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Abstract

Two methods for network-based carrier phase real-time kinematic positioning are

proposed and evaluated in this thesis. These two methods are a correction-based,

and a tightly coupled, approach. Novel algorithm enhancements are proposed for

the correction-based approach, while the tightly coupled approach, which integrates

reference station and user data in a single solution, is an innovative extension of a

method previously developed.

Each stage of the correction-based approach requires coherent information. The

covariance function provides the stochastic basis of the estimation process and is

used in each stage of this approach. A novel method for implementing an adaptive

covariance function that is used subsequently is proposed. The adaptive qualities are

shown to effectively track changing temporal and spatial error conditions, especially

atmospheric conditions, throughout the data sets.

The derivation of a least-squares prediction based approach, more specifically

a least-squares collocation approach, is performed. This includes the value and

variance-covariance of the estimated corrections. Further derivation shows the ef-

fect of these elements on the reduced rover measurements. This approach reduces the

differential measurement errors and improves position accuracy relative to the single

baseline approach.

The tightly coupled approach is an extension of a multiple mobile user positioning

approach, whereby inter-receiver position differences are connected to all reference

stations and user(s) in the same estimation filter. This could also be considered an

extension of the correction-based approach where the position of one or more of the
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reference stations is uncertain or unknown. This approach is also shown to improve

position accuracy relative to the single baseline and correction-based approach.

These two methods are compared and analysed. In general, both methods per-

form better than the single reference station approach however, the tightly coupled

approach performs slightly better than the correction-based approach in terms of

position accuracy, based on the data sets used for the evaluation of the two methods.
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Chapter 1

Introduction

This thesis presents two novel real-time capable, approaches to multiple reference

station carrier phase-based positioning. This chapter first identifies limitations of

previous research that are overcome by this contribution. It then outlines research

objectives and the significant original contribution of this work. Finally, a thesis

overview is given.

1.1 Limitations of Previous Work

The study of many topics are required to develop a real-time capable multiple refer-

ence station system. This study requires an understanding of parameter estimation

using code and carrier phase observations, ionosphere modelling, ambiguity reso-

lution, covariance functions and stochastic processes, least squares collocation for

prediction, and practical aspects of carrier phase positioning. Throughout the devel-

opment of a cohesive system many advancements have been made. The background

for these advancements is described in this section.

1.1.1 Multiple Reference Station Approach: Overview

This research focuses on collocation-based methods for multiple reference station

positioning. This approach was first introduced by Raquet (1998). The collocation-

based approach has been shown to provide a significant level of improvement over the
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single reference station approach for a variety of networks around the world mainly in

post mission (Cannon et al., 2001a,b; Fortes et al., 2000a,b, 2001; Raquet et al., 1998;

Raquet, 1998) but also in real-time (Alves et al., 2001; Cannon et al., 2001a). Landau

et al. (2002) discusses the ability to perform collocation-based multiple reference

station positioning but does not show results with this approach. Zhang (1999) and

Zhang and Lachapelle (2001) show an extension of this approach whereby the network

of reference stations predict the tropospheric effect on a particular satellite pair.

An alternative to the collocation-based approach uses a simple linear two di-

mensional plane model using three surrounding reference stations (Wanninger, 1999;

Vollath et al., 2000a,b, 2002; Wübbena et al., 2001a; Euler et al., 2001).

For either approach to interpolation and prediction, multiple reference station

positioning is usually characterized as a three step process (Odijk, 2002):

1. Estimate and resolve the network ambiguities,

2. Calculate the corrections (error model) for the region, and

3. Transmit the corrections in a receiver-acceptable format.

Estimation and resolution of the network ambiguities is usually neglected in mul-

tiple reference station research because it can be performed using traditional single

reference station methods. There are a few publications referring to the modelling of

network errors to resolve the ambiguities in the network: Wübbena et al. (2001a,b)

discuss the state space model for estimating the ambiguities. This model estimates

a multitude of parameters including satellite clock, signal delay, satellite orbit, iono-

spheric delay, tropospheric delay, receiver clock offset, signal delay, multipath, mea-

surement noise and carrier phase ambiguities. The network ambiguity estimation and

resolution performance with this model is not discussed.
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In previous research, there is no discussion of the integration of the stages of mul-

tiple reference station positioning. Network ambiguity estimation and resolution is

discussed as an independent process from prediction of the corrections. This is a lim-

itation of the previous approaches because without integrating the information from

the network ambiguity estimation into the prediction it is very difficult to produce

reasonable estimated accuracies of the corrections. Calculating and using accuracy

estimates of the corrections will be discussed further in Section 1.1.2.

1.1.2 Collocation-Based Multiple Reference Station Positioning

Collocation-based multiple reference station positioning began with the NetAdjust

method (Raquet, 1998). This method used fixed ambiguities and station coordinates

to first measure the errors at the reference station locations and then predict those

errors for the location of a roving receiver.

Covariance Function: P0

The covariance function models the statistical correlation characteristics of a process

(Moritz, 1980). The covariance function is an important element of collocation-based

prediction, however least squares prediciton is insensitive to the choice of covariance

function (Fortes, 2002). The following discuss properties of previous covariance func-

tions that could be improved.

The covariance function used by Raquet (1998) is a function of the elevations

of the satellites, the coordinates of the stations and the location of the reference

point, P0. The reference point is an arbitrary location where the corrections are

constrained to zero. The reference point constraint is used to resolve the datum

deficiency caused by calculating single observation predictions from double differenced

measured errors. However, the least squares collocation equations inherently resolve
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this datum deficiency without the need for a reference point. Consequently, the use

of P0 in previous work was unnecessary to resolve the datum deficiency in the least

squares prediction.

The elimination of the reference point simplifies the covariance function because

the covariance function does not need to follow the form (Raquet, 1998)

fzc(Pa, Pb, P0) =
σ2

cz
(Pa, P0) + σ2

cz
(Pb, P0)− σ2

cz
(Pa, Pb)

2
(1.1)

where cz represents the zenith correlated errors, and P is the location of the stations

a, b and the reference point, P0. The variances of all of the measurements at the

P0 location are zero, which limits the variety of covariance function parameters. For

example, the variances of all of the satellites at P0 are zero, which means that the

variance is not a function of elevation at this location. Elimination of the P0 point

allows for a wider variety of covariance functions.

Covariance Function: Form

The general form of the covariance function used by Raquet (1998), which models

the variance and covariance of undifferenced observations, is

σlxa ,ly
b

=



µ2(ε)
[

σ2
cz (pa,p0)+σ2

cz (pb,p0)−σ2
cz (pa,pb)

2
+ σ2

uz

]
if a = b and x = y,

µ2(ε)
[

σ2
cz (pa,p0)+σ2

cz (pb,p0)−σ2
cz (pa,pb)

2

]
if a 6= b and x = y,

0 otherwise

(1.2)

where l is an observation from stations a and b to satellites x and y, respectively,

µ2(ε) is the elevation mapping function, σ2
cz

(pa, p0) is a distance dependant function,

and σ2
uz

is the variance of the uncorrelated errors.

The dependance on the P0 point is evident in this equation. The distance depen-

dent function, σ2
cz

(pa, p0) is a positive function that increases with distance. Variations
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of this function are shown in Fortes (2002). The original function shown in Raquet

(1998) is c1d + c2d
2, where d is the distance between the two station arguments, and

c1 and c2 are precalculated coefficients.

