faded signals. To extend its 

application to signal degraded environments, high sensitivity signal processing 

techniques should be developed and integrated into its receiver architecture. The 

target sensitivity is 10 dB-Hz. To achieve this target, modules on data bit aiding, 
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data bit self-estimation, and squaring-based data bit removal are developed for 

extending coherent/non-coherent integration time. Three multi-correlator-based 

frequency discriminators are implemented and evaluated for weak signal tracking. 

SB tracking loops (DLL/FLL), centralized VB tracking loops, decentralized VB 

tracking loop, and ND tracking loops are developed, exposed, and evaluated to 

track the code and frequency of weak signals.    

2. Explore the benefit of VB tracking loops on weak signal tracking. The gain of a 

VB tracking loop compared to a SB tracking loop in terms of tracking sensitivity 

is explored theoretically and/or empirically. 

3. Evaluate the performance of the proposed high sensitivity tracking loops with 

simulated and live GNSS signals. Given the controllability on signal strength and 

dynamics, simulated signals from a hardware simulator are used to test the 

proposed tracking loops in terms of sensitivity, robustness, and accuracy. Live 

GNSS signals collected in indoor environments are then be used to verify the 

performance of the proposed tracking loops under real multipath fading. 

4. Develop, expose and evaluate metrics and algorithms to monitor channels for 

receiver context-awareness development. In order to allow GSNRx
TM

 to have a 

context-awareness capability and know when to enable high sensitivity 

processing, metrics and the associated algorithms that can be used to identify 

indoor/outdoor are needed. Given the difficulty to simulate real indoor fading, 

instead of the simulated signals, live GNSS signals are used to evaluate the 

performance of the proposed context-aware algorithms. 
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In realizing the above objectives, several contributions are made in this dissertation and 

are summarized as follows: 

• Development of a unique signal integrator and implementation in a software 

receiver that supports multi-correlator-based long coherent integrations with data 

bit aiding, data bit estimation on-the-fly and data bit removal using the squaring 

operation. 

• First implementation of a ND tracking loop in a GNSS software receiver and its 

performance assessment with GNSS signals. 

• Development of a feasible GNSS high sensitivity receiver architecture that can 

support SB processing, VB processing and ND processing.  

• Implement the proposed algorithms to support context-aware processing, which 

can identify the receiver’s operation environment changes based on the signal 

fading strength. 

 

1.4 Dissertation Outline 

This dissertation contains seven chapters.  The remaining chapters are organized 

as follows: 

 

Chapter 2 provides an overview on estimation theory and GNSS navigation solution. 

Fine-time navigation algorithms including the pseudorange-based solution and the RTK 

solution, coarse-time navigation algorithms, and GNSS/INS integrated navigation 

algorithms are discussed. 
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Chapter 3 presents the necessary background on the fundamental GNSS baseband signal 

tracking algorithms including the standard scalar tracking loops, the discriminator-based 

Kalman filter tracking loops, and the correlator-based Kalman filter tracking loops. 

 

Chapter 4 presents the limitations of conventional tracking loops. The design, 

implementation and performance assessment of the developed high sensitivity scalar-

based, decentralized vector-based, centralized vector-based and navigation domain 

tracking loops. Their performance evaluation with simulated/live GNSS signals is finally 

presented. 

 

Chapter 5 presents the development of the proposed indoor/outdoor context-aware 

metrics and algorithms. These algorithms are based on the signal fading estimation with 

various fading estimators in kinematic mode. Their performance assessment with live 

GNSS signals collected in indoor environments is then presented.  

 

Chapter 6 concludes the major results and findings obtained in the previous chapters with 

reference to the listed objectives and provide recommendations for expanding upon the 

presented research. 
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Chapter Two: Navigation Solution 

 

This chapter covers the basic concepts of estimation theory, GNSS observation models, 

GNSS fine time solution, GNSS coarse time solution, and GNSS/INS integrated solutions 

that are subsequently used in the thesis. While these concepts are familiar to geomatics 

experts involved in GNSS and INS research, they are added for the benefit of others and 

to make the thesis more self-contained. 

 

2.1 Navigation Estimators 

Two most common estimators used in navigation, namely least-squares (LSQ) and 

Kalman filter (KF), are introduced, as applied in later chapters.  

 

2.1.1 Least-Squares 

The LSQ estimator is an optimal linear estimator for WGN. It estimates unknown 

parameters using measurements only. Consider a linear measurement model as follows: 

k k k k
= +z H x v  2.1 

where ‘k’ represents a quantity at the k
th

 epoch and 

z  is a measurement vector; 

x  is an unknown parameter (state) vector; 

v  is a measurement noise vector; and 

H  is referred to as the design matrix, which geometrically projects the unknown  

state vector space to the measurement vector space. 
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The objective of least-squares is to minimize the weighted sum of squares of deviation. 

This can be shown mathematically by minimizing the following cost function: 

( ) ( )ˆ ˆ
T

k k k k k k k k
J = − −z H x W z H x  2.2 

where 

J  is the cost function to minimize; and 

W is a weighting matrix. 

In order to obtain the minimum variance solution, the weighting matrix is defined as the 

inverse of the measurement covariance matrix:  

1

k k

−=W R  2.3 

where  

k
R  is the covariance matrix of the measurements.  

After minimizing the cost function, the state vector and its covariance matrix can be 

expressed as follows: 
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With the final estimate of the states, the measurement residual vector is defined as the 

difference between the actual measurements and the predicted measurements as  

ˆ
k k k k

= −r z H x  2.6 

 

Assuming that the measurement model is correct, residuals represent how well 

measurements agree with each other. Therefore they can be used for quality control of 

navigation solutions. Despite the fact that LSQ is only optimal for a linear measurement 

model, it still has been commonly applied to the non-linear measurement model (i.e. 

GNSS positioning). Consider a non-linear measurement model  

( )h ,k k kk= +z x v  2.7 

where ( )h ,k kx  is a non-linear function relating the measurement vector and the state 

vector. A first order Taylor series expansion can be applied to linearize Equation 2.7 as  
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where  

δ z is the measurement misclosure; 

 0

k
x  is the linear expansion point; and  

δ x is the state correction. 
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2.1.2 Kalman Filter 

As presented above, the least-squares estimator estimates states based on measurements 

only. However, in many cases, the knowledge of how a particular system behaves over 

time is available. KF is an estimator that estimates states with both measurements and the 

knowledge of the system’s dynamics. A linear system model can be described in 

continuous time as follows 

&x t( ) = F t( )x t( ) + G t( ) w t( )  
2.9 

where  

( )tF is a dynamics matrix describing the dynamics of the system, 

( )tG is a shaping matrix used to shape white noise input, and 

( )tw is a white noise vector in continuous time, which is zero-mean and Gaussian.  

The KF is a recursive algorithm that uses a series of system prediction and measurement 

update steps to obtain an optimal estimate of the state vector in a MMSE sense. On the 

prediction step, the state vector and the state covariance matrix are propagated from 

epoch k to k+1 as follows: 

1 , 1
ˆ ˆ

k k k k+ +=x Φ x  
2.10 

, 11 , 1 k k

T

k k k k k++ += +P Φ P Φ Q  
2.11 

where  

, 1k k +Φ is the transition matrix of the system from epoch k to k+1; 

k
w is the white noise vector, which is zero-mean and Gaussian, and 

k
Q is the process noise matrix. 
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For time invariant system models, the transition matrix and the dynamics matrix have the 

following relation 

, 1

t

k k e
∆

+ = F
Φ  2.12 

 

Similar to the measurement model used in the least-squares estimator, the state vector and 

the state covariance matrix can be updated with measurements as follows: 

ˆ ˆ
k k k k

+ −= +x x K υ  2.13 

( )k k k k

+ −= −P I K H P  2.14 

where the superscripts “-“ and “+” represent a quantity before and after measurement 

updates, respectively.  K  is the Kalman gain, which controls how much the estimator 

should trust the measurement update. The Kalman gain is given by 

( )
1

T T

k k k k k k k

−− −= +K P H H P H R . 2.15 

This gain matrix is a weighting factor indicating how much of the new information 

contained in the innovations should be accepted by the system. υ  is the innovation 

sequence given by  

ˆ
k k k k

−= −υ z H x . 2.16 

As shown in the above equation, innovation sequences, which are similar to the 

measurement residuals in Equation 2.6, represent the amount of new information being 

introduced into the system from the measurements. Similar to the LSQ estimator, the KF 

can be applied to non-linear models via linearization, although it is only optimal for 

linear models. A non-linear system model in continuous time can be linearized with a 

first order Taylor series expansion as   
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&x t( ) = f x t( ) ,t( ) + G t( ) w t( )

≈ f x0
t( ) ,t( ) +

∂f x0
t( ) ,t( )

∂x t( )
x t( )=x0 t( )

δx t( ) + G t( ) w t( )

= &x0
t( ) + Fδx t( ) + G t( ) w t( )

δ &x t( ) = Fδx t( ) + G t( ) w t( )
x t( ) = x

0
t( ) +δx t( )

 
2.17 

where  ( )( )f ,t tx  is a non-linear function representing the temporal behavior of the 

system states, ( )0
tx  represent the nominal trajectory, ( )tδ x  is the perturbation from the 

nominal trajectory. As shown in Equation 2.17, the KF actually estimates the 

perturbations first then reconstructs the desired states. Since the nominal trajectory is 

usually not known, it is more practical to use the last KF estimate as the linearization 

point. The KF that utilizes this approach is called extended Kalman filter (EKF). This 

approach is valid if the current KF estimate is optimal and the errors of the estimated 

states have zero mean. If an EKF is applied with a non-linear measurement model shown 

in Equation 2.8, Equation 2.13 can be re-written as 

( )
ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ

k k k

k k k k k k

k k k

δ

δ δ δ

δ

+ − +

− − −

−

= +

= + + −

= +

x x x

x x K z H x

x K z

 2.18 

 

Similarly the measurement residuals can be re-written as 

ˆ
k k k k

δ δ += −r z H x  2.19 
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2.2 GNSS Observation Models 

GNSS was originally designed for 10 metre-level positioning accuracy with pseudorange 

measurements under open-sky environments (Kaplan & Hegarty 2006). With new signal 

structures in the modernized GNSS, the positioning accuracy may be improved to the 

metre level with the use of pseudoranges, due to the longer spreading code with better 

noise and multipath resistance. To achieve centimetre-level positioning accuracy, carrier 

phase measurements are used with real-time kinematic (RTK) techniques. In general 

three types of measurements can be obtained from most GNSS receivers, namely  

• Pseudorange or ms-pseudorange measurements: The pseudo-distance between a 

receiver and a satellite is obtained by measuring the different between the receive 

time and the transmit time.  The ms-pseudorange is defined later in this section. 

• Doppler measurements: The Doppler shift caused by the relative receiver-satellite 

motion. 

• Carrier phase measurements: The pseudo-distance between a satellite and a 

receiver is obtained by measuring the phase of the incoming carrier with an 

ambiguous number of cycles. 

Among these three measurements, pseudoranges are the primary measurements for 

positioning. In order to construct pseudorange measurements, decoding time-of-week 

(TOW) from the navigation message or sub-millisecond-level fine time assistance is 

required. The navigation solution that utilizes pseudorange measurements derived from 

fine GNSS time is referred to as fine time GNSS navigation solution. Because of the high 

accuracy and the low complexity, fine time GNSS navigation solutions are commonly 

used in high-end GNSS receivers for professional line-of-sight markets. For GNSS 
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receiver chips in mobile phones, time assistance from mobile networks is typically 

utilized to have faster time-to-first-fix (TTFF) (i.e. no need to wait for decoding TOW 

transmitted every 6 s for GPS L1 C/A signals). Although some synchronized networks 

(i.e. CDMA networks) can provide microseconds’ fine time assistance, the accuracy of 

unsynchronized networks (i.e. GSM and WCDMA networks) is of the order of seconds 

(Van Diggelen 2009). The second-level time assistance is referred to as coarse time 

assistance. When decoding TOW is impossible due to low signal power, because of the 

inaccurate timing of the coarse time assistance, conventional full pseudorange 

measurements cannot be constructed in this case. Herein only the fractional part of the 

pseudorange (the sub-ms pseudorange for GPS) derived from the tracking loop is 

available for navigation. This is known as the ms-pseudorange measurement. 

Pseudorange and Doppler measurements are unambiguous measurements, while carrier 

phase measurements and ms-pseudorange measurements are ambiguous measurements 

due to the unknown integer number of cycles or code periods. When carrier phase 

measurements or ms-pseudorange measurements are used, the unknown integer numbers 

of cycles or code periods need to be estimated in addition to the navigation states.   

The characteristics of ms-pseudorange measurements are discussed with the 

coarse time navigation solution together later as this section focuses on pseudorange, 

Doppler and carrier phase measurements. Their observation equations between satellite k 

and receiver i are (Teunissen & Kleusberg 1998): 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

, , ( )k k k k k k k

i i i i i i i i i i i i i i

k k k k

i i i i

P t t t d t t c t t t t

I t T t dm t e t

ρ τ ρ τ δ δ τ= − + − + ⋅ − −

+ + + +
 2.20 
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( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( ) ( )0 0

, , ( )

k k

i i i i

k k k k k k

i i i i i i i i i i i i

k k k k k k

i i i i i i i i i i

t t

t t d t t c t t t t

I t T t t t N m t t

λ φ

ρ τ ρ τ δ δ τ

λ φ φ λ δ ε

ΦΦ =

= − + − + ⋅ − −

− + + − + + +

 
2.21 

&Φ
i

k
t

i( ) = &ρ
i

k
t
i
−τ

i

k ,t
i( ) + d &ρ

i

k
t
i
−τ

i

k ,t
i( ) + c ⋅ (δ &t

i
t
i( ) −δ &t k

t
i
−τ

i

k( ))
− &I

i

k
t
i( ) + &T

i

k
t
i( ) +δ &m

i

k
t
i( ) + &ε

i

k
t
i( )

 
2.22 

where, 

x&   is the derivative of x ; 

k

i
P   is the pseudorange measurement (m); 

k

i
Φ   is the carrier phase measurement (m); 

k

i
φ   is the carrier phase measurement (cycle); 

k

i
Φ&   is the Doppler measurement (m/s); 

i
t   is the signal reception time (s); 

k

i
τ   is the travel time (s); 

k

i
ρ   is the true geometry range (m); 

k

i
d ρ   is the satellite orbital error (m); 

λ   is the nominal carrier phase wavelength (m/cycle); 

c   is the speed of light (m/s); 

i
tδ   is the receiver clock bias (s); 

k
tδ   is the satellite clock bias (s); 

i
φ  is the non-zero receiver initial carrier phase (cycle); 

kφ  is the non-zero satellite initial code phase (cycle);  
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k

i
I  is the dispersive ionospheric delay (m); 

k

i
T   is the non-dispersive tropherspheric delay (m); 

k

i
dm   is the pseudorange multipath error (m); 

k

i
e   is the pseudorange noise (m); 

k

i
mδ   is the carrier phase multipath error (m); 

k

i
ε   is the carrier phase noise (m); and 

k

i
N   is the integer ambiguity term for carrier phase measurements (cycle). 

 

The ionospheric error in the pseudorange measurement has the same magnitude but a 

different sign from that in the carrier phase measurement. This phenomenon is known as 

code-carrier divergence (Lachapelle 2008). The carrier phase measurement differs from 

the pseudorange measurement by an ambiguity term ( s

r
N ). The multipath and noise in the 

pseudorange measurement are much larger than those in the carrier phase measurement. 

In the rest of this chapter, various navigation solutions with the GNSS measurements 

described above are discussed. 

 

2.3 Fine Time GNSS Navigation Solution 

If TOW can be successfully decoded or fine time assistance is available, fine time 

navigation solutions can be applied. In general, fine time navigation solutions can be 

categorized as the pseudorange-based solution for metre-level applications and the RTK-

based solution for centimetre level applications.  
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For pseudorange-based solutions, pseudorange measurements are used for position 

estimation while Doppler measurements are used for velocity estimation if the receiver 

velocity is required. Pseudorange-based solutions can be further categorized as the single-

point (SP) solution, the single-difference (SD) solution, and the double-difference (DD) 

solution.  

 

2.3.1 Single-Point Solution 

For the SP solution, the pseudorange and Doppler measurements are directly used. The 

measurement vector is   

z = P
1

1
L P

1

k &Φ
1

1
L &Φ

1

k





T

, 2.23 

 

The state correction vector can be chosen as: 

δx = δE δN δV cδτ
r

δv
E

δv
N

δv
V

cδ &τ
r







T

 2.24 

where 

  Eδ  is the east coordinate correction (m); 

Nδ   is the north coordinate correction (m); 

Vδ   is the vertical coordinate correction (m); 

c   is the speed of light (m/s); 

r
δτ  is the receiver clock bias correction (s); 

N
vδ   is the north velocity correction(m/s); 
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E
vδ   is the east velocity correction (m/s); 

V
vδ   is the vertical velocity correction (m/s); and 

r
δτ&   is the receiver clock drift correction(s^2). 

The design matrix can be computed by taking the partial derivatives of the pseudorange 

and Doppler measurements with respected to the state vector as 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1 1 1 1cos sin cos cos sin 1

cos sin cos cos sin 1

P

P

k k k k k

el az el az el

el az el az el

Φ

Φ

 
=  
 

− − 
 

= =  
 − − 

H 0
H

0 H

H H

&

& M

 2.25 

where the subscript indicates the satellite index. 

 
P

H   is sub-matrix for pseudorange measurements; 

Φ
H &   is the sub-matrix for Doppler measurements; 

el   is the satellite elevation; and 

az  is the satellite azimuth. 

If the LSQ estimator is used for SP positioning, no dynamic assumptions are needed. If 

the EKF is used, a dynamic model is needed to choose based on some assumptions about 

the system. For most navigation problems, the dynamics of the system are typically 

modeled as a random walk model or a Gauss-Markov model (Kaplan & Hegarty 2006). 

Assuming that a random walk model for the velocity state is used, the following in 

continuous time and discrete time respectively hold:  
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&x
vel

= w

x
vel _ k

= x
vel _ k−1

+ w
k−1

 
2.26 

where w describes the system dynamic as a white noise process and &x
vel

 is the velocity 

state vector. The transition matrix in the EKF is  

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

t

t

t

t

∆ 
 ∆ 
 ∆
 

∆ =
 
 
 
 
 
  

Φ  2.27 

where  t∆ is the time difference between two continuous epochs. The process noise 

matrix is derived as 
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2.28 

where  

E
q  is the east velocity spectral density; 

N
q is the north velocity spectral density; 

V
q is the vertical velocity spectral density; 

cw
q  is the clock white noise spectral density; 

cf
q is the clock flicker frequency noise spectral density; and 

cr
q is the clock random walk frequency noise spectral density. 
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2.3.2 Differential Solution 

As shown in the observation models, GNSS observations contain some spatially 

correlated error terms (i.e. ionospheric delay). In order to reduce or eliminate these errors, 

the differential method is utilized to measure the relative position between a reference 

receiver and a rover receiver. By introducing the differencing operator between receivers 

( ∆ ) and omitting the time variable, the single difference (SD) pseudorange and Doppler 

observations between a receiver i and a receiver j are  

k k k

ij i j

k k k k k k

ij ij ij ij ij ij ij

P P P

d c t I T dm eρ ρ δ

∆ = −

= ∆ + ∆ + ⋅ + ∆ + ∆ + ∆ + ∆
 2.29 

∆ &Φ
ij

k = &Φ
i

k − &Φ
j

k

= ∆ &ρ
ij

k + ∆d &ρ
ij

k + c ⋅δ &t
ij

− ∆ &I
ij

k + ∆ &T
ij

k + ∆δ &m
ij

k + ∆ &ε
ij

k
. 2.30 

 

Comparing the SD observation equations and the undifferenced (UD) observation 

equations, the single differential process completely eliminates the satellite clock bias 

term and reduces the spatially correlated error terms, while the uncorrelated error terms 

are amplified. These SD measurements can be used to form the measurement vector in 

estimation as  

z = ∆P
1,0

1
L ∆P

1,0

k ∆ &Φ
1,0

1
L ∆ &Φ

1,0

k





T

 2.31 

where ‘1’ in the subscript is the rover receiver index and ‘0’ in the subscript is the 

reference receiver index. Because the state vector in the SD solution is identical to that in 

the SP solution, the design matrix in the SD solutions remains the same as the one in the 
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SP solution. The misclosure vector and the innovation sequence vector in the SD solution 

are slightly different from those in the SP solution due to the use of SD measurements. 

In the DD solution, the differential process between two satellites is performed 

after forming the SD observations. By introducing the differencing operator between 

satellites (∇ ), the DD pseudorange and Doppler observations between a receiver i and a 

receiver j, and between a satellite k and a satellite l are  

kl k l

ij ij ij

kl kl kl kl kl kl

ij ij ij ij ij ij

P P P

d I T dm eρ ρ

∇∆ = ∆ − ∆

= ∇∆ + ∇∆ + ∇∆ + ∇∆ + ∇∆ + ∇∆
 2.32 

∇∆ &Φ
ij

k = ∆ &Φ
ij

l − ∆ &Φ
ij

k

= ∇∆ &ρ
ij

lk + ∇∆d &ρ
ij

lk − ∇∆ &I
ij

lk + ∇∆ &T
ij

lk + ∇∆δ &m
ij

lk + ∇∆ &ε
ij

lk
. 2.33 

 

Herein the measurement vector is  

1,0 1,0 1,0 1,0

1,0 1,0 1,0 1,0

T
k kP P − − = ∇∆ ∇∆ ∇∆Φ ∇∆Φ z & &L L  2.34 

 where ‘1’ in the subscript is the rover receiver index, ‘0’ is the subscript in the reference 

receiver index and ‘0’ is the superscript is the reference satellite index. It should be noted 

that the DD measurements are correlated. This correlation should be modeled in the 

covariance matrix of the DD measurements. As shown above, the receiver clock bias is 

eliminated in the DD solution; therefore the state correction vector is reduced to 

[ ]
T

E N V
E N V v v vδ δ δ δ δ δ δ=x . 2.35 

 

It should be noted that the DD solution does not improve the solution accuracy compared 

to the SD solution since the measurements in both solutions are exactly the same. 
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Assuming a random walk model for the velocity state, the transition matrix and the 

process noise matrix are  

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

t

t

t

∆ 
 ∆ 
 ∆

=  
 
 
 
 

Φ  2.36 
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=  
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 

∆ ∆ 
 

∆ ∆
  
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2.4 Coarse Time GNSS Navigation Solution 

The navigation solutions described above are based on the fact that TOW can be 

successfully decoded or that the fine time assistance is available along with stored or 

given ephemeris and an approximate position. However, in many scenarios, TOW cannot 

be decoded due to extremely weak signal strength, or the time spent on TOW decoding is 

too long (6 s for GPS L1 C/A signals) for the specific applications and only the second-

level coarse time assistance is available. In these scenarios, the coarse time navigation 
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solution can be applied. This section provides an overview on the coarse time navigation 

solution. 

