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Abstract 

Given the demanding computational requirements of software-based GPS receivers, high 

data processing efficiency is required to obtain real-time performance.  There are two 

basic approaches to accomplish this: reducing the number of computations required, or 

improving the efficiency with which the computations are carried out.  This work takes 

the latter approach, primarily by using the MMX technology available on x86-compatible 

processors to more rapidly perform the Doppler removal and code correlation 

computations.  Other computational saving methods are also described.  Using this 

approach, computational improvements of greater than 70% are realized over the 

standard (integer math) implementation.  Test results indicate that tracking performance 

of the software receiver is reasonable and that position and velocity accuracies are at the 

metre and decimetre per second level, respectively. Chapter one covers an introduction 

into GPS receiver architecture, software receivers and the needs for them. Chapter two 

describes in detail the theoretical aspects of different components and algorithms used in 

the receiver. Chapter three covers the real time operation of the GPS software receiver. It 

looks into the challenges and issues which needed to be addressed to achieve the real 

time operation in the receiver. Chapter four presents results of static and dynamic tests 

performed by the receiver. 
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Chapter 1  

Introduction 

 

The evolution of technology has increased the demand for higher accuracy, availability 

and reliability in positioning services. The new requirements increased the need for 

modernization of current GNSS and also developing new systems that will complement 

GPS I. Satellite Based Augmentation Systems (SBAS), Ground Based Augmentation 

Systems (GBAS), Airborne Based Augmentation System (ABAS), US Wide Area 

Augmentation System (WAAS), Local Area Augmentation System (LAAS) and 

European Navigational Geostationary Overlay Services (ENGOS) are some of the 

popular systems that complement GPS to improve performance. However, all the above 

systems’ performances are still limited due to original design of GPS.  

Consequently, the experiences gained in the design of GPS and high market demands 

have initiated a desire for new signals and constellations. The US Department of Defence 

(DoD) and Department of Transportation (DoT) have started a GPS modernization 

process, called GPS II and GPS III. The European Union (EU) and the European Space 

Agency (ESA) decided to launch their own GNSS constellation known as Galileo. Also, 

the Russian space program has decided to enhance its GLONASS. 

 

Modern GPS receivers usually use Application Specific Integrated Circuit (ASIC) for 

signal processing and a high speed microprocessor for application calculations. The main 
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advantage of using an ASIC for signal processing is high speed and low power 

consumption. ASIC chips can not be recompiled like general purpose processors, 

therefore they are expensive to redesign and modify.  

This highlights the main advantage of software receivers. It allows the user to redesign 

the system and to test new algorithms. It is fairly inexpensive and easy to modify a 

software receiver that is running on a programmable microprocessor. Also, as mentioned 

above, the arrival of new signals requires new algorithms to be developed and tested. 

Software receivers allow the developer to work on these algorithms and have more 

control on them. 

Research on GPS software started about ten years ago but because of limitations in the 

computational power that was available at that time, the initial systems have been slow 

and inefficient. However, as computational power has increased, there has been renewed 

attention in this field. A lot of research has been done on different optimization 

techniques to make the receiver as fast as possible and eventually reach real time 

performance. 

This work focuses on the difficulties that exist which limit the real time operation of a 

GPS receiver and how to over come them. Chapter 2 of this thesis covers the fundamental 

theory related to GPS receivers. Specifically, it covers concepts from the front-end, 

acquisition, tracking and solution calculations. Chapter 3 discuses the optimization 

techniques used in the software receiver developed herein. Chapter 4 demonstrates the 

results achieved and finally, in chapter 5, conclusions are presented along with a 

description of useful future work that could be carried out.  
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There are typically two kinds of software receivers, PC-based and FPGA based. In this 

section, we briefly describe the work which has been done in each of these areas and the 

comparisons between the two approaches. 

1.1 FPGA-Based Vs PC-Based software receiver 

There are typically two different approaches toward software receiver design. The first 

approach is a complete PC based “software receiver” which processes the digitized 

intermediate frequency within the CPU of the personal computer. All the signal 

processing is done inside the PC processor. 

In the other approach, the complete base-band processing is performed within the field 

programmable gate array (FPGA) thus reducing the load on the PC processor. In this 

method, all the high speed signal processing tasks are completed in FPGA while the 

lower rate tasks such as navigation calculations are performed in the PC. Both approaches 

offer a good degree of control over the base-band processing and the capability of testing 

algorithms side by side. 

One of the major requirements for this work was to develop software that can be used as 

a research tool. Therefore, the PC-Based approach was chosen since it will allow 

researchers that may not be familiar with FPGA to run and use the tool on their PCs.  

Selected previous work in this field is summarized below. 

 

IPEXSR (Institute of Geodesy and Navigation PC-based Experimental Software 

Receiver) is a PC based software GNSS receiver that is developed in University FAF 

Munich (Pany et al 2004). This receiver is realized in C++ as a Microsoft Windows 
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program.  Real signals are digitalized by an NI 5112 analog to digital conversion (ADC) 

card which is connected to a low bandwidth (2.5 MHz) GP 2010 L1 front-end. This 

receiver has the capability to work in real time mode (connected to the front-end) and 

high speed off line (reading from the data file). It uses FFT/DFT techniques to perform 

code phase and Doppler search. FFT/DFT techniques for acquisition will be described in 

detail in next chapter of this thesis. The Tracking component of the receiver works in two 

modes, normal and under sampling.  

In under sampling mode, only every x’th sample is processed. The main purpose of this 

method is to reduce the processing demands by a factor of x as discussed in the paper. 

Under sampling decreases the signal to noise ratio by 10 log(x), but does not have any 

other effect on the tracking performance, even though the Nyquist criterion may not be 

fulfilled. In Normal Mode of operation, the tracking module makes use of highly 

optimized code using the SSE2/3 instruction sets. The receiver can track nine channels in 

real-time with a sampling rate of 4.096 MHz on a single Pentium IV running at 3 GHz. 

The receiver was able to achieve a positioning accuracy of -0.5 m in longitude, -0.7 m in 

latitude error and -1.5 m in height.   

GPSrx is another real-time GPS software receiver which has been developed in Stanford 

University (Akos et al 2001). The entire receiver algorithms are written using ANSI C. 

The receiver provides sub-second acquisition and solves for the position in real-time 

using four channels on a 650 MHZ x86 compatible processor. The front-end is a single 

stage frequency down conversion with band pass sampling. The IF 3 dB bandwidth is 2 

MHz and the sampling frequency can be in the range of 4-6 MHz. There was a direct 

intent to keep the receiver “platform independent” therefore the receiver does not benefit 
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from using the MMX/SSE instruction sets. All the algorithms are highly optimized C 

routines. An FFT-based circular convolution technique is used for acquisition. The PRN 

code tracking is done using a traditional non-coherent second order delay lock loop 

(DLL). Tracking the carrier is solved using a dynamic combination of frequency and 

phase lock loops (FLL/PLL). The result presented showed a position solution with errors 

significantly less than 100 m.  One of the reasons for the higher error magnitude, 

although acceptable, is the limitation due to the narrow bandwidth front end design. 

 

A Real time GPS civilian L1 software receiver was also developed by Cornell University 

(Ledvina et al 2003).  The receiver consists of an RF front end, a system of shift registers 

and DAQ card and a PC running an Intel Pentium 4 at 1.7 GHz. The RF front-end down 

converts the signal into a 2-bit digital data stream at 5.714 MHz.  The Base band mixing 

of the local code and incoming data is accomplished through a bit-wise parallel operation. 

Bit-wise parallel operations work with representations of data that store successive 

samples in successive bits of a word. For example, 32 samples of the RF front-end output 

are stored in two 32-bit words. One word stores the 32 sign bits of the 32 samples, and 

the other word stores the 32 magnitude bits. The stored tables of the base-band mixing 

cosine and sine waves have their sign and magnitude bits stored in separate words, with 

each 32-bit word storing 32 sign or magnitude bits that tabulate to 32 successive samples 

of the corresponding cosine or sine waves. Similarly, the stored tables of the prompt and 

early-minus-late codes store sign or sign and zero-mask bits in words with each word 

storing 32 samples worth of data. With this scheme, the EXCLUSIVE OR operations that 

are involved in mixing operate on 32 samples at a time as the processor has a bit-wise 
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EXCLUSIVE OR command and other bit-wise commands that operate in parallel on each 

of two input arguments' 32-bit pairs (Ledvina et al 2003). The receiver is able to run 10 

channels in parallel and in real time while providing 10-15 m position navigation 

accuracy for standalone applications (roof top antenna). 

The receiver was later modified to process Galileo signals (Ledvina et al 2006). The work 

showed the interoperability between a GPS and Galileo real-time software receiver.  The 

real-time capability of this receiver is based mainly on two technologies.  

 

The first technology, called bit-wise parallel signal processing (described above) allows 

the receiver to process 32-64 RF samples in parallel. The second technology is a method 

for efficient real-time generation of over-sampled bit-packed PRN codes. This 

technology is helpful since Galileo L1 signal have longer periods than the L1 C/A code 

signals (Ledvina et al 2006).   It is usually a common approach in a software receiver 

design to store replica PRN codes to reduce the computational real-time needs. However, 

the longer length of Galileo L1-B and L1-C BOC (1, 1) PRN codes makes this method 

less attractive due to the additional memory requirements for storing the longer codes. 

This can be a problem especially in embedded platforms.  This second technology 

addressed this issue while adding some computational cost to the receiver design 

(Ledvina et al 2006). 

 

The Purdue Software Receiver (PSR) is a real-time software receiver developed at 

Purdue University for research and teaching purposes (Heckler & Garrison 2004). Real-

time operation is achieved by single instruction multiple data (SIMD) instructions found 
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in modern x86 and Power PC processors. The Software is coded in C++ making use of 

threaded objects to encapsulate functions and related data together, and to reduce 

unnecessary copying of data (Heckler & Garrison 2004). 

 

 The PSR utilizes the 16 bit signed integer data type as its basic data element. Sixteen 

signed bits of precision guarantees enough dynamic range to prevent overflow during the 

multiplication stage of the correlation algorithm using the common 1 to 2 bit quantized 

GPS signal, 1 bit raw PRN code, and several bits for a digital sinusoid. In addition, the 16 

bit signed integer corresponds to the word type associated with x86 SIMD operations. 

Using the original 64-bit MMX registers, four samples are operated upon in parallel.  