In general, the observations are transformed to the zenith using a mapping func-

tion and then the covariance is determined using the distance-dependent function.

The limitation of this covariance function is that correlation is mainly a function of

distance. As a result, two measurements that are observed at the same station are

deemed to be almost perfectly correlated. To avoid this correlation problem, this

covariance function assumes that observations of different satellites are uncorrelated.

Alternately, only the same satellites observed at different stations are correlated. In

actuality, the correlation of two satellites measured by the same station would depend

on the similarity of their signal paths through the atmosphere. In other words, this

covariance function only models distance dependent errors between common satellites

observed at different stations.

By limiting the correlation, the variance-covariance matrix of the observations

will be less representative of the true measurement error properties. In addition, this

covariance function cannot be used to predict the errors for a satellite that is not

already observed by the network.

Covariance Function: Variability

The distance component of the covariance function proposed by Raquet (1998) is

modelled by a second order polynomial. The parameters of this function, which are

the coefficients of the second order polynomial, change from day to day (Townsend

et al., 1999; Fortes et al., 1999, 2001), and day to night (Raquet et al., 2001), de-

pending on the environmental conditions, and are network dependant (Fortes et al.,
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2001). Fortes (2002) shows that up to an additional 14 percent improvement can be

obtained using a covariance function that is calibrated using the same network’s data.

A covariance function calibration can only be performed in post-mission; however, the

covariance function coefficients provide similar performance from one day to the next.

If the covariance function coefficients can be calibrated in conjunction with the

network positioning service, then the coefficients can be tuned for changing environ-

mental conditions.

Using the Corrections

The use of multiple reference station corrections in real-time is an area of study inde-

pendent of the determination of the correction values. At the current time, receiver

manufacturers are beginning to accommodate a standard format of network-based

corrections. Network corrections must be transmitted to the roving receiver in a

receiver-acceptable format. To do this, the multiple reference station corrections

must be disguised as single reference station data so that the receiver will understand

and use the corrections properly. However, the rover receiver will decide how to use

the corrections based on the expected accuracy of its corrected measurements. The

accuracy of these measurements is determined by the rover, based on the distance

between itself and the reference station from which the corrections are sent.

It has been shown that the multiple reference station approach can reduce mea-

surement errors relative to the single reference station approach using the closest

reference station to the rover (Cannon et al., 2001a,b; Fortes et al., 2000a,b, 2001;

Raquet et al., 1998; Raquet, 1998; Wanninger, 1999; Vollath et al., 2000a,b, 2002;

Wübbena et al., 2001a; Euler et al., 2001). The rover receiver assumes a level of

differential measurement error based on the distance between itself and the reference
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station. In the multiple reference station case, the rover’s differential measurement

errors are less than in the single reference station approach. Consequently, the refer-

ence station position that is sent to the rover should be closer to the rover than the

nearest reference station so that the rover assumes a more appropriate level of error.

The virtual reference station (VRS) method geometrically transforms the cor-

rected measurements of a reference station to a new location to trick receivers into

using a different baseline length dependent processing scheme (Townsend et al., 2000).

The formal accuracy of the corrections has been an area of concern but has not

been rigorously investigated. Fortes (2002) investigated a method of improving the

accuracy of the corrections over time through Kalman filtering. In this approach the

corrections are time filtered independently from the correction generation. This was

shown to be effective, especially at the beginning and end of a satellite pass, when the

correction is determined by a limited number of reference stations. Although, this

approach improves correction accuracy, it does not produce an estimated accuracy of

the corrections.

1.2 Objectives

The overall objective of this research is to develop a beginning-to-end processing

method for multiple reference station positioning. To this end, this thesis discusses

two novel beginning-to-end multiple reference station approaches.

Specific sub-objectives of this contribution are to:

1. Develop a covariance function that improves on the covariance function devel-

oped by Raquet (1998) in terms of the covariance function properties. More

specifically, a covariance function without the dependence on a P0 point and
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that can determine correlations between any satellite and station combination.

This covariance function will produce a fully populated variance-covariance ma-

trix that can be used to weight the observations for both stages of the multiple

reference station approach, i.e. ambiguity estimation and error prediction. The

coefficients of this covariance function are observable in real-time, which re-

moves the need for post-mission calibration. This adaptive covariance function

will affect all stages of the multiple reference station approach and will result in

better modelling of the covariance of the observations allows for better estima-

tion and resolution of network ambiguities (first stage) and improved prediction

of the network errors through collocation (second stage).

2. Develop the least squares collocation equations for prediction using estimated

parameters (i.e. ambiguities with float values). This includes equations for

prediction of the errors as well as the equations to calculate the estimated

variance-covariance of the corrections. In addition, the rigorous use of these

corrections is explored mathematically, including the effect of the estimated

variance-covariance of the corrections on the rover’s estimated precision. This

will improve the prediction of the errors at the rover location (second stage). It

also allows for the calculation of the variance-covariance matrix of the correc-

tions, which can be used to correctly apply the corrections in the final stage of

the multiple reference station approach.

3. Develop and test a tightly integrated method for multiple reference station

positioning. This approach integrates as much information as possible into

obtaining the precise position of one or many roving receivers in the region of

the network. This approach combines all three multiple reference station stages
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into an integrated approach.

1.3 Original Contribution

Many topics related to the multiple reference station approach have been significantly

advanced by this research. The development of two multiple reference station posi-

tioning methods are discussed. The first of which is an extension of the approach

introduced by Raquet (1998).

The original work by Raquet (1998) assumes that the carrier phase ambiguities

are known, which is not a reasonable assumption for real-time positioning. Removing

this assumption requires considerable redevelopment of the problem. This is one

major original contribution of this thesis. The first stage of this advancement was

to reevaluate the least squares collocation equations, including variance-covariance

information for unresolved estimated parameters. This includes the calculation of

the variance-covariance matrix of the corrections, which is an important quality of

the corrections that had not yet been considered. This solution was expanded to

include ambiguity resolution using conditional decorrelation of the parameters and

ionosphere modelling. Ionosphere modelling requires special considerations because

the pseudo-ionosphere observations and ionosphere estimated parameters should not

be used in the prediction of the corrections. The collocation-based equations using

ionosphere modelling can be simplified by applying conditional decorrelation, which

is traditionally applied to ambiguities, on the ionosphere parameters. This approach

has not been shown in previous research.

This thesis discusses the use of the variance-covariance matrix of the corrections,

which has not been considered in previous research. Consequently the use of this
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information is unique to this thesis.

One of the requirements of this approach is that the covariance information for the

parameter estimation and prediction stages is coherent. The development of covari-

ance functions applied to GPS errors in post-mission is discussed in Raquet (1998),

Radovanovic et al. (2001) and Kennedy (2002). The estimation of the covariance

function parameters in real-time is an original contribution of this thesis. This allows

for variations in error conditions to be modelled by the covariance function without

the need for calibration.

The second multiple reference station positioning method discussed in this work

is a tightly coupled approach. Although developed independently, this approach is

similar to the precise relative positioning of multiple moving platforms shown in Luo

(2001). However, the approach shown in Luo (2001) mainly concerns the datum

problem of differential positioning without any reference stations and the optimal

use of constraints. Luo (2001) also assumes that there is no correlation between

the observations of different baselines. The tightly coupled approach shown in this

research is significantly different from the approach shown in Luo (2001) in terms of

its implementation and development.