The true propagation time ( ts

i
T ) of the i-th satellite in units of time (seconds used 

here) is given as 

ts GNSS Tx i
i i

r
T t t

c
= − =  2.38 

where GNSS
t is the true GNSS time at the measurement epoch, Tx

n
t is the true signal 

transmit time from the i-th satellite, 
i

r  is the true geometric range from the i-th satellite, 

and c  is the speed of light in m/s. 

 

The sub-ms part of ts

i
T  can be expressed as 

[ ] 31 ms 10ts ts i
i i i

r
t T N

c

−= = − ×  2.39 

where [ ]1 ms  represents the modulo of 1 ms, 
i

N  is the integer ms part of ts

i
T . 

An a priori estimate of the geometric range (
î

r ) between the satellite and the user 

position is 

î i i
r r rδ= +  2.40 

where 
i

rδ  is the range error resulting from the a priori user position error and satellite 

position error due to the use of the coarse time for satellite position estimation. The 

receiver GNSS TOW ( Rx
t ) with an error (

coarse
tδ ) is given by 

Rx GNSS

coarse
t t tδ= + . 2.41 

The estimated transmit time ( ˆTx

i
t ) is given by 
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ˆ
ˆTx Rx i
i

r
t t

c
= − . 2.42 

Herein the estimate of the sub-ms part of the propagation time is 

[ ]

3

3

ˆ ˆ 1 ms

ˆ ˆ 10

ˆ 10

ts Rx Tx

i i

i
i

i i
i

t t t

r
N

c

r r
N

c

δ

−

−

= −

= − ×

−
= − ×

 
2.43 

where ˆ
i

N is the estimate of integer ms-part of the time of flight. 

The ms-pseudorange ( ts

i
t% ) is given by 

310ts i
i i clk i

r
t N t

c
δ ξ−= − × + +%  2.44 

where 
clk

tδ is the sub-ms receiver clock bias and 
i

ξ  is the receiver noise in seconds. Then 

the measurement residual ( ts

i
t∆ ) is  

( ) 3

3

ˆ

ˆ 10

10

ts ts ts

i i i

i
i i clk i

i
i clk i

t t t

r
N N t

c

r
N t

c

δ
δ ξ

δ
δ ξ

−

−

∆ = −

= + − × + +

= + ∆ × + +

%

. 
2.45 

 

As shown in Lannelongue & Pablos (1998), 
i

N∆  must be a constant across all satellites 

for a reliable fix of pseudorange ms-ambiguity (
i

N ). In other words, for any two 

satellites, such as Satellite j and Satellite i, the following must hold: 
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( ) 3

3
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j its ts

j i j i j i
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t t N N

c

r
N

c

δ δ
ξ ξ

δ
ξ

−

−

−
∆ − ∆ = + ∆ − ∆ × + −

= + ∆ × +

≤

 2.46 

 

Neglecting the noise effect, since 0
ji

N∆ = , the maximum range error between any two 

satellites can be shown as 

max

max

2
0.5 ms

75 km

ji
r r

c c

r

δ δ

δ

≤ ≤

=

. 2.47 

 

For solving the ms integer ambiguity problem, two methods are commonly used. The 

first method is an iterative process proposed by Lannelongue & Pablos (1998). In this 

method, for each measurement, the ms integer ambiguity correction (
i

ψ ) is adjusted 

iteratively until Equation 2.46 holds. The second method proposed by van Diggelen 

(2002) directly estimates the ms integer ambiguity correction in a closed form by 

utilizing the single difference between two satellites. In this method, assuming a satellite 

(Satellite i) is the reference satellite, and Satellite j, the term
j i

N N− can be expressed as 

3

3

ˆ ˆ ˆˆ
10

ˆ ˆ
10

ji j i

j j its ts i
j i ji

jts ts i
j i

N N N

r r rr
t t

c c c

r r
round t t

c c

δ δ
ξ

= −

− 
= × − − + + − 

 

  
= × − − +  

  

% %

% %

, 

2.48 

 



40 

 

Then the correction of ms integer ambiguity for any other satellite (Satellite j) can be 

estimated as follows: 

3
ˆ ˆˆ ˆ 10

j i j

jts ts i
i j j i

N N

r r
N N round t t

c c

ψ = ∆ − ∆

  
= − + × − − +  

  
% %

. 2.49 

 

Therefore, the residual of the reconstructed propagation time can be expressed as 

3

ˆ

10

ts ts ts

j j j

ts

j j

T T T

t ψ −

∆ = −

= ∆ + ×

%

. 2.50 

 

For the coarse time navigation solution, the measurements can be either the ms-

pseudorange ( ts

i
ct% ) or the reconstructed pseudorange ( ts

i
cT% ) after integer ms ambiguity 

resolution. Regardless of which of these two measurements is used, if only estimating the 

position, the state correction vector (δ x ) is 

[ ]
T

clk coarse
E N V c t tδ δ δ δ δ δ=x  2.51 

 

The corresponding design matrix for k satellites is 

H =

−cos el
1( )sin az

1( ) −cos el
1( )cos az

1( ) sin el
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M M M M M
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
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where, &P is the pseudorange rate. 
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2.5 GNSS/INS Integrated Solution 

An inertial navigation system (INS) is a self-contained navigation system that provides 

position, velocity and attitude of the user by measuring and integrating the user’s linear 

acceleration and angular velocity in an inertial frame. An INS contains an inertial 

measurement unit (IMU) and a navigation processor. The IMU is typically a triad of 

gyroscopes (or simply gyros) and accelerometers. Gyros can measure the user’s angular 

velocity, while accelerometers can measure the user’s linear acceleration (El-Sheimy 

2008). GNSS provide high long-term position accuracy but GNSS signals are subject to 

obstruction and interference. In contrast, INS is an autonomous system that provides 

precise short-term measurements but the accuracy of the INS degrades over time (El-

Sheimy 2008). Because of the complementary natures of GNSS and INS, GNSS/INS 

integrated solutions are widely used in many applications (e.g. vehicular navigation and 

machine control). The fundamentals of the INS mechanization (the INS alone solution) 

and GNSS/INS integrated solutions are briefly discussed below as applied in later 

chapters.   

 

2.5.1 INS Mechanization 

Mechanization equations are the equations for computing the user’s position, velocity, 

and attitude from angular velocity and linear acceleration (specific force) measurements 

from an IMU. Before introducing the mechanization equations, the definitions of the four 

reference frames generally used in INS mechanization are introduced (El-Sheimy 2008): 
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The inertial frame (i-frame) is considered to be a non-rotated and non-accelerating frame 

relative to far-off galaxies with the following conventions: 

• Origin: Earth’s centre of mass 

• Z-axis: Parallel to the spin axis of the Earth 

• X-axis: Pointing towards the mean vernal equinox 

• Y-axis: Orthogonal to the X and Z axes to complete a right-handed frame 

 

The earth centered earth fixed frame (e-frame) is fixed to the earth and with the 

following conventions: 

• Origin: Earth’s centre of mass 

• Z-axis: Parallel to the spin axis of the Earth 

• X-axis: Pointing towards the zero meridian 

• Y-axis: Orthogonal to the X and Z axes to complete a right-handed frame 

 

The local level frame (l-frame) is defined as follows: 

• Origin: Coinciding with the centre of the navigation system 

• Z-axis: Orthogonal to the reference ellipsoid pointing up 

• X-axis: Pointing towards the geodetic east 

• Y-axis: Pointing towards geodetic north 

 

The body frame (b-frame) represents the orientation of the IMU axes.  It is defined as 

follows: 
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• Origin: Centre of the IMU 

• X-axis: Pointing towards the right of the platform 

• Y-axis: Pointing towards the front of the platform 

• Z-axis: Orthogonal to the X and Y axes to complete a right-handed frame 

 

The classical strapdown INS mechanization equations in the l-frame are as follows (El-

Sheimy 2008): 
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In these equations, the dot denotes the time derivative operation, the superscript ‘l’ and 

‘b’ represents the value in the l-frame and b-frame, where 

M  is the meridian radius of the earth curvature; 

N  is the prime vertical radius of the earth curvature; 

lr  is the position vector in the l-frame, [ ]
Tl

hϕ λ=r ; 

l
v  is the velocity vector in the l-frame, [ ]

Tl

E N V
v v v=v ; 

bf  is the specific force vector in the b-frame from the accelerometer triad; 
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lg  is the earth’s local gravity vector, [ ]0 0
Tl

g= −g ; 

a

bc
Ω  is a skew-symmetric matrix, which represents the rotation rate of frame ‘c’ 

relative to frame ’b’ in frame ‘a’. The skew-symmetric matrix for vector 

T

x y z
ω ω ω =  ω  is

0

0

0

z y

z x

y x

ω ω

ω ω

ω ω

 −
 

= − 
 − 

Ω ; 

l

ie
ω  is the earth rotation rate in the l-frame, [ ]0 cos sin

Tl

ie e e
ω ϕ ω ϕ=ω ; 

l

el
ω  is the transport rate, which referes to the change of the l-frame’s orientation with 

respect to the earth, 
tan

T

l N E E
el

v v v

M h N h N h

ϕ− 
=  + + + 

ω ; 

b

ib
ω  is the angular velocity vector measured by the gyroscope triad; and 

b

il
ω  is the sum of b

ie
ω  and b

el
ω . 

These equations show that the IMU attitude is computed by integrating the angular 

velocity measurements from the gyroscopes triad after compensating the earth rotation 

and the change of the l-frame’s orientation. After updating the attitude and compensating 

for the gravity, the linear acceleration measurements from the accelerometer triad are 

projected to the l-frame and integrated to obtain the velocity, and then further integrated 

to obtain position.   

 

The mechanization equations above can be implemented in the discrete-time domain as 

the following three steps, namely sensor error compensation, attitude update, and position 

and velocity update (Savage 2000): 
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Sensor error compensation 

The raw IMU outputs are corrupted by sensor errors (e.g. biases and scale factor errors). 

These values need be calibrated in the laboratory beforehand, or estimated in the 

navigation solution. Once biases and scale factor errors are obtained, the velocity 

increments ( ∆ %v
f

b ) from the accelerometer triad and the angular increments ( ∆ %θ
ib

b
) from 

the gyro triad can be corrected as follows:  

 

∆v
f

b =
∆ %v

f

b + b
a
∆t

1+ S
a

∆θ
ib

b =
∆ %θ

ib

b + b
g
∆t

1+ S
g

 2.54 

where 

a
b  is the gyro drift; 

g
b  is the accelerometer bias; 

a
S  is the scale factor of the accelerometer; 

g
S  is the scale factor of the gyro; and 

t∆  is the sampling period. 

 

Attitude Update 

The platform’s angular increment in the vector form ( b

lb
∆θ ) with respect to the l-frame 

can be obtained as 
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b b b

lb ib l e
t∆ = ∆ − ∆θ θ R ω  2.55 

 

The updated rotation matrix containing the attitude information at time 1k
t +  can be 

computed from the rotation matrix at time 
k

t  and a first order approximation of the 

platform’s angular increment as   

( ) ( ) ( )1

l l b

b k b k
t t+ = +R R I S  2.56 

where b
S is the skew-symmetric matrix of the angular increment b

lb
∆θ . 

 

Velocity and Position Update 

The platform’s velocity increment due to the specific force in the l-frame is as 

( )
1

2

l l b b

f b kt
 

∆ = + ∆ 
 

v R I S v . 2.57 

 

This velocity increment should be further corrected by applying the Coriolis and gravity 

correction as 

( )2l l l l l l

f ie el
t t∆ = ∆ − + × ∆ + ∆v v ω ω v g . 2.58 

 

Once the velocity increment is computed, the updated velocity and position can be 

computed as 

( )

1

1

1 1

1

2

l l l

k k

l l l l

k k k k

+

−
+ +

= ∆ +

= + +

v v v

r r D v v
 2.59 
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2.5.2 INS Error Model 

As discussed in the GNSS navigation solution, the filter needs to estimate the GNSS error 

states or state corrections. In the GNSS/INS integrated solution, the filter (typically an 

EKF) needs to estimate the combination of the INS error states and the GNSS error 

states. The INS error equations are described in details below. 

After perturbations (taking derivatives) of the INS mechanization equations 

discussed in the previous section, the INS error model can be represented by a series of 

differential equations. Here the INS error equations are directly given without 

derivations; these can be found in El-Sheimy (2008). The notations used in this section 

follow El-Sheimy (2008) and Yang (2008). 

 

The position, velocity, and attitude error equations can be expressed as 

δ &r l = F
rr
δr l + F

rv
δv l

δ &v l = F
vr
δr

l + F
vv

δv
l + F

vε
δ� l +R

b

l δf
ib

b

δ &�
l = F

εr
δr

l + F
εv

δv
l + F

εε
δ� l +R

b

l δ�
ib

b

 2.60 

where 

lδr is the position error vector; 

lδ v  is the velocity error vector; 

lδε  is the attitude error vector; 
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ϕ&  and &λ  are the latitude and longitude rates, γ  is the normal gravity, and R MN=  

F
vv
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is the specific force in the l-frame; 

b

ib
δ f  is the accelerometer sensor error. 
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; and  

b

ib
δω  is the gyroscope sensor noise. 

 

In addition to the position, velocity, and attitude error states, the sensor error states 

should be estimated in the filter as well. Typically the sensor errors are modeled by the 

sum of the correlated sensor bias and noise, which can be expressed in mathematical 

terms as (Petovello 2003, Shin 2003, Godha 2006) 

b

ib f

b

ib ω

δ

δ

= +

= +

f b w

ω d w
 2.61 

where 

 b  is the accelerometer bias; 

d  is the gyroscope bias; 
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f
w  is the accelerometer noise; and 

ωw  is the gyroscope noise. 

The sensor bias is commonly modeled as a first order Gauss-Markov process as shown in 

(Petovello 2003, Shin 2003, Godha 2006). More details on the characteristics of the 

sensor errors for various types of sensors can be found in (Petovello 2003, Godha 2006). 

 

2.5.3 Integrated Navigation Solution 

Based on their particular implementations, GNSS/INS integrated navigation solutions can 

be generally categorized as two types, namely the loosely coupled solution and the tightly 

coupled solution. The loosely coupled solution can be considered as the integration of 

GNSS and INS in the solution domain, while the tightly coupled solution can be viewed 

as the integration of these two systems in the measurement domain.  

In the loosely coupled solution, GNSS and INS processing is carried out in two 

independent but interacting filters (Godha 2006). GNSS measurements are processed via 

a GNSS-only KF. The estimated position and velocity in this filter are used to update the 

integration filter. The integration filter uses the differences between the position and 

velocity estimates from the GNSS-only filter and those from the INS mechanization to 

form the measurement residuals to update the navigation solution. The loosely coupled 

solution is one of the most commonly used integration scheme by GNSS users, especially 

in the consumer electronic GNSS industry due to its robustness and ease of 

implementation (Niu 2011). However the fact that GNSS measurements during partial 

GNSS outages can still update the integration filter is completely ignored, since no 
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position and velocity estimates are provided from the GNSS-only filter, since many 

GNSS engineers have argued that the benefits from the position and velocity estimates 

from GNSS under the required number of satellites (i.e. four satellites for GPS) are 

minimal.  

In contrast to the loosely coupled solution, the tightly coupled solution, which 

only uses one single centralized integration filter, is utilized to fuse GNSS and INS. In 

this scheme, the differences between the GNSS generated pseudorange and Doppler 

measurements and the INS predicted pseudorange and Doppler measurements are used to 

update the integration filter (Yang 2008). The outputs of the integration filter are then 

used to correct the INS state errors. Petovello (2003) has identified four primary 

advantages of the tightly coupled solution compared to the loosely coupled one. They are 

(1) no additional process noise and more independent GNSS measurements for updating 

the integration filter, (2) better performance during partial GNSS signal outages, (3) 

easier fault detection for GNSS measurements, (4) faster integer ambiguity recovery if 

RTK solution is utilized. 

Ultra-tight integration or the deeply coupled solution has attained significant 

attenuation in the last decade. Unlike the loosely coupled and tightly coupled solutions, 

ultra-tight integration can improve the signal tracking robustness of the GNSS receivers. 

The key tenet of ultra-tight integration is that the INS can remove most of user motion 

dynamics from the incoming signal, allowing for a tightening of the signal tracking loops, 

a longer coherent integration time, and a commensurate improvement in noise mitigation 

and tracking robustness. Ultra-tight integration has two parts, namely the integrated 

navigation solution, which can be either the loosely coupled or the tightly coupled 
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solution, and the navigation solution feedback to the tracking loops, which is 

conceptually the same as the one in the vector-based receiver. Ultra-tight integration has 

been proposed for improving GNSS receiver performance during high-dynamics or in the 

presence of jamming by many studies (Niu 2012). 
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Chapter Three: Fundamentals of GNSS Signal Processing 

 

A GNSS receiver has three major components, namely the hardware module that consists 

of antenna and RF front-end, the baseband signal processor, and the navigation processor. 

The baseband signal processor is responsible for tracking incoming GNSS signals, 

extracting broadcast navigation message and generating navigation measurements. This 

chapter covers the basic concepts of the baseband signal processing in a GNSS receiver 

and provides the necessary background for the next three chapters. 

 

3.1 GNSS Receiver Overview 

A high-level block diagram of a modern generic GNSS receiver architecture is shown in 

Figure 3-1. The GNSS radio frequency (RF) signals from satellites in view are received 

by a GNSS antenna, which is typically a right handed circular polarized (RHCP) antenna 

with a nearly hemispherical gain pattern. In the front-end, the RF signals are filtered, 

amplified and down-converted to an intermediate frequency (IF). They are subsequently 

sampled and digitized by an analog-to-digital converter (ADC).  

GNSS signals are spread spectrum signals in which the spreading codes spread 

the total signal power over a wide bandwidth, dropping its power spectral density well 

below that of a receiver’s thermal noise floor. A signal is therefore undetectable, unless it 

is de-spread by a much narrower bandwidth through correlation with a replica code in the 

receiver, which is precisely time-aligned with the received code. The code correlation 

process is also an integrate/dump process over one or even multiple code periods, which 
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requires that the receiver be accurately tuned to the received carrier frequency; otherwise 

the correlation power can be severely degraded. Therefore carrier wipe-off is required. 

The demodulation (code/carrier wipe-off) of IF GPS signals is performed through the 

Doppler Removal and Correlation (DRC) process. As the name implies, the DRC process 

consists of two stages, namely (i) the Doppler removal stage, which corrects the Doppler 

frequency offsets in the signal, and (ii) the correlation stage, which de-spreads the signals 

with a local ranging code and formulates the correlation.   

The samples outputted through the DRC process are then further processed by the 

baseband signal processor for each channel. Acquisition is the first step in the baseband 

signal processing. The purpose of acquisition is to find out what satellites are in view and 

to coarsely estimate their signal parameters, namely code phase and Doppler frequency. 

Based on the availability and the types of a priori information, acquisition can be 

typically categorized into three modes, namely cold start, warm start, and hot start. In the 

cold start mode, the receiver has no a priori information and all satellites are searched 

sequentially. In the warm start mode, the receiver has some knowledge, such as 

almanacs, the last known position and a rough estimate of time, in which case it can 

choose the visible satellites to search, starting with those in a good geometry. In the hot 

start mode, the receiver has the recent position, time and ephemeris information available 

and also knows which satellites are in view. In general the acquisition process consists of 

the following four operations (Weill 2011): 

1. Determine which satellites are possibly visible by the antenna 

2. Define the search space (centre value, uncertainty, bin size, and pattern)  

for code phase and carrier Doppler of each visible satellite 



55 

 

3. Search for the signal in both code phase and carrier Doppler 

4. Detect/verify a signal and determine its coarse code phase and carrier 

Doppler. 

After acquisition, signals can be tracked by the DLL, FLL or PLL. The finer 

signal parameters including C/N0, code phase, carrier Doppler and carrier phase can be 

estimated in the tracking stage. With the refined signal parameters (code phase, carrier 

Doppler, and carrier phase), the code and carrier can be wiped off completely and the 

navigation data bits can be extracted and decoded by the bit /frame synchronization 

module and the navigation decoder. The decoded information includes the satellite 

ephemeris/almanac, satellite health status, satellite clock corrections, ionospheric 

corrections, TOW and other useful information for positioning. For most receivers, 

carrier phase, also known as accumulated Doppler range (ADR), carrier Doppler, also 

known as pseudorange-rate (PSRR) and code phase within one code period can be 

generated by directly reading NCOs, when signals are tracked properly by tracking loops. 

The decoded TOW should be used with some counters in bit/frame synchronization 

module and the code phase within one code period to reconstruct the full pseudorange 

observation. As discussed in Chapter 2, if the TOW is not known, instead of 

pseudoranges, code phases in one code period or in one bit period depending on the bit 

synchronization status can be provided. In this case, the coarse-time navigation solution 

should be used.       

Incorporating GNSS navigation measurements (ADRs, PSRRs, and PSRs or code 

phases) with the GNSS satellite information, the navigation solution module can provide 

the user’s position and velocity estimates. Various navigation algorithms have been 
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introduced in Chapter 2, hence they are not discussed further here. As weak signal 

tracking is one of the major contributions of this research work, the rest of the chapter 

will focus on standard tracking techniques, which are the background for the materials 

presented in Chapter 4.   