With the expanded 128 bit SSE registers found in more recent CPUs, eight samples can 

be processed with a single operation. Real time operation of the receiver was 

demonstrated by forcing the receiver to process 100 seconds of data. In order to remove 

latency involved with disk access, the 100 seconds of raw GPS data was buffered 

completely into RAM (not reading from a file) before processing. The raw GPS data was 

sampled at 2.3333 MHz, leading to a correlation length of 2333 samples. The receiver 

was able to process this data in less than 100 seconds while running 12 channels. 

However, there was no information in the paper about the accuracy of the navigation 

solution computed by the receiver. 

 

A Transform-Domain Instrumentation Global Positioning System (GPS) Receiver 

(TRIGR) was developed at Ohio University  (Soloviev et al 2005). The concept behind 

this development was to build an instrument that one can simply connect to a GPS signal 
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and have it reveal ‘everything’ that one needs to know about the GPS signal. This 

instrument does not operate in real-time but uses a GPS software receiver at its heart. 

Signal processing of the TRIGR is a combination of batch and sequential processing 

techniques. The receiver uses a FFT approach in the acquisition component.  CA code 

and carrier tracking measurements are applied to aid the sequential correlators for the 

tracking of the P code GPS signal. CA-code measurements set up parameters of the 

replica carrier and replica P-code to wipe-off the carrier and P-code signal components 

from the incoming L1 or L2 encrypted P(Y) code signals. 

 

The work presented in this thesis attempts to combine different techniques presented in 

some of the above work to design, develop and test a real-time GPS software receiver. 

The focus of the work was on real-time operation of the receiver and employing 

algorithms that can help one  achieve that level of performance. As discussed later, there 

are some trades off in using some of these algorithms (small hit on the accuracy of the 

receiver). This work is unique in the sense that it takes the use of SIMD instructions to 

the next level and shows how useful this features can be in GPS software receiver design. 

As has been presented earlier, software receivers are the heart of many different 

applications such as TRIGER (Soloviev et al 2005). The work contained in this thesis can 

also be a building block for such instruments. 
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Chapter 2  

GPS Receiver Theory 

This chapter describes the properties of the GPS signal and operations performed inside 

the GPS receiver to process this data and compute a navigation solution. 

2.1 GPS Signal Structure 

2.1.1 GPS Carrier 

GPS signals are transmitted on one of two radio frequencies in the UHF band (Tsui & 

James 2000). The two frequencies (L1 and L2) are derived from the fundamental 

frequency f0  = 10.23 MHz : 

fL1= 1575.42 MHz = 154 f0       (2.1) 

fL2=1227.6 MHz = 120 f0      (2.2)  

The wavelengths of the carriers are: 

 λL1 = 19.03 cm        (2.3) 

 λL2 = 24.42 cm        (2.4) 

2.1.2 Coarse-Acquisition (C/A) and Precise (P) codes 

GPS Pseudo-Random Noise (PRN) code is a binary sequence that appears to be random 

in nature. GPS uses two classes of codes listed in the table below (Tsui & James 2000). 
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Table 1: Characteristics of GPS codes 

Parameter C/A-Code P-Code 

Chipping Rate (chips/s) 1.023 e6 10.23 e6 

Chipping Period (ns) 977.5 97.75 

Range of One Chip (m) 293.0 29.30 

Period of the Code 1msec 1week 

 

The GPS signal is a phase-modulated signal with an initial phase of zero or π  ; this type 

of phase modulation is referred to as bi-phase shift keying (BPSK). The spectrum shape 

can be described by the sinc function (sinx/x) with a spectrum width proportional to the 

chip rate. As an example, if the chip rate is 1 MHz, the main lobe of the spectrum has a 

null-to-null width of 2 MHz.  

The P-code, when encrypted, is termed Y-code. Y-code is classified and unauthorized 

users cannot access it. (Tsui & James 2000). 

. 
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2.1.3 Generation of C/A code 

The GPS signal is from a family of pseudorandom noise (PRN) codes known as Gold 

codes (Tsui & James 2000). Signals are created as the product of two 1023-bit PRN 

sequences G1 and G2. A maximum-length linear shift 10 stage register driven by a 1.023 

MHz clock generates the G1 and G2 signals. A maximum-length sequence (MLS) 

generator can be formed from shift registers with proper feedback. The feedback of G1 is 

from bits 3 and 10 as shown in figure one and corresponds to the polynomial G1: 1 + 

X
3
+X

10
. The feedback of G2 is from bits 2, 3, 6, 8, 9 & 10 as shown in figure 1. 

 

 

Figure 1: Block diagram of C/A code generation 

The corresponding polynomial is G2: 1+X
2
+X

3
+X

6
+X

8
+X

9
+X

10
. To make different C/A 

codes for satellites, the outputs of the two shift registers are combined in a special 
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manner. G1 always supplies its output, but G2 supplies two of its states to a modulo-2 

adder to generate its output. The selection of states for the modulo-2 adder is called phase 

selection. Table 2 shows the combination of phase selections for each C/A code. It also 

shows the first 10 chips of each code in octal representation. Note that only the first 32 of 

the 37 possible codes are used as Satellite C/A codes. The remaining five codes are 

reserved for other uses e.g. ground transmitters (pseudolites). 

Table 2: Combination of phase selection for C/A code 

Satellite ID 

Number 

GPS PRN 

Signal Number 

Code Phase 

Selection 

Code Delay 

Chips 

First 10 Chips 

C/A Octal 

1 1 2 ⊕ 6 5 1440 

2 2 3 ⊕ 7 6 1620 

3 3 4 ⊕ 8 7 1710 

4 4 5 ⊕ 9 8 1744 

5 5 2 ⊕ 10 17 1133 

6 6 1 ⊕ 8 18 1455 

7 7 2 ⊕ 9 139 1131 

8 8 3 ⊕ 10 140 1454 

9 9 2 ⊕ 3 141 1626 

10 10 3 ⊕ 4 251 1504 

11 11 5 ⊕ 6 252 1642 

12 12 6 ⊕ 7 254 1650 

13 13 7 ⊕ 8 255 1764 

14 14 8 ⊕ 9 256 1772 

15 15 9 ⊕ 6 257 1775 

16 16 2 ⊕ 10 258 1776 

17 17 1 ⊕ 4 469 1156 

18 18 2 ⊕ 5 470 1467 
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19 19 3 ⊕ 6 471 1633 

20 20 4 ⊕ 7 472 1715 

21 21 5 ⊕ 8 473 1746 

22 22 6 ⊕ 9 474 1763 

23 23 1 ⊕ 3 509 1063 

24 24 4 ⊕ 6 512 1706 

25 25 5 ⊕ 7 513 1743 

26 26 6 ⊕ 8 514 1761 

27 27 7 ⊕ 9 515 1770 

28 28 8 ⊕ 10 516 1774 

29 29 1 ⊕ 6 859 1127 

30 30 2 ⊕ 7 860 1453 

31 31 3 ⊕ 8 861 1625 

32 32 4 ⊕ 9 862 1712 

** 33 5 ⊕ 10 863 1745 

** 34* 4 ⊕ 10 950 1713 

** 35 1 ⊕ 7 947 1134 

 

2.1.3.1 C/A code correlation properties 

C/A codes have high autocorrelation peaks and low cross-correlation peaks. Different 

C/A codes have a cross correlation of -65/1023 (occurrence 12.5 %), -1/1023 (75%) and 

63/1023 (12.5%) (Tsui & James 2000).  Figure 2 and Figure 3 show the autocorrelation 

of Satellite 1 and cross correlation of Satellite 15 and 1 respectively. 
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Figure 2 : Autocorrelation of Satellite 1 

 

Figure 3 : Cross correlation of Satellite 1 and 15 
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The above figures show that the maximum autocorrelation peak is 1023, equal to the C/A 

code length. The other correlation values are 63,-1 and -65 as mentioned above. 

2.1.4 Navigation data bits 

The C/A code is a bi-phase coded signal, which changes the carrier phase between Zero 

and π at a rate of 1.023 MHz (Tsui & James 2000). The navigation data bit is a bi-phase 

code as well at a rate of only 50 Hz, which translates to each data bit being 20 ms long. 

Since the C/A code is 1 ms, there are 20 C/A codes in one data bit. Therefore, in one data 

bit all 20 C/A codes have the same phase. A phase transition due to the data bit causes a 

phases difference of   ±π in two adjacent C/A codes.  

The navigation data message is divided into a 1500-bit long frame containing 5 sub-

frames, each 300 bits long. Each sub-frame contains ten words, each word being 30 bits 

long. Sub-frames 1, 2, and 3 are repeated in each frame. Sub-frames 4 and 5 have 25 

different versions referred to as pages 1 to 25. Considering a bit rate of 50 bps, the 

transmission of a sub-frame lasts 6 seconds, a frame lasts 30 seconds and an entire 

navigation message lasts 12.5 minutes (ICD-GPS-200 2003). 

 

2.1.4.1 TELEMETRY (TLM) and HAND OVER WORD (HOW)  

The first two words of all the sub frames are the telemetry (TLM) word and hand over 

word (HOW) (Tsui & James 2000). Each has a length of 30 bits. Figure 4 shows the 

structure of these words. The TLM word starts with an 8-bit preamble, followed by 16 

reserved bits and 6 parity bits. 
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Figure 4 : TLM and HOW words 

 

In addition to the TLM and HOW words, there are eight other words in each sub frame. 

Below is a brief description of data in these words. For a complete description, one can  

refer to the ICD-GPS-200 document. Sub-frame 1 contains some clock information. That 

is information necessary to calculate the time of transmission for the navigation message 

from the satellite. In addition, sub-frame 1 contains health data indicating whether the 

data is corrupted. Sub-frames 2 and 3 contain the satellite ephemeris data. The ephemeris 

data provides the satellite orbits, needed to calculate accurate satellite positions.  

 As mentioned earlier, the last two sub-frames repeat every 12.5 minutes giving 50 sub-

frames. Sub-frame 4 and 5 contain almanac data. The almanac data is the ephemeris and 

clock data with reduced precision. Additionally, each satellite transmits almanac data for 

all GPS satellites while only transmitting ephemeris data for itself. The remainder of sub-
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frames 4 and 5 contain various data such UTC time parameters, health indicators, and 

ionosphere parameters. 

2.2 GPS Receiver Architecture 

2.2.1 RF Front-End 

 

Figure 5: Block diagram of GPS Front-End 

The first component after the antenna is usually an amplifier or filter. 

The noise figure of a receiver is (Tsui & James 2000): 
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where Fi and Gi (i = 1, 2 . . . N) are the noise figure and gain, in linear terms, of each 

individual component in the RF chain. If the amplifier is the first component, the noise 

figure of the receiver is low and is approximately equal to the noise figure of the first 

amplifier, which can be less than 2 dB.  
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Therefore, the noise contribution caused by the second component e.g. a filter, is reduced 

by the gain of the preceding amplifier. However, strong signals within the bandwidth of 

the amplifier may drive it into saturation and generate spurious frequencies. 