1.4 Data sets

Two data set are used to compare the various approaches introduced in this work.

1.4.1 MAGNET Network (Turkey)

Data from the TUBITAK Marmara Continuous GPS Network (MAGNET) was col-

lected from October 26 to 28, 2001. The baseline lengths range from 25 to 75 km.

Figure 1.1 shows a map of the TUBITAK Marmara Continuous GPS Network (MAG-
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NET).

Figure 1.1: TUBITAK Marmara Continuous GPS Network (MAGNET)

The atmospheric effects for October 26 to 28 are shown in Table 1.1, residual

troposphere and orbit error is 0.1 ppm for all the days and the ionosphere error

ranges from 1.4 to 2.1 ppm. These errors can be considered average in magnitude.

Table 1.1: RMS error of the L1 ionosphere and residual troposphere and orbit errors
for October 26, 27 and 28, 2001

L1 Ionosphere Residual Troposphere
and Orbit

October 26 1.4 ppm 0.1 ppm
October 27 1.4 ppm 0.1 ppm
October 28 2.1 ppm 0.1 ppm
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1.4.2 SAN Network (Canada)

Data from the Southern Alberta Network (SAN) was collected on June 8 and 14,

2004. The baseline lengths of this network range from 24 to 49 km. Figure 1.2 shows

the SAN network.

Figure 1.2: Subset of the Southern Alberta Network (SAN) Used for Data Collection

The RMS ionosphere, and troposphere and orbit errors for the SAN network on

these days range from 0.8 to 0.9 ppm for the ionosphere error and 0.2 ppm for the

residual troposphere and orbit error, respectively. The atmospheric effects are shown

in Table 1.2. These error can be considered low to average in magnitude.

1.5 Thesis Outline

Chapter 2 discusses the fundamental background for this research. This information

is required to fully understand the development in further chapters.
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Table 1.2: RMS error of the L1 ionosphere and residual troposphere and orbit errors
for June 8 and 14, 2001

L1 Ionosphere Residual Troposphere
and Orbit

June 8 0.9 ppm 0.2 ppm
June 14 0.8 ppm 0.2 ppm

Chapter 3 discusses the development of an adaptive covariance function. This

chapter begins with the selection of the form of the covariance function. It then

shows that the coefficients of this function can be estimated in real-time to adapt to

the changing environmental errors.

Chapter 4 shows the development of collocation equations for multiple reference

station positioning first assuming that the adjustment misclosure is a function of the

estimated parameters. Secondly, the equations are adapted for fixed ambiguities and

again to also include special considerations inherent to ionospheric modelling. This

development includes calculation of the variance-covariance matrix of the corrections,

a method of applying the corrections and the theoretical mathematical effect of the

corrections on a user given the variance-covariance matrix of the corrections.

Chapter 5 shows a comparison between the single reference station approach and

the collocation-based multiple reference station approach using three days of data

from the MAGNET network.

Chapter 6 discusses an alternate method of multiple reference station positioning

using a tightly coupled approach. Results demonstrate the performance of the tightly

coupled approach compared to the single reference station approach using three days

of data from the MAGNET network.

Chapter 7 discusses theoretical differences between the collocation-based approach

and the tightly coupled approach. A comparison follows using data from the SAN
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network.

Chapters 8 draws conclusions from this work, including recommendations for fu-

ture work.
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Chapter 2

Fundamentals

2.1 GPS Error Sources

The precision, accuracy and reliability of GPS positioning and navigation is dependent

on the level of errors present in the observations. The properties of observation errors

change over time and geographic region. This section describes the error sources rele-

vant to differential carrier phase positioning. When all of these errors are considered

the resulting code and carrier phase measurement equations are

P = ρ + dρ + T + If + εPmp + εPnoise

φ = ρ + dρ + T − If + εφmp + εφnoise
+ λN

(2.1)

where

P is a code measurement in metres,

φ is a carrier phase measurement in metres,

ρ is the receiver to satellite range in metres

dρ is the satellite position error in metres

T is the troposphere error in metres

If is the ionospheric error at the frequency (f) in metres,

εPmp , εφmp are the code and carrier phase multipath in metres,

εPnoise
, εφnoise

is the code and carrier phase measurement noise in metres, and

λN is the carrier phase ambiguity in metres.

Each

error will now be discussed.



16

2.1.1 Ionosphere Errors

The ionosphere is a region of the atmosphere which contains weakly ionized plasma

(Klobuchar, 1996). The ion content (free electrons) in this region has various effects

on electromagnetic signals, such as GPS.

The ion content of the ionosphere is distributed from 60 to more than 1000 km

above the surface of the Earth (Klobuchar, 1996) however the peak density is located

around 300 to 450 km. The effect of the ionosphere on radio-navigation signals is a

function of the integration of the electron density along the signal’s path as shown

for the pseudorange code measurement as follows

I(f) =
40.3

cf 2

∫
path

Ndl, (2.2)

where I(f) is the pseudorange ionospheric delay in metres, f is the wavelength of the

signal and N is the electron density of the ionosphere. Equation 2.2 shows that the

ionospheric delay is a function of the frequency of the signal for L-band signals. A

multiple frequency navigation system can use this dispersive property to estimate the

ionospheric effect on the measurements.

The ionospheric phenomenon affects the code and carrier phase measurements

differently. Carrier phase measurements are advanced by the ionosphere by the same

amount that the code is delayed. This property is commonly used to estimate the

ionospheric effect in the following code minus carrier phase combination

P − φ = 2If + εPmp − εφmp + εPnoise
− εφnoise

− λN. (2.3)

The ionosphere’s variability is due to the number of free electrons, which is a

function of solar radiation. As a result, there is a daily variation of the ionosphere

such that it is relatively calm at night and is most active around 14:00 local time.
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There are also regional effects due to the Sun. These effects can be seen in Figure 2.1,

which shows the estimated global ionospheric error on January 1, 2004 at 0:00 UTC.

This is derived from a Global Ionosphere Map (GIM) produced by the Center for

Orbit Determination in Europe (CODE). There is a significant ionspheric gradient at

low geomagnetic latitudes which is amplified at approximately 14:00 local time.

Figure 2.1: L1 ionosphere error for Jan 1, 2004 at 0:00 UTC derived from a Global
Ionosphere Map from the Center for Orbit Determination in Europe (CODE)

The ionosphere is the largest error source for differential GPS ranging less than

1 part per million (ppm) of the inter-antenna distance during low ionospheric pe-

riods at mid latitudes to greater than 10 ppm at low geomagnetic latitudes during

midday. Figure 2.2 shows the level of ionosphere error for data collected from the

MAGNET network in Turkey (October 26, 2001). The daily variation and effect of
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baseline length are shown figure. In the early morning and late evening the error

is approximately 0.6 ppm and increases to approximately 4.1 ppm at midday. The

values shown in Tables 1.1 and 1.2 are the averages for the 24 hour data sets and the

many baselines. For example, the ionosphere given in Table 1.1 is 1.4 ppm, which is

the average of the ppm for the network baselines throughout the day.

Figure 2.2: L1 ionosphere error for three baselines of the October 26, 2001 data set

2.1.2 Troposphere Errors

The troposphere is a region of the atmosphere that spans from the Earth’s surface

to 12 to 14 km above the surface (Spilker, 1996). The composition of the gases

in this region has an impact on GPS signals. As the signal travels through these
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tropospheric gases, the signal refracts and slows the transmission speed of the signal,

which both lengthen the measurement’s path causing a delay in the time that the

signal is received. The magnitude of the delay is relative to the atmospheric profile

along the signal path.