 
Figure 3-1 Generic GNSS receiver architecture 
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3.2 Scalar-Based Signal Tracking 

After signal acquisition, typical receivers will perform signal tracking by using code and 

carrier tracking loops to generate error signals that keep the local code replica and 

received codes aligned and also keep the receiver tuned to the correct frequency as 

changes in Doppler occur. Signal tracking is performed on the satellite-by-satellite basis, 

due to the orthogonal nature of PRN codes. This tracking architecture is known as scalar-

based (SB) signal tracking. This section will introduce the basic concepts of SB tracking 

loops. 

 

3.2.1 From Kalman Filter Tracking Loops to Standard Tracking Loops 

Signal tracking could be formulated as an estimation problem, since the signal parameters 

need to be known to ensure synchronization between local signal replicas and the 

incoming signals. The Maximum Likelihood Estimator (MLE) is one of the widely used 

estimators for signal parameter estimation. If the likelihood function ( )f r  is 

differentiable, the MLE solution can be obtained via (Borio & O’Driscoll 2009) 

( )ln f∂
=

∂

r r
0

x
 3.1 

 

If the noise is Gaussian and the functional model is linear, the MLE can be reduced to the 

LSQ estimator. For signal tracking, the noise at the DRC output can be modeled as 

Gaussian noise and the signal model after the DRC can be linearized given the coarse 

signal parameter estimates from signal acquisition, although, strictly speaking the signal 

model is nonlinear. Therefore the LSQ estimator can be used to estimate signal 
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parameters in signal tracking. In contrast to signal acquisition, the history of signal 

parameters is known in signal tracking; therefore some sort of filtering can be applied 

after the LSQ estimation to provide more accurate estimates. One approach to implement 

a tracking loop is to utilize an extended Kalman filter (EKF). As shown in Figure 3-2, the 

EKF directly accepts the DRC outputs to estimate/filter the synchronization errors (the 

signal parameters’ errors).  The estimated synchronization errors are then applied to a 

local signal generator to change the phase and/or the frequency of the local signal 

generator to reduce the error between the local signal replica and the incoming signals 

(Petovello & Lachapelle 2006). 

 
Figure 3-2 Architecture of correlation-based KF SB tracking loop 

 

The state vector in the EKF typically includes the signal amplitude (A), the code phase 

error (δτ), the carrier phase error (δφ), the carrier frequency error (δf), and the carrier 

frequency rate (δa). Depending on the assumptions on the signal dynamic in the 

measurement model, different measurement models can be applied. If the errors in the 

code and carrier phase do not vary greatly during the coherent integration time, the zero-

order measurement model can be used, where only the signal amplitude (A), the code 
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phase error (δτ) and the carrier phase error (δφ) are estimated or updated from the signal 

measurements, which are the correlation values in this case. An improved model (first-

order model) of the measurement counts for a frequency error during the integration 

interval, in which the carrier frequency error (δf) is estimated from correlation values are 

used as well. One of the most commonly used measurement models is the second-order 

measurement model, where the carrier frequency rate (δa) during the integration interval 

is estimated from correlation values (O’Driscoll et al 2010). Consider the following in-

phase (I) and quadra-phase (Q) correlator outputs: 

( )
( ) ( )

( )
( ) ( )

sin
cos

sin
sin

f T
I A N R

f T

f T
Q A N R

f T

π δ
δτ δϕ

π δ

π δ
δτ δϕ

π δ

⋅ ⋅
= ⋅ ⋅ − ∆ ⋅ ⋅

⋅ ⋅

⋅ ⋅
= ⋅ ⋅ − ∆ ⋅ ⋅

⋅ ⋅  

3.2 

where A  is the signal amplitude, N is the number of samples accumulated in the 

correlator, R  is the auto-correlation function of the ranging code, δτ is the error in the 

local code phase, fδ is the error in the local carrier frequency, T is the coherent 

integration time interval, δϕ  is the average local phase error over the integration time 

interval, and ∆  is the known code correlator code phase offset (e.g., for early and late 

correlators). 

 

If the early, prompt, and late complex correlation values are used as measurements for 

each satellite, the corresponding design matrix for satellite K is given as 
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where 
E

I and 
E

Q are the in-phase and quadrature-phase branches of the early correlation, 

P
I and 

P
Q are the in-phase and quadrature-phase branches of the prompt correlation and 

L
I and 

L
Q are the in-phase and quadrature-phase branches of the late correlation. 

 

The system model in this case is as follows (Petovello & Lachapelle 2006): 

0 0 0 0 0 1 0 0 0 0
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        = ⋅ + ⋅
        
        
                 

 3.4 

where β  converts from units of radians to chips, f  is the frequency of the signal being 

tracked in Hz, λ  is the wavelength of the signal being tracked in metres, 
A

w  is the 

driving noise of the amplitude in unitless, δτw  is the driving noise of the code tracking 

error in chips,  which is included to account for code-carrier divergence due to the 

ionosphere, 
b

w  is the driving noise for the clock bias in seconds, 
d

w  is the driving noise 
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for the clock drift in s/s, and 
a

w  is the driving noise to account for line-of-sight 

acceleration in m/s
2
. 

 

The corresponding transition matrix is given by 

2

2

1 0 0 0 0

0 1 0 2

0 0 1 2

0 0 0 1 1

0 0 0 0 1

βt βt

t t

 
 
 
 =
 
 
  

Φ  3.5 

 

The discrete-time process noise matrix is derived from the continuous-time process noise 

matrix, which is computed as 
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3.6 

  

where  
( )

2
2

bias b
q πf q= ⋅

;
( )

2
2

drift d
q πf q= ⋅

;
( )

2
2

accel a
q π λ q= ⋅

, t  is the time interval in 

seconds, q•  is the spectral density of the process noise corresponding to w• in the unit of 

the square of w• ’s unit per Hertz. 
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In the correlation-based KF tracking loop, signal amplitude, code phase error, 

carrier phase error, carrier frequency error and carrier acceleration error are jointly 

estimated by the LSQ estimator. In some scenarios, it might be necessary to replace the 

LSQ estimator by sub-optimal code phase, carrier frequency and carrier phase 

discriminators to reduce the computation load (Anderson 2012, Pany 2011, Yu 2010).  

 

The modified KF tracking is shown in Figure 3-3 (Yu 2007). In this tracking loop, 

the inputs of the EKF are the discriminator outputs rather than the DRC outputs. Since 

the discriminators are nonlinear, the noise at the discriminator outputs cannot be always 

considered as Gaussian. Conceptually the discriminator-based KF tracking loop might 

perform worse than the correlation-based KF tracking loop, since the signal parameters 

are not estimated jointly and the measurement noise (the noise at the discriminator 

outputs) is not always Gaussian (Niu 2012, Pany 2011, Yu 2011). However, this 

approach eliminates the use of the LSQ estimator to reduce the computation complexity, 

and also provides the freedom to estimate only some of the signal parameters (i.e. 

tracking carrier frequency only without tracking carrier phase). 
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Figure 3-3 Architecture of a discriminator-based KF SB tracking loop 

 

The code phase discriminators for one chip spacing between the early and late correlator 

are given as (Kaplan and Hegarty 2006) 
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The carrier frequency discriminators for data-less signals are given as (Kaplan and 

Hegarty 2006) 
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( )
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The carrier frequency discriminator for signals with data modulation is given as (Kaplan 

and Hegarty 2006): 

( ) ( )
1 2 1 2 1 2 1 2

1 1 2 2

2 2 2 2

sign
P P P P P P P P

DD

P P P P

I Q I Q I I Q Q
δf
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3.13 

 

A few carrier phase discriminators, which are sensitive to navigation data bits, are 

(Kaplan and Hegarty 2006): 

( )2 atan2 ,ATAN P Pδφ Q I=  3.14 

 

2 2

P
COH

P P

Q
δφ

Q I
=

+
 

3.15 

 

Some carrier phase discriminators, which are insensitive to navigation data bits, are 

(Kaplan and Hegarty 2006): 

( )atan /ATAN P Pδφ Q I=  3.16 
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Q
δφ

I
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3.19 

 

Similar to the correlation-based KF tracking loop, a zero-order, first-order, or second-

order measurement model can be used in the discriminator-based tracking loop. Since the 

discriminators introduced above are the normalized discriminators, the dependence of the 

signal amplitude is removed. Therefore the state vector only contains the code phase error 

(δτ), the carrier phase error (δφ), the carrier frequency error (δf) and the carrier frequency 

rate (δa). Considering only one signal, given the coherent integration time T, which is the 

loop update duration as well in this case, the design matrices for the zero-order, first-

order, and second-order measurement model are given respectively by:   

1 0 0 0

0 1 0 0

 
=  
 

H  3.20 

 

1 0 0 0

0 1 / 2 0T

 
=  − 

H  3.21 
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2

1 0 0 0

0 1 / 2 / 6T T

 
=  − 

H  
3.22 

 

The zero-order measurement model is used in the first-order tracking loop, which is 

sensitive to velocity stress and commonly used for aided code loops. The first-order 

measurement model is applied in the second-order tracking loop, which is sensitive to 

acceleration stress and used for aided carrier loops. The third-order tracking loop, which 

is sensitive to jerk stress and used for unaided carrier loops, utilizes the second-order 

measurement model.  

In contrast to the correlation-based KF tracking loop, where the EKF acts as both 

an estimator and a filter, in the discriminator-based KF tracking loop, the role of the EKF 

is limited to filtering. When the system is stationary, the EKF eventually converges to a 

time-invariant state. In this case, as shown by O’Driscoll et al (2010), the multi-input and 

multi-output EKF can be split into a pair of coupled loop filters – one for the code 

tracking and the other for the carrier tracking. This leads to the standard tracking loop 

architecture shown in Figure 3-4. Standard tracking loops consists of a DLL for code 

phase tracking and a PLL for carrier phase tracking or a FLL for carrier frequency 

tracking. 
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Figure 3-4 Architecture of a standard SB tracking loop 

 

The loop filter in Figure 3-4 was originally an analog device and implemented as the 

linear combination of analog integrators (Stephens & Thomas 1995). Since all tracking 

loops are now implemented on digital platforms, loop filters need to be designed and 

implemented in the digital domain. Various methods can be adopted for the digital loop 

filter design. One is to transform the mature analog loop filter models from the analog 

domain to the digital domain by means of mapping functions such as bilinear transform 

(Borio & O’Driscoll 2009). Another method is to design the digital loop filters directly in 

the digital domain via the controlled-root formulation, which is documented by Stephens 

& Thomas (1995). In this method, the loop filter transfer function has the form of the 

linear combination of digital integrators, which is shown below. The integrator gain K is 

determined by fixing the loop poles and loop bandwidth. This will guaranty a stable loop 

(Borio & O’Driscoll 2009): 
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As shown in the discriminator-based KF tracking loop introduced above, digital loop 

filters can be derived via the discrete-time EKF as well. This method has attracted 

significant amount of attention in both GNSS academic and industrial communities. 

 

3.2.2 Tracking Performance Analysis with Semi-Analytic Techniques 

Tracking errors and mean-time-to-lose-lock (MTLL) are two main metrics to evaluate 

tracking loops’ performance. Tracking error sources typically include thermal noise, 

oscillator phase noise, dynamic stress error and multipath errors (Kaplan & Hegarty 

2006). The impact of thermal noise is quantified by tracking jitter, which is the root mean 

square (RMS) of the code phase, carrier frequency or carrier phase error of the loop and 

can be expressed as (Borio & O’Driscoll 2009) 

1

0

j L

eq

C
σ S

N B

−
 

=  
  

 3.24 

where 
L

S  is the squaring loss due to the nonlinear device in the tracking loop and 
eq

B  is 

the equivalent noise bandwidth.  

 

Alternatively the tracking jitter can be expressed as a function of the noise standard 

deviation at the discriminator output (σd), the equivalent noise bandwidth (Beq) and the 

loop update interval or the coherent integration time (T) as 

2
j eq d
σ B Tσ=  3.25 
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Essentially tracking loops with different discriminators, which induce different 

squaring losses, will have different tracking jitter formulas. Without considering the 

effect of the front-end filter bandwidth, the DLL tracking jitters in chips in the coherent 

early minus late discriminator (EML), the non-coherent early minus late power (EMLP) 

discriminator and the quasi-coherent dot product (DOT) discriminator are as follows 

(Borio 2008): 

0/ 2
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C N
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where 
s

d is the correlator spacing in chips. 

 

The PLL tracking jitters in radians with the conventional Costas (CC) discriminator, the 

decision directed (DD), the coherent (COH) discriminator, the arctangent (ATAN) 

discriminator and the arctangent-2 (ATAN2) discriminator can be expressed 

approximately as (Borio et al 2008) 
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The FLL tracking jitters in Hertz with the arctangent (ATAN) discriminator can be given 

approximately as (Borio et al 2010):  

0 0

1 1
1

2 / 2 /
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ATAN

B
σ

πT C N C N T
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In the jitter formulas above, the equivalent noise bandwidth (Beq) quantifies the amount 

of noise transferred from the input equivalent noise to the tracking errors (Borio & 

O’Driscoll 2009). For a DLL and a PLL, Beq is equal to the loop bandwidth (Bn). 

However, for a FLL, Beq is the Doppler bandwidth (Bd) defined by Borio et al (2010), 

which is different from Bn. The difference on the equivalent bandwidth definition in a 
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PLL and a FLL comes from the fact that a FLL has one more integrator in the loop 

structure than a PLL. The details on the mathematical definition the Doppler bandwidth 

can be founded in Borio et al (2010) 

The theoretical formulas of tracking jitter introduced above can be verified with 

the experimental jitters from simulations using the semi-analytic approach proposed by 

Tranter et al (2004) and Borio et al (2010). In the semi-analytic approach, only the 

nonlinear blocks are fully simulated whereas analytical results are used to account for the 

linear components of the system. For a tracking loop, based on the tracking errors, the 

DRC outputs are directly generated using the following equation: 

( )
( ) { }

sin Δ
Δ exp Δ

2 Δ

d C

l d c

d C

π f TC
R τ j φ η

π f T
+  3.35 

 

where C  is the received signal power, Δf  and Δφ are residual frequency and phase 

errors, Δ
d
τ is the code delay error, 

C
T is the coherent integration time, ( )Δl dR τ  is the 

correlation function, 
c
η  is a zero mean noise term at the correlator output, whose 

variance depends on the input noise power, front-end filtering and the correlation 

processed.  

The Monte Carlo approach is then used for the tracking error estimation. The 

main benefit of this semi-analytical technique is to accelerate the Monte Carlo simulation 

by only simulating and processing the correlator output at the accumulation rate instead 

of the sampling rate. The drawback of the semi-analytical technique compared to the full 

Monte-Carlo simulation is that the front-end filtering effect and the quantization loss are 
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neglected in the semi-analytical simulation. In Figure 3-5 to Figure 3-12, the tracking 

jitters of DLL/PLL/FLL obtained from the semi-analytic simulations are compared with 

the theoretical tracking jitters. In each plot, there are four curves. The first one, indicated 

by “Theoretical”, is obtained using the theoretical expressions of tracking jitter 

introduced above. The second one is obtained by estimating the standard deviation of the 

tracking error that is computed from the true tracking error after each loop update. In the 

third curve, the tracking jitter is derived by propagating the standard deviation of the loop 

filter output, while the last curve is derived by propagating the standard deviation of the 

discriminator output. 

 
Figure 3-5 DLL jitter with EMLP discriminator, Bn = 1 Hz, T = 20 ms 
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Figure 3-6 DLL jitter with DOT discriminator, Bn = 1 Hz, T = 20 ms 

 

 
Figure 3-7 DLL jitter with EML discriminator, Bn = 1 Hz, T = 20 ms 
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Figure 3-8 PLL jitter with CC discriminator, Bn = 10 Hz, T = 20 ms 

 

 
Figure 3-9 PLL jitter with DD discriminator, Bn = 10 Hz, T = 20 ms 
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Figure 3-10 PLL jitter with ATAN discriminator, Bn = 10 Hz, T = 20 ms 

 

 
Figure 3-11 PLL jitter with COH discriminator, Bn = 10 Hz, T = 20 ms 
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Figure 3-12 FLL jitter with ATAN discriminator, Bn = 5 Hz, T = 20 ms 

 

In general, these curves agree with each other, especially for high C/N0. There are 

some discrepancies under low C/N0 conditions, since the linear model does not hold for 

signal tracking under such conditions. It should be noted that these jitter formulas are 

derived from linear theory and they are only approximations of the true ones. These 

formulas usually only work well for strong signals, as the linear theory cannot hold for 

weak signal tracking. One limitation of these simulations is the isolation of the DLL and 

PLL or FLL, assuming that the other was perfectly aligned. This assumption is usually 

not realistic. Usually the PLL will lose lock first, then the FLL and, finally, the DLL. 

In addition to the linear model assumption, the unrealistic assumption on the 

perfect normalization for the phase and frequency discriminators is another cause for the 

discrepancies shown by the semi-analytic simulation for low C/N0 signals. For example, 

it is usually assumed that the ATAN and ATAN2 phase discriminators are self-
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normalized. However, due to the presence of noise, the discriminator gain is actually 

affected by C/N0. More careful derivations on discriminator gain and discriminator output 

variance, which utilize the probability density function of the phase discriminator errors, 

are given by Hagmann & Habermann (1988), Yu (2007), Lin (2008) and Curran (2010). 

The probability density function of the four-quadrant phase discriminator (ATAN2) 

errors can be expressed as 
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 3.36 

where 
n

θ  represents the errors from an ATAN2 discriminator in steady state and 2

Nσ  is 

the equivalent noise variance after normalizing the signal power to 1. 

 

Based on this probability density function, the theoretical discriminator output standard 

deviation values for ATAN and ATAN2 discriminators due to noise only can be obtained 

as shown in Figure 3-13 and Figure 3-14, by counting for the discriminator gain change 

as a function of C/N0. Each point in the estimated curves is generated by 50,000 trials of 

simulations. As observed in these figures, for C/N0 values in the range from10 dB-Hz to 

70 dB-Hz, the theoretical discriminator output variance match to the estimated ones, 

which are measured at the discriminator outputs with a Monte-Carlo simulation.  
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Figure 3-13 Standard deviations of errors from an ATAN discriminator 

 

 
Figure 3-14 Standard deviations of errors from an ATAN2 discriminator 
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GNSS signal tracking has been briefly introduced in this chapter. The correlation-

based KF tracking loops, the discriminator-based KF tracking loops and the standard 

tracking loops have been introduced. Their relation has been conceptually discussed. 

Semi-analytic technique has been used and applied for tracking loop performance 

assessment. This method will be used in the next chapter to evaluate the performance of 

different frequency discriminators and the benefits of a VB tracking loop. 
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Chapter Four: GNSS High Sensitivity Signal Processing 

 

This chapter covers the weak signal processing techniques for the proposed high 

sensitivity receiver. The limitations of the conventional scalar-based signal processing 

techniques and the possible approaches to improve the sensitivity of the scalar-based 

signal processing are first discussed. The concepts and implementations of vector-based 

loops and navigation-domain tracking loops, which are suitable for weak signal tracking, 

are then introduced. At the end of this chapter, the performance assessments in tracking 

and position domain using hardware simulated GNSS signals are presented. 

 

4.1 Weak Signal Acquisition 

One main difference between acquisition and tracking is the level of a priori information 

on signal parameters. The sensitivity of signal acquisition can be improved in two folds: 

1. extending the integration time to improve signal detectability; 2. reducing the search 

space on signal parameters via assisted information, which is the so-called assisted GNSS 

(AGNSS) technology. To improve the detectability, extending the non-coherent 

integration time is still the most practical and efficient approach, since it is insensitive to 

data bit polarity and will not lead to a small bin size in frequency search and then cause a 

large number of DRC operations as extending coherent integration time does. More 

details on high sensitivity acquisition are referred to Ziedan (2006), O’Driscoll (2009), 

Van Diggelen, F. (2009), and Ma et al (2011). This thesis will focus on the sensitivity 

improvement in signal tracking.  
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4.2 Weak Signal Bit Synchronization 

The histogram bit synchronizer introduced in Van Dierendonck (1996) is one of the 

popular bit synchronizer used in conventional GNSS receivers. However, it does not 

perform well for weak signals. The delay-sum bit synchronizer introduced in Spilker 

(1977) is a ML bit synchronizer, which tests of all possible alignments for the bit 

transition. As shown in Figure 4-1, the 20 ms of accumulation with all possible bit 

transition alignment are further integrated non-coherently to improve the bit 

synchronization performance. In Figure 4-2, the operator ( 1Z − ) is the delay operator, and 

the operator ( ArgMax ) means to select the bit combination based on the maximum 

power. Figure 4-2 shows the performance of the histogram bit synchronizer and the 

delay-sum bit synchronizer, for 1 s of processing time. In this simulation, the bit 

synchronization is based on 1000 of 1 ms of DRC outputs. In other words, there is a fixed 

time period of 1 s for searching the bit boundary or achieving bit synchronization. Each 

point in the curves was generated by 5000 trials of Monte-Carlo simulation runs. Clearly, 

the delay-sum bit synchronizer outperforms the histogram bit synchronizer especially 

when the signals are below 30 dB-Hz. When the signals are too weak, the bit 

synchronizer errors from both bit synchronizers converges to 0.95 (19/20). It should be 

noted that, the simulation results here are optimistic, since frequency errors were not 

introduced in the simulation. When the signals are weak, the estimated carrier frequency 

values from carrier tracking loops will be less accurate. This will degrade the bit 

synchronization performance.  
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Figure 4-1 Delay-sum bit synchronizer processing flow (Borio 2012) 

 

 
Figure 4-2 Performance assessment of histogram and delay-sum bit synchronizer 
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4.3 Scalar-Based Weak Signal Tracking 

4.3.1 Signal Tracking Lock Condition 

Signal tracking in general has higher sensitivity than signal acquisition due to a priori 

knowledge on signal parameters, which leads to a smaller signal parameter uncertainty 

(Weill 2010). Additionally, after acquisition, the timing of the navigation bit boundaries 

can be determined, which permits coherent integrations over the full data bit length. This 

provides additional sensitivity during tracking compared to acquisition. The rule of 

thumb for a tracking loop to maintain lock is as (Kaplan & Hegarty 2006): 

2 23 3
TRK j o d TRK

Lσ σ σ θ= + + <  4.1 

where 
TRK

σ  is the total RMS tracking errors (total tracking jitter), 
j

σ is the thermal noise 

jitter, 
o

σ is the oscillator induced jitter, 
d

θ is the dynamic stress error, and 
TRK

L is the 

tracking threshold. 