 

On the other hand, if the first component is a filter it can stop out-of-band signals from 

entering the input of the amplifier.  A filter with 2 MHz bandwidth (to pass only C/A 

code) with a center frequency at 1575.42 MHz is considered high Q (Quality Factor)  

Usually, the insertion loss of such a filter is relatively high, about 2 to 3 dB, and the filter 

is bulky. The receiver noise figure with the filter as the first component is about 2–3 dB 

higher than in the previous arrangement (Tsui & James 2000).  

 

2.2.1.1 Mixing Operation and Intermediate Frequency Filtering 

Down conversion from RF to IF is accomplished by mixing the incoming signal and 

noise with a local oscillator signal (LO). This process is illustrated in figure 6. 

 

Figure 6 : Mixing operation 
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A GPS signal may be represented by: 

[ ]00 )(cos)()()( Φ+∆+= ωωtDtACts             (2.6)                                                  

where 

 A = signal amplitude 

 C(t) = PRN code modulation 

 D(t) = 50bps data modulation 

 == 00 2 fπω  Carrier frequency (L1 or L2) 

 =∆=∆ fπω 2 Frequency offset (Doppler, etc) 

 =Φ 0 Nominal but ambiguous carrier phase.  

Therefore, the result of the mixing (ignoring the harmonics, LO feed through and image 

noise) of GPS signal and LO signal ( ttLO 11 cos2)( ω=  ) is: 

[ ] [ ]{ }010010 )(cos)(cos)()()( Φ+∆+−+Φ+∆++= tttDtACtsIF ωωωωωω    (2.7) 

The upper side band is not of any interest and can be eliminated via a low-pass filter. This 

will result in an IF frequency of 10 ωωω −=IF . 

 

2.2.1.2 Conversion to Baseband 

Conversion to baseband means synthesizing the IF signal to that of in-phase and 

 quadra-phase components of the signal envelope. This can be accomplished by analog 

mixing or by a technique known as IF (or pass-band) sampling (Van Dierendonck 1996). 
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Analog mixing, illustrated in figure 7, is realized by mixing the IF signal with two local 

carriers, one of which is phase shifted by 90
◦
 with respect to the other (in quadrature).  

The resulting in-phase and quadra-phase signals are as follow: 

ttLO I 22 cos2)( ω=        (2.8) 

)sin(2)
2

cos(2 222 ttLO Q ω
π

ω −=+=           (2.9) 

)cos()()(
2

)( 0Φ+∆= ttDtC
A

tI Bs ω        (2.10) 

)sin()()(
2

)( 0Φ+∆= ttDtC
A

tQ Bs ω       (2.11) 

where the residual frequency offset is: 

ωωωω ∆+−=∆ 2IFB            (2.12)                         

 

Figure 7 : Conversion to base-band (analog mixing) 

Intermediate sampling (IF sampling) shown in Figure 8 (Van Dierendonck 1996) is based 

on the concept of sampling the IF signal at rate which the Q samples and I are obtained 

directly.  

Let us assume the sample rate of SR as follow: 
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N

f
SR IF4

=          (2.13) 

where IFf  is the IF frequency being sampled and N is an odd number. Therefore, the 

signal will be sampled at intervals tk where: 
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Sampling the signal at this rate will result in the following: 
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where the f∆ is the offset due to Doppler, kC and kD are the code and data at time kt , and 

kk

IF

k t
f

fkN
∆Φ+Φ=∆+Φ=

∆
+Φ=Φ 000

2
ω

π
                                           (2.16) 

is the baseband phase of the sample attributable to the nominal phase and frequency 

offset at time kt . It can be noted from equation 2.15 (ignoring f∆ ) that IF signals 

sampled at exactly 90
◦
 phase result in the following sequence of samples based on values 

of N: 

[ ],...,,,,,2 sksksksksksk QIQIQI −−  

or 

[ ],...,,,,,2 sksksksksksk QIQIQI −−−    

∆f causes a phase rotation of the samples that is removed after the sampling process. 
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It is interesting to notice the negative samples and the meaning of it. To explain this 

further, one need to drive the formulas as follow: 
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 This method is also called pseudo sampling, since the I and Q samples do not occur at 

the same time. There could be potential problems with this method however. If dealing 

with large frequency offsets with respect to the sampling frequency, this method can 

create an extra phase shift in the quadra-phase samples, causing aliasing to a negative 

frequency offset. However, this is not a problem for a GPS signal with reasonable 

Doppler. 

One of the advantages of this method is that, because Q and I samples are generated in 

the same circuitry there are no gain or phase imbalances between them as compared to 

the analog base-band conversion process. In addition, there is only one A/D converter 

needed in this method. However, there are certain disadvantages that come with using 

this approach. One is that the aperture time of sampling process must be small with 

respect to the period of the IF frequency.Given, Sin(x)/x, where x is proportional to the 

product of the frequency and the aperture time, attenuation occurs if the aperture time is 

too long (Van Dierendonck 1996). 
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Figure 8: Intermediate frequency sampling process 

 

2.2.2 GPS C/A Code Acquisition 

The first step in the operation of GPS receiver is to find a rough estimate of the PRN code 

offset and carrier Doppler. Acquisition is a coarse synchronization process which 

determines the estimate of PRN code and Doppler. This information is used to initialize 

tracking loops for signal tracking and navigation data demodulation. GPS signal 

acquisition is essentially a two-dimensional search process in which a replica code and a 

replica carrier are aligned with the received signal.  

The correct alignment is identified by measurement of the output power of the 

correlators. When both the code and the carrier Doppler match the incoming signal, the 

signal can be correctly de-spread and the data can be demodulated. The results of the 
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two-dimensional search consist of an estimate of the code offset to within half a chip and 

a Doppler estimate to within the lock range of the tracking loops. This process is shown 

in figure 9. 

Figure 9 : Block diagram of signal acquisition 

The two-dimensional search space covering the full range of the ambiguity of code and 

Doppler needs to be defined before acquisition can be performed. The Doppler search 

space can be reduced if the initial estimate of the Doppler is available. If such an estimate 

is not available, a search space of -5 kHz to +5 kHz is appropriate for GPS signals. The 

frequency bin size is calculated as follow (Van Dierendonck 1996):  

T
f

3

2
=∆                                                                              (2.17) 

where f∆ is the size of a frequency bin, in Hz, and T is the coherent integration time (or 

dwell time) in seconds. As this formula illustrates, there is a trade off between the pre-

detection integration time and the speed of acquisition. Longer integration results in 
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better frequency resolution and higher sensitivity, however it increases the number of 

frequency bins that needs to be searched. The code search space usually includes all 

possible code offsets. The resolution of the code search needs to be smaller than half a 

chip. The sampling frequency is usually used to specify this resolution. 

 

2.2.2.1 Detection Criteria 

As was briefly mentioned earlier, acquisition is based on the measurement of correlator 

output (Krumvieda et al 2002). The correlators provide a measure of the total I and Q 

signal value over the coherent integration time (dwell time). 

The envelope of the acquisition result  
22

QI +   is a measure of the amplitude of the 

signal. When the local code and incoming signals are aligned, the amplitude of the 

recovered signal is at a maximum. The In-phase and Quadra-phase components I and Q 

are calculated by stripping off the reference code and the carrier from the received signal 

as shown in figure 10. The envelope is then computed and compared with a threshold.  

Since the GPS signal is buried in noise, a threshold must correspond to an acceptable 

probability of false alarm. A false alarm is the probability of detecting a signal from a 

noisy measurement when in fact such a signal does not exist. 

 

 

 

 

 



  26 

 

The threshold can be set as follow: 

fant PV ln2−= σ          (2.18) 

where faP is the single trial probability of false alarm, and nσ  is the 1-sigma noise 

amplitude. nσ is frequently obtained by using a reference PRN which is known to be 

absent such as PRN 37. 

Any cell amplitude that is at or above the threshold is considered to have a signal present. 

The detection of the signal is a statistical process because each cell contains either noise 

with the signal present or noise with the signal absent (Krumvieda et al 2002).    

 

Figure 10: Probability density function for different SNR 

 

Figure 10 illustrates that if the SNR is high, it is easy to set a threshold that provides both 

low probability of a false alarm and low risk for missed detection. However, for a lower 

SNR, it is no longer possible because of the significant overlap of the signal distributions.  
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Looking at Figure 10, the possibility of missed detection is the area under the green curve 

from the threshold line to left. This is the probability that there is a signal but the 

threshold is set too high. Probability of false detection is the area under the blue curve 

from the threshold line to the right. This indicates that there is no signal but since the 

threshold was set too low, we mistakenly declared the signal present. There is a trade off 

when setting the threshold to avoid false alarms. If the threshold is set very high to avoid 

false detections, then there is a high probability that weak signals will not be detected. In 

GPS this is the typical situation and single trial detection is not effective. It is important 

to note that when a signal is absent, the envelope has a Rayleigh distribution. Otherwise 

the envelope has a Ricean distribution (I and Q signals are normally distributed if the 

noise is Gaussian). 

There are several different search methods for the acquisition of GPS signals presented in 

the literature. Two common approaches are described here. 

 

Tong detector method: 

The Tong detector has a reasonable computational burden and is excellent for detecting 

signals with an expected C/No of 25 dB-Hz or higher. Figure 11 presents the Tong search 

detector algorithm. There are a few parameters to be initialized when using the Tong 

method based on a receiver’s preference of acquisition speed versus probability of 

detection and false alarm. The variable counter K will give the fastest acquisition speed 

when set to 1 (Krumvieda et al 2002). 
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Figure 11: Tong search detector algorithm 

 

The counter variable K and confirmation threshold A are initialized based on the 

operational environment. A maximum acquisition speed will be achieved by setting K = 

1.  

If a higher probability of detection and a lower probability of false alarm is required, then 

K may be set to 2 or higher, however, this will increase the time of acquisition. When K 

reaches A the signal is declared present. A typical range for A is between 8 and 12, which 

corresponds to high to low C/No values respectively. 

The Tong algorithm operates as follows: 
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• Form a correlation envelope for a given cell every T seconds.  

• If the correlation envelope exceeds the threshold tV , then increment K by one. 

• Else, decrease K by one. 

•  If K equals A then the signal is declared present and the search is over.  

• If K equals zero, the signal is not to be present. 

• Start the entire process over in the next search-grid-cell.  

This method is quite suitable for a hardware receiver where the processing resources are 

not scarce. DFT acquisition is another method, which is computationally more efficient 

and faster, therefore more commonly used in software receivers. 