This delay can be characterized through two effects, the dry and wet delays. The

dry part is due to the non-water content and the wet delay is caused by the water

content in the atmosphere. The dry delay is the larger of the effects, however it

is predictable and stable over time. The remaining wet part is relatively unstable

and unpredictable over time but only constitutes 10 percent of the total tropospheric

effect. The wet delay varies by 10 to 20 percent in a few hours (Spilker, 1996).

Many models have been developed to reduce the effect of the troposphere on

GPS measurements. The model used in this research is the modified Hopfield model

(Goad and Goodman, 1974) using standard atmospheric parameters for temperature

and pressure (derived from the station height) and a relative humidity of 50 percent.

This is the same model used in Raquet (1998). The differential residual troposphere

error (after modelling) is on the order of 0.1 to 0.4 ppm of the inter-antenna distance

(e.g. Tables 1.1 and 1.2).

2.1.3 Orbit Errors

The orbit error is due to inaccuracies in the satellite position reported by the broadcast

ephemeris. The effect of a satellite position error on the differential position is the

projection of this error onto the direction of the observation vector (Parkinson, 1996).

Raquet (1998) shows that orbit error is usually less than 0.1 ppm of the inter-antenna

distance.
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2.1.4 Multipath and Measurement Noise

Multipath error is caused by the interference of a reflected signal mixing with the

direct satellite signal. The level of multipath is a function of the receiver tracking

technology, the antenna type, and the antenna environment.

The noise term consists of receiver measurement noise and the sum of all other

unmodelled and second order effects. This is also a function of the receiver technology

used. Raquet (1998) shows the code and carrier phase noise and multipath root mean

squared errors (Table 2.1) from sample data. These are consistent with the level of

multipath and noise shown in Petovello (2003).

Table 2.1: Code and carrier phase noise and multipath RMS error shown in Raquet
(1998)

Measurement type RMS Error
L1 CA code 0.4 m
L2 P code 1.0 m
L1 phase 4.3 mm
L2 phase 6.2 mm

2.2 Least Squares Estimation

Least squares estimation is one method of unbiased parameter estimation. There are

many forms of the estimation equations for different applications. This research fo-

cuses on real-time estimation of the parameters over time. To accommodate this

requirement, an epoch-by-epoch approach is used. There are two forms of least

squares estimation that allow for real-time estimation, Bayes filtering (Gelb, 1974)

and Kalman filtering (Gelb, 1974; Brown and Hwang, 1997; Salychev, 1998). These

two methods have differing properties; however, their solutions are equivalent (Koch,
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2000; Brown and Hwang, 1997). The Bayes filter is more computationally efficient

than Kalman filtering when the number of measurements exceeds the number of pa-

rameters and a Kalman filter is more efficient than a Bayes filter when the number

of parameters exceeds the number of measurements.

2.2.1 Kalman/Bayes Filtering

A Bayes filter has been used over a Kalman filter in this research because there are

usually more measurements than parameters in the models employed.

The measurement matrix (B) relates the measured observations (l) to the linear

combination which observes the estimated parameters. Each column in the matrix

represents an untransformed (raw) measured observation. Each row of the matrix rep-

resents a transformed linear combination of the measured observations. Each element

of the matrix is the partial derivative of the observation equations with respect to

the untransformed (raw) observations. Double difference observations are commonly

used in carrier phase GPS estimation. As an example, the (raw) undifferenced obser-

vations from Table 2.2 are used to create the double difference observations shown in

Table 2.3.

Table 2.2: Example set of undifferenced (raw) observations

Observation Station PRN

l1a a 1

l2a a 2

l3a a 3

l1b b 1

l2b b 2

l3b b 3

The double difference measurement matrix for this example is
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Table 2.3: Example set of double difference observations

Difference observation Undifferenced combination

∆∇l12ab l1a − l2a − (l1b − l2b )

∆∇l13ab l1a − l3a − (l1b − l3b )

∆∇l = Bl

=

 1 −1 0 −1 1 0

1 0 −1 −1 0 −1





l1a

l2a

l3a

l1b

l2b

l3b



.
(2.4)

The design matrix (A) relates the double difference observations to the estimated

parameters. Each column represents an estimated parameter and each row represents

an observation. Elements of the matrix are the partial derivatives of the observation

equations with respect to the estimated parameters. A set of parametric equations is

∆∇l12ab = ∆∇ρ12
ab + λ∆∇N12

ab + ε12
ab

∆∇l13ab = ∆∇ρ13
ab + λ∆∇N12

ab + ε12
ab,

(2.5)

where λ is the wavelength of the signal in metres, N is the carrier phase ambiguity is

cycles and ε is the unestimated residual errors in metres. An example design matrix
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(A) given these measurement equations is

∆∇l12
ab = Ax

=


∂∆∇l12ab

∂xb

∂∆∇l12ab

∂yb

∂∆∇l12ab

∂zb

∂∆∇l12ab

∂∆∇N12
ab

∂∆∇l12ab

∂∆∇N13
ab

∂∆∇l13ab

∂xb

∂∆∇l13ab

∂yb

∂∆∇l13ab

∂zb

∂∆∇l13ab

∂∆∇N12
ab

∂∆∇l13ab

∂∆∇N13
ab





xb

yb

zb

∆∇N12
ab

∆∇N13
ab


.

(2.6)

The Bayes filter estimation equations are

x̂ = x◦ + (AT (BCllB
T )−1A + C−1

x◦x◦)
−1AT (BCllB

T )−1(Ax◦ −Bl), (2.7)

where x̂ is a vector of adjusted parameters, x◦ is a vector of the parameters prior to

adjustment, Cll is the variance-covariance matrix of the raw observations and Cx◦x◦

is the variance-covariance matrix of the parameters prior to the adjustment. This

equation takes into account a-priori information contained within the vector of the

parameters prior to adjustment (x◦) and its variance-covariance matrix, Cx◦x◦ . In the

processing of data in real-time, these equations are used at each epoch to update the

current solution with new observations.

2.2.2 Collocation

Least squares collocation is derived from the concept of dividing residual errors into

two components: signal and noise. This suggests that in addition to the functional

model that is represented as Ax there are additional unmodelled errors. In this case,

ionosphere, troposphere, and orbit errors are all signal components, which are due to

artifacts external to the measurement instrument.

Although a deterministic function for the signal components is unknown, the

second moment of the expected value of the signal (E{ssT}) must be known for
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collocation. The second moment of the signal can be derived from a signal covariance

function.

Separating the measurements into a signal component and a noise component

gives

l = l◦ + ls + ln (2.8)

where l◦ is the deterministic bias including the true range, ls is the signal, and ln

is the observation noise. The variance-covariance matrix of the observations is

Cll = E{(l − E{l})(l − E{l})T}

= E{(l◦ + ls + ln − l◦)(l◦ + ls + ln − l◦)
T}

= E{lslTs }+ E{lnlTn}

= Clsls + Clnln . (2.9)

This assumes that the signal and noise are uncorrelated. In comparison the co-

variance between two vectors of observations is

Cl1,l2 = E{(l1 − E{l1})(l2 − E{l2})T}

= E{(l1s + l1n)(l2s + l2n)T}

= E{l1sl2
T
s } = Cl1sl2s

. (2.10)

It is assumed that the noise components of the observations are uncorrelated in

this example. The covariance between the two observation vectors is simply the signal

covariance.