To improve the tracking performance especially for weak signals, efforts should 

be made to reduce 
TRK

σ  and increase
TRK

L . 
o

σ  is determined by the oscillator quality, 

d
θ can be reduced by increasing the loop order and loop bandwidth (

n
B ). For weak signal 

tracking, 
j

σ  is the dominant factor in tracking jitter. From the thermal noise jitter 

formulas in Chapter 3, extending coherent integration time (T) and reducing loop 

bandwidth (
n

B ) are the two possible ways to reduce
j

σ . The product of T and 
n

B  is also 

limited to the condition that T
n

B <0.4 for a stable tracking loop (Stephens & Thomas 

1995). From the discussion above, clearly there is engineering tradeoff between noise 

reduction and dynamic stress reduction. 
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4.3.2 Discriminator Design   

Increasing
TRK

L  is one important way to improve the tracking robustness and reduce the 

chance of loss-of-lock. Assuming the use of a near-perfect discriminator gain, for carrier 

phase or frequency tracking, a conservative rule of thumb for tracking threshold is one-

fourth of the phase or frequency pull-in range of the carrier discriminators (Kaplan & 

Hegarty 2006). Therefore, 
TRK

L is 90° for pure PLL discriminators, and 45° for Costats 

PLL discriminators (Kaplan & Hegarty 2006). And 
TRK

L  is 1/(4T) for the phase 

difference FLL discriminators introduced in Chapter 3, where T is the coherent 

integration time (Kaplan & Hegarty 2006). For the DLL discriminators,  
TRK

L  is half of 

the early-to-late correlator spacing (Kaplan & Hegarty 2006). If the early-to-late 

correlator spacing is 1 chip, 
TRK

L  is 0.5 chips, which is about 150 metres for GPS L1 C/A 

code. If multiple correlators are used, 
TRK

L  in the DLL can be further increased. For the 

case of seven correlators with 0.5 chip spacing, 
TRK

L = 1.5 chips. Essentially the DLL is 

more robust in terms of weak signal tracking than the PLL due to its relatively large
TRK

L  

(300 m versus 20 cm). The PLL is usually not very suitable to track weak signals, since 

its
TRK

L is too small. The FLL discriminators introduced in Chapter 3 are the phase-

difference-based frequency discriminators. They are limited in two aspects: 1) non-

coherent integrations cannot be applied with these discriminators; 2) extending coherent 

integration will correct the discriminator gain but reduce the linear region, which is a 

quarter of the reciprocal of the coherent integration time. 



85 

 

In contrast to the phase-difference-based frequency discriminators, the power-

based frequency discriminators, which utilize a branch of correlators, are more suitable 

for weak signal tracking, since its linear region can be extended via the use of additional 

correlators. Three types of power-based discriminators are available. One is the fast-slow 

frequency discriminator given in Juang & Chen (2009). It can be given by the expression: 

( )

( ) ( )

3

2 2 2 2

2ˆ

ˆ 1 cos sin
2

f f s s

FS

T
I Q I Q

f
T

T P T T

ω

ω
ω ω

∆ 
+ − −  

 =
∆ 

⋅ ⋅ − ∆ − ∆ 
 

 4.2 

where fI and fQ are the in-phase and quadrature branch of the fast frequency correlators; 

s
I and 

s
Q are the in-phase and  quadrature branch of the slow frequency correlators; T is 

the coherent integration time; ω∆  is the frequency correlator spacing; P̂  is the estimated 

signal power. 

The fast-slow frequency discriminator is similar to the early-late delay 

discriminator. Its linear region can be extended by utilizing additional frequency 

correlators. 

 The fine frequency estimator given in Tang et al (2012) is another power-based 

frequency discriminator. Although this fine frequency estimator was applied at the fine 

acquisition stage in Tang et al (2012), it can be used as a frequency discriminator in FLL 

as well. This discriminator is given as:  

ˆ A A B B C C
PB

A B C

f S f S f S
f

S S S

+ +
=

+ +
 4.3 
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where 
A

f is the frequency value of the central frequency correlator;  
B

f and 
C

f are the 

frequency values of the frequency correlators on two sides; 
A

S  is the magnitude of the 

central frequency correlator output; 
B

S and 
C

S  are the magnitudes of the frequency 

correlators on two sides.  

Compared to the fast-slow frequency discriminator, the expression of this 

discriminator is simpler, but requires one more frequency correlator. The last frequency 

discriminator is the ML frequency estimator given in Rife & Boorstyn (1974).  

[ ] [ ] ( ){ }
1

0

ˆ arg max exp
d

N

ML IF d s
F

n

f n r n j F F nT
−

=

= − +∑ %  4.4 

where [ ]r n  is de-spreaded correlator output;  
IF

F  is the IF frequency; 
d

F% is the candidate 

Doppler frequency; 
s

T is the sample time. 

One advantage of the ML estimator is that it does not require a discriminator gain. 

In other words, its discriminator gain is always unity, which is different from many 

frequency discriminators, whose discriminator gains are functions of C/N0 values. 

However, the frequency estimate’s resolution of the ML frequency estimator depends on 

the frequency correlator spacing. To improve the resolution, one can utilize a bank of 

frequency correlators with a small correlator spacing based on the frequency uncertainty 

and frequency resolution requirements. However this will require a higher DRC 

processing load. To accelerate the processing speed when using the ML frequency 

discriminator in a software receiver, the fast Fourier transform (FFT) parallel frequency 

DRC method is implemented herein. The FFT is an efficient algorithm for computing the 

discrete Fourier transform (DFT) of a signal. Incorporating the FFT logarithmically 
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improves the DRC computation efficiency by combining the analysis of multiple Doppler 

frequency (Fd) and/or code phase (τ
d
) hypothesis pairs together (Van Nee et al 1990, 

Akopian 2005). Using one FFT operator in the DRC can parallelize the processing of 

multiple Doppler frequency estimates with a common code phase, as illustrated in Figure 

4-3. The first two multipliers of the parallel frequency DRC are identical to those of the 

serial architecture. They generate the centre-Doppler estimate Fd with code phase τ
d
. 

Instead of integrating the entire signal duration, signals going through the parallel 

frequency DRC are divided into ND (≤ NF) equal segments using an integrate-and-dump 

filter. Each segment contains exactly TP = T/ND seconds of the de-spreaded signal. The 

values resulting from the integrate-and-dump filter need to be grouped for the FFT. These 

short segments are stored in a parallel bank of memory slots, which are processed in 

parallel by an NF-point FFT to produce NF Doppler estimates around the centre Doppler-

frequency. The output estimates can be further integrated together to improve the signal-

to-noise ratio.  
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Figure 4-3 FFT frequency DRC 

 

When the code-Doppler frequency offsets are negligible, the frequency response 

of the parallel frequency DRC can be precisely summarized as follows: 

[ ]
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 4.5 

where XD is the frequency response; k is the index to the frequency offset, 0..NF-1; δf is 

offset from the centre frequency; ND is the number of partial integrations in the coherent 

sum, ≤ NF; NF is the FFT size; NP is number of samples in a partial integration; P is the 

power of the input signal; TCoh is coherent integration time; TP is partial integration time 

= TCoh/ND; and TS is sampling period.  

This equation comprises of three major components. The first 

component,
2

D P
N N P

, determines the absolute magnitude of the signal response. The 

second component is a sinc-like envelope function with ratio defined by the partial 
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integration time, TP. This sinc-like function controls the attenuation envelope. A larger 

partial integration time, TP, in steeper roll-off of the attenuation envelope, which implies a 

smaller frequency uncertainty allowed. The third component is a fraction of two sine 

functions with the coherent integration time, TCoh, in the numerator and the partial 

integration time, TP, in the denominator. This fraction controls the roll-off rate and the 

superposition of the individual FFT frequency bins. The ND/NF fraction component of 

this sine-over-sine fraction determines the frequency bin spacing according to the 

following equation: 

( )D F Coh
f N N T∆ =  4.6 

Where, Δf is frequency bin spacing; TCoh is coherent integration time = NDTP. From the 

analysis above, it can be seen that partial integration time, TP, determines the allowable 

frequency uncertainty, while the coherent integration time, TCoh, determines the 

frequency resolution.  

To further improve the frequency resolution, zero-padding can be applied to the 

FFT frequency DRC, with a penalty of the computation load due to the increase of the 

FFT length. The FFT frequency DRC applied in signal tracking was implemented in the 

coherent integrator inside the processing channel object. For signal tracking, the partial 

coherent integration time is at least 1 ms.  The default partial coherent integration time in 

GSNRx-hs
TM

, is 10 ms, which covers +/- 100 Hz of frequency uncertainty, although it 

can be adjusted in the option file. With the FFT frequency DRC approach (possibly using 

zero-padding), a larger number of synthetic frequency correlators with small frequency 

spacing can be efficiently generated to support the ML search frequency estimator. Also, 

the two frequency discriminators introduced earlier can be used with the ML search 
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frequency estimator together. For example, the ML search estimator can be used to 

identify the coarse Doppler estimate, but if the frequency spacing is not fine enough, the 

fast-slow and the power-based discriminators can be applied around the coarse Doppler 

estimate to provide a finer frequency estimate. In addition, as shown by Tsui (2005) and 

Satyanarayana et al (2010), a quadratic interpolation method can be adopted with the ML 

frequency discriminator to obtain the frequency estimate with higher resolution than the 

frequency correlator spacing.  

Figure 4-4 shows the estimated tracking jitter measured by the errors of the NCO 

frequency controlled by the FLLs with four different frequency discriminators, namely 

the ML search frequency estimator, fast-slow power difference frequency discriminator, 

power-based frequency discriminator and phase difference ATAN discriminator. In the 

simulation, the loop bandwidth was 1.5 Hz, no non-coherent integration was used and the 

coherent integration time was 10 ms. The results shown in this figure were generated 

using the semi-analytic technique introduced in Chapter 3. As shown in the figure, the 

FLL with a phase difference frequency discriminator has a lower frequency jitter; 

however the FLLs with (i) the ML search frequency estimator (with FFT frequency 

DRC), (ii) the power-based frequency discriminator, and (iii) the fast-slow power 

difference frequency discriminator have better sensitivity. The FLL with the ATAN 

phase-difference frequency discriminator loses lock at 22 dB-Hz. The FLLs with the fast-

slow frequency discriminator and the power-based frequency discriminator lose lock at 

18 dB-Hz and 16 dB-Hz, respectively; however, they introduce more than 5 Hz of 

frequency error (equivalent to 1 m/s of error for the GPS L1 signal) when the C/N0 value 

is below 25 dB-Hz. The ML search estimator has a similar, although a bit higher tracking 
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jitter compared with the ATAN phase-difference frequency discriminator when the C/N0 

value is above 25 dB-Hz. The ML search estimator also has sensitivity similar to that of 

the power-based frequency discriminator as it loses lock around 16 dB-Hz. It is shown 

that the fast-slow, power-based, and ML search based frequency discriminators do not 

provide more precise frequency estimation than the ATAN phase difference frequency 

discriminator, but rather more robust frequency tracking when signals are weak. 

 

 
Figure 4-4 FLL tracking jitter with four frequency discriminators 

 

4.3.3 Coherent/Non-Coherent Integrator Design   

Carrier tracking is the critical part of weak signal tracking. The wide linear region of 

frequency discriminators enhances the robustness of the carrier tracking of weak signals. 

However, signal integrations are still required to improve the signal tracking sensitivity, 



92 

 

since the frequency discriminators above will not perform properly if the correlation peak 

is below the noise level. 

Processing gain can be increased by extending coherent time and the number of 

non-coherent integrations. Regardless the number of non-coherent integrations applied, 

the coherent integration time should be extended based on the coherence time of the LOS 

signals, if the LOS signals exist. A long coherent integration time can not only increase 

sensitivity, but also help multipath mitigation in the Doppler domain and increase the 

cross-correlation protection (Pany et al 2009). Signal dynamics and navigation data bits 

are the two main factors to limit the coherent integration time. In coherent integrations, if 

only the carrier and code Doppler effects are considered, acceleration or any higher order 

dynamics (i.e. jerk) can introduce degradations on coherent integrations. Navigation data 

bits will introduce the change of polarity on correlation and thus limit the coherent 

integration time.  

Two coherent integrator architectures, namely the bit aiding coherent integrator 

and bit extracting coherent integrator have been investigated and implemented in 

GSNRx-hs
TM

 during this thesis research. The architecture of the bit aiding coherent 

integrator is shown in Figure 4-5. As highlighted in red in Figure 4-5, the bit aiding 

coherent integration requires external data bit aiding with the time-stamps of GPS 

transmit time to wipe off the navigation data bits to ensure successful longer coherent 

integrations. The external data bits can be provided by commercial GNSS hardware 

receivers or other versions of our in-house GNSS software receiver GSNRx
TM

. For the 

current implementation, the external data bits should be extracted continuously. 

Therefore the antenna and receiver which provide the data bit aiding should be placed in 
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open-sky environment (i.e. the roof-top). The time-tag in the bit aiding is the GPS 

transmit time; therefore the antenna/receiver should be initialized in open-sky 

environment until the GPS transmit time has been extracted before moving into the signal 

degraded environments. 

 
Figure 4-5 Bit aiding coherent integrator architecture 

 

As discussed previously, a wide frequency tracking region is required to reduce 

the chance of loss-of-lock. However, the longer the coherent integration time, the 

narrower the signal it is in the frequency domain. To cover a large frequency uncertainty 

with a long coherent integration, a large bank of frequency correlators is required. This is 

computationally expensive, especially for a software receiver. The implemented bit 

aiding coherent integrator has the functionality to apply the FFT frequency DRC method 

to generate a bank of synthetic frequency correlator to cover a user-defined frequency 

span, which can be larger than the main lobe of the signal in the frequency domain.  

The bit aiding coherent integrator can support long coherent integrations. This is 

similar to the A-GNSS approach with data bit aiding from a fine-time network (CDMA 

network). However if the data bit aiding is not available, the navigation data bits in the 

received signals need to be estimated or removed in certain ways. The bit extracting 
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coherent integrator is the coherent integrator that estimates the polarities of a block of 

navigation data bits and wipes off these estimated data bits, it then performs coherent 

integration. The architecture of the bit extracting coherent integrator is shown in Figure 

4-6.  

 
Figure 4-6 Bit extracting coherent integrator architecture 

 

As describe in Soloviev et al (2004), O’Driscoll et al (2008), and Soloviev et al 

(2009), data bits can be estimated by searching for the bit combination that maximizes 

the signal energy over the coherent integration interval. Assuming the following signal 

model: 
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4.7 

where A  is the signal amplitude, N is the number of samples accumulated in the 

correlator, R  is the auto-correlation function of the ranging code, δτ is the error in the 

local code phase, fδ is the error in the local carrier frequency, T is the coherent 

integration time interval, δϕ  is the average local phase error over the integration time 

interval, and ∆  is the known code correlator code phase offset (e.g., for early and late 

correlators). 
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 If the coherent integration time is equal or below 10 bits (200 ms), which 

corresponds to 512 bit combinations, a one step exhaustive search is needed to obtain the 

data bit combination from the 20 ms accumulations. It should be noted that the energy 

computation is insensitive to the polarity of a bit combination, i.e. for 5 bits, the bit 

combinations with an opposite sign (e.g. [1 1 1 1 1] and  [-1 -1 -1 -1 -1]) have the same 

signal energy. The maximum energy bit combination is thus computed for the bit 

combinations where no opposite sign combinations are present. For the case of 5 

navigation bits, the total number of such combinations is 16. The signal accumulation for 

these 16 navigation bit combinations is performed through a matrix multiplication as:  

( )
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where 
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The signal energy for these 16 navigation bit combinations is performed through a matrix 

multiplication as: 
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However, if the coherent integration time is longer than 8 bits (160 ms), the one step 

exhaustive search on the navigation data bit combinations becomes impractical due to the 

large number of bit combinations. Therefore the accumulations over the full coherent 

integration time are broken down to several groups of small number of navigation bits, 

i.e. 5 bits (100 ms). An exhaustive search on the bit combinations is first performed on 

each of these groups. The signal energy accumulated over the full coherent integration 

interval is then computed for possible sign combinations. 

The energy-based bit estimation method was selected for implementation here 

mainly due to the compatibility of the algorithm with the existing software architecture. 

The bit estimation algorithm proposed in Ziedan (2006), which estimates navigation data 

sequentially with the Viterbi algorithm, is also a good choice for bit estimation and 

decoding for weak signals. As pointed out by Soloviev et al (2009), the BER of this 

method for weak signal is too high to decode. For example, the BER is 0.1304 for a C/N0 

of 15 dB-Hz. To reliably decode data bits for weak signals, the repeatability of the data 

bits must apply (Ziedan 2006, Soloviev et al 2009).   

Non-coherent integration is another option to improve sensitivity. Two non-

coherent integrators are considered here. The first one is the conventional magnitude 

based non-coherent integrator shown in Figure 4-7. The output of this non-coherent 

integrator only contains magnitude information. 



97 

 

 
Figure 4-7 Magnitude non-coherent integrator architecture 

 

The squaring non-coherent integrator is an alternative as shown in Figure 4-8. 

Unlike the magnitude non-coherent integrator, the squaring non-coherent integrator not 

only contains the magnitude information but also the phase information, although the 

complex squaring operation is a nonlinear operation.  

 

 
Figure 4-8 Squaring non-coherent integrator architecture 

 

The squaring non-coherent integration can be derived from the well-known ML 

solution of the carrier phase estimation with random data bits problem (Borio & 

O’Driscoll 2009). Considering the prompt accumulation output at k
th

 epoch ( ,P k
S ) 

{ }, , , expP k P k P k k kS I jQ Ad j nθ= + = +  4.11 

where A  is the signal amplitude which is assumed to be constant, 
k

d is the navigation 

data bit at k
th

 epoch, θ  is the carrier phase, and 
k

n is the complex noise component with 

the variance of 2σ . 
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The conditional PDF of ,P k
S , (

, |P k kS d
f ) can be expressed as 
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If the data bit is modeled as a random variable, the following holds  
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Taking the logarithm 
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For K independent instances correlator outputs 
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To obtain the ML solution on θ  
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For high SNR, 
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Therefore the ML phase discriminator for the case of high SNR value is 
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This is essentially the decision-directed phase discriminator introduced in Chapter 3. 

For low SNR, 
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Therefore the ML carrier phase discriminator for the case of low SNR value is 
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The complex squaring operation in Equation 4.20 provides a way to remove data bits but 

still maintains the carrier frequency and phase information. It should be noted that the 

complex squaring operation will double the carrier phase and frequency error. This effect 
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should be considered in the carrier phase/frequency estimation and the design of the 

correlator grid. In addition, the complex squaring operation will slightly change the shape 

of the correlation function in the frequency domain. Figure 4-9 describes three correlation 

functions in the frequency domain. The blue one is the correlation function with the 

coherent integration period of 20 ms; the red one is the one with the coherent integration 

period of 20 ms, followed by 5 squaring non-coherent integrations. The green one is the 

correlation function with the coherent integration period of 100 ms. As shown by the 

figure, the complex squaring operation will narrow down the correlation width in 

frequency domain; however introduce side-lobes as well. To avoid dealing with the side 

lobs, the frequency uncertainty covered by the frequency correlators should be smaller 

than the one without applying the complex squaring operator.  

 

 
Figure 4-9 Correlation function with/without squaring 
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4.3.4 Loop Filter Design   

In order to track weak signals, carrier tracking should be accomplished by a FLL 

with very narrow bandwidth, which is much narrower than the conventional FLL for 

GNSS signals. In Weill (2011), a FLL with the loop bandwidth on the order of 0.01 Hz is 

proposed to track weak signals. Pany (2009) stated that a FLL with the loop bandwidth of 

0.25 Hz is possible to track signals down to 12 dB-Hz. Reducing the loop bandwidth can 

not only suppress noise, but also partially compensate for multipath in the kinematic case. 

When the antenna is moving in a signal degraded environment, the multipath fading and 

noise could cause the discriminator outputs to fluctuate rapidly. A loop filter with a 

narrow bandwidth can reduce the possible large fluctuations in the discriminator output. 

The small loop filter bandwidth will cause the tracking loop to have a slow response and 

to be more susceptible to dynamics. This is another reason to use a wide discriminator to 

track weak signals. Another constraint on the loop bandwidth comes from the long 

integration time. As mentioned in Chapter 3, a stable tracking loop implementation 

requires that the BnT value should be a small number (< 0.4). Therefore the longer the 

integration time, the smaller the bandwidth should be. Again there is engineering tradeoff 

between noise reduction and dynamic stress reduction. 

  

4.4 Vector-Based Weak Signal Tracking 

Although the sensitivity of the SB tracking loop can be improved via the modifications 

presented above, it is still suboptimal due to the fact that the signals are correlated via the 

receiver’s position and velocity. This correlation is completely ignored. Two VB tracking 

architectures, namely the cascade VB tracking loop shown in Figure 4-10 from Petovello 
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& Lachapelle (2008) and the centralized VB tracking loop shown in Figure 4-11 from 

Pany et al (2006), are commonly used. The major differences between these two 

architectures are that the code phase, the carrier frequency, and the carrier phase are 

tracked jointly by the local Kalman filter in each channel in the cascaded VB tracking 

loop, while in the centralized VB tracking architecture, the carrier phase tracking is 

totally omitted and only the code phase and the carrier frequency are being tracked. It is 

well-known that the requirement for carrier phase tracking is very stringent (Petovello et 

al 2008; Groves et al 2008; Pany et al 2010). The centralized VB tracking architecture is 

more suitable for weak signal tracking.  

 
Figure 4-10 Cascaded VB tracking architecture 
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Figure 4-11 Centralized VB tracking architecture 

 

4.4.1 Vector-Based Discriminator 

To simplify the analysis of VB tracking, VB discriminator is introduced. The key of VB 

tracking is to allow each tracking channel to share information. This can be accomplished 

at the discriminator level (then the discriminator is the VB discriminator). 