DFT acquisition: 

The main advantage of the DFT approach is that it calculates the correlation for an entire 

range dimension (selected Doppler) in a single step (Krumvieda et al 2006). The 

disadvantage is that when  the Doppler is non-zero the reference signal when convolved 

produces some errors.  

The Discrete Fourier Transform (DFT) algorithm operates as follows: 

• Take the DFT of incoming Signal 

• Take the DFT of the reference signal 

• Multiply the incoming signal’s DFT with the conjugate of the reference signal’s 

DFT. 

• Take the inverse DFT of the product, which gives the correlation result in the time 

domain for all the 1023 code phase offsets.  

The DFT of a sampled signal x(n) is calculated as follows: 



  30 

 

∑
−

=

−=
1

0

)2exp()()(

N

n
N

k
njnxkX π       (2.19) 

Theoretically, multiplying the DFT of two signals and taking the inverse DFT of the 

product corresponds to a convolution in the time domain. However, since we are 

interested on the correlation of the incoming GPS signal with the reference signal in the 

time domain, then this translate to multiplying the conjugate DFT of one signal with the 

DFT of the other and then taking the inverse DFT of the product. 

For the N point DFT of an N-point sequence, N
2
 additions and multiplications are 

required, which is the same as the time domain. However, if the sequence length is 

limited to a power of two, then using FFT (Fast Fourier transform) NN log  additions and 

N
N

log
2

multiplications would be required. This results in a reduction in computational 

time, at the cost of accuracy. There are several techniques that can be used to change the 

number of samples to reach this condition, which will be discussed in later chapters 

(Krumvieda et al 2006). 
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2.2.3 GPS Signal Tracking 

Acquisition produces a coarse estimate of the carrier Doppler and the code offset of the 

incoming signals. Next, tracking loops start to track variations in the carrier Doppler and 

code offset due to line-of-sight dynamics between the satellites and the receiver. The 

tracking process follows the signal and obtains information of the navigation data. When 

there are phase shifts in the carrier due to the code, such as in the GPS signal, the code 

must be stripped off. Therefore, to track an incoming GPS signal, both the carrier phase 

and code offset need to be matched by the locally generated carrier and code. Thus, the 

lock status of both the carrier lock loop (FLL or PLL) and delay lock loop are required 

for signal tracking; they must be coupled together as shown in Figure 12 (Tsui & James 

2000).  
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Figure 12: Code and carrier tracking loops 

2.2.3.1 Carrier Tracking 

Carrier tracking loops are characterized based on the carrier pre-detection integrators, the 

carrier loop discriminators and the carrier loop filters. These three functions determine 

the most important performance characteristics of the receiver carrier loop design: the 

carrier loop thermal noise error and the maximum line-of-sight dynamic stress threshold 

(Ward 1996). 

The carrier loop discriminator defines the type of tracking loop as a Phase Lock Loop 

(PLL), a Costas PLL (which has tolerance to data modulation on the signal), or a 
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Frequency Lock Loop (FLL). PLL and Costas loops are more accurate, with the cost 

being increased sensitivity to dynamics. As the names suggests, PLL and Costas loops 

generate the phase error while FLL produces the frequency error.  

 

Phase Lock Loops: 

If there were no 50-Hz data modulation on the GPS signal, the carrier tracking loop 

discriminator could use a pure PLL discriminator. However, it is still possible to use the 

PLL for short integration times through a process of code wipe off. It takes a GPS 

receiver approximately 12.5 minutes to down load the full navigation message. After this, 

the receiver can wipe off the navigation message and use the old one as long as the 

control segment does not upload a new navigation message. Eliminating the navigation 

bits is done by reversing the sign of integrated In-phase components and Quadra-phase 

components (Ward 1996).  

 

Costas Loop: 

The Costas loop is insensitive to the 50-Hz data modulation in GPS signal therefore it is 

commonly used in GPS receivers. Table 3 summarizes several GPS receiver Costas PLL 

discriminators, their output phase errors and their characteristics. 
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Table 3: Common Costas Loop discriminator used in GPS receivers (Ward 1996) 

Discriminator Algorithm Output Phase Error Characteristics 

PSPS QISign ).(  )sin(Φ  
Near optimal at high SNR 

Slope proportional to Signal Amplitude 

Least computational burden 

 

PSPS QI .  )2sin( Φ  
Near optimal at low SNR 

Slope proportional to signal Amplitude squared 

Moderate computational burden 

PSPS QI /  )tan(Φ  
Suboptimal, but good at high and low SNR 

Slope not signal amplitude dependent 

Higher computational burden 

)/( PSPS IQATAN  Φ  Optimal at high and low SNR 

Slope not signal amplitude dependent 

Highest computational burden 

 

Costas PLL loops can be used to detect the bits in satellite data message stream. The 

PSI samples can be accumulated for the duration of one data bit (20 ms) and the sign of 

the result is the data bit. However, there will be a 180
◦
 phase ambiguity with Costas PLL 

which will be corrected for during the frame synchronization process. This is done by 

comparing the known preamble at the beginning of the each sub frame with the data bit 

stream. If a match with the preamble is found, the bit stream will not be changed. If not, 

an inverted pattern of preamble is check and if there is match, then the bit stream is 

inverted as well. 

 

Costas loops are sensitive to dynamic stress; however, they produce the most accurate 

velocity measurements. Also, for a given signal power level, Costas PLL loops provide 

the most error-free data demodulation in comparison with FLL. These characteristics 
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make Costas PLL a very good candidate for GPS receivers. However, a well designed 

GPS receiver starts tracking with the more robust FLL operated wide band, since it is less 

sensitive to errors and noise. Then, gradually, it switches to a wideband PLL and finally 

when the tracking is stable, to a narrow band PLL (Ward 1996). 

 

Frequency Lock Loops: 

A FLL is used to estimate the approximate frequency of the GPS signal. It is important 

the FLL used in a GPS receiver be insensitive to 180
◦
 reversals in the I and Q signals. 

Ward (1996) states it is usually easier to maintain frequency lock than phase lock when 

data transition boundaries are unknown (example, during the initial signal acquisition). 

This is due to the FLL discriminators being less sensitive to situations where some of the 

I and Q signals do straddle the data bit transitions (Ward, 1996). 

Table 4: Common GPS receiver FLL discriminators (Ward 1996) 

Discriminator  Algorithm Output  Phase 

Error 

Characteristics 
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crossdotsign

−
 

Where: 

Dot = 2121 .. PSPSPSPS QQII +  
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Near optimal at high SNR. 

Slope proportional to signal amplitude 

Moderate computational burden. 

12 tt
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12
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Near optimal at low SNR. 

Slope proportional to signal amplitude 

squared. 

Least computational burden. 
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Four-quadrant arctangent. 

Maximum likelihood estimator. 

Optimal at high and low SNR 

Slope not signal amplitude dependent 

Highest computational burden 
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2.2.3.2 Code Tracking 

The code tracking loop in the receiver is used to despread the incoming signal from the 

data bits which are used to provide time of transmission measurements critical for range 

measurements and subsequently a position solution. Code tracking loops are generally 

characterized based on the pre-detection integrators, the code loop discriminators and 

code loop filter.  Table 5 summarizes some of the most common non-coherent delay lock 

loops (DLL) and their characteristics. 

Table 5 : Common Delay lock loop discriminators (Ward 1996) 

Discriminator Algorithm Characteristic 

∑ ∑ −+− PSLSESPSLSES QQQIII )()(  Dot product discriminator. 

Uses all 3 correlators. 

Lowest computational burden. 

For 0.5 chip spacing, produces nearly 

True error output within 5.0± chips. 

∑ ∑ +−+ )()( 2222
LSLSESES QIQI  

Early minus late power 

Moderate computational burden 

For 0.5 chip spacing, produces good 

tacking within 5.0±  chip of input error. 

∑ ∑ +−+ )()( 2222
LSLSESES QIQI  

Early minus late envelope 

Higher computational burden 

For 0.5 chip spacing, produces good 

tracking within 5.0±  chip of input error. 

∑ ∑
∑ ∑

+++

+−+

2222

2222

LSLSESES

LSLSESES

QIQI

QIQI

 

Early minus late, normalized by early plus 

late envelope 

Highest computational load 

 

 

 

The correlation process mixes this input with the local early (E), punctual (P), and late 

(L) code replicas in both the In-phase and Quadra-phase arms to get the IE, QE, IP, QP, 

IL, and QL.  Figure 13 shows the correlation power or the correlation envelope of the 

early component and the late component contains the code mismatch information τ∆ ; 
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thus, the IE, QE, IL, and QL are usually used in the DLL discriminator to obtain the 

estimate of τ∆ .  

 

 

Figure 13: Code mismatch early, prompt and late components 

 

The result of the discriminators, energy in the early and late branches, which has been 

differenced, is filtered, used to drive the NCO, which in turn clocks the PRN code 

generator. The results indicate to the NCO that which branch, early or late, has more 

power and whether the NCO needs to speed up or slow down the locally generated PRN 

code (Ward 1996). 

 

2.2.3.3 Loop Filters 

The objective of loop filters is to reduce the noise so the receiver can better estimate the 

desired signal. In this section, a very brief description of the filters used in typical GPS 

receivers is given. For more information, refer to Ward 1996. 

Table 6 summarizes the characteristics of some available loop filters. The order of the 

filter used is based on the requirements of the receiver. For example, for a receiver which 
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is subject to acceleration dynamics, a third order loop for the PLL is selected since it is 

insensitive to acceleration.  

Table 6: Loop filter characteristics (Ward 1996) 

Loop 

Order 

Noise 

Bandwidth 

Typical filter 

value 

Steady-state 

Error 

Characteristics 

First 
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Sensitive to velocity 

Used in aided code loops/aided 
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Sensitive to acceleration 

Used in aided/unaided carrier loops 

Unconditionally stable at all noise 
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3
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Sensitive to jerk stress 

Used in unaided carrier loops 

Remains stable at HzBn 18≤−  

 

2.2.4 Pseudo-range derivation 

An ambiguity remains in the offset of the data bits after signal acquisition is carried out. 

This is because the receiver has no timing information on the offset of the transmitted 

data bits. The beginning of the C/A code is known but there is no timing information on 

where the beginning of the data bit is (it has a length of 20 C/A code cycles). Failure in 

detecting the right data bit will lead to failure in bit frame synchronization and failure in 

recovering the navigation message from the signal. 