Using the definitions of the signal and noise components in the least squares

estimation gives the estimation component of least squares collocation. This is the
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substitution of Equations 2.9 and 2.10 into Equation 2.7:

x̂ = x◦ + (AT (B(Clsls + Clnln)BT )−1A + C−1
x◦x◦)

−1

AT (B(Clsls + Clnln)BT )−1(Ax−Bl). (2.11)

Moritz (1980) gives an intuitive derivation for the prediction of the signal. The

estimated signal is defined as a linear function of the data (l),

ŝ = Hl, (2.12)

where H is the linear transformation matrix which relates the data to the signal. The

error of this estimate is

ε = ŝ− s. (2.13)

The linear transformation matrix used is that which minimizes the error covari-

ance. The error covariance of the estimated signal is

Cεε = E{εεT}

= E{(Hl − s)(Hl − s)T}

= HE{llT}HT − E{slT}HT −HE{lsT}+ E{ssT}

= HCllH
T − CslH

T −HCls + Css. (2.14)

This equation can be rearranged to simplify the evaluation of the minimum:

Cεε = Css − CslC
−1
ll Cls + (H − CslC

−1
ll )Cll(H − CslC

−1
ll )T . (2.15)

From this equation it is easy to see that to find a value of H that minimizes the

error covariance of the estimated signal, the term (H − CslC
−1
ll )Cll(H − CslC−1

ll )T

must be minimized. As a result

H = CslC
−1
ll . (2.16)
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The estimate that minimizes the error covariance of the signal is

ŝ = CslC
−1
ll l. (2.17)

Replacing the definition for H from Equation 2.16 into the equation of the error

covariance of the signal (Equation 2.15) gives

Cεε = Cŝŝ = Css − CslC
−1
ll Cls. (2.18)

2.2.3 Temporal Models

Temporal models are used to relate one epoch’s states to the next. This is accom-

plished using an assumption about the stochastic behaviour of the estimated param-

eter over time. If a parameter is static and constant over time then one epoch will

directly relate to the next. Consequently, the one epoch’s estimated parameters and

estimated variance-covariance can be used as a-priori information for the following

epoch.

The reverse case (infinite white noise) is also trivial. If the parameters from one

epoch have no relationship with the next epoch’s parameters then no information

from one epoch can be passed to the next. In this case the state vector from the one

epoch can be used as a point of expansion for the next epoch with an infinite variance

(i.e., no information).

All the cases in between can be described by a system of differential equations

that relate one epoch to the next. This system of differential equations defines the

transition from one epoch to the next and, to some extent, the change in variance-

covariance from one epoch to the next. Two common, time-varying systems are a

random walk process and a first order Gauss-Markov process. These processes are

described in Gelb (1974).
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A random walk process is best described by a roaming value that changes by

a discrete step randomly increasing or decreasing from the previous value. All the

future values are tied to the current value; however, the likelihood that the future

value and the current value are the same decreases over time. In terms of temporal

modelling, the current value of the parameter is used as the a-priori estimate for

the next epoch but due to the decreased likelihood that the value is the same, the

estimated variance of the parameter is increased from one epoch to the next. The

update equations from one epoch to the next for a random walk process is

xk+1 = xk,

σ2
xk+1

= σ2
xk+1

+ q∆t,
(2.19)

where x is the value of the random walk parameter, σ2 is the estimated variance of the

parameter, q is the spectral density, which describes the variability of the parameter

over time, and ∆t is the difference in time between the last update and the next.

A Gauss-Markov process is described by the differential equation (Gelb, 1974)

ẋ = −βx + w. (2.20)

It produces a characteristic decreasing autocorrelation function. It is commonly used

in prediction because of the behaviour of the estimate over time. Initially, the pre-

dicted update is the same as the latest estimate and over time the estimate converges

to zero. For this reason, it is a conservative estimation choice for many estimated

parameters. Consider as an example the velocity of a person walking as the lights go

out being estimated as a first order Gauss-Markov process. Initially, it is safe to walk

blindly forward at the same speed as before the lights went out and over time (as

the person’s confidence in their current position or changing surroundings decreases)

the person slows to a stop. The rate at which the individual slows depends on their
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environment, for example, if the person is walking in an empty field then they could

walk with confidence knowing that they will not encounter any obstacles. However, a

person walking in a crowded room would stop immediately because of the variability

of their surroundings. The update equations for a first order Gauss-Markov process

are (Gelb, 1974)

xk+1 = e−β∆txk

σ2
xk+1

= σ2
xk

+ q
2β

(1− e−2β∆t).
(2.21)

In the precise carrier phase positioning filters used in this research there are four

types of states: ambiguities, slant ionosphere error, position and velocity. Ambigu-

ities and static positions are usually modelled as random constants (static states)

(described above), whereby one epoch’s parameter estimate is used as a-priori infor-

mation for the next epoch. Slant ionosphere error and velocity are time varying states

which change somewhat from epoch to epoch. Skone (1998) shows that ionospheric

error behaves like a first order Gauss-Markov process based on its autocorrelation

function.

A kinematic (mobile) receiver is modelled temporally to propagate and relate the

estimation solution from one epoch to the next. This requires some assumptions about

the general dynamic behaviour of the vehicle. In a position and velocity model the

position is propagated over time using the integration of velocity over time. This is

not as simple for the velocity states, which must be propagated using an assumption

about the vehicle behaviour. Two common models for the velocity states are the

random walk velocity model and the first order Gauss-Markov model.

The random walk velocity model assumes that the vehicle will travel in the same

trajectory from one epoch to the next. Although this may be true in a majority of

situations this can be detrimental if the vehicle changes speed or direction. The first
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order Gauss-Markov process assumes that the velocity will decrease at an exponential

rate from one epoch to the next. Although this is an unlikely vehicle behaviour, it

allows for a near constant velocity model when the data rate is high or the correlation

time is long. This model is also safer when the data rate is low or the correlation time

is low because the predicted vehicle’s velocity decreases, which will reduce propagation

errors in the event that the vehicle does not maintain a constant trajectory or speed.

As the update equations for the velocity will also affect the position estimates,

the transition must be determined by solving the system of differential equations.

The system dynamics model for the position and velocity states, when the velocity is

estimated as a first order Gauss-Markov process is

ẋ = ẋ

ẍ = −βẋ + w
(2.22)

where x is the position state, ẋ is the velocity state, ẍ is the acceleration, β is the

rate of decline of the velocity over time and w is the white noise error associate with

the propagation error.

In matrix form the system model is ẋ

ẍ

 =

 0 1

0 −β


 x

ẋ

+

 0

w

 . (2.23)

This system of equations can be solved using a Taylor series expansion (Gelb, 1974).