The architecture of the VB tracking loop with the VB discriminator is shown in 

Figure 4-12. Comparing this VB tracking loop with the traditional SB tracking loop, the 

main difference is the utilization of the LSQ-based VB discriminator. The VB 

discriminator accepts the code/carrier discriminator outputs from each tracking channel 

as inputs and computes the code phase and carrier frequency corrections that are derived 

from the LSQ-based position/velocity/clock corrections. The outputs of the VB 

discriminator can be used to update the loop filter in each channel. In this case, the gain 
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of the VB tracking loop over the SB tracking loop can be characterized by the gain of the 

VB discriminator over the conventional SB discriminator.  

 
Figure 4-12 VB Tracking architecture with a VB discriminator 

 

If the filtering is omitted in a tracking loop, the SB tracking model for N pseudorange 

residuals from N satellites is as 

1 1 1N N N N N
δ δ× × × ×= +P I P v%  4.21 

 where δ P% is the pseudorange residual measurement vector from the channel code 

discriminators , δ P  is the true pseudorange residual vector and v is the noise vector. 

 

Assuming equal weighting, the covariance of the pseudorange residual measurements is 

given by 

( ) 2Cov
N N v v

δ σ×= =P I R%  4.22 
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Since the pseudorange residuals are estimated independently in the DLL, the estimated 

pseudorange residuals and associated covariance matrix can be obtained by the least-

square solution as 

( )
1

1 1ˆ T T

N N v N N N N v N N
δ δ δ

−− −
× × × ×= =P I R I I R I P P% %  4.23 

( ) ( )
1

1ˆCov T

N N v N N v
δ

−−
× ×= =P I R I R  4.24 

 

If the filtering is omitted, the VB tracking model for N pseudorange residuals from N 

satellites is as 

4 1N N
δ δ× ×= +P H X v%  4.25 

 

In the VDLL, N pseudorange residuals from N satellites are tracked jointly by estimating 

the pseudorange residuals from the estimated position and clock bias. This can be shown 

mathematically as 

( )
4

1
1 1

4 4 4 4

ˆ ˆ
N

T T

N N v N N v

δ δ

δ

×

−− −
× × × ×

=

=

P H X

H H R H H R P%
 4.26 

( ) ( )

( )

1
1

4 4 4 4

1
2

4 4 4 4

ˆCov T T

N N v N N

T T

v N N N N

δ

σ

−−
× × × ×

−

× × × ×

=

=

P H H R H H

H H H H

 4.27 

 

Comparing the Equation 4.24 with 4.27, the gain of the VDLL over the DLL comes from 

the diagonal element of the matrix ( )ˆCov δ P . The off-diagonal elements in ( )ˆCov δ P , 

which represent the effective interaction or information sharing between channels, are 
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non-zero values. The gain factor for the i
th

 channel in the VDLL over the DLL (
i

G ) can 

be defined as 

( )( )
( )( )

ˆdiag Cov

ˆdiag Cov

1

scalar
i

i

vector
i

i

G

D

δ

δ
=

=

P

P
 4.28 

 

It can be shown that
i

D is smaller than 1 when N > 4, and equal to 1 when N = 4. Herein 

the gain factor 
i

G is always equal to or larger than 1. In other words, the VB discriminator 

always outperforms the SB discriminator when there are more than four satellites, and 

has the same performance as the SB discriminator when there are exactly four satellites.  

To assess the benefit of VB tracking empirically, a typical GPS only constellation 

(12 GPS satellites with elevation ranging from 5 – 81 degrees) at the University of 

Calgary is used to compare the theoretical jitter and the estimated jitter. The loop 

bandwidth is 1 Hz, the E-L correlator spacing is 0.5 chip, and the coherent integration 

time is 20 ms. The satellite geometry is shown the following Table. In this simulation, 

signals from all the satellites have the same C/N0 value.   
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Table 4-1 Satellite Geometry 

PRN Elevation (deg) Azimuth (deg) 

03 54 285 

06 60 204 

07 21 286 

09 81 87 

10 46 62 

13 29 160 

14 5 70 

20 7 38 

23 10 103 

24 7 337 

 

Figure 4-13 and Figure 4-14 show the theoretical and the estimated tracking jitter of the 

VDLL and DLL with the semi-analytic technique. The theoretical jitter of the VDLL 

presented in this case is based on Equation 3.27 and 4.27. The estimated jitter is the true 

error, which is the difference between the true code phase and the NCO code phase. In 

Figure 4-13 and Figure 4-14, the multiple lines for the case of VDLL correspond to the 

tracking jitter of different satellites, since the gain in VDLL is geometry dependent. It is 

often misunderstood that the VB tracking cannot provide any benefit if all signals were 

weak. These figures clearly demonstrate that the VDLL outperforms the DLL even when 

all signals are equally weak. The gain of the VDLL is a function of geometry. For the 

geometry in this case, the VDLL can provide a 2 to 6 dB sensitivity gain as compared to 

the DLL. As shown in the figure, the DLL can maintain lock as low as 18 dB-Hz, while 

the VDLL can maintain lock as low as 14 dB-Hz for all PRNs. Figure 4-15 to Figure 4-18 
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show the theoretical jitter, the estimated jitter from the true errors, the estimated jitter 

from the filter output and the estimated jitter from the discriminator output of the VDLL 

for four PRNs. It can be observed that all four jitter curves are consistent when the C/N0 

value is above 14 dB-Hz. This further verifies Equation 3.27 and 4.27. The discrepancy at 

or below 14 dB-Hz is because the linear model does not hold when it is losing lock. 

These results are representative of those obtained with the other PRNs. 

 

 
Figure 4-13 Theoretical jitter of VDLL and DLL with a typical geometry in Calgary 
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Figure 4-14 Estimated jitter of VDLL and DLL with a typical geometry in Calgary 

 

 

 
Figure 4-15 Tracking jitter of VDLL on PRN 03 with a typical geometry in Calgary 
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Figure 4-16 Tracking jitter of VDLL on PRN 06 with a typical geometry in Calgary 

 

 
Figure 4-17 Tracking jitter of VDLL on PRN 13 with a typical geometry in Calgary 
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Figure 4-18 Tracking jitter of VDLL on PRN 24 with a typical geometry in Calgary 

 

4.5 Navigation-Domain Weak Signal Tracking 

From the discussions above, it can be seen that the VB tracking loops outperform SB 

tracking loops. However, its performance is still theoretically sub-optimal because the 

measurement residuals are independently estimated by discriminators for each satellite 

signal (Weill 2010). A navigation domain (ND) tracking architecture was proposed by 

Weill (2010) to further improve the performance of the VB tracking architecture. This 

tracking architecture is shown in Figure 4-19. 
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Figure 4-19 ND tracking architecture 

 

The ND tracking loop eliminates the use of discriminators in each channel by 

transforming and integrating the correlation values from the signal parameter domain to 

the navigation solution domain for all satellites in view. The navigation solution used 

with a ND tracking loop is different from a conventional navigation solution. The inputs 

of the navigation solution used within a ND tracking loop are spatial correlations from all 

signals. These spatial correlations are first combined non-coherently to form one 

composite search space, reflecting the raw measurements from all satellites. A search 

strategy is then performed to locate the peak. The search strategy implemented in this 

thesis is a brute force search technique. More sophisticated search algorithms (i.e. hill-

climbing method) can be applied to reduce the search computation (Weill 2010). An 

epoch-by-epoch solution is then obtained, which is the navigation state that corresponds 

to the maximum spatial correlation peak. The three point parabolic interpolation can be 
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used to improve the resolution of the navigation state estimates. Finally a solution domain 

based Kalman filter is used to filter the epoch-by-epoch solution over-time. The filtered 

position, velocity, clock bias, and clock drift are applied to compute the feedback code 

phase and carrier Doppler values for each tracking channel. The NCO in each tracking 

channel will be updated with these reference code phase and carrier Doppler values as in 

VB tracking. The processing flow of a ND tracking loop can be summarized as follows: 

1. Perform Doppler removal and correlation. 

2. Map these correlation values from signal domain to spatial domain. 

3. Non-coherently combine spatial correlations from each satellite. 

4. Estimate the navigation solution corrections by locating the maximum correlation 

peak in spatial domain. 

5. Update code/carrier NCOs based on the updated navigation solution. 

The size of the position search space depends on the expected maximum change 

in user position from estimate to estimate. It is a function of the expected maximum 

velocity and the navigation solution update rate. The position resolution is a compromise 

choice between accuracy and processing load. If interpolation is used, an accuracy of 1 

metre or less can be achieved with a position resolution of 5 metres (Weill 2010). The 

size of the velocity search space depends on the expected maximum change in user 

velocity from estimate to estimate. In other words, it is a function of the expected 

maximum acceleration and the navigation solution update rate. The velocity resolution 

not only depends on the required accuracy and processing load, but also the coherent 

integration period. This is due to the frequency response of the correlation operation, 

which manifests itself as the familiar ‘sinc’ function. The search space for all navigation 
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parameters in this thesis is 8-dimensional. The question of the most efficient shape of the 

search space is not examined here and, for implementation reasons, an eight dimensional 

hypercube is used. It is perhaps reasonable, however, to assume that the shape of the 

horizontal position and velocity search spaces are circular, where the radii of the position 

and velocity search spaces should be chosen as a function of the C/N0, user dynamics and 

the accuracy of the navigation solution. Figure 4-20 shows the top view of two spatial 

correlation peaks on the northing-easting plane from live GPS L1 C/A signals collected 

in open-sky environment. Because the search space is 8-dimensional, 6 parameters are 

fixed to their estimates to display the spatial correlation peak in a plane. 
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Figure 4-20 Spatial correlation 

 

After combining the spatial correlation from all satellites, the navigation state 

estimates can be obtained by searching for the maximum peak in the navigation domain. 

To provide the navigation state estimates with a resolution beyond the search space 

resolution, the parabolic interpolation method used in Satyanarayana et al (2010), can be 

applied to the adjacent spatial correlation values near the maximum spatial correlation 

peak. It should be noted that this parabolic interpolation method is not applied to 
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interpolate the entire correlation peak, since the entire spatial correlation function in each 

dimension is not parabolic. However, the region around the peak of the spatial correlation 

function is smooth and well behaved and can, therefore, be approximated by a parabola. 

A two-dimensional example of this is shown in Figure 4-21. 

 

Figure 4-21 Parabolic interpolation the peak Area of spatial correlation 

 

The use of a ND tracking architecture has some distinct advantages. Firstly, it 

eliminates the use of discriminators. This is beneficial as discriminators perform poorly 

under weak signal conditions and when the coherent integration is short. Secondly, the 

process of combining the spatial correlation itself is equivalent to an ideal C/N0 based 

measurement weighting scheme. C/N0 based measurement weighting schemes are 

popular for high sensitivity receivers. One problem of the traditional weighting schemes 
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is that, as the signal power decreases and the multipath fading increases, the estimated 

C/N0 value becomes biased and relatively noisy. The ND architecture avoids the use of 

these, potentially inaccurate, C/N0 estimates. Thirdly, the navigation solution in the ND 

architecture is fully constrained by the search space in navigation domain. This will 

constrain the potential outliers to the pre-defined navigation search space. And, finally, 

since the correlation summation is performed in spatial domain, correlations of signals 

with different modulation schemes can be directly combined. Thus, the ND architecture 

can potentially support correlation-level integration of GNSS signals and the signals-of-

opportunities, which support range-based navigation. 

 

4.6 Developed Tracking/Receiver Architectures in GSNRx-hs
TM

 

Four weak signal tracking schemes namely scalar-based (SB), decentralized vector-based 

(DVB), centralized vector-based (CVB), and navigation-domain (ND) were implemented 

during the study of this thesis, and fully implemented in the high sensitivity version of the 

C++ GNSS navigation software receiver (GSNRx-hs
TM

). Each of these tracking schemes 

can use any combination of the four integrators, namely the bit aiding coherent integrator, 

the bit extracting coherent integrator, the squaring non-coherent integrator, and the 

magnitude non-coherent integrator discussed earlier. The FFT based synthetic correlator 

in frequency domain algorithm was implemented in GSNRx-hs
TM

 to accelerate the 

processing speed of various implemented tracking schemes. Data bit and coarse time 

aiding modules were implemented in GSNRx-hs
TM

 as well. Figure 4-22  - Figure 4-25  

show these implemented tracking architectures in GSNRx-hs
TM

 respectively. The 

components that are different from the conventional tracking loops have been highlighted 
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in red. Coarse time navigation solution was implemented in the SB, DVB and CVB weak 

signal tracking loops but the ND weak signal tracking loop. To implement the coarse 

time solution in the ND tracking loop, an exhaustive search on the GPS timing error is 

required, which will further increase the computation load of the ND tracking loop. 

The SB weak signal tracking loop is the one, within these four tracking loops, 

closed to a conventional tracking loop. The main differences are the use of the integrator 

for a longer integration and the multi-correlator based code phase and carrier frequency 

discriminators. Although several code/carrier discriminators are implemented in GSNRx-

hs
TM

, the default code phase discriminator is an envelope EML discriminator, while the 

default carrier frequency discriminator is a ML search frequency estimator. In a SB 

tracking loop, if the loop filter outputs were passed to the navigation solution, instead of 

the NCOs, and if the navigation solution feedback was applied to control the NCOs, the 

modified SB tracking loop becomes a DVB tracking loop. In a DVB tracking loop, if the 

channel filters were removed, the modified DVB tracking loop becomes a CVB tracking 

loop. In a CVB tracking loop, since the discriminator outputs are directly used to correct 

pseudoranges and pseudorange-rates without any filtering over time, a KF-based 

navigation solution must be utilized to smooth the inputs of NCOs. In addition, the 

measurement variance values should be adjusted to count for the absence of the channel 

filters. CVB tracking loops have one major advantage over SB and DVB tracking loops. 

The measurements from a CVB tracking loop are uncorrelated over time, since the 

channel filters are absent. This will be useful for the quality control of the measurements 

in a PVT solution. In a CVB tracking loop, if the code/carrier discriminators were 
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removed, and a standard navigation solution was replaced by an ML navigation solution, 

the modified CVB tracking loop becomes a ND tracking loop.  

 

 
Figure 4-22 Implemented scalar-based weak signal tracking loop 
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Figure 4-23 Implemented decentralized vector-based weak signal tracking loop 

 

 
Figure 4-24 Implemented centralized vector-based tracking loop 

 



121 

 

 
Figure 4-25 Implemented navigation domain tracking loop 

 

4.7 Performance Assessment with Hardware Simulator Simulated Signals 

The proposed tracking/receiver architectures were tested using a hardware simulator 

which generates GPS L1 C/A signals conditioned on the test scenario in which the 

receiver traversed a 1500 m square trajectory with a speed of 5 m/s. Two RF streams 

were generated with a Spirent GSS7700 simulator running SimGEN 4.0103. One RF 

stream was un-attenuated and used as the reference for generating data bit aiding. The 

other one was attenuated for testing different implementations of the software receiver 

architectures. In the simulated scenarios, both RF streams were from the same antenna 

and experienced the same dynamics, followed by the amplification using a Mini-Circuits 

ZHL-1217 HLN LNA. The signal was then down-converted and sampled at a rate of 6 

MHz, using a National Instruments front-end consisting of a NI PXIe-5622 Digitizer and 
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a NI PXI5600 RF Down-Converter. IF data was logged to a hard-drive and post-

processed using the GSNRx-hs
TM

.
 
 

 

4.7.1 Performance of Tracking Loops with a Fine-Time Navigation Solution 

Several datasets with different attenuation levels were collected to test the proposed 

tracking loops and the other tracking loops for comparison analysis. The results from two 

of these datasets are presented here. Similar results are observed from other datasets. The 

navigation solution applied within the tested tracking loops in this section is the 

conventional KF-based fine-time solution. Since the fine-time navigation solution is used, 

the receiver must start in an open-sky environment to obtain the GPS timing and 

ephemeris information. After this, the weak signal tracking can be enabled.  

 

4.7.1.1 Simulation Scenario of Dataset 1 

The reference C/N0 values, which are based on the signal power set in the hardware 

simulator, and the estimated C/N0 values obtained from GSNRx-hs
TM 

for the first 

simulated data set are shown in Figure 4-26 and Figure 4-27. GPS L1 C/A signals from 9 

satellites were simulated.  An attenuation of 25 dB was applied to all signals after two 

minutes. After that signals were attenuated by 2 dB per 2 minutes until reaching a total 

attenuation of 35 dB. The attenuation was then reduced by 2 dB per 2 minutes for 10 

minutes. At the end, the attenuation was removed; and the signal power returns to its 

original level. The signal power in this data set is as low as 13 dB-Hz. This test focuses 

on the time period when the C/N0 value is from 23 dB-Hz to 13 dB-Hz.  
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Figure 4-26 Reference C/N0 of dataset 1 

 

 
Figure 4-27 Estimated C/N0 of dataset 1 
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4.7.1.2 Performance Assessment of Conventional Tracking Schemes 

The results from a standard scalar tracking loop in GSNRx
TM

, an estimator KF scalar 

tracking loop in GSNRx-eb
TM

, and a cascaded vector-based tracking loop in GSNRx-

vb
TM 

are presented first. More details on these tracking loops are referred to Petovello & 

Lachapelle (2008) or Chapter 3. To examine the tracking performance, these receivers are 

forced to be operated in tracking mode only if they have been initialized. In all of these 

tracking loops, the coherent integration time is limited to 20 ms, the bit period of the GPS 

L1 C/A code. The standard scalar tracking loop consists of a 3
rd

 PLL with a bandwidth of 

8 Hz, a 1
st
 order DLL with a bandwidth of 0.05 Hz. Carrier aiding was applied to DLL as 

well. The estimator scalar tracking loop is a correlator-based combined KF tracking loop 

which was introduced in Chapter 3. The cascaded vector-based tracking loop is the 

vector-based version of the estimator tracking loop. 

 
Figure 4-28 Estimated trajectories with conventional tracking schemes 
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Figure 4-28 shows the estimated trajectories of these three conventional tracking 

schemes compared to the reference trajectory. None of the tracking loops can 

successfully track all 9 satellites in the entire dataset. Figure 4-29 and Figure 4-30 show 

the position and velocity errors of these tracking schemes. The solution from the standard 

tracking loop lost lock right after the occurring of an attenuation of 25 dB. The solution 

from the cascaded vector tracking loop started fluctuating when the attenuation was 25 

dB; but it takes longer time to drift away than the estimator tracking loop, due to the 

benefit of navigation solution feedback. Oscillations can be observed at the position 

errors of the cascaded vector tracking solution, after an attenuation of 25 dB. Although 

none of these tracking schemes can successfully maintain tracking on all or some of the 

satellites in this data set, the estimator and the cascaded vector tracking loops can track 

the signals for a longer period than the standard tracking loop. They can track signals as 

low as 20 dB-Hz. 
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Figure 4-29 Position errors with conventional tracking schemes 

 

 
Figure 4-30 Velocity errors with conventional tracking schemes 
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4.7.1.3 Performance Assessment of Modified KF Phase Tracking Schemes 

To investigate the benefit of increasing coherent integration time for the estimator 

tracking loop and the cascaded vector tracking loop, the bit aiding coherent integrator and 

the bit extracting coherent integrator were integrated to these two tracking schemes. The 

coherent integration time for all cases here is 200 ms. 

Figure 4-31 shows the estimated trajectories of tracking schemes compared to the 

true reference solution. Figure 4-32 and Figure 4-33 show the position and velocity 

errors. As shown by these figures, for this dataset, increasing coherent integration time 

with bit aiding helps the estimator tracking loop to track signals for a longer period; 

however this is not the case when data bits are estimated. For the cascaded vector 

tracking loop, regardless which coherent integrator was used, the increase of the coherent 

integration time does not help too much. When increasing coherent integration time, the 

cascaded vector tracking loop performs worse than the estimator tracking loop. The 

oscillation in the estimated position errors of the cascaded vector based tracking loop 

seems to indicate that there is a stability issue. Similar observations were found when 

processing other datasets. More analysis on this oscillation behavior is needed in future 

work.     
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Figure 4-31 Estimated trajectories with KF phase tracking schemes 

 

 
Figure 4-32 Position errors with KF phase tracking schemes 
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Figure 4-33 Velocity errors with KF phase tracking schemes 

 

4.7.1.4 Performance Assessment of Developed Tracking Schemes with Dataset 1 

The results of the implemented tracking schemes are presented in this sub-section. The 

dataset was processed with the SB, DVB, CVB, and ND tracking schemes with the bit 

aiding coherent integrators, bit extracting coherent integrators, magnitude non-coherent 

integrators, and squaring non-coherent integrators. The fine-time navigation solutions for 

the SB, DVB, and CVB are measurement-based KF solution; and the fine-time 

navigation solution for the ND is a position-based KF solution. 

With the bit aiding coherent integrator, the coherent integration time was 

extended to 200 ms, followed by 4 non-coherent integrations. Multi-correlator covers the 

code phase uncertainty of 2 chips and the carrier Doppler frequency uncertainty of 100 

Hz. For the SB tracking loop, a 1
st
 order DLL with bandwidth of 0.05 Hz, which is aided 
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by a 2
nd

 order FLL with bandwidth of 0.4 Hz is used. The position errors and the velocity 

errors are shown in Figure 4-34 and Figure 4-35 respectively. All four tracking loops can 

track all 9 satellites over the entire dataset. The statistics of the 3D position and velocity 

errors for each tracking loop are summarized in Table 4-2 - Table 4-9. The position errors 

of the ND tracking loop are about 1.5 - 2 times larger than those from other tracking 

loops. The velocity errors of the ND tracking loops are about 2 times worse than those 

from other tracking loops. The maximum absolute horizontal position error (8.41 m) and 

vertical position error (10.54 m) are from the ND tracking loop as well. Overall, the CVB 

tracking loop provides the best solution among these solutions in terms of accuracy when 

data bit aiding was utilized.  