 

There are several methods that are used for data bit synchronization. One of the most 

common approaches is the histogram method. In this method, a data bit is divided into 20 
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ms segments corresponding to the 20 C/A-code cycles. The receiver then tries to sense a 

sign change between each of these C/A codes. If a sign change is sensed, a corresponding 

histogram cell count is incremented until a count in one specific cell exceeds the other 19 

bins by a pre-specified amount (Van Dierendonck 1996). 

 

Figure 14: Diagram of a result of Bit synchronization 
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The algorithm operates as follows: 

1. Create 20 cells and set a counter for each cell. 

2. Initialize all counters to zero 

3. Increment the appropriate cell counter when a sign change is observed. 

4. Continue until one of the following conditions is met: 

a. Two cell counts exceed threshold two 

b. Loss of lock 

c. One cell count exceeds threshold one 

5. If 

a. Condition (a) is met; conclude that the bit synchronization has failed. Go 

back to step two. 

b. Condition (b) is met; try to re-establish lock. And start over again. 

c.  (c) occurs, declare bit synchronization successful, and the C/A code 

epoch count is reset to the correct value 

The calculation of the thresholds is summarized briefly below. The more extensive 

explanation can be found in (Van Dierendonck 1996). 

The probability of making an error in determining a sign change at a desired signal of the  

noise ratio (SNR) s as follows: 

( )
eeesc PPP −= 12         (2.20) 

where  

( )[ ]TNSerfcPe 02'=        (2.21) 

and  
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The number of entries, bsN , in a cell has a binominal distribution. Over bsT  seconds, the 

average number of sign changes (bit transitions) is bsT25  so that in a correct cell  

bsTNBS 251 =         (2.23) 

and, in other cells 

escbsbs PTN 50= .        (2.24) 

The thresholds, as well as the time interval bsT , are chosen to provide a good spread 

between them at a desired SNR. Therefore, given 1NBS , one needs to select 2NBS  and 

bsT  for a desired SNR so that the following inequality holds: 

( ) escbsescescbsbs PTNBSPPTT 50150325 2 ≥≥−−      (2.25) 

 The next step is frame synchronization. This is required in order to process the GPS data 

and recover the navigation message. In the following few paragraphs, this process will be 

briefly described. 

As was discussed earlier in section 2.4, the GPS navigation message frame structure is 

partitioned into five sub-frames. Each sub-frame is further subdivided into ten 30-bit 

words with the two leading words being the telemetry (TLM) word and the handover 

(HOW) word. 
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Several algorithms may be used for frame synchronization. Below, is the algorithm 

employed in the software receiver used herein. 

[1] Search for preamble or its inverted bit pattern. 

[2] If found, a check is required to verify that the pattern is actually the preamble and it is 

the beginning of a 30-bit word.  

[3] Collect the following 22 bits and checking parity. If parity check does not pass, the 

candidate preamble is discarded. 

[4] There are also other legitimate patterns at the beginning of other words, so additional 

checks are required. If the correct TLM word exists, the following word must be a HOW 

word that contains a truncated Z-count. The first eight bits of this truncated Z-count can 

also resemble a preamble. 

[4] Check for parity on the HOW word. If it did not pass, restart the whole process again. 

Test to verify the HOW word: 

[5] If the HOW test passed, demodulation of the other words can start, and be stored in 

memory.  

[6]A final reliability check on the next preamble and the next Z-count confirms the frame 

synchronization. This is to check if the preamble is in the right place and the Z-count 

increments by one. 

The next step is to calculate the pseudoranges. A pseudorange measurement is derived 

based on the following equation 

( ) ( ) ( )( )[ ]τρ −−= ttttct s

u         (2.26) 
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where 

)(ttu  is the time of the signal arrival measured by the receiver clock. 

)(
)( τ−tt

s
 is the time of signal transmission by the satellite clock where it can be 

measured based on the Z count. 

( )( )
chip codeC/A  offraction  chips codeC/A   wholeofnumber                   

 codesC/A  ofnumber  bits navigation ofnumber  count-Z
+

+++=−τtt
s

(2.27) 

The process of pseudorange derivation is shown in figure 15 (Misra & Enge 2001). The 

main goal is to establish the transmission time at the time of measurement. As shown, the 

arrival time ( )ttu  kept by an inner clock is defined by a transition of the receiver clock. In 

general, these transitions occur sometime in the middle of a C/A code chip. The Z-count, 

which is also included in the navigation message is a measure of Satellite time. Z-count 

increments every 1.5 seconds, and the navigation message starts a new sub-frame every 6 

s.  
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Figure 15: Pseudorange derivation 

Since the Z-count establishes satellite time at the beginning of each sub-frame, the 

transmission time is the Z-count plus the whole number of C/A-code chips since the 

beginning of the sub-frame. The elapsed time as stated in equation 2.27 is measured by 

using the whole number of navigation bits, the whole number of C/A-codes since the 

beginning of the current navigation bits, the number of whole C/A-code chips since the 

beginning of the current code, the fraction of the current chip. The last two are measured 

by the DLL and the rest are measured by counters in the bit synchronization and sub-

frame synchronization module in the receiver. 

Later, all these pseudoranges are combined through the least-squares process to form a 

navigation solution. An explanation of the theory of least-squares has been discussed in 

many references and is outside of the scope of this work.  
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Chapter 3  

Real-time GPS Receiver Design 

3.1 Computational Bottlenecks 

The most computationally expensive task for a GPS receiver is the IF signal processing, 

including Doppler removal and correlation with the local code.  A receiver typically 

needs to process GPS data acquired at a sampling rate of 2.5 MHz to 5 MHz for C/A 

code.  Additionally, the receiver must perform other operations such as tracking and 

solution calculation in parallel with the signal processing operations.  Although the latter 

tasks typically run at a slow rate (0.1 to 10 Hz), the computational requirements must still 

be considered, as they consume computational resources within the receiver.  

Furthermore, the additional processing requirements for interfacing with an RF front-end 

in real time must be considered.  To satisfy these requirements, it is assumed for purposes 

of this work that only 50% of the computer’s resources are available to the signal 

processing component of the receiver.  This is likely a conservative benchmark.  To 

illustrate the number of operations required, Table 7 shows the number of computations 

needed in the receiver to process 1 ms of data with different sampling rates. The results 

given are for a receiver tracking six satellites, the computation of three correlation values 

(early, prompt and late) with 2.5, 5 and 10 MHz sampling rates. 
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Table 7: Computational load of the receiver to track six satellites 

 

Real Samples Complex Samples Sampling 

Rate Sin and Cos 

generation 

Multiplication Addition Sin and Cos 

generation 

Multiplication Addition 

2.5 MHz 30,000 120,000 90,000 30,000 150,000 120,000 

5 MHz 60,000 240,000 180,000 60,000 300,000 240,000 

10 MHz 120,000 480,000 480,000 120,000 600,000 480,000 

 

The results of Table 7 demonstrate the increase of the computational load as the sampling 

rate increases. Therefore, it is recommended to choose the minimum sampling rate 

appropriate for the application of the software receiver.  

 

Table 8 illustrates that there is a direct relationship between the number of satellites being 

tracked and the computational load in the receiver. This is clearly expected and it 

nevertheless shows the difficulty the software receiver faces. 

 

Table 8: Computational load of the receiver for tracking 6, 8 and 12 satellites  

Real Samples Complex Samples Sampling 

Rate Sin and Cos 

generation 

Multiplication Addition Sin and Cos 

generation 

Multiplication Addition 

6 30,000 120,000 90,000 30,000 150,000 120,000 

8 60,000 240,000 180,000 60,000 300,000 240,000 

12 120,000 480,000 480,000 120,000 600,000 480,000 

 

Heckler & Garrison (2006) showed that, with normal integer arithmetic, a GPS software 

receiver cannot operate in real time. As we have discussed earlier, the main 

computational burden is due to the correlation that has to be performed. A receiver 
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typically has three correlators.  Therefore, for a 12 channels receiver, there is need for a 

total of 36 correlators. Since the period of the C/A code is 1 ms, there needs to be 36,000 

correlations per second performed in order for the receiver to operate in real-time.  Based 

on the assumption of only 50% of available CPU power to perform these correlations, 

one has to assume that a receiver needs to perform 72,000 correlations per second. A 

desktop computer purchased in 2006 might have a processor running at 2.0 GHz, a rate of 

2 x 10
9 

clock cycles per second. Such a processor could allot 27,777 clock cycles to 

achieve a single correlation (Heckler & Garrison 2006). 

On a Pentium 4 processor, an integer addition takes one clock cycle. A multiplication 

takes 14 clock cycles (Intel Corporation 2006). A cycle count for a GPS software receiver 

that uses a 4.092 MHz sampling rate is approximately 130,000 clock cycles versus the 

limit of 27,777 reported earlier (Heckler & Garrison 2006). This clearly shows that 

correlation algorithms based on integer arithmetic cannot work for a real-time GPS 

software receiver. 
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3.2 Doppler Removal 

As mentioned above, during the tracking of one satellite and assuming a sampling rate of 

5 MHz and complex GPS data, a receiver needs to generate 5000 (1 ms, length of C/A 

code) sine and cosine values and multiply these by 5000 samples of the incoming data. 

Computing all of these complex values in real time is not possible with the current 

processors in the software receiver. There are two major issues that need to be addressed, 

first is generation of the sine and cosine values at the desired frequency, the second the 

mixing of the GPS data with sine and cosine values. These two steps will be covered in 

more detail in next few paragraphs. 

3.2.1 Generation of sine and cosine values 

Computing a large number of sine and cosine values in real time is computationally too 

expensive for a GPS software receiver.  This is a challenging task in software since it 

does not have the same level of parallelism as in hardware. A solution to this problem is 

to first calculate these values and to store them in memory. Later, they can be used in real 

time to perform the Doppler removal. There are two methods that have been developed to 

do this more efficiently.  

A table-look-up method reduces this time significantly. In this method, sine and cosine 

values for all possible phases are calculated and stored in an array. The software needs to 

use the estimated frequency of the GPS signal to index into this array and obtain the right 

sine and cosine value.    

However, the indexing requires that the data be processed on a sample by sample basis 

and the memory look up in each step is time consuming. So despite the fact that this 
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method enhances performance, the gain is not enough for the receiver to perform in real 

time. This is the method that was used in the prior version of the software receiver used 

herein (Ma et al 2004) Better performance (30% improvement) can be accomplished with 

the second method, however. 

The second method is called the table grid method. In this method sine and cosine values 

are computed based on some grid frequencies and saved in a table (Ledvina et al 2003) 

.With the table grid method, a C/N0 decrease is expected from using an inexact 

frequency. However, this has no effect on the accuracy of the solution, nor does it 

significantly reduce the tracking sensitivity. Ledvina et al (2003) shows that the worst 

case SNR loss in the case of T=0.001 s is 0.44 dB where T is the coherent integration 

time. 