The expansion about t0 is

x(t) = x(t0) + ẋ∆t + ẍ
∆t2

2!
+ ... (2.24)

The expansion can be related to the system model by

x(t) = x(t0) + F∆tx(t0) +
F 2∆t2

2!
x(t0) + ... (2.25)
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where

F =

 0 1

0 −β

 . (2.26)

This expansion in terms of the matrix F is x

ẋ

 =

I +
∞∑
i=1

 0 (−β)i−1

0 (−β)i

 ∆ti

i!


 x(t0)

ẋ(t0)



=

 1 a

0 b


 x(t0)

ẋ(t0)

 (2.27)

where a and b are the elements of the matrix to be simplified in the following deriva-

tion.

a = ∆t− β
∆t2

2!
+ β2 ∆t3

3!
+ ... (2.28)

1− βa = 1− β∆t +
β2∆t2

2!
− β3∆t3

3!
+ ... (2.29)

which can be replaced using the definition of the Taylor series expansion of an expo-

nential decay function:

eA = 1 + A +
A2

2!
+

A3

3!
+ ... (2.30)

resulting in

a =
1− e−β∆t

β
(2.31)

A similar derivation can be made for the solution of b:

b = 1− β∆t +
β2∆t2

2!
− β3∆t3

3!
+ ...

= e−β∆t (2.32)

The transition matrix, which relates one epoch to the next is then

Φ =

 1 1−e−β∆t

β

0 e−β∆t

 (2.33)
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The propagation’s effect on the covariance matrix is based on the noise term (w).

If

G =

 0 0

0 1

 , (2.34)

then the propagation’s effect on the variance-covariance matrix is defined by the

following. Hereafter the temporal propagation is assumed to be from t = 0 to t:

Qww =
∫ t

0
ΦGQGT ΦT dt

=
∫ t

0

 1 1−e−βt

β

0 e−βt


 0 0

0 1


 1 0

1−e−βt

β
e−βt

 q dt

=
∫ t

0
q


(

1−e−βt

β

)2
1−e−βt

β
e−βt

1−e−βt

β
e−βt e−βt

 dt. (2.35)

The integrals of each of the elements of this matrix can be calculated independently

as

Qw11 =
∫ t

0
q

(
1

β
− e−βt

β

)2

dt

=
∫ t

0
q

(
1

β2
− 2

e−βt

β2
+

e−2βt

β2

)
dt

=
q

β3
(−3

2
+ βt + 2e−βt − 1

2
e−2βt), (2.36)

Qw12 = (ΓQΓT )21 =
∫ t

0

q

β

(
e−βt − e−2βt

)
dt

=
q

β2
(
1

2
− e−βt +

1

2
e−2βt), and (2.37)

Qw22 =
∫ t

0
qe−2βt dt

=
q

2β
(1− e−2βt). (2.38)
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The update (using the transition matrix) of the state parameters is

xk+1 = Φxk,

Cxk+1xk+1
= ΦCxkxk

ΦT + Qww. (2.39)

In terms of a position and velocity system, where the velocity is modelled as a

first order Gauss-Markov process, the update equations are x

ẋ


k+1

=

 1 1−e−β∆t

β

0 e−β∆t


 x

ẋ


k

, (2.40)

Cxk+1xk+1
=

 1 1−e−β∆t

β

0 e−β∆t

Cxkxk

 1 0

1−e−β∆t

β
e−β∆t

 (2.41)

+


q
β3 (−3

2
+ βt + 2e−βt − 1

2
e−2βt) q

β2 (
1
2
− e−βt + 1

2
e−2βt)

q
β2 (

1
2
− e−βt + 1

2
e−2βt) q

2β
(1− e−2βt)

 .

2.3 Ambiguity Resolution

Carrier phase ambiguities are tracking biases induced by the measurement process

of the carrier phase of the GPS signal. These biases have integer values (in cycles).

These bias are random values that change with each loss of lock of the tracked signal.

In other words, each satellite is assigned a random integer ambiguity that will be

different every time the signal is tracked.

These biases must be estimated before the signal can be used effectively and if

possible the ambiguities should be constrained (fixed) to their true integer values.

This fixed ambiguity case will give the best possible performance when using carrier

phase measurements.

There are many methods to determine the correct integer ambiguity. Erickson

(1992) discusses many of the original methods for ambiguity resolution. Many of the



33

methods were developed to accommodate the limited computing power available at

the time. Most of the methods described use the sum of squared residuals to decide,

statistically if the ambiguity set should be accepted.

The latest methods for ambiguity resolution require a float estimate and a variance-

covariance matrix of the ambiguities. They use the covariance matrix to statistically

reject ambiguity sets. The Fast Ambiguity Search Filter (FASF) (Chen, 1994) uses

the variance and covariance of the ambiguities to propagate the effect of one integer

ambiguity onto the others. By propagating the effect of a fixed ambiguity onto the

others this method will quickly detect and reject diverging solutions.

The LAMBDA method (Teunissen, 1994; de Jonge and Tiberius, 1996) decorre-

lates the ambiguities as much as possible while preserving the integer characteristics

of the ambiguities. This reduces the number of possible integer ambiguity sets within

the search space leaving a small set of remaining ambiguities to test. The search

then uses the variance-covariance matrix of the float ambiguities to find the set of

ambiguities that minimizes the sum of squared residuals.

Teunissen (1999, 2000) shows that the integer least squares estimator used in the

LAMBDA method maximizes the probability that the selected integer ambiguity set

is the correct integer ambiguity set given a real-value estimate of the ambiguities and

the corresponding covariance matrix.

2.3.1 Observation Combinations for Ambiguity Resolution

GPS is currently a dual-frequency system, meaning that all of the measurement types

are measured on two signals, which are at different frequencies. The advantage of hav-

ing two frequencies is that different errors affect the signals differently. For example,

the troposphere affects both of the frequencies to the same degree while the ionosphere
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affects them differently. These error properties between the various measurements can

be leveraged to reduce the overall measurement errors.

Frequency combinations are formed by linearly combining measurements from

the two frequencies. This approach can be used to improve ambiguity resolution

performance by reducing measurement errors in units of cycles. Specifically, if an

error is small relative to the wavelength of the carrier, then its effect on the ambiguity

resolution is reduced. Conversely, to improve positioning accuracy, the measurement

errors should be reduced in units of metres.

If the carrier phase combination is represented as:

φa,b = a · φL1 + b · φL2 (2.42)

where a and b are constants, then the effective wavelength of the linear combination

is given by

λa,b =
λL1 · λL2

b · λL1 + a · λL2

. (2.43)

Note that a and b must be integers in order for the resulting signal ambiguity to

be an integer value. For example, the most common frequency combinations is the

so-called wide-lane combination, which is the difference between the L1 phase and

the L2 phase measurements in cycles (a = 1, b = -1). The wide-lane combination has

an effective wavelength of approximately 0.86 cm, which is much longer than either

the L1 ( 0.19 cm) or L2 ( 0.24 cm) wavelengths.

The error characteristics for a generic linear combination of the L1 and L2 phase

observations are shown in Table 2.4. Table 2.5 shows the errors in cycles as a function

of the coefficients a and b, for several common frequency combinations. The tropo-

sphere error is represented relative to the tropospheric effect on the signal in metres

(T ) and the ionosphere is relative to the ionospheric effect on the L1 signal in metres
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(IL1).

From the table, the usefulness of the wide-lane combination is obvious, because

it reduces the troposphere and ionosphere errors relative to the L1 measurement (in

cycles) by factors of 0.22 (1.16T/5.26T ) and -0.28 (−1.49IL1/5.26IL1), respectively.

In a similar manner, the ionosphere-free (IF) and geometry-free (GF) combinations

are commonly used to respectively evaluate the magnitude of the troposphere and

ionosphere errors. The ionosphere-free combination is also commonly used to estimate

the position states because the ionosphere is the largest differential error source.

To contrast with the results of Table 2.5, the effect of the errors on the same

frequency combinations in metres is shown in Table 2.6. These values relate to the

accuracy of the position estimates.