 

 
Figure 4-34 Position errors from the proposed tracking schemes with a bit aiding 

coherent integrator dataset 1 
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Figure 4-35 Velocity errors from the proposed tracking schemes with a bit aiding 

coherent integrator dataset 1 

 

The following results are from the developed tracking loops with bit extracting 

coherent integrators. The coherent integration time is 200 ms. The accumulations from 

the bit extracting coherent integrator were further non-coherently integrated. The 

resultant total dwell time is 800 ms (200 ms of coherent integration and 4 OR #???  non-

coherent integrations). The position errors and the velocity errors are shown in Figure 

4-36 and Figure 4-37, respectively. All four tracking loops can track all nine satellites 

over the entire dataset. The statistics of the 3D position and velocity errors for each 

tracking loop are summarized in Table 4-2 to Table 4-9. Overall, the CVB tracking loop 

provides the best solution in terms of accuracy for both position and velocity among four 

tracking loops. However, the maximum absolute position and velocity errors are from the 

CVB tracking loop as well. When using the bit extracting coherent integrator, the 
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horizontal and vertical position accuracies are about two to threee times worse than those 

using data bit adding, depending on which tracking loop is used.   

 
Figure 4-36 Position errors from the proposed tracking schemes with a bit 

extracting coherent integrator for dataset 1 
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Figure 4-37 Velocity errors from the proposed tracking schemes with a bit 

extracting coherent integrator for dataset 1 

 

The results from the developed tracking loops with magnitude non-coherent 

integrators are presented below. Since data bit aiding was not available, the coherent 

integration time is limited to 20 ms, the bit period on GPS L1 in this case. The 

accumulations were non-coherently integrated using 40 magnitude non-coherent 

integrations. The resultant total dwell time is 800 ms. The position errors and the velocity 

errors are shown Figure 4-38 and Figure 4-39 respectively. In this case, all four tracking 

loops can track all satellites over the entire dataset. As shown by Table 4-2 - Table 4-9, 

overall the ND tracking loop still provides the worst position solution among four 

tracking loops. For the velocity solution, the CVB tracking loop provides the worst result 

in this case. 
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Figure 4-38 Position errors from the proposed tracking schemes with a magnitude 

non-coherent integrator for dataset1 

 

 
Figure 4-39 Velocity errors from the proposed tracking schemes with a magnitude 

non-coherent integrator for dataset1 
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The results from the developed tracking loops with squaring non-coherent 

integrators are presented below. The coherent integration time is limited to 20 ms. The 

accumulations were non-coherently integrated by 40 squaring non-coherent integrations. 

The resultant total dwell time is 800 ms or 820 ms?? . The position errors and the velocity 

errors are shown in Figure 4-40 and Figure 4-41, respectively. The statistics of the 3D 

position and velocity errors for each tracking loop are summarized in Table 4-2 to Table 

4-9. All four tracking loops can track all satellites over the entire dataset. The results with 

squaring non-coherent integrators are similar to the results with magnitude non-coherent 

integrators. 

 
Figure 4-40 Position errors from the proposed tracking schemes with the squaring 

non-coherent integrator for dataset 1 
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Figure 4-41 Velocity errors from the proposed tracking schemes with the squaring 

non-coherent integrator for dataset 1 

 

 

 

 

 

Table 4-2 Mean and standard deviation values of easting position errors (m) 

Easting 

Position 

Errors (m) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
0.1 1.2 -0.1 0.8 -0.3 0.6 0.0 1.6 

Bit Extracting 

Coherent 
-0.2 1.6 -0.8 2.0 -0.1 2.0 -0.0 2.4 

Squaring  

Non-coherent 
0.1 2.2 -0.1 1.2 0.0 2.5 -1.2 2.9 

Magnitude 

Non-coherent 
-0.3 1.8 -2.0 2.6 -0.4 1.5 -1.3 2.6 



137 

 

 

 

 

Table 4-3 Mean and standard deviation values of northing position errors (m)  

Northing 

Position 

Errors (m) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
0.1 1.3 0.2 1.0 -0.1 0.6 0.2 1.9 

Bit Extracting 

Coherent 
0.6 2.1 0.6 1.8 0.3 2.1 0.6 3.5 

Squaring  

Non-coherent 
-0.2 2.9 0.9 1.9 0.2 2.7 -1.3 3.3 

Magnitude 

Non-coherent 
0.8 1.7 1.9 3.0 0.5 1.4 -2.0 3.2 

 

 

 

 

 

Table 4-4 Mean and standard deviation values of vertical position errors (m) 

Vertical 

Position 

Errors (m) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
1.5 2.3 1.7 1.5 2.7 1.8 0.9 4.1 

Bit Extracting 

Coherent 
1.4 3.0 2.1 4.5 0.9 2.4 1.1 7.4 

Squaring  

Non-coherent 
-0.3 3.7 0.6 2.0 0.7 2.8 -3.1 4.8 

Magnitude 

Non-coherent 
1.4 2.8 1.3 2.1 1.2 2.2 -3.9 4.4 
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Table 4-5 Horizontal and vertical maximum absolute position errors (m) 

Max Abs. 

Position 

Errors (m) 

SB DVB CVB ND 

2D Up 2D Up 2D Up 2D Up 

Bit Aiding 

Coherent 
4.7 8.6 3.8 5.9 2.5 8.2 8.4 10.6 

Bit Extracting 

Coherent 
12.9 13.0 13.9 15.1 13.4 10.2 16.6 17.8 

Squaring  

Non-coherent 
15.5 12.4 11.7 7.3 12.2 12.4 11.6 15.2 

Magnitude 

Non-coherent 
8.0 10.4 16.9 7.3 9.5 9.1 11.5 14.9 

 

 

 

 

 

 

 

 

Table 4-6 Mean and standard deviation values of easting velocity errors (m) 

Easting 

Velocity 

Errors (m/s) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
-0.0 0.1 -0.0 0.1 -0.0 0.0 -0.0 0.1 

Bit Extracting 

Coherent 
-0.0 0.2 -0.0 0.2 -0.0 0.3 -0.0 0.2 

Squaring  

Non-coherent 
-0.0 0.1 -0.0 0.1 -0.0 0.2 -0.0 0.32 

Magnitude 

Non-coherent 
-0.0 0.2 -0.0 0.2 -0.0 0.3 -0.0 0.2 
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Table 4-7 Mean and standard deviation values of northing velocity errors (m) 

Northing 

Velocity 

Errors (m/s) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
-0.0 0.1 -0.0 0.1 -0.0 0.0 0.0 0.1 

Bit Extracting 

Coherent 
0.0 0.2 0.0 0.2 0.0 0.3 0.0 0.2 

Squaring  

Non-coherent 
0.0 0.1 0.0 0.1 0.0 0.3 0.0 0.2 

Magnitude 

Non-coherent 
0.0 0.2 0.0 0.2 0.1 0.3 0.0 0.2 

 

 

 

 

 

 

 

 

Table 4-8 Mean and standard deviation values of vertical velocity errors (m) 

Vertical 

Velocity 

Errors (m/s) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
0.0 0.0 0.0 0.0 0.0 0.0 -0.0 0.1 

Bit Extracting 

Coherent 
-0.0 0.2 0.0 0.2 0.0 0.2 -0.0 0.1 

Squaring  

Non-coherent 
0.0 0.1 0.0 0.1 0.0 0.2 -0.0 0.1 

Magnitude 

Non-coherent 
0.0 0.1 0.1 0.2 0.1 0.2 -0.0 0.1 
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Table 4-9 Horizontal and vertical maximum absolute velocity errors (m) 

Max Abs. 

Velocity 

Errors (m/s) 

SB DVB CVB ND 

2D Up 2D Up 2D Up 2D Up 

Bit Aiding 

Coherent 
0.2 0.1 0.2 0.1 0.2 0.1 1.1 0.3 

Bit Extracting 

Coherent 
1.6 1.6 1.9 1.2 3.1 1.7 1.2 0.6 

Squaring  

Non-coherent 
1.2 0.4 1.0 0.3 2.6 1.3 0.8 0.3 

Magnitude 

Non-coherent 
2.0 0.8 2.0 1.0 3.0 1.8 0.8 0.3 

 

 

 

 

 

4.7.1.5 Simulation Scenario of Dataset 2 

For the previous dataset, all four developed tracking loops can track all 9 satellites in the 

entire dataset. A hardware simulated dataset with weaker signals was used to further test 

the developed tracking loops The reference C/N0 values and the estimated C/N0 values for 

the second simulated data set are shown in Figure 4-42 and Figure 4-43. The reference 

C/N0 values are based on the signal power set in the hardware simulator. The estimated 

C/N0 values are obtained from GSNRx-hs
TM 

using data bit aiding. GPS L1 C/A signals 

from 9 satellites were simulated.  An attenuation of 30 dB was applied to all signals after 

two minutes. After that signals were attenuated by 1 dB per 2 minutes until reaching a 

total attenuation of 35 dB. The attenuation was then reduced by 2 dB per 2 minutes for 10 
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minutes. At the end, the attenuation was removed; and signal power returns to its original 

level. The signal power in this data set is as low as 8 dB-Hz. 

 
Figure 4-42 Reference C/N0 of dataset 2 
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Figure 4-43 Reference C/N0 of dataset 2 

 

4.7.1.6 Performance Assessment of Developed Tracking Schemes with Dataset 2 

Since the standard tracking loop, the estimator based tracking loop, and the cascaded 

tracking loop cannot maintain tracking in this dataset as well, this section will only 

present the results of the developed weak signal tracking loops for dataset 2.  

For the case of using the bit aiding coherent integrator, the coherent integration 

time was extended to 400 ms, followed by 4 non-coherent integrations. Multi-correlator 

covers the code phase uncertainty of 2 chips and the carrier Doppler frequency 

uncertainty of 100 Hz. For the SB tracking loop, a 1
st
 order DLL with a bandwidth of 

0.05 Hz, which was aided by a 2
nd

 order FLL with a bandwidth of 0.2 Hz was used. The 

estimated trajectories, the position errors, the velocity errors are shown in Figure 4-44, 

Figure 4-45, and Figure 4-46 respectively. Figure 4-47 and Figure 4-48 illustrate the 

estimated Doppler values of PRN 09 and PRN 23 from the SB, DVB, CVB, and ND 
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tracking loops.  The statistics of the 3D position and velocity errors for each tracking loop 

are summarized in Table 4-10 - Table 4-14. With data bit aiding, the SB is the only 

tracking loop that cannot successfully track all 9 satellites in dataset 2. The position and 

velocity errors from the DVB and CVB tracking loops are similar. The ND tracking loop 

provides the best position and velocity solutions among four tracking loops. 

 

 
Figure 4-44 Estimated trajectories from the proposed tracking schemes with a bit 

aiding coherent integrator for dataset 2 
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Figure 4-45 Position errors from the proposed tracking schemes with the a aiding 

coherent integrator for dataset 2 

 

 
Figure 4-46 Velocity errors from the proposed tracking schemes with a bit aiding 

coherent integrator for dataset 2 
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Figure 4-47 Estimated Doppler values of PRN 09 with a bit aiding coherent 

integrator for dataset 2 

 

 
Figure 4-48 Estimated Doppler values of PRN 23 with a bit aiding coherent 

integrator for dataset 2 
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For the case when using a bit extracting coherent integrator, the coherent 

integration time was extended to 400 ms, followed by four magnitude-based non-

coherent integrations. Other tracking parameters are the same as the case of using the bit 

aiding coherent integrator. In this case, the SB tracking loop always lost lock 

immediately when an attenuation of 30 dB occurred. The DVB and CVB tracking loops 

lost lock for almost all satellites when the signal power was around 10 dB-Hz. The CVB 

tracking loop can track for a longer time period than the DVB tracking loop. The carrier 

tracking for this dataset with the bit extracting coherent integrator is much worse than the 

case when bit adding is available.  The ND tracking loops is the only tracking loop that 

can track all nine satellites in this case.  

 
Figure 4-49 Estimated trajectories from the proposed tracking schemes with a bit 

extracting coherent integrator for dataset 2 
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Figure 4-50 Position errors from the proposed tracking schemes with a bit 

extracting coherent integrator for dataset 2 

 

 
Figure 4-51 Velocity errors from the proposed tracking schemes with a bit 

extracting coherent integrator for dataset 2 
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Figure 4-52 Estimated Doppler values of PRN 09 with a bit extracting coherent 

integrator for dataset 2 

 

 
Figure 4-53 Estimated Doppler values of PRN 23 with a bit extracting coherent 

integrator for dataset 2 
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The results below are from the cases using magnitude non-coherent integrations. In this 

case, the coherent integration time was limited to 20 ms. 80 non-coherent integrations 

was used. The SB tracking loop is the only one failed to track all satellites in this case. 

The other three tracking loops can successfully track all 9 satellites even when the signal 

power was as low as 8 dB-Hz. From Figure 4-54 - Figure 4-58 and Table 4-10 - Table 

4-14, again the ND tracking loop is still the one that provides the most robust and precise 

signal parameter estimation, especially when the signal power was below 15 dB-Hz. The 

CVB is the second best option as shown by the accuracy of position estimates, although 

the velocity accuracy from CVB and DVB are not significantly different. 

 

 
Figure 4-54 Estimated trajectories from the proposed tracking schemes with a 

magnitude non-coherent integrator for dataset 2 
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Figure 4-55 Position errors from the proposed tracking schemes with a magnitude 

non-coherent integrator for dataset 2 

 

 
Figure 4-56 Velocity errors from the proposed tracking schemes with a magnitude 

non-coherent integrator for dataset 2 

 



151 

 

 
Figure 4-57 Estimated Doppler values of PRN 09 with a magnitude non-coherent 

integrator for dataset 2 

 

 
Figure 4-58 Estimated Doppler values of PRN 23 from a magnitude non-coherent 

integrator for dataset 2 
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The results for the cases with squaring non-coherent integrations are presented below. 

The coherent integration time was limited to 20 ms. The accumulations were non-

coherently integrated by 80 squaring non-coherent integrations. Figure 4-59 to Figure 

4-63 show the estimated trajectories, position errors, velocity errors, and the estimated 

carrier Doppler of PRN 09 and PRN 23, respectively. Not much performance difference 

can be observed when compared to the case of using the magnitude non-coherent 

integrator. The SB tracking loop is still the only one that failed to track all satellites in 

this case. The other three can successfully maintain tracking for all nine satellites for the 

entire dataset. Again the ND tracking loop is still the option that provides the most robust 

and precise signal parameter estimation. The CVB is still the second best option as shown 

by the accuracy of position estimates. 

 
Figure 4-59 Estimated trajectories from the proposed tracking schemes with a 

squaring non-coherent integrator for dataset 2 
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Figure 4-60 Position errors from the proposed tracking schemes with a squaring 

non-coherent integrator for dataset 2 

 

 
Figure 4-61 Velocity errors from the proposed tracking schemes with a squaring 

non-coherent integrator for dataset 2 
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Figure 4-62 Estimated Doppler values of PRN 09 with a squaring non-coherent 

integrator for dataset 2 

 

 
Figure 4-63 Estimated Doppler values of PRN 23 with a squaring non-coherent 

integrator for dataset 2 
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Table 4-10 Mean and standard deviation values of easting position errors (m) 

Easting 

Position 

Errors (m) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
N/A N/A -0.6 4.2 0.2 6.7 0.3 5.5 

Bit Extracting 

Coherent 
N/A N/A N/A N/A N/A N/A -1.5 18.1 

Squaring  

Non-coherent 
N/A N/A -9.2 48.9 4.6 25.7 0.2 13.8 

Magnitude 

Non-coherent 
N/A N/A -21.5 63.4 -4.2 26.8 -0.7 7.6 

Note: some of the numbers are not available due to the loss of lock of the particular 

tracking loop. 

 

 

 

Table 4-11 Mean and standard deviation values of northing position errors (m) 

Northing 

Position 

Errors (m) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
N/A N/A -7.9 12.0 1.14 8.4 0.8 5.2 

Bit Extracting 

Coherent 
N/A N/A N/A N/A N/A N/A -7.2 17.4 

Squaring  

Non-coherent 
N/A N/A -16.0 68.0 -2.9 25.9 -2.3 15.5 

Magnitude 

Non-coherent 
N/A N/A 17.0 42.1 4.9 23.9 -2.8 9.5 

Note: some of the numbers are not available due to the loss of lock of the particular 

tracking loop. 
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Table 4-12 Mean and standard deviation values of vertical position errors (m) 

Vertical 

Position 

Errors (m) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
N/A N/A -1.6 4.0 1.2 8.5 3.2 5.2 

Bit Extracting 

Coherent 
N/A N/A N/A N/A N/A N/A -16.0 16.0 

Squaring  

Non-coherent 
N/A N/A -1.4 45.2 -1.47 19.1 -3.8 9.7 

Magnitude 

Non-coherent 
N/A N/A 6.5 33.1 1.9 20.8 -7.9 11.1 

Note: some of the numbers are not available due to the loss of lock of the particular 

tracking loop. 

 

 

 

 

 

Table 4-13 Horizontal and vertical maximum absolute position errors (m)  

Max Abs. 

Position 

Errors (m) 

SB DVB CVB ND 

2D Up 2D Up 2D Up 2D Up 

Bit Aiding 

Coherent 
N/A N/A 63.8 9.5 47.5 51.3 25.5 19.4 

Bit Extracting 

Coherent 
N/A N/A N/A N/A N/A N/A 84.0 60.0 

Squaring  

Non-coherent 
N/A N/A 288.4 143.9 110.8 76.4 90.7 34.0 

Magnitude 

Non-coherent 
N/A N/A 321.0 107.3 112.5 74.8 44.7 43.7 

Note: some of the numbers are not available due to the loss of lock of the particular 

tracking loop. 
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Table 4-14 Mean and standard deviation values of easting velocity errors (m) 

Easting 

Velocity 

Errors (m/s) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
N/A N/A -0.01 0.3 0.01 0.59 0.00 0.4 

Bit Extracting 

Coherent 
N/A N/A N/A N/A N/A N/A -0.0 0.9 

Squaring  

Non-coherent 
N/A N/A -0.0 1.0 0.0 1.0 0.01 0.6 

Magnitude 

Non-coherent 
N/A N/A -0.1 1.2 0.0 1.0 -0.0 0.5 

Note: some of the numbers are not available due to the loss of lock of the particular 

tracking loop. 

 

 

 

 

 

Table 4-15 Mean and standard deviation values of northing velocity errors (m) 

Northing 

Velocity 

Errors (m/s) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
N/A N/A -0.0 0.5 0.1 0.6 0.0 0.4 

Bit Extracting 

Coherent 
N/A N/A N/A N/A N/A N/A 0.0 0.9 

Squaring  

Non-coherent 
N/A N/A -0.0 1.3 0.1 1.0 0.0 0.6 

Magnitude 

Non-coherent 
N/A N/A 0.1 1.2 0.1 1.1 0.01 0.5 

Note: some of the numbers are not available due to the loss of lock of the particular 

tracking loop. 



158 

 

 

 

 

Table 4-16 Mean and standard deviation values of vertical velocity errors (m)  

Vertical 

Velocity 

Errors (m/s) 

SB DVB CVB ND 

Mean 
Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 
Mean 

Std. 

Dev. 

Bit Aiding 

Coherent 
N/A N/A 0.0 0.1 0.1 0.2 0.0 0.2 

Bit Extracting 

Coherent 
N/A N/A N/A N/A N/A N/A -0.0 0.5 

Squaring  

Non-coherent 
N/A N/A 0.1 0.5 0.2 0.5 0.0 0.2 

Magnitude 

Non-coherent 
N/A N/A 0.1 0.4 0.2 0.5 0.0 0.2 

Note: some of the numbers are not available due to the loss of lock of the particular 

tracking loop. 

 

 

 

 

Table 4-17 Horizontal and vertical maximum absolute velocity errors (m)  

Max Abs. 

Velocity 

Errors (m/s) 

SB DVB CVB ND 

2D Up 2D Up 2D Up 2D Up 

Bit Aiding 

Coherent 
N/A N/A 7.8 0.9 4.1 2.1 1.9 0.7 

Bit Extracting 

Coherent 
N/A N/A N/A N/A N/A N/A 5.2 1.8 

Squaring  

Non-coherent 
N/A N/A 7.0 2.0 6.1 2.5 2.8 1.1 

Magnitude 

Non-coherent 
N/A N/A 6.4 2.1 5.8 3.0 2.5 0.9 

Note: some of the numbers are not available due to the loss of lock of the particular 

tracking loop. 
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4.7.2 Performance of Tracking Loops with a Coarse-Time Navigation Solution 

In the previous section, the performance of various scalar-based and vector-based 

tracking schemes with a fine-time navigation solution was examined. As mentioned 

earlier, GSNRx-hs
TM 

has the option to use coarse time aiding information to avoid the 

transmit time decoding. If the ephemeris information is already available via aiding or 

extended ephemeris prediction, this option is very useful, since it can reduce the TTFF 

(avoid waiting for the 6 sec decoding time for strong signals), and decoding even 

becomes impossible, when the signals were very weak. 

The performance of the SB, DVB, and CVB tracking loops with a coarse-time 

navigation solution is now assessed. The performance of ND tracking loops is not 

discussed here since the coarse-time processing for ND tracking loops is different from 

others and has not been implemented. Dataset 1 was reprocessed with the SB, DVB and 

CVB tracking loops with 10 squaring non-coherent integrations and 8 magnitude non-

coherent integrations. The tracking parameters used in this case remain the same as the 

ones using the fine-time navigation solution. Usually the coarse time aiding has accuracy 

better than 2 s (Ma 2011). The coarse timing error of 1 s was manually introduced to the 

coarse time aiding. Figure 4-64 and Figure 4-65 show the position and velocity errors 

while the timing error of the coarse time solution is plotted in Figure 4-66. The position 

and velocity solutions from the SB tracking loop are less noisy than those from the DVB 

and CVB tracking loops. However, there is a large vertical position error (50 m) in the 

SB tracking loop results. The largest vertical error from the DVB tracking loop is 38 m, 
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and 30 m from the CVB tracking loop. These errors correspond to the epochs when the 

signals were around 15 – 13 dB-Hz.  