Since table frequencies are not as precise as the frequency of the incoming signal, there 

will be a need to do an extra phase rotation at the end of the correlation to compensate for 

the frequency error.  The theory of this rotation is described below.  

In the ideal case, I and Q represent the complex GPS signal received from a single 

satellite, having the form 

)2cos( 0Φ+= kTfACI srπ          (3.1)      

)2sin( 0Φ+= kTfACQ srπ                  (3.2)           

where A is the average amplitude of the carriers, C is the PRN of the satellite, fr is the 

observed carrier frequency, Ts is the sampling frequency, k is an integer sampling unit, 

and Φ0 is the initial carrier phase. 
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Mixing with an ideal local carrier, the quantities I’and Q’ (In-phase and Quadra-phase 

after ideal Doppler removal) are given as follows (brief derivation given only for I’, it is 

analogous for Q’):  
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In the above, f̂  is the frequency of the local carrier being used for demodulation, and 

0Φ̂  is the initial phase offset of that local carrier. 

After correlating I’ and Q’ with the local PRN code and integrating for some period NTs, 

I’’ and Q’’ are the final correlation values for the In-phase and Quadra-phase channels: 
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These values are the ideal post-correlation values, and are together referred to as 

Equation 3.5. 

 

In contrast to the ideal frequency removal given above, the results of using the frequency 

grid table method are given below.  Using this method, only an approximate frequency 

reference fT is available, where TT fff ∂+=ˆ  and Tf∂ is the difference between the actual 
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frequency and the table frequency.  Using this approximate frequency, the correlation 

values are calculated in a similar manner to that used before: 
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In order to match the ideal form of Equation 3.5, one needs to rotate the resultant 

correlation values according to the following relations, based on the frequency error 

between the table and the desired local frequency: 
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where pΦ and  fP are the phase and the frequency of the previous correlation interval. 

This method was proposed by Ledvina et al (2003). 

In addition to forming the sine and cosine values, mixing the signals is a time consuming 

task as well. It requires 20,000 multiplications and 10,000 additions of the incoming data 

against the sine and cosine values for one satellite in 1 ms. MMX instructions are used to 

perform this operation. The resultant improvement in performance is shown later.  

 

The next step after Doppler removal is the correlation of GPS data with the local code. 

Assuming a 5 MHz sampling rate, this is equal to performing 30,000 multiplications and 
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30,000 additions per 1 ms for one satellite (early, prompt and late correlation). Results of 

the performance tests show that by using standard (integer math) C operators, this task 

can not be completed in real time for more than one satellite. MMX instructions can help 

the software to speed up these operations. This will be explained in more detail in the 

next section. 

3.2.2 MMX Technology 

SIMD (Single Instruction, Multiple Data) is a technique used to give a higher level of 

parallelism to the software. It was first used in the large scale super computers, however, 

with the increase in demand for higher speed processing, mostly driven by gaming and 

multimedia programming smaller-scale SIMD operations have become available in 

personal computers. 

Figure 16 gives a visual and simple description of the difference between SIMD versus 

the more typical SISD device (Single Instruction, Single Data Stream). 
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Figure 16: SIMD instruction versus SISD 

 

As Figure 16 clearly illustrates, SIMD exploits a property of the data stream called data 

parallelism. Data parallelism can be used when a large mass of data of a uniform type 

needs the same instruction performed on it (as is the case in GPS). SIMD computing is 

also called vector processing. The reason is that the basic unit that SIMD operates on and 

shows its power with is a vector.  

A normal CPU operates on scalar data, one sample at a time.  However, vector processing 

techniques treat an array of data as one and then process them in parallel. The other term 

that needs to be discussed is “packed data” format. This references the vectors that used 

by SIMD operations.  

It is important to use the correct data type based on the application of the software since it 

will have the direct effect on the level of parallelism that is performed when using SIMD 

instructions.   



  54 

 

MMX technology is a set of SIMD (Single Instruction, Multiple Data) instructions 

available on the Intel platform and on x86-compatible processors.  MMX has eight 64-bit 

registers (MM0-MM7) that can be used to load data and adds 57 new instructions to the 

x86 processor. It supports 3 basic data types as follow: 

1) Packed byte (8 bit), which allows eight samples to be processed at the same time. 

2) Packed word (16 bit), allowing four samples to be processed simultaneously. 

3) Packed double word (32 bit), which reduces the parallelism to only two samples. 

 If GPS data is represented with eight bit (char) variables then MMX can load eight 

samples in parallel from memory and perform multiplications and additions in parallel on 

this data. Heckler & Garrison (2003) was the first to propose the  use of MMX 

technology in GPS software receivers. 

There are two other extensions to MMX that is offered by Intel in their Pentium 3 and 4 

platforms, namely SSE (Streaming SIMD Extension) and SSE2 add more instructions, 70 

new ones, and also increases the size of the registers to 128 bits. These new instruction 

sets and larger registers automatically, and with the least amount of code modification, 

double the size of parallelism in the application. In the software receiver used herein, 

both MMX and SSE/SSE2 instructions are used to enhance the speed of code. The results 

of these improvements are presented in the next chapter. 

3.2.3 Code Correlation using SIMD 

Correlation across the C/A code boundaries may introduce processing loss due to data bit 

boundaries. The reduced magnitude correlation values negatively influence PLL tracking 

and have a major impact on obtaining bit-lock. The incorrect correlation values lead to a 
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change in the discriminator used to determine the data bit transition leading to a periodic 

loss of bit-lock. The regular loss of bit-lock leads to an inability to properly decode the 

GPS data message and perform a navigation solution. Heckler & Garrison (2003) 

proposed a solution to this problem by achieving correlation in three steps: 

1) Correlate the GPS data with the local code until the code roll-over point. 

2) Perform tracking and use new Doppler to correlate the remaining data. Add this 

value to the value of the first step in the next epoch to achieve a 1 ms correlation 

value. 

3) Perform the tracking on this 1 ms of data. 

Another important technique used in the receiver to enhance its performance is the use of 

the pre-computed C/A code table. Two periods of C/A code were computed one after the 

other in memory at the appropriate sampling frequency. Therefore, there is no need to do 

a wrap around while performing a 1 ms correlation.  It is noted that the C/A code Doppler 

was not considered.  

Inside a GPS receiver, a second order DLL (Delay Lock Loop) is used to track the C/A 

code of the signals. Although all the discriminators discussed by Ward (1996) can be 

used in the receiver, the normalized dot product discriminator has been chosen.  This 

discriminator, for 1/2 chip correlator spacings, produces nearly true error outputs within  

2/1±  chip of input error. The discriminator output is calculated as 

∑ ∑ ×−+×− NQQQIII PLEPLE 2/))()((      (3.8) 

where N is a normalization factor, given as 

22

PP QIN += .        (3.9) 
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This is described by Julien (2005). IP and QP are the In-phase and Quadra-phase values of 

correlation. 

In order to save time and increase performance, the early minus late code can be 

calculated off line, stored and then used during the correlation process. This reduces the 

number of correlators per satellite from six to four, since one requires one correlator for 

both I and Q, and increases the computational performance of the receiver. The result is 

pure code tracking. Carrier aiding, to date, has not been implemented in the real-time 

version of the software. 

3.2.4 Software Architecture 

This section looks at the overall architecture of the software and the work that has been 

done in the receiver. It reviews the data flow of each component of the software in order 

to give a better understanding of the work that has been performed for this thesis. 

Receiver control is performed within the main function. The software can be configured 

to work both in real-time and post-processing mode as shown in Figure 17. In the real-

time mode, the software needs to initialize the data handling routines for interfacing with 

the DAQ card. Each step is commented in the code for easier future modifications. The 

receiver control then moves the status of the software to the acquisition. The acquisition 

component can perform blind search or can perform a more selective search if prior 

knowledge of the availability of satellites is available.  Next, the receiver status is 

changed to the tracking.  The receiver stays in this mode unless there are not enough 

satellites to track; in this case, the receiver reverts to the acquisition mode.  Both 

acquisition and tracking use the same code for the Doppler removal and correlation. The 
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software consists approximately of 7000 lines of code of which almost 50% is new code 

or modified code. The original software receiver was designed to run in post processing 

mode (Ma et al 2004). Therefore the data handling was not done in a manner suitable for 

real time operation. In the real time version, a complete rewrite of the data and channel 

handling has been implemented that makes the receiver better suited for real-time 

performance. Also, the previous version did not have any component to interface with the 

hardware. This code was added for the real-time version of the receiver. Another major 

difference between the previous version and the new version is the Acquisition 

component. The new version uses completely different algorithms for performing the 

search for satellites. This means a better channel management and more efficient use of 

FFT algorithms.  

A major change was made to the old version for the Doppler removal and correlation 

component of the receiver. The receiver was modified to process a block of data instead 

of sample by sample. This translated into calling the tracking loop functions and solution 

calculation algorithms in a completely different way.  The receiver was redesigned to use 

its main function as a receiver control task and manage its channels, acquisition, tacking 

and other component from the main part.  

Another major contribution to the receiver design was modifying the basic data elements 

(sample sizes) and data manipulation algorithms that were used in the Doppler removal 

and correlation component.  This led to a redesign of the data gathering code that was 

written for the FPGA. The design of the filter and data handling was all written in C and 

tested for performance and then implemented for the FPGA. As it was discussed earlier, 

the previous version used a simple integer arithmetic (which is sufficient for the post 
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processing mode), However, the new version takes advantage of the MMX algorithms. 

This change adds much complexity to the code. 