Table 2.4: Generic dual frequency combinations and their associated error character-
istics

cycles metres

Wavelength
λL1λL2

bλL1 + aλL2

λL1λL2

bλL1 + aλL2

Troposphere
bλL1 + aλL2

λL1λL2

T T

Ionosphere
aλL1 + bλL2

λ2
L1

IL1 λa,b
aλL1 + bλL2

λ2
L1

IL1

Noise
√

a2 + b2σ λa,b

√
a2 + b2σ

Comparing Tables 2.5 and 2.6 shows an apparent contradiction, namely that re-

ducing an error in cycles often comes at the cost of increasing the error in metres.

For example, although the wide-lane ambiguity is relatively easy to fix because of

the decreased ionosphere and troposphere errors in units of cycles, it increases the

measurement noise and ionosphere error by factors of 6.42 (1.22σ/0.19σ) and -1.28

(−1.28IL1/IL1) relative to the L1 measurement terms, respectively (Table 2.6). In
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Table 2.5: Common frequency combinations and their associated single satellite (un-
differenced) error characteristics in cycles. T is the troposphere error in metres, IL1

is the L1 ionosphere error in metres, and σ is the standard deviation of the L1 and
L2 measurement noise in cycles.

Ambiguity Wavelength (m) Troposphere Ionosphere Noise

NL1 = N(1, 0) 0.19 5.26T 5.26IL1 σ

NL2 = N(0, 1) 0.24 4.09T 6.74IL1 σ

NWL = N(1,−1) 0.86 1.16T −1.49IL1 1.41σ

NNL = N(1, 1) 0.11 9.35T 12.00IL1 1.41σ

NIF = N(1,−λL1

λL2
) 0.48 2.08T 0.00 1.27σ

NGF = N(1,−λL2

λL1
) ∞ 0.00 −3.40IL1 1.63σ

contrast, the narrow-lane ambiguities show the inverse behaviour of the wide-lane

ambiguities in that the narrow-lane ambiguities are very difficult to fix because of

the increased ionosphere, troposphere and noise in cycles. However, once these am-

biguities are resolved they give a very precise measure of the position. In general,

the easier it is to resolve the ambiguities for a given frequency combination, the less

useful that frequency combination will be to estimate the rover’s position.

The magnitude of the troposphere and ionosphere errors (after double differencing)

depends on the distance between the differenced stations. This baseline distance-

dependent error is used in combination with the characteristics of the various fre-

quency combinations to maximize the likelihood of resolving ambiguities and, more

importantly, to maximize position accuracy. For example, if the rover is very close

to a reference station, then it will experience little troposphere or ionosphere error.

With this in mind, the receiver can construct a frequency combination that reduces

the level of noise. For short baselines a receiver may use L1, L2, or the narrow-lane

combination to reduce the effect of measurement noise because the ionosphere and
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Table 2.6: Common frequency combinations and their associated single satellite (un-
differenced) error characteristics in metres. T is the troposphere error in metres, IL1

is the L1 ionosphere error in metres, and σ is the standard deviation of the L1 and
L2 measurement noise in cycles.

Ambiguity Wavelength (m) Troposphere Ionosphere Noise

NL1 = N(1, 0) 0.19 T IL1 0.19σ

NL2 = N(0, 1) 0.24 T 1.65IL1 0.24σ

NWL = N(1,−1) 0.86 T −1.28IL1 1.22σ

NNL = N(1, 1) 0.11 T 1.32IL1 0.15σ

NIF = N(1,−λL1

λL2
) 0.48 T 0.00 0.61σ

NGF = N(1,−λL2

λL1
) ∞ Undefined ∞ ∞

troposphere errors are low. Alternatively, if the rover is far from the nearest reference

station then the receiver may use the wide-lane combination to reduce the effects

of the correlated errors, but must sacrifice increased measurement noise. Another

approach for long baselines is to use the ionosphere-free combination to reduce the

effects of the ionosphere, which is the largest error source, especially for very long

baselines.

The coefficients of the ionosphere-free and geometry-free combinations are not

integer. As a result, the corresponding ambiguities are not integers and therefore

cannot be resolved. Instead, these ambiguities are usually estimated as real numbers.

In general, this will add more error to the estimated position due to the reduced

number of degrees of freedom in the adjustment. However, this may be acceptable if

the reduction in the measurement error is significant.
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2.4 Ionosphere Modelling

The ability of the reference stations to resolve their integer ambiguities is a major

factor affecting multiple reference station positioning. By definition, the reference

stations for the multiple reference station approach will be spaced further apart than

is typically reasonable for single reference station kinematic ambiguity resolution.

These longer baseline lengths are more likely to have higher levels of correlated

errors. The largest of these is the effect due to the ionosphere. The pseudorange and

carrier phase observations on two frequencies can be used in combination to model

the frequency dependent bias induced by the ionosphere.

Teunissen (1997), Odijk (1999, 2000) and Liu and Lachapelle (2002) discuss three

methods for modelling ionosphere biases: the ionosphere float, fixed, and weighted

models. All of these models attempt to reduce the dual frequency slant ionospheric

effect.

The ionosphere free model estimates the double difference slant ionosphere from

the dual frequency code and carrier phase measurements. In this model there is no

previous knowledge about the ionosphere or direct ionosphere observations.

The system model for the ionosphere float model is

∆∇φL1 −∆∇ρ = λL1∆∇NL1 − IL1 + εφL1

∆∇φL2 −∆∇ρ = λL2∆∇NL2 −
f2

L1

f2
L2

IL1 + εφL2

∆∇PL1 −∆∇ρ = IL1 + εPL1

∆∇PL2 −∆∇ρ =
f2

L1

f2
L2

IL1 + εPL2

(2.44)

where ∆∇φ is a double difference carrier phase measurement in metres, ∆∇ρ is a

double antenna to satellite range in metres, λ is a measurement wavelength in metres,

∆∇N is a double difference ambiguity in cycles, f is the frequency of the signal, IL1
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is the ionosphere delay of the L1 signal in metres and ε is the sum of unmodelled

measurement errors to be estimated as residuals.

The ionosphere weighted model is the ionosphere float model augmented with

an external observation of the double difference slant ionosphere. This additional

measurement has a variance that weights its effect relative to the code and carrier

phase observations.

The ionosphere fixed model does not estimate the ionosphere but the code and

carrier phase observations are reduced with an external ionosphere value. The ex-

ternal ionosphere value can be inserted from a variety of sources. Liu (2001) shows

the effect of deriving the external estimate of the ionosphere from Global Ionosphere

Maps (GIM) or the broadcast ionosphere model.

The ionosphere fixed and float models are extremes of the ionosphere weighted

model. The ionosphere fixed model is the ionosphere weighted model when the vari-

ance of the external ionosphere observation is zero. Conversely, when the variance of

external ionosphere observation is infinite the ionosphere weighted model is equivalent

to the float model.

Odijk (2000) suggests that the ionosphere weighted model is the best for fast ambi-

guity resolution while the ionosphere float model gives the best coordinate estimation

results. The additional ionosphere parameters in the ionosphere float model delay

the resolution of the ambiguities. Odijk (2000) recommends the ionosphere weighted

model because of the trade off between fast ambiguity resolution and coordinate es-

timation error.