 
Figure 4-64 Position errors with coarse time aiding 
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Figure 4-65 Velocity errors with coarse time aiding 

 

 
Figure 4-66 Error of the estimated GPS time 
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4.8 Performance Assessment with Real World Indoor Signals 

The developed weak signal tracking architectures have been tested with real indoor 

signals. The results presented in this section are based on a set of kinematic pedestrian 

GPS L1 C/A data collected in and near a North American wooden house. In this 

experiment, an antenna was mounted on an aluminum frame carried by a pedestrian. The 

pedestrian walked from backyard to the ground floor of the house, then transitioned from 

the ground floor to the basement. At the end, the pedestrian walked back to the backyard. 

The test environments inside and outside the house, are shown in Figure 4-67, Figure 

4-68, and Figure 4-69.  

 

  

Figure 4-67 Test environment 
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Figure 4-68 Walking outdoor 

 

 
Figure 4-69 Walking in basement 
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The GPS IF data was collected with a National Instrument (NI) RF front-end with 

an OCXO oscillator. More information on the NI RF front-end and the specification of 

the OCXO use inside can be found in National Instruments (2006). A NovAtel’s SPAN 

HG1700
TM

 system, which includes a L1/L2 survey grade GNSS receiver and a tactical 

grade Honeywell IMU (HG1700), was placed in the aluminum frame to obtain the 

reference solution. The specifications of HG1700 provided in Table 4-18 (NovAtel 

2009).  

Table 4-18 IMU specifications 

IMU HG1700 

Gyro Bias (deg/hr) 1.0 

Gyro Bias Stability (deg/hr) N/A 

Gyro Scale Factor (ppm) 150 

Accelerometer Bias (mg) 1.0 

Accelerometer Bias stability (mg) N/A 

Accelerometer Scale Factor (ppm) 300 

 

The reference trajectory based on the navigation solution from the NovAtel’s 

Inertial Explorer
TM

 software package and the SPAN-HG1700
TM

 GPS/INS measurements, 

is shown in Figure 4-70. This reference trajectory was generated by a RTK GPS/INS 

tightly coupled solution with forward-backward smoothing. The estimated standard 

deviations of the reference positions and velocities over time provided by Inertial 

Explorer™ are plotted in Figure 4-71 and Figure 4-72. Because of the use of tactical 

grade IMU HG1700, the reference trajectory can be maintained with the metre level 

accuracy while the pedestrian was walking indoors. The sky-plot is in Figure 4-73. There 

are 8 satellites in view during the data collection. 
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Figure 4-70 Reference trajectory 
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Figure 4-71 Position standard deviation of the reference solution 

 

 
Figure 4-72 Velocity standard deviation of the reference solution 
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Figure 4-73 Sky plot 

 

As shown in the previous section, although the ND tracking loop is the most 

robust solution for very weak signals, its navigation solution has poorer accuracy than the 

other three developed weak signal tracking loops for signals with C/N0 values higher than 

13 dB-Hz. Also, the two non-coherent integrators (the magnitude-based and squaring-

based) show similar performance in terms of sensitivity and accuracy. In this section, the 

results from the SB, DVB, and CVB tracking loops with/without data bit aiding are 

compared. In this experiment, the antenna was initialized outdoor first; hence the fine-

time navigation solution was used in the processing.  
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The collected IF dataset was processed with the SB, DVB, and CVB tracking 

loops using the bit aiding coherent integrator that can wipe-off the data bits with the 

external data bit aiding. The total coherent integration time of 500 ms (25 bits) was used 

for all three tracking loops. A 1
st
 order DLL with a bandwidth of 0.05 Hz, which was 

aided by a 2
nd

 order FLL with a bandwidth of 0.6 Hz, was used for the SB tracking loop 

and the channel filters of the DVB tracking loop. An EKF navigation filter was used for 

all tracking loops. The solution rate was 1 Hz. All eight satellites can be successfully 

tracked by all three tracking loops in the entire dataset.  The estimated C/N0 values from 

the CVB tracking loop in GSNRx-hs
TM

 are shown in Figure 4-74. The estimated C/N0 

values from the other two tracking loops, which are not shown, are very similar to the 

ones from the CVB tracking loop. It is shown that large C/N0 fluctuations can be 

observed when the antenna was moving. The C/N0 values can be as low as 10 dB-Hz in 

this dataset. 



169 

 

 
Figure 4-74 Estimated C/N0 values from GSNRx-hs

TM
 

 

The easting, northing, and vertical position errors for the developed SB, DVB, 

and CVB tracking loops are shown in Figure 4-75. The easting, northing, and vertical 

velocity errors are shown in Figure 4-76.  The RMSE values of the estimated position and 

velocity solutions are shown in Table 4-19 and Table 4-20, respectively. For this dataset, 

when coherent integration time was extended to 500 ms (25 bit periods), the RMSE 

values of the position estimates of these tracking loops are all smaller than 2 m; the 

RMSE values of the velocity estimates from these tracking loops are smaller than 0.25 

m/s. The SB provides both the worst position and velocity accuracies. 
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Figure 4-75 Position errors of developed tracking loops with 25 coherent 

integrations 

 

Table 4-19 Position error statistics with 25 coherent integrations 

Position 

Errors 

RMSE (m) 

SB DVB CVB 

Easting 0.98 0.84 0.93 

Northing 1.68 1.52 1.24 

Vertical 1.96 0.92 1.61 
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Figure 4-76 Velocity errors of developed tracking loops with 25 coherent 

integrations 

 

Table 4-20 Velocity error statistics with 25 coherent integrations 

Velocity 

Errors 

RMSE (m/s) 

SB DVB CVB 

Easting 0.17 0.17 0.16 

Northing 0.22 0.21 0.19 

Vertical 0.13 0.12 0.11 

 

The collected IF dataset was re-processed without using the external data bit aiding. For 

all three tracking loops, 25 non-coherent integrations were used after 1 bit period (20 ms) 

of coherent integration. The resultant dwell time was 500 ms. Other tracking parameters 

remained unchanged. The easting, northing and vertical position errors for the developed 

tracking loops are shown in Figure 4-77. The easting, northing and vertical velocity 

errors are shown in Figure 4-78.  The RMSE values of the estimated position and velocity 

solutions are shown in Table 4-21 and Table 4-22, respectively. In this case, the CVB 
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solution provides the best position solution among the three options while the DVB 

solution provides the worst position solution. The velocity solutions from these three 

tracking loops are similar. As shown in Figure 4-77, after 200 s, the position estimates of 

the DVB solution are significantly biased. The bias on the vertical direction is up to 15 m. 

To investigate if this bias is related to the EKF navigation solution, the data was re-

processed by the DVB tracking loop with a LSQ solution instead of an EKF solution. The 

position errors are shown in Figure 4-79. Such large bias is not observed in the solution 

from a LSQ with the DVB tracking loops. An effort of tuning the EKF parameters was 

made. However, the biases with similar magnitudes can still be observed when using an 

EKF in the navigation solution. The exact cause of this issue will be investigated in 

future. 

 
Figure 4-77 Position errors of developed tracking loops with 25 non-coherent 

integrations 
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Table 4-21 Position error statistics with 25 non-coherent integrations 

Position 

Errors 

RMSE (m) 

SB DVB CVB 

Easting 1.06 2.34 0.77 

Northing 1.52 1.69 1.36 

Vertical 1.60 10.26 1.49 

 

 

 
Figure 4-78 Velocity errors of developed tracking loops with 25 non-coherent 

integrations 

 

Table 4-22 Velocity error statistics with 25 non-coherent integrations 

Velocity 

Errors 

RMSE (m/s) 

SB DVB CVB 

Easting 0.19 0.18 0.16 

Northing 0.25 0.25 0.22 

Vertical 0.13 0.14 0.12 
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Figure 4-79 Position errors comparison between the DVB with a KF solution and 

the DVB with a LSQ solution  

 

 

4.9 Summary 

Four signal integrators and four weak signal tracking loops were presented in this 

Chapter. These weak signal processing methods with a fine-time navigation solution and 

a coarse-time navigation solution were all implemented in a C++ GNSS software 

receiver, GSNRx-hs
TM

. The implementation, performance, and limitations of these weak 

signal processing architectures were explored in details. The advantages of VB and ND 

tracking loops in terms of tracking robustness were clearly shown using Monte-Carlo 

simulations and the simulated signals from a hardware simulator. With a GPS only 

constellation in Calgary, vector tracking can theoretically provide 2 – 6 dB improvement 

over scalar tracking. The centralized VB tracking loop is recommended for weak signal 
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tracking. Data bit aiding and longer coherent integrations are helpful for weak signal 

tracking as expected. It is recommended to track carrier frequency only for weak signals, 

if carrier phase information is not needed. When data bit aiding is not available, non-

coherent integrations should be used instead of extending coherent integration time by 

estimating data bits from a tracking point of view. Based on the tests with the hardware 

simulated data, even without data bit aiding, the developed centralized and decentralized 

vector-based tracking loops with the multi-correlator frequency discriminator and the 

navigation-domain tracking loops can track signals as low as 8 dB-Hz. Field tests 

conducted in a typical North American home have shown that the developed centralized 

vector-based tracking loop and the scalar-based tracking loop can successfully track 

signals and provide position solution with metre-level accuracy even without data bit 

aiding.
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Chapter Five: Contributions to Context-Aware Receiver Development 

5.1 Background and Motivation 

The design, implementation, and performance of the proposed tracking loops for weak 

signal tracking were discussed in the previous chapter. These tracking/receiver 

architectures constitute a robust solution for urban/indoor navigation. However, the 

tracking strategy may not be an ideal solution for many open-sky applications (i.e. high 

precision survey).  

One of the main disadvantages of the above tracking loops is that they do not 

track the carrier phase. Therefore, receivers that utilize only this type of tracking loops 

cannot be used for high precision applications. The computation load is another 

disadvantage of these tracking loops due to a large amount of correlators utilized to 

extend the tracking region. It will be beneficial that if a receiver can determine when to 

enable the high sensitivity mode. The navigation solution can benefit from the context-

aware processing as well, because such a solution for outdoor and indoor applications 

could be different in terms of the types of measurements, measurement weighting 

methods and even the architectures. 

Context can be categorized as channel context (e.g. indoor vs. outdoor, or more 

precisely attenuated/faded or not) and motion context (e.g. static vs. kinematic). The 

motion context here simply refers to the dynamics due to satellite and user motion, the 

latter not being easily predictable. Because velocity and acceleration can be used to 

describe motion, the motion context can be detected or characterized by a GNSS/INS 

integrated navigation solution or even by the GNSS only navigation solution. The 



177 

 

benefits of knowing the motion context are LOS dynamics compensation for longer 

coherent integration and/or narrower loop bandwidth, in addition to multipath fading 

characterization.  

In contrast to motion context, channel context is more challenging because GNSS 

signals are already weak under open-sky conditions compared to most communication 

signals. It’s important to keep in mind that the use of context-aware processing in this 

thesis, is to help the receiver understand the channel or environment, so it can turn on the 

high sensitivity engine, hopefully before it losses lock on the satellites. Therefore, it is 

important for the context-aware module to provide an alarm to the receiver when it is 

moving from outdoors to indoors and before it is already indoors. As the receiver is 

moving to indoors, multipath and fading will be more significant due to obstructions. 

Therefore detecting and monitoring multipath and fading seem to be the way to solve the 

problem.  

The most common metrics available for channel context detection are listed in 

Table 5-1. Residuals depend on the number of satellites in view and the navigation 

solution at the previous epoch. Phase-Locked Indicator (PLI) and Frequency-Locked 

Indicator (FLI) are indicators of how well the phase and frequency are being tracked. 

They do not have physical meaning regarding the types of channels (i.e. Gaussian, Rician 

or Rayleigh). Correlation shape and chip shape (signal compression technology) in the 

code phase domain can be used to monitor and estimate the distortion due to multipath as 

shown by Weil (1995), Jones et al (2004), Fenton & Jones (2005), and Weil (2007) for 

outdoor applications. C/N0 measures the signal strength of the receiver signals. It is also 

an indicator for the attenuation level of the received signals. This is perhaps the most 
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practically useful and meaningful metric being used to adjust the tracking strategy. It has 

been widely used as the indicator to enable high sensitivity processing in most 

commercial high sensitivity receivers, because tracking loop performance as a function of 

C/N0 values is usually well-known by receiver designers (Ma 2012). The Rician K-factor 

measures the fading level of the received signals. It has been widely used in wireless 

communication as a channel quality indicator (i.e. adaptive modulation), but it has 

received less attention compared to other metrics. 

Table 5-1 Metrics for Context-Aware Detection 

Metrics Descriptions 

PLI Phase-locked indicator 

FLI Frequency-locked indicator 

C/N0 Signal strength level 

Rician K-factor Signal fading level indicator 

Chip Shape  

(Signal compression technology) 
Chip shape of composite signals 

Correlation 
Correlation shape of composite 

signals 

Residuals Measurement residuals 

 

In this section, fading parameter (the Ricean K-factor) are applied to GNSS signal 

monitoring and channel context detection. Three categories of Ricean K-factor estimators 

are introduced: envelope-based, envelope/phase-based and phase-based. Their 

performance, limitations, and practical implementation challenges in a high sensitivity 

GNSS receiver are investigated. These are the contributions of this thesis for the 

developments of a context-aware GNSS software receiver. 
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5.2 Signal Model for Urban and Indoor Environments 

A Gaussian channel model is typically used to model open-sky environments. The 

prompt correlator output can be expressed as follows: 

( )
( ) ( )sin NT f j

s k kP A R d e n
k k k k k kNT f
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π φ
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where 
k

P is the prompt correlator value at the k th  dump epoch , 
k

τ∆ is the code phase 

error, 
k

A is the LOS signal amplitude, 
k

d is the navigation data, 
k

R is the spreading code 

correlation value, 
k

f∆ is the Doppler frequency error, 
k

φ∆ is the carrier phase error, 
s

T  is 

the sample period, N  is the number of coherent integration samples, and
k

n is a sample 

from an additive white Gaussian noise (AWGN) process. 

In a multipath environment, assuming M signal paths exist, the first path 

corresponds to the Line-Of-Sight (LOS) signal while the remaining 1M −  paths 

correspond to Non-Line-Of-Sight (NLOS) signals. If the coherent integration time is 

shorter than the coherence time of the propagation channel, the prompt correlator output 

can be expressed as follows: 
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where 
k

S is the LOS signal component at the k th dump epoch, 
k

M is the multipath or 

NLOS signal component and ,k i
a is the multipath path attenuation.  
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After factoring out the LOS signal component from the NLOS signals component, 

and assuming the relative delays are small relative to the chip length and the relative 

Doppler differences are small relative to the correlator dump rate, then Equation 5.2 can 

be rewritten as 

1

,

0

k k k k
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k i k k

i

k k k
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where ,k i
h is a complex coefficient which represents the channel gain on the i th path at 

the k th dump epoch and 
k

H is the total channel gain at the k th dump epoch.    

If the number of multipath signals approaches infinity and the angles of arrival of 

the multipath signals are uniformly distributed from 0 to 2π , the multipath component 

k
M  becomes a complex Gaussian random variable (Nielsen et al 2009). Therefore, the 

complex channel gain becomes a non-zero mean complex Gaussian process and the 

envelope of the prompt correlation follows the Ricean distribution. 

Although multipath has constructive and destructive effects, sometimes it is 

convenient to model the multipath fading by a complex ‘attenuation’ term. An alternative 

form of the signal model shown above is as follows (Schmid et al 2005): 
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where C is the total received signal power (both LOS and NLOS signals) and 
k

v is 

complex fading attenuation due to the NLOS signals at the k th dump epoch.  
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The fading attenuation 
k

v is a non-zero mean complex Gaussian process. Its 

envelope follows the Ricean distribution (Schmid et al 2005). Since the received signal 

power C has been factored out, the ratio between the deterministic LOS signal power 

component and the NLOS signal power component is defined as the Ricean K-factor: 

2

2
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A
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σ
=  5.5 

where { }v k
A v= Ε  and { }22

v k vv Aσ = Ε − . 

Given 2 2 1
v v

A σ+ = , the LOS power and the NLOS power can be expressed as a 

function of the Ricean K-factor as 
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The Ricean fading model is the generalization of both the Gaussian model, which 

is typically used in outdoor GNSS channel modeling, and the Rayleigh fading model, 

which is commonly used in mobile communication. As the Ricean K-factor approaches 

infinity, the Ricean fading model reduces to the Gaussian model. If the Ricean K-factor is 

zero, the Ricean fading model is equivalent to the Rayleigh fading model. Although the 

Ricean fading model above might not be the exact propagation channel model for GNSS 

signals, it has been used successfully for weak and faded GNSS signal acquisition in HS-
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GNSS receivers (Schmid et al 2005). Therefore, in this research the Ricean fading model 

is used to model the GNSS propagation channel over short durations. 

 

 

5.3 Channel Monitoring with Fading Parameters 

In wireless communications, adaptive modulation technology has been applied recently 

to increase the data rate and maintain low bit error rate (BER) by monitoring and 

predicting communication links and changing the modulation scheme adaptively. One of 

the key metrics typically used in adaptive modulation technology for evaluating 

communication links is the signal fading level, which can be measured by the Ricean K-

factor.  

Ricean K-factor estimators generally can be categorized into three groups: 

envelope-based estimators, envelope/phase-based estimators, and phase-based estimators. 

Six Ricean K-factor estimators and their theoretical performance are briefly introduced in 

this section. 

 

5.3.1 Envelope-based Ricean K-factor Estimators 

 

As shown by Tepedelenlioglu et al (2003), at least two different moments are required to 

estimate the Ricean K-factor with envelope information only. The n th moment can be 

estimated by averaging in a moving window of N  correlator outputs r  as 
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Suppose n m≠ , the function ( ),n mf ⋅  and its inverse function ( )1

,n mf
− ⋅  are defined as 

(Tepedelenlioglu et al 2003) 
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The common choices for ( ),n m  are ( )1, 2  and ( )2, 4 . The corresponding ( ),n mf ⋅   

functions are as follows (Tepedelenlioglu et al 2003): 
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To estimate the Ricean K-factor, Equation 5.11 or 5.12 need to be inverted. As shown by 

Azemi et al (2003), ( )g K  in Equation 5.11 can be approximated by a linear or a 

quadratic polynomial with coefficients computed by curve fitting as  

( )1 1 0
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 5.13 
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Therefore the Ricean K-factor can be estimated with the 1
st
 and 2

nd
 moments based on a 

first order and a second order approximation as follows (Azemi et al 2003): 
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 Since 0K ≥ , the Ricean K-factor can be estimated with the 2
nd

 and 4
th

 moments 

(Tepedelenlioglu et al 2003):  

2 2

2 4 2 2 4

2, 4 2

2 4

ˆ ˆ ˆ ˆ ˆ2 2ˆ
ˆ ˆ

K
µ µ µ µ µ

µ µ

− + − −
=

−
 5.17 

 
 

5.3.2 Envelope/Phase-based Ricean K-factor Estimators 

In some applications, coherent tracking is possible; thus both phase and envelope 

information is available for Ricean K-factor estimation. As shown by Chen & Beaulieu 
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(2005), the probability density function of the fading envelope and fading phase is given 

by 
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where 0θ  is the LOS phase (assuming to be constant during averaging), r  is the envelope 

of signals, θ  is the phase of signals, A  is the LOS signal amplitude and 2σ is the 

multipath power. 

Assuming that N  independent and identically distributed fading channel samples 

are available, the maximum likelihood estimator (MLE) for the Ricean K-factor can be 

obtained by maximizing the log-likelihood function. Chen & Beaulieu (2005) derived the 

MLE as follows: 
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where 0θ̂ is the estimated LOS phase (assumed to be constant during averaging), 
k

r is the 

envelope of signals, 
k

θ is the phase of signals, 
k

P is the prompt correlation and N is the 

number of samples for averaging. 

As shown by Baddour & Willink (2007), the MLE has a bias 

of { } ( ) ( )ˆ 2 1 2
MLE

K K K NΕ − = + −  but it becomes asymptotically unbiased when a large 

number of samples are used for averaging. Hence an unbiased version of the MLE for 

finite samples is 
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where N is the number of samples for averaging.  

 

5.3.3 Phase-based Ricean K-factor Estimators 

 

By integrating the envelope argument, the probability density function with only phase 

argument can be shown as (Chen & Beaulieu 2005) 
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where ( )erfc ⋅ is the complementary error function, 0θ  is the LOS phase (assumed to be 

constant during averaging), andθ  is the phase of signals. 
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The approximate MLE which maximizes the log-likelihood function for relatively large 

K is as follows (Chen & Beaulieu 2005): 
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5.3.4 Theoretical Performance of the Ricean K-factor Estimators 

To assess the performance (the bias and the standard deviation) of the estimators 

introduced above at different C/N0 and K-factor values, a Monte-Carlo simulation was 

done at the correlation level with a moving window of 100 samples (correlation values). 

In this simulation, additive white Gaussian noise (AWGN) and Ricean fading were added 

into the deterministic LOS signals. The LOS signal phase was set to be a constant; the 

signal Doppler and the spatial correlation between consecutive samples were ignored. 

From Figure 5-1 to Figure 5-4, the bias and the standard deviation values for all 

estimators are plotted in solid lines and dashed lines respectively with various C/N0 

values, K-factor values and coherent integration times. A negative bias appears for all 

estimators when the post-correlation SNR is low due to low C/N0 and/or short coherent 

integration, and the value of K-factor is relatively large. Since the model used in the K-

factor estimation does not include the impact of AWGN, this negative bias represents the 

impact of AWGN on the K-factor estimation. If the post-correlation SNR is low while the 

K value is relatively large, meaning the level of AWGN compared to Ricean fading is 

large, the AWGN then has a significant impact on the variation of the prompt 
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correlation’s envelope, which cannot be neglected. Therefore the estimated K-factor is 

smaller compared to the true value. It can be also observed that the standard deviation 

increases as the K-factor increases. Similar to the results from Chen & Beaulieu (2005) 

and Baddour & Willink (2007), the MML and the MLE outperform others. However, the 

difference is not large, especially for GNSS signal/channel monitoring. One point to bear 

in mind is that any phase-based K-factor estimator assumes that the LOS signal phase is a 

constant while the variation of the phase estimate is due to the NLOS signals. Since the 

actual LOS phase of GNSS signals is not a constant due to the motion and instability of 

oscillators, phase tracking or highly precise frequency tracking for a short duration is 

required to maintain a ‘stable’ phase. However the residual or the variation of this 

‘stable’ phase is not due to multipath only but the net-effect of many other factors such as 

motion. Also a higher post-correlation SNR is required for precise phase estimation than 

for envelope estimation. Therefore envelope based estimators are more robust and easier 

to use than the others since they only require the envelope information, which is available 

in any type of GNSS receivers.       
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Figure 5-1 Performance of K-factor estimators with a coherent integration time 

period of 100 ms at 35 dB-Hz 

 

 
Figure 5-2 Performance of K-factor estimators with a coherent integration time 

period of 1000 ms at 35 dB-Hz 
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Figure 5-3 Performance of K-factor estimators with a coherent integration time 

period of 500 ms at 45 dB-Hz 

 

 
Figure 5-4 Performance of K-factor estimators with a coherent integration time 

period of 500 ms at 25 dB-Hz 
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Given that these K-factor estimators have similar performance and that 

maintaining carrier phase tracking is not always possible especially for indoor signal 

degraded environments, the moment-based K-factor estimators are selected as the 

candidates for detecting context change.  