The tracking loops were also rewritten to use more efficient discriminators and also to be 

able to handle processing of block data instead of the sample-by-sample technique that 

was used in the previous version. Figure 17, 18 and 19 show block diagrams of the 

components that were discussed above. 
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Figure 17: Over all Architecture of the software 
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The acquisition component was rewritten to take advantage of the FFT algorithm for this 

receiver. The algorithm is described in a previous section. Figure 18 illustrates the 

acquisition component in the receiver. Before acquisition, an FFT of local code is created 

and stored. The first step of the acquisition is to initialize the data structures which 

represent each channel.  The next step is to calculate the noise floor which will be used to 

detect the presence of the signal. Next, a search in each Doppler bin for the satellites is 

performed. The search result is then stored in the channel data structure. Thus by 

comparing the result with the threshold (as described in a previous section) a satellite 

declared found and the corresponding channel data structure gets updated with related 

information, for example the Doppler and code phase measurements. 
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Figure 18: Acquisition flow chart 

Figure 19 illustrates the Doppler removal, correlation and tracking components of the 

receiver. As discussed earlier, the Doppler removal and code correlation are 

performed up to the code roll-over point. Then the correlation results are passed to the 

tracking component. Next, the new Doppler and code phase are used to correlate the 

remaining data and this value is added to the value of the first step in the next epoch 

to achieve a 1 ms correlation value. 
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Figure 19: Doppler removal, Correlation and tracking flow chart 
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Chapter 4  

Test Set Results 

4.1 Test Set Up 

One of the main factors that affect the performance of GPS software receivers is the 

sampling rate of the GPS signal. The sampling rate contributes to the computational load 

of the overall system. The higher the sampling rate, the more data there is to be processed 

and consequently the need for computer resources increases. Therefore choosing the right 

sampling rate is a necessary initial step in developing a software receiver. As stated in 

previous chapters, the GPS L1 signal is transmitted at 1575.42 MHz and has a null-to-

null bandwidth of 2 MHz. This signal is phase modulated with a Pseudo-Random Noise 

(PRN) code with a 1.023 MHz chipping rate. The sampling rate should not be 

synchronous to the code rate as this makes it difficult to obtain fine distance resolution 

(Tsui 2000). The other factor in choosing the sampling rate is the Nyquist rate. The 

Nyquist sampling theorem requires that the minimum sampling bandwidth be twice the 

information bandwidth. Therefore, in case of a GPS L1 C/A code signal, a minimum 2 

MHz sampling rate is required. However, since there are no ideal filters it is usual to 

recommend a sampling rate that is 2.5 times the information bandwidth in order to 

mitigate the effects of filter roll-off. This means that a 5 MHz sampling rate is a preferred 
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sampling frequency for the GPS C/A code signal. However, it is possible for the GPS 

C/A code signal to be sampled at rates lower than 5 MHz.  

Pany et al (2003) shows that it is not necessary to retrieve the whole information (the 

code sequence) of the signal to reconstruct the auto correlation function. Therefore, the 

GPS signal may be tracked with a lower sampling rate to improve processing efficiency 

at the expense of increased tracking error. This has allowed many research groups to 

develop software GPS receivers that operate on sampling frequency of less than 5 MHz 

(e.g. Akos et al 2001, Heckler & Garrison 2004, Pany et al 2002).  

However, the software receiver used herein operates on a 5 MHz (real data) sampling 

rate. There are two main reasons for this. Reaching real-time performance with a higher 

rate will give one the flexibility of moving down in sampling rate without worrying about 

the speed and the performance of the receiver. In addition, a higher sampling rate allows 

one to use advanced correlator techniques that cannot be implemented when using lower 

sampling rates, and are therefore desirable. 

A National Instruments (NI) Data Acquisition Card (NIDAQ5335) transfers data from 

the frontend  to the software. NI-DAQ offers a library supporting traditional single buffer 

data transfer while also offering the new technique of double buffering. Double buffering 

gives the ability for uninterrupted and continuous transfer of large blocks of data to the 

software. 

Figure 20 shows the test and data gathering setup used to evaluate the receiver 

performance. A Spirent 7700 simulator generates the GPS Signal. The simulator allows 

to create controlled and repeatable scenarios to test the receiver. Both static and dynamic 

test scenarios were created. In the static case, an initial position was chosen to be at the 
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same coordinates as that of the University of Calgary. A valid ephemeris was provided to 

the simulator for the chosen day.  In the dynamic scenario, the test scenario had a vehicle 

going in straight line (toward east) with a constant speed of 10 km/h.  The trajectory of 

vehicle motion was then recorded through the simulator and later used as the merit for the 

true trajectory track.  

The GPS RF signals were input to a NovAtel Euro-3M™ card, which served as frontend. 

The Euro-3M
TM

 card has an intermediate frequency (IF) of 70.42 MHz and a front–end 

bandwidth of 16 MHz, as shown in Figure 20. The output from the card is 6-bit samples 

(3-bit L1 and 3-bit L2), synchronized with a 40 MHz sampling clock. 

 

 

Figure 20: Frontend and test set up 
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An FPGA implements both the digital down converter and a 6-tap band-pass filter used to 

reduce the effects of aliasing. Data is the down converted by choosing every eighth 

sample yielding a 5 MHz output rate. A, typical, 6 dB degradation in SNR is introduced 

through the digital down conversation process. Unfortunately, the low-order band-pass 

filter also introduces additional 1-2 dB degradation in the SNR. Better performance is 

possible with higher-order filtering, however, such a filter could not be implemented 

herein because of the speed limitations of the FPGA. 

 

In order to illustrate the better performance of higher order filters, the data was post 

processed and down converted using different filter orders. Next, a search performed for 

a known signal on the data sets. Lastly, a 1 ms coherent integration performed. As figures 

21, 22, 23 and 24 illustrate, the higher order filters eliminate more noise leading to SNR 

ratio increases. This result shows the importance of choosing a good and suitable 

frontend for real-time GPS software receivers. This is discussed further in the next 

chapter as part of future work that needs to be done. 
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Figure 21 : 6-tap band-pass filter 

 

Figure 22: PSD of the incoming signal while using a 6-tap filter 
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Figure 23: 20-tap band pass filter 

 

Figure 24: PSD of incoming signal using a 20-tap filter 
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Figure 25 illustrates the operations performed in the FPGA. 

 

Figure 25: Digital down conversion in FPGA 

The NI data acquisition card (5335) has DMA (Dynamic Memory Access) capability that 

increased the speed of transferring data to the PC. As mentioned earlier, a double buffer 

scheme is used to transfer blocks of data in a continuous manner.  In double-buffered 

input operations, the data buffer is configured as a circular buffer. The DAQ device fills 

the circular buffer with data. When the end of the buffer is reached, the device returns to 

the beginning of the buffer and fills it with data again. This process continues indefinitely 

until it is interrupted by a hardware error or cleared by a function call (DAQ 2000).  

However, during double buffering, the NI-DAQ card internally divides the buffer into 

two equal parts. This allows the NI-DAQ to coordinate user access to the data buffer with 

the DAQ device. The coordination scheme is conceptually simple; NI-DAQ copies data 

from the circular buffer in sequential halves to a transfer buffer that the user creates. The 

user can then process this data while the DAQ device transfers the incoming data into the 
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other half of the circular buffer.  The key to real-time implementation therefore, is to 

process all of the data in the transfer buffer before it is over-written. 

For the following tests, the receiver was configured with the following parameters: 

• 1 ms coherent integration 

• Second order FLL with 10 Hz bandwidth and decision directed cross product 

discriminator  

• Third order PLL with 18 Hz bandwidth and ATAN discriminator (aided by FLL). 

• 20 Hz Pseudo-range measurement output rate.  

• No Carrier Aiding 

• Second order DLL with 2 Hz bandwidth, Non-Coherent Normalized Early-minus-

Late envelope (0.5 chip spacing). 
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4.2 Real-time Performance 

Before developing the interface between the hardware and software, a series of test were 

designed and conducted to evaluate the speed of the receiver and the algorithms 

employed in the receiver.  GPS data was gathered through the set up illustrated in Figure 

26. The goal is to show that the receiver can process 1 s of GPS data in less than 1 s.   

 

Figure 26: Data Collection set up for Performance Testing 

 

Table 9 summarizes the results of the post processing test. For each version of code or 

platform, 30 independent runs were made. The table results are the average time to 

process 30 seconds of GPS data while tracking 6 satellites.  
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Table 9: Performance Comparison 

Processor Algorithm Processing 

time (s) 

Improvement 

with MMX 

Pentium  (1.7 GHz) 

256 MB RAM 

No MMX 
70.1 - 

 With 

MMX 

19.0 72.9% 

Pentium 4 (2.43GHz) 

512 MB  RAM 

No MMX 
63.0 - 

 
With 

MMX 

18.5 70.6% 

 

The above results show a significant improvement in speed with MMX technology.  In 

the “No MMX” version, the processing algorithm is exactly the same except that the 

MMX instructions are not used, but rather normal integer mathematics. It can be 

observed that reaching the real time speed with simple C operators is impossible with 

current high-end general purpose processors.  

The performance measures given in Table 9 include all core signal processing, navigation 

processing and receiver monitoring.  The processing times do not however include 

additional processing that will be necessary to enable real-time delivery of data samples 

from the RF front end to the software receiver, as the tested version reads data from 

previously recorded files.   

After developing the interface between the front end and the software, a second set of 

tests were performed to analyse the real time capability of the receiver. In this test, the 

maximum numbers of satellites the receiver could track were input as an argument to the 

receiver. NI-DAQ card and the interface software were tuned so that if there is an over 
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write of the input data, an exception would be shown. In this way, the receiver’s 

performance can be monitored closely to ensure no input data gets discarded. 

 

It was observed that the receiver is capable of tracking eight satellites in real-time on a 

Pentium 4 processor 3.2 GHz and 1 GB of RAM and hyper-threading enabled. In this 

configuration, the receiver used only 55-60 % of the available CPU resources. Hyper-

threading had no effect on the MMX performance. The receiver is also single threaded 

which is not affected by the hyper-threading feature of the window. However, by 

simulating the second logical CPU, hyper-threading enables other applications to run 

more easily while the software receiver program is being executed. The results that 

follow were all gathered while the receiver was operating in real-time and tracking eight 

satellites. 
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4.3 Acquisition Performance 

Table 10 shows the time it takes the receiver to perform a full sky search in a cold start 

mode under line-of-sight conditions. Results presented are for 1 and 2 ms coherent 

integration.  The time is the total time needed to search for all possible satellites. 

Table 10: Acquisition Speed 

Coherent Integration Time (s) 

1ms 2.4 

2ms 6.1 

 

Figure 27 and Figure 28 show the results of an FFT search for all possible code and 

Doppler bins for PRN 17 using 1 and 2 ms of coherent integration respectively. 

 

Figure 27: 1 ms coherent integration 
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Figure 28: 2 ms Coherent Integration 

As expected, increasing the time of coherent integration increases the size of the peak, 

therefore making the task of detection easier and more robust.   

It has been discussed earlier that the NI-DAQ card uses the double buffer technique to 

transfer data from the FPGA to the software. This means a block of data is gathered first 

and then passed to the software for processing. Following the acquisition process, 

samples that were not processed during acquisition need to be discarded (in order to stay 

in real-time) and therefore the Doppler and code phase need to be predicted for the future. 