 

5.4 Channel Monitoring and Context Detection from Outdoor to Indoor 

5.4.1 Experiment Set-up and Processing Software 

In order to validate the performance of signal compression and fading parameter 

estimation approaches for signal monitoring and channel context detection in practice, a 

second experiment was conducted. In this experiment, a static antenna named ‘reference’ 

was placed on the top of a wooden frame house while another antenna named ‘rover’ was 

held by a pedestrian outdoors. The ‘rover’ first remained stationary for about 60 seconds. 

Then it was moved into the first floor of the house, down to the basement, back outdoors 

for a while, and then finally back to the first floor of the house. Both outdoor and indoor 

signals were collected by a National Instruments (NI) RF front-end, which consisted of a 

NI PXI5600 RF down-converter, a PXIe-5622 digitizer and an internal OCXO. These 

signal samples were further processed simultaneously by a modified version of 

GSNRx
TM

 called GSNRx-rr
TM

. The processing architecture of GSNRx-rr
TM

 is shown 

below. Basically it processes outdoor signals by a standard tracking loop to aid the indoor 

channels via navigation data bits, carrier Doppler, code phase, and carrier phase. Open-

loop tracking is used for indoor signal processing. This is a special A-GNSS type of 

processing because the reference and the rover processing channels share the same 

oscillator. Therefore the frequency instability caused by the oscillator for processing the 
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rover antenna signal is fully mitigated in this case, due to the frequency aiding from the 

reference antenna signal processing. This will allow experimentation with channel 

monitoring and multipath detection with a long coherent integration. In reality, it is not 

feasible for a commercial receiver to have the same oscillator for a reference antenna 

outdoor and a rover antenna indoor. If the outdoor antenna and the indoor antenna did not 

shared the same clock, a highly stable oscillator would be needed to perform long 

coherent integration. More details on extending coherent integration time for sensitivity 

improvement and the impact of oscillator on extending coherent integration time can be 

found in Watson (2005).  

 

Figure 5-5 Processing architecture of GSNRx-rr
TM 

 

5.4.2 Verification of Multipath Existence 

The data was processed using 100 ms, 500 ms, and 1 s of coherent integration. The 

estimated rover relative carrier Doppler and code phase with respect to the reference 

estimates are plotted below. Clearly, the results with 100 ms of coherent integration are 
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not only noisy but also fluctuate a lot in the local search domain compared to the 

estimates from 500 ms and 1 s of coherent integration.  

 

Figure 5-6 Rover relative carrier Doppler on PRN 22 

 
Figure 5-7 Rover relative code phase on PRN 22 
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Figure 5-8 Rover relative carrier Doppler on PRN 11 

 

 
Figure 5-9 Rover relative code phase on PRN 11 

 

It is well known that multipath signals can be separated from LOS signals in the 

frequency domain if the coherent integration time is long enough. This phenomenon can 
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be observed in this dataset as well. As shown in Figure 5-10, Figure 5-11, and Figure 

5-12, when signals were processed with a coherent integration time of 1 s, multiple peaks 

show up at three consecutive epochs, while the rover antenna was indoor. Because data 

bits have been perfectly wiped off with external data aiding in this case, it can be 

concluded that some or all of these peaks are due to multipath signals. 

 

 
Figure 5-10 Correlations at 412808.6094 s 
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Figure 5-11 Correlations at 412809.6094 s 

 

 
Figure 5-12 Correlations at 412810.6094 s 

 

5.4.3 Estimated K-factor Values from Outdoors to Indoors  

The estimated C/N0 and K-factor values based on envelope-based estimators with 

various coherent integration times and moving window sizes are shown in Figure 5-13 - 

Figure 5-24. Comparing the C/N0 and K-factor values on PRN 22, the mean value of 
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C/N0 is approximately 40 dB-Hz after the antenna moved indoors to the first floor, but 

the C/N0 value varies from 53 dB-Hz to 28 dB-Hz in the case of 100 ms coherent 

integration time. If the signal quality or channel quality was indicated by the 

instantaneous C/N0 value only, an optimistic decision might have been made. In some 

previous work, channel context such as indoor or outdoor was detected or determined 

based on the instantaneous C/N0 value only (e.g. Skournetou & Lohan 2007). Apparently 

this is too optimistic as shown in Figure 5-13 and Figure 5-17. In order to monitor the 

signal/channel and detect the channel context, the indicator must be able to reflect the 

fading level over a short duration of time. As shown in these figures, the K-factor, which 

is a fading level indicator, performs very well on detecting fading. Comparing the 

estimates from three envelope-based K-factor estimators, the results from the two with 

the 1
st
 and 2

nd
 moments are almost identical while the estimates from the one with the 2

nd
 

and 4
th

 moments are much noisier and more ‘faded’ especially in the low C/N0 range. 

This is because the noise is amplified more significantly in the 4
th

 moment estimation 

compared to the 1
st
 moment. The performance difference between these estimators can be 

reduced by utilizing a longer coherent integration, at least in principle, as shown in Figure 

5-18. At this time however, low cost oscillators with form factors suitable for portable 

devices and with the stability required for long integration times are not yet available, 

although this may change in the future with the development of Chip Scale Atomic 

Clocks (CSAC).  Based on the results from this experiment, a K-factor value in the range 

12 - 18 dB is a suitable threshold for switching between a conventional tracking loop and 

a weak signal tracking loop for typical North American houses.  
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As mention earlier, for the use of context-aware processing in this thesis, it is 

important for the context-aware module to send an alarm to the receiver when it is in the 

transition between outdoors and indoors. Using only the C/N0 value to detect the 

transition is optimistic; in contrast, using the K-factor value can detect the outdoors and 

indoors transition and allow the receiver to adjust the processing strategy during the 

transition from outdoor to indoor.         

 
Figure 5-13 C/N0 on PRN 22 with a coherent integration time period of 100 ms 
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Figure 5-14 K-factor on PRN 22 with a coherent integration time period of 100 ms 

 

 
Figure 5-15 C/N0 on PRN 22 with a coherent integration time period of 500 ms 

 

 



200 

 

 
Figure 5-16 K-factor on PRN 22 with a coherent integration time period of 500 ms 

 
 

 
Figure 5-17 C/N0 on PRN 22 with a coherent integration time period of 1 s 

 



201 

 

 
Figure 5-18 K-factor on PRN 22 with a coherent integration time period of 1 s 

 

 

 
Figure 5-19 C/N0 on PRN 9 with a coherent integration time period of 100 ms 
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Figure 5-20 K-factor on PRN 9 with a coherent integration time period of 100 ms 

 

 

 
Figure 5-21 C/N0 on PRN 9 with a coherent integration time period of 500 ms 
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Figure 5-22 K-factor on PRN 9 with a coherent integration time period of 500 ms 

 

 
Figure 5-23 C/N0 on PRN 9 with a coherent integration time period of 1000 ms 
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Figure 5-24 K-factor on PRN 9 with a coherent integration time period of 1000 ms 

 

5.5 Implementation  

The C/N0 estimate is the metric for measuring the signal strength of the received signals. 

The previous section has demonstrated that the Ricean K-factor estimate, which measures 

the fading level, is useful for detecting context change along with the C/N0 estimate when 

fading occurs. In GSNRx-hs
TM

, the Ricean K-factor and C/N0 estimates are used as the 

metrics to turn on/off a weak signal tracking loop.  

Several tracking strategies can be programmed in GSNRx-hs
TM

. The receiver can 

switch from one tracking strategy to another based on the user-defined conditions. Some 

strategies are for strong signal tracking and others are for weak signal tracking. For the 

results presented below, two tracking strategies were used for steady state, namely a KF 

tracking loop for strong signal tracking and a CVB tracking loop introduced in Chapter 4 

for weak signal tracking. A standard tracking loops was used for the pull-in state before 
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the KF tracking loop enabled. A CVB tracking loop was chosen for weak signal tracking 

because it outperforms most other tracking loops in terms of sensitivity. Also unlike an 

ND tracking loop, a CVB tracking loop has a structure similar to that of other 

conventional tracking loops. This allows the receiver to utilize CVB tracking loops for 

some of the channels and conventional tracking loops for others.  

This receiver architecture is shown in Figure 5-25, while its ultra-tight version, 

which applies a GNSS/INS integration navigation solution to replace the GNSS only 

navigation solution, is shown in Figure 5-26. 

 

Figure 5-25 Architecture of a Context-Aware GNSS receiver 
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Figure 5-26 Architecture of a Context-Aware GNSS/INS receiver   

 

The strategy switching mechanism is shown in Table 5-2. The choices of the K-

factor thresholds were empirically based on the results from the several datasets collected 

in two North American homes. With more testing conducted in different environments in 

the future, these parameters will be refined. 

Table 5-2 Strategy switching mechanism 

 

From conventional tracking 

strategy to weak signal 

tracking 

From weak signal tracking 

strategy to conventional tracking 

strategy 

C/N0 < 32 dB-Hz or > 40 dB-Hz and 

K-factor < 14 dB > 18 dB 

 

An experiment was conducted to evaluate the performance of the proposed 

receiver architectures. In this experiment, an antenna was mounted on an aluminum 
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frame carried by a pedestrian. The GPS IF data was collected with a National Instrument 

(NI) RF front-end. A NovAtel’s SPAN HG1700
TM

 system, which includes a L1/L2 

survey grade GNSS receiver and a tactical grade IMU (HG1700), was placed in the 

aluminum frame for the reference solution. A lower grade IMU, CPT, which is comprised 

of FOG gyros and MEMS accelerometers, was also used in the experiment for the high 

sensitivity ultra-tight solution. The specifications of these two IMUs are provided in 

Table 5-3 (NovAtel 2009, 2010b). The performance comparison of HG1700 and CPT 

IMUs during GPS signal outages can be found in NovAtel (2010a).  

The pedestrian was walking from outdoors to indoors then back to the original 

starting point outdoors. The sky-plot is shown in Figure 5-27. The equipment and the 

field test environment are shown in Figure 5-28. 

Table 5-3 IMU specifications 

IMU HG1700 CPT 

Gyro Bias (deg/hr) 1.0 20.0 

Gyro Bias Stability (deg/hr) N/A 1.0 

Gyro Scale Factor (ppm) 150 1500 

Accelerometer Bias (mg) 1.0 50.0 

Accelerometer Bias stability (mg) N/A 0.75 

Accelerometer Scale Factor (ppm) 300 4000 
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Figure 5-27 Sky plot during outdoor-indoor pedestrian experiment 
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Figure 5-28 Indoor portion of pedestrian test 

 

The digitized IF samples were processed by GSNRx-hs
TM

. In the processing, the 

FFT-parallel-frequency method was using frequency tracking. The partial coherent 

integration used in the process was 10 ms and the total coherent integration time was 500 

ms. The oscillator used in this test was an OCXO inside the NI RF front-end. More 

information on the NI RF front-end and the specification of the OCXO use inside can be 

found in National Instruments (2006). The estimated C/N0 and Rician K-factor values 

from GSNRx-hs
TM

 are plotted in Figure 5-29 and Figure 5-30, respectively. As expected, 

the mean values of the estimated C/N0 are lower while the variations of the estimated 
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C/N0 are larger compared to the outdoor values. These variations are also captured by the 

estimated Rician K-factor. More interestingly, when the pedestrian was approaching the 

building or just leaving the building, significant fluctuations can be observed on the 

corresponding C/N0 values because of the multipath fading and the partial signal 

blockage from the building. These are again can be more readily visualized by examining 

the estimated Rician K-factor values. Comparing the estimated Rician K-factor values 

and the thresholds listed in Table 5-2, one can see that the weak signal tracking loop was 

enabled even when the antenna was approaching and just leaving the building. As 

discussed earlier, the Rician K-factor is not an accurate metric to determine if the receiver 

is outdoors or indoors, but a metric to measure the fading level and indicate the 

indoors/outdoors transition. In fact, even when the antenna was outdoors, the high 

sensitivity engine was on in this case due to the occurrence of a large amount of fading.  

 
Figure 5-29 Estimated C/N0 values from GSNRx-hs

TM
 with 500 ms integration time
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Figure 5-30 Estimated Rician K-factor values from GSNRx-hs

TM
 

 

The reference solution used in this test was generated from the NovAtel’s Inertial 

Explorer
TM

 software package and the SPAN-HG1700
TM

 GPS/INS measurements. The 

RTK GPS/INS tightly coupled solution with forward-backward smoothing was used as 

the reference. The estimated standard deviations of the reference positions and velocities 

over time provided by Inertial Explorer™ are plotted in Figure 5-31 and Figure 5-32. 

Because of the use of tactical grade IMU HG1700, the reference solution can be 

maintained at the sub-metre accuracy level while the pedestrian was walking indoors. 

This accuracy is sufficient for reference purposes in this experiment.   
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Figure 5-31 Estimated position accuracy of the reference solution 

 

 

Figure 5-32 Estimated velocity accuracy of the reference solution 

 

The estimated trajectories from GSNRx-hs
TM

 and the reference solution are 

shown in Figure 5-33. The position and velocity errors are shown in Figure 5-34 and 
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Figure 5-35, respectively. The estimated trajectory from the proposed high sensitivity 

receiver is reasonably close to the one from the reference solution. The position errors are 

acceptable in general for this signal degraded environment while the velocity errors are 

slightly larger than expected. This could be the side-effect of heavy filtering in the 

navigation solution. 

 

Figure 5-33 Estimated trajectories from GSNRx-hs
TM

 and the reference solution 
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Figure 5-34 GSNRx-hs

TM
 position solution errors

 

 

 
Figure 5-35 GSNRx-hs

TM 
velocity solution errors
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The data set was processed with GSNRx-hs-ut
TM

 as well, using the same 

parameters. A CPT IMU, which comprises three FOG gyros and three MEMS 

accelerometers, was used for the ultra-tight solution. The mechanization algorithm is the 

traditional strapdown algorithm used by Petovello et al (2008). The estimated trajectory 

from the ultra-tight solution is compared with that from the reference solution in Figure 

5-36. The position and velocity errors are shown in Figure 5-37 and Figure 5-38, 

respectively. 

 

Figure 5-36 Estimated trajectories from GSNRx-hs-ut
TM

 and the reference solution 
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Figure 5-37 Position solution of GSNRx-hs-ut

TM 

 

 
Figure 5-38 Velocity solution of GSNRx-hs-ut

TM
 

 

The statistics of the position and velocity errors for these two solutions are summarized in 

Table 5-4 and Table 5-5, respectively. Compared to the results of the GPS only solution, 
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the results from the ultra-tight solution are more accurate, especially when larger motion 

or manoeuvres occur during the test. This is due to the fact that the pedestrian motion was 

measured by the IMU at 100 Hz in the ultra-tight solution, while it was only predicted 

through the dynamic model in the GPS only Kalman filtering solution. The heavy 

filtering in the Kalman filter solution made this more pronounced.  

 

Table 5-4  Position Errors 

 

Errors (m) 

Northing Easting Vertical 

Max Mean Max Mean Max Mean 

GPS only 

GSNRx-hs 
2.5 -0.7 2.1 -0.7 12.3 -2.2 

Ultra-tight 

GSNRx-hs-

ut 

2.2 -0.5 1.8 -0.5 7.9 -0.9 

 

 

Table 5-5 Velocity Errors 

 

Errors (m/s) 

Northing Easting Vertical 

Max Mean Max Mean Max Mean 

GPS only 

GSNRx-hs 
0.6 0.1 0.7 -0.0 0.6 0.1 

Ultra-tight 

GSNRx-hs-ut 
0.5 0.0 0.4 -0.1 0.2 -0.0 
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Chapter Six: Conclusions and Future Work 

This chapter provides the concluding remarks of the research work presented in this 

thesis and possible future directions that could enhance the proposed methodologies. 

 

6.1 Conclusions 

The main goal of this research work was the development of a flexible context-aware 

high sensitivity GNSS software receiver. Towards this, the thesis research work was 

conducted in different stages with predefined objectives according to Chapter 1. The 

following sections provide the related research activities and their outcomes.  

 

• Four signal integrators, namely bit aiding coherent integrator, bit extracting 

coherent integrator, squaring non-coherent integrator and magnitude non-coherent 

integrator were designed and implemented in GSNRx-hs
TM

. The bit aiding 

coherent integrator was found to provide the best sensitivity gain among these 

four integrators, although it requires external bit aiding.  

 

• The bit extracting coherent integrator, squaring non-coherent integrator and 

magnitude non-coherent integrator can be used when external bit aiding is not 

available. In this case, non-coherent integrators should be used for weak signal 

tracking, instead of the bit extracting coherent integrator. This is because incorrect 

bit estimation leads to incorrect frequency estimation and false frequency tracking 

when estimating data bits with the bit extracting coherent integrator. When 

estimating data bits, the use of a batch of correlators instead of only the prompt 
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correlator can improve the bit estimation performance as the frequency candidate 

at the prompt correlator might not be the correct frequency when tracking weak 

signals. 

 

• An increase of the coherent integration time seems to cause the cascaded vector 

tracking loop to become instable. This could be because the carrier NCO in the 

cascaded tracking is updated not only by the estimates of the solution feedback, 

but also from both the channel KF and the solution feedback. As the coherent 

integration time increases, the time gap between these two updates becomes 

smaller. 

 

• The frequency error estimates from phase difference frequency discriminators are 

less noisy than those from power difference frequency discriminators. However, 

the FLLs with power-based frequency discriminators have better sensitivity 

(about 6 dB improvement for the case presented in Chapter 4) than those with 

phase difference frequency discriminators. In general, power difference frequency 

discriminators are more suitable for weak signal tracking.  

 

• With the use of the power-based frequency discriminators and non-coherent 

integrators, without using the external data bit aiding, the developed scalar-based 

weak signal tracking loop can track signals as low as 13 dB-Hz and provide 

indoor position solutions with metre-level accuracy in a typical North American 

wooden house (including the basement). 
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• Vector tracking can theoretically provide a 2 to 6 dB improvement over scalar 

tracking with a GPS only constellation at the Calgary location by a semi-analytic 

technique. Centralized and decentralized VB tracking loops have been 

implemented in GSNRx-hs
TM

 and tested with simulated GPS signals from a 

hardware simulator. From the tests conducted, without external data bit aiding, the 

centralized VB tracking loops can track signals with a signal strength as low as 8 

dB-Hz, while SB tracking loops failed. Field test conducted in a typical North 

American wooden house has shown that the developed centralized vector-based 

tracking loop can successfully track signals including basement and provide 

position solution with metre-level accuracy even without using external data bit 

aiding. 

 

• An ND tracking loop has been implemented in GSNRx-hs
TM

. Its implementation 

details and performance have been reported in Chapter 4. From the tests 

conducted using a hardware simulator, the implemented ND tracking loop is 

robust for tracking very weak signals. It can track signals with signal strength of 8 

dB-Hz without external data bit aiding. However, the accuracy of its navigation 

solution is usually worse than the ones from the SB, DVB, and CVB tracking 

loops.  In addition, it requires more modifications from a conventional tracking 

loop than the SB, DVB, and CVB tracking loops. 
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• Using the C/N0 value only to detect the transition moving between outdoors and 

indoors is optimistic; in contrast, using the K-factor value can more effectively 

detect the transition between outdoors and indoors and allow the receiver to adjust 

the processing strategy before the transition. 

 

6.2 Recommendations for Future Work 

Based on the analysis and experimental results obtained in this research work, the 

following recommendation can be made: 

 

1. Development of new navigation discriminators in a ND tracking loop: In the 

current implementation of the ND tracking loop, a batch of correlators and 

interpolation techniques were used to provide the navigation state estimates. 

Some research can be conducted to design a type of new navigation 

discriminators, which require a lesser number of correlators. This will improve 

the processing efficiency of the ND tracking loop. 

 

2. Testing VB/ND tracking loops with multi-GNSS constellations and signals of 

opportunities. Although the implemented tracking loops can be used for other 

GNSS constellations, this thesis only presented results for GPS. It is important to 

assess the gain of VB/ND tracking with multi-GNSS constellations and signals of 

opportunities.       
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3. Development of new multipath mitigation techniques and testing existing 

multipath mitigation techniques in GSNRx-hs
TM

: Multipath mitigation is another 

important topic. It is important to develop new multipath mitigation techniques or 

apply existing multipath mitigation techniques for GSNRx-hs
TM

 to improve its 

performance. 

 

4. Performance evaluation on the developed weak signal tracking loops with low 

cost TCXOs: The tests and analysis were limited to NI internal OCXOs. Tests 

with other oscillators, ranging from low cost TCXOs to chip-scale-atomic-clocks 

(CSACs), are highly desirable.  

 

5. Development of advanced navigation decoding techniques for weak signals. 

Navigation decoding modules for weak signals should be explored and 

implemented in GSNRx- hs
TM

. 

 

6. Further testing, development and analysis of the context-aware module using the 

Rician K-factor: The testing and analysis of the proposed context-aware module 

were limited to typical North American houses, which are made of wooden 

frames, chip rocks and various weather resistant materials for the outer walls. 

More testing and analysis in other building types are recommended.  It is also 

recommended to explore other more sophisticated algorithms like pattern 

recognition for context-aware processing. 
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