The second approach used in the receiver is that all data gets processed. This means the 

receiver is not working in real-time. The size of the buffer basically determines the size 

of delay that the receiver operates with. In this work, the size of the buffer was chosen so 

that the software can perform a 1-ms coherent integration (blind search).  This essentially 
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means that the receiver is 2.4 seconds behind real-time when it processes the data. This 

can be a very critical issue in high dynamic environments. An ideal scenario is for the 

receiver to transfer 1 ms of data from the DAQ card and perform the acquisition on that 

1-ms of data in 1 m or less. Then transfer the next ms of data from the DAQ card and 

continue searching. This way, the receiver is always working on the most recent data 

available from the frontend. However, this approach was not possible with the current 

architecture of the receiver. First, there should be an interrupt routine implemented in 

software to measure time and implement transfer control from the software after 1 ms to 

the DAQ module that transfers data from the frontend. Also, the software needs to keep a 

record of where in the process of acquisition it is when the interrupt is issued (which 

PRN, which Doppler and which code bin). 

 In addition, the DAQ card should not have too much overhead (in double buffer mode) 

when it switches back and forth between the two buffers at such a high rate.  The above 

approach, proved to be too computationally expensive with the current architecture, 

platform and hardware. Therefore, the simple double buffer approach was chosen while 

noting the potential problems associated with it.  
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4.4 Tracking Performance 

This section presents the tracking results.  All of the results were obtained using PRN 23 

and are indicative of other satellites. Figure 29 shows the C/N0 calculated by the receiver 

for all the PRNs that are being tracked by the receiver in real-time. As expected, the 

signals are strong since they were generated by the simulator and do not contain effects 

of antenna gain pattern roll off. The sampling rate of 5 MHz (real data) is used for Figure 

30. In this section, results from using a sampling rate of 5 MHz (complex data) are also 

presented. The goal of this section is to show that the receiver can operate with both real 

and complex data. 

 

Figure 29: Estimated C/N0 for all PRNs 
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Figure 30 and Figure 31 show the Doppler for PRN 23 and PRN 22 real and complex 

data (5 MHz sampling rate) respectively and indicate good carrier tracking by the 

receiver.  In order to verify that the Doppler is correct and the receiver is tracking the 

correct PRN, a NovAtel OEM4 receiver was connected and ran at the same time as the 

software receiver. The Doppler was logged from the OEM4 and later compared to the 

software receiver’s reported Doppler measurements. The small difference that is seen in 

the behaviour of the Doppler tracked by OEM4 and the software receiver is due to 

various reasons. The two receivers use different oscillators and the effect of the oscillator 

has a direct effect on the Doppler. Also, the parameters used in the tracking module of the 

OEM4 are different than that of the software receiver, leading to the small differences 

observed in the graphs. 

 



  79 

 

 

Figure 30: Doppler value for PRN 23 
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Figure 31: Doppler value for PRN 22 

Figure 32 is a smoothed version of the output of the PLL lock detector (real data). As 

expected, the value converges to one which shows good phase lock during tracking. The 

same results are observed for the complex data. 
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Figure 32: PLL Lock detector output 

4.5  Position Accuracy 

A single-point position and velocity solution was computed using the PLAN group’s 

C
3
NAVG

2
™ software. C

3
NAVG

2
™ uses an epoch-by-epoch least-squares algorithm. 

The results shown in Figure 33 and Figure 34 were obtained using the software receiver 

pseudorange measurements only.   Table 11 shows the RMS errors for position (north, 

east and up) and their corresponding DOP. The errors are within a reasonable range 

(metre level) for single-point operation. As it was discussed previously, a Spirent 7700 

simulator was used for the real-time tests. Static and dynamic scenarios were set up to use 

the default settings of the simulator. This means that no troposphere and multipath errors 
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were simulated in these scenarios. The ionosphere error was also set to zero (only 

difference between the default scenario and that used for this work). Table 11 results also 

show a direct relationship between the DOP and the error magnitude. 

 

Figure 33: Scatter plot of North and East errors 

 

Table 11: Position error statistic 

Parameter North East Up 

DOP 0.9 0.9 2.1 

Mean Error 3.7  m 2.2 m 10.5 m 

RMS Error 4.1 m 3.1 m 12.2 m 
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Figure 34 shows the difference between the solution that was calculated by a NovAtel 

OEM4 receiver and the software receiver. As Figure 34 and Table 12 demonstrate, the 

NovAtel unit has better solution accuracy. This is likely due to more sophisticated signal 

processing algorithms. 

 

Figure 34: Solution error difference with OEM4 

Table 12 shows some statistical values related to figure 34 for better understanding the 

performance of the receiver versus the OEM4. 
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Table 12: Position error difference with OEM4 

Parameter North East Up 

Mean Error -1.2  m 0.8 m 5.3 m 

RMS Error 1.9 m 1.5 m 7.2 m 

 

Figure 35, shows the errors in the pseudorange that are calculated by the receiver. For 

this test, a simulator was used and the pseudoranges were logged by both the simulator 

and the receiver.  As the figure shows, the noise in the pseudoranges reaches three 

metres.  

 

Figure 35: Pseudorange errors 
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As mentioned above, a static antenna was used in the experiment. Figure 36 shows the 

velocity errors, which have an RMS value of 0.09 m/s for north, 0.08 m/s for east and 

0.15 m/s for the vertical component, respectively. 

 

Figure 36: Software receiver-Derived velocity errors 

The next set of graphs shows the position accuracy when the receiver is operating on 

complex data.  It should be noted that this is real data that was gathered on the roof top 

antenna range at the University of Calgary. The data was later down converted to 5 MHz 

and post processed. Since the FPGA code is written to only work with real data, the post 

processing method was chosen for complex data analysis. 
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Figure 37: Scatter plot of North and East error 

 

Figure 38: Position error versus time 
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Table 13 shows the RMS errors for position (north, east and up) and their corresponding 

DOP. The errors are within the reasonable range (metre level). Table 13 results also show 

a direct relation between the DOP and the size of errors. 

Table 13: Position error statistics 

Parameter North East Up 

DOP 1.3 0.7 2.2 

RMS Errors 5.1 m 2.5 m 17.0 m 

 

As mentioned above a static receiver was used in the experiment. Figure 39 show the 

velocity errors, which have an RMS value of 0.14 m/s for north, 0.11 m/s for east and 

0.29 m/s up. Hardware receivers typically have a corresponding 0.05 m/s RMS. This is 

because that most hardware receiver use delta carrier phase measurements to determine 

the velocity component, however, in this analysis, delta positions have been used to 

determine the velocity. Since pseudo-range measurements are nosier than carrier phase 

measurements and also no carrier smoothing was employed, larger RMS values are 

observed for velocities.   
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Figure 39: Velocity error versus time 

Next, the result of a simple dynamic test is presented. A straight line, constant speed, 10 

km/h, going from west to east was designed in the simulator. The latitude, longitude and 

height were logged by the simulator and used as the true trajectory for the motion of the 

vehicle. As the Figure 40 and Table 14 illustrate, the positions are within a reasonable 

range for such a receiver. 

Table 14: Position error dynamic test 

Parameter North East Up 

DOP 0.9 0.7 2.4 

Mean Errors 3.9 m 2.0 m 11.0 m 

RMS Errors 4.8 m 3.0 m 16.5 m 
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Figure 40: Position errors in dynamic mode 
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Chapter 5 

Conclusions and Recommendations 

This work focused on the development of a real-time software GPS receiver. It showed 

that, based on the demanding computational requirements of a software-based GPS 

receiver, high data processing efficiency is required in order to obtain real-time 

performance.  There are two basic approaches to accomplish this: reducing the number of 

computations required, or improving the efficiency with which the computations are 

carried out.  This work took the latter approach, primarily by using MMX technology 

available on x86-compatible processors to more rapidly perform the Doppler removal and 

code correlation computations.  Other computational saving methods and algorithms 

were also described in the earlier chapters. The work demonstrates that computational 

improvements of greater than 70% are realized over the standard (integer math) 

implementation which allows the receiver to operate in real-time while tracking up to 

eight satellites.  Test results indicate that tracking performance of the software receiver is 

reasonable and that position and velocity accuracies are at the metre and decimetre per 

second level, respectively.  Also, there were some short comings observed in this work 

which need to be addressed and can be used as the basis for future development work. 
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5.1 Front-end and Acquisition component 

It was discussed in chapter 4 that GPS signals can be sampled with a 2.5 to 5 MHz 

sampling rate. In this work, the receiver was designed to work with a 5-MHz sampling 

rate. A combination of a Euro-3M card, FPGA for down conversation and NI-DAQ 5335 

was used for the frontend. However, it was noticed that the digital down conversion 

introduces a 6 dB loss which reduces the C/No ratio. Also, the down conversion adds an 

additional level of complexity to the frontend. The importance of a good frontend and 

low sampling rate was addressed. For future work, it is recommended to choose a more 

suitable frontend for this receiver thus eliminating the need for the down conversion 

process. One of the advantages of using a software receiver is that all of the baseband 

signal processing algorithms can be easily modified to work with new sampling rates and 

new frontend designs. 

5.2 Performance  

The most computationally expensive task of a GPS receiver is IF signal processing, 

which includes Doppler removal and correlation with the local code.  A receiver typically 

needs to process GPS data acquired at a sampling rate of 2.5 MHz to 5 MHz for C/A 

code. Table 7 showed the numbers of operations required to track 6 six satellites based on 

the above sampling frequencies. 

It was also shown\ through a simple example that real-time operation of a software 

receiver cannot be accomplished through simple integer arithmetic operations (Heckler & 

Garrison 2006).  It was also shown that when using SIMD instructions such as MMX, a 

70% improvement in processing time could be realized.  SSE and SSE2 instructions can 
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also lead to even better performance. Codes that are written with this algorithm can be 

packaged and linked as a library and used in any other software receiver easily. Also, 

because of the flexibility that software receivers offer, it can be used both as a post-

processing tool and a real-time receiver. It would be very useful for future work to add a 

graphical interface to the tool. The post processing software could also still benefit from 

SIMD instructions to increase processing speed.  

A more optimized method for Doppler removal was proposed in this work and 

implemented in the receiver. This method is called the Table grid method in which both 

sine and cosine values are computed based on some grid frequencies and saved in a table 

(Ledvina et al 2003). With the Table grid method, a decrease of C/N0 is expected due to 

using an inexact frequency. However, this has no effect on the accuracy of the solution, 

nor does it significantly reduce the tracking sensitivity. Test results for tracking were 

compared to NovAtel OEM4 and they were considered to be satisfactory. This was proof 

that the Table grid method can be safely employed in the software receiver to 

significantly reduce the computational burden. 

 

For position accuracy performance, a signal was generated with the Spirent 7700 

simulator. A position with RMS errors of about 5 m for North and East and about 15 me 

for Up was observed for both static and dynamic cases. As discussed earlier, these results 

are well within the range expected from this receiver.  
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