Teunissen (1997) discusses the theoretical ambiguity search space for the three

methods. In this approach the ionosphere fixed model is theoretically the best but

it assumes that the input external ionosphere estimates are perfect. The ionosphere
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fixed model is shown to have a low ambiguity success rate when using real data and

real external ionosphere observations (Odijk, 2000) because of errors in the external

ionosphere estimates. These biases propagate into the ambiguities, decreasing the

success rate. Odijk (2000) also shows that the ionosphere weighted model gives the

highest ambiguity success rates compared to the other models mentioned using real-

data.

Landau et al. (2001) discuss wide area ionosphere modelling using a network

of reference receivers where the zenith ionosphere estimates are reduced to a shell.

The shell is modelled using simple two-dimensional polynomials as a function of the

geomagnetic latitude and the hour angle of the sun. They conclude that this wide area

model is effective in removing about fifty percent of the ionosphere delay but local

ionosphere effects remain. In order to better estimate local ionosphere effects they

integrate the wide area technique with stochastic modelling to estimate the residual,

local area, effects. This system is similar to the ionosphere weighted model (Liu and

Lachapelle, 2002) where the external ionosphere estimate is generated using the shell

model.

The reduced error ambiguity resolution approach discussed by Landau et al. (2001)

is a loosely coupled system where the troposphere and ionosphere errors are estimated

in two independent filters. The ambiguity estimates from these two adjustments are

combined to resolve the L1 and L2 ambiguities. This is opposite to the ambiguity

resolution approach discussed by Wübbena et al. (2001a) where a tightly coupled

system is implemented. Wübbena et al. (2001a) estimates the effects of many error

sources including the ionosphere and troposphere effects in one large adjustment.

Teunissen (1997) discusses the temporal variation of the ionosphere in terms of

ability to resolve ambiguities as a function of temporal correlation. However, he gives



41

no suggestion as to the type of temporal behaviour modelling that would represent

typical ionospheric error.

Liu and Lachapelle (2002) discuss the observation error as a function of time

for the three models. The ionosphere estimates were estimated as first order Gauss

Markov noise processes where the process noise was derived as a function of baseline

length. The three models are compared in terms of ambiguity error as a function of

time. This shows that the ionosphere weighted model provides the best estimate of

the ambiguities on average. The ionosphere float model preforms poorly at first and

then converges to a value similar to the weighted ionosphere model in less than twenty

minutes. The inaccuracy in the float ionosphere is due to the ionosphere estimate

being initially driven by the code observation error.

Liu and Lachapelle (2002) add a short discussion about the similarity of per-

formance between the ionosphere weighted model and the results when using the

ionosphere free observable. The ionosphere free observable uses the frequency disper-

sion of the ionosphere to difference the ionosphere effect. This observable should be

unbiased by the ionosphere providing any accurate position estimate. They suggest

that the use of the ionosphere weighted pseudo-observable will achieve similar results

as the ionosphere-free solution. Odijk (2000) discusses the use of the ionosphere float

model instead of the ionosphere free combination because they will both produce

position solutions that are free of ionosphere biases. With fixed ambiguities, Odijk

(2000) shows that the position coordinate solution using the ionosphere float model

produces more accurate results than the other models.

The external ionosphere estimates for the ionosphere fixed and ionosphere weighted

models could be used from many different sources. Liu and Lachapelle (2002) exam-

ines two sources: the Broadcast Ionosphere Model (BIM) and an International GPS
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Service (IGS) produced Global Ionosphere Map (GIM). The GIM appears to be ef-

fective in reducing the ionosphere effect under high and low ionosphere activity but

the BIM only reduces the ionospheric effect during low ionosphere conditions. Odijk

(2000) generated external ionosphere estimates using a surrounding network of GPS

reference stations. The network-measured relative ionospheric effect was interpolated

to the user positions using a linear interpolation scheme. Li and Gao (2000) use the

ionosphere estimates calculated from one day of data to reduce the ionosphere effect

on subsequent days.

2.5 Covariance Functions

A covariance function models the variance and covariance of observations. This func-

tion can be used to populate the variance covariance matrix of the observations for

estimation and prediction. The covariance function calculates covariance between ob-

servations as a function of deterministic properties of the observations. Raquet (1998)

parameterizes the covariance function as a function of elevation and relative position.

Radovanovic et al. (2001) and Kennedy (2002) parameterized the covariance function

as a function of the elevation and azimuth of the observations, and relative distance

between the stations from which the observations are measured.

The variance of a random variable and the covariance between two random vari-

ables can be defined by the expected value operator:

Caa = E{(a− E{a})(a− E{a})T}

Cab = E{(a− E{a})(b− E{b})T}.
(2.45)

If the probability density function is known then the expected value operator is
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(Walpole and Myers, 1993)

E{X} =
∫ ∞

−∞
xf(x) dx (2.46)

where X is a random variable, f(x) is the probability density of X, and x is an array

of observed, sample values.

Practically, the probability density functions for the error sources that affect the

observations are not known. The expected value can also be estimated given a set of

random variables (Grimmett and Stirzaker, 2001), as follows

E{X} ≈ 1

n

n∑
i=1

Xi (2.47)

where Xi is a random variable in the set of n random variables.

Equations 2.45 and 2.47 can be used to estimate the variance and covariance of

random variables from data. As shown in Equation 2.45 the expected value of the

product of two random variables is the covariance between them. The objective is to

parameterize the covariance as a function of deterministic parameters. The covariance

of the data must be evaluated as a function of some parameters. Initially the data

is arranged as a function of an expected parameter (distance between the stations

for example). This gives the product abT as a function of the correlating parameter.

These sample values are located at discrete points. To convert the collection of

products into standard deviations, the data is divided into bins. The expected value

of the products from each bin gives an estimate of the standard deviation of the data.

The expected value for each bin is then calculated using Equation 2.47. The shape of

these expected value points as a function of the correlating parameter is an estimate

of the covariance function. A mathematical function is then fit to the data. This

function is later used to predict the correlation between observations that have not

yet been observed. The covariance function is essential for prediction (Moritz, 1980)
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because it defines the correlation between the network observations and the rover

observations, which have not yet been observed.

Raquet (1998), Radovanovic et al. (2001) and Kennedy (2002) used this approach

to estimate the coefficients of their respective covariance functions. In the case of

Radovanovic et al. (2001) and Kennedy (2002) the covariance function is a function of

more parameters than can be effectively plotted to expose the shape and consequently

the mathematical form of the function. As a result, a exponential decay function is

assumed and the multi-dimensional function’s coefficients are estimated using batch

least squares.

2.6 Multiple Reference Station Approach

Differential positioning significantly reduces the measurement errors, improving po-

sitioning accuracy and precision relative to single point positioning. When a network

of reference stations is available then one reference station alone or some combination

of the surrounding stations can be used to estimate the rover’s position. A system

that uses more than one reference station for precise carrier phase-based positioning

is said to use a multiple reference station approach. This approach can be categorized

into single baseline techniques and Network real-time kinematic (RTK) techniques.

The single baseline techniques are methods for integrating the solutions from multiple

single baseline solutions, whereas the Network RTK methods involve the integration

of the network into corrections to be applied by a single baseline.

2.6.1 Single Baseline Techniques

Single baseline techniques are the simplest to implement because they require very lit-

tle deviation from traditional carrier phase positioning. The single baseline approach
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averages the single baseline solutions for baselines between the rover and multiple

nearby reference stations. The technique attempts to average reference station mea-

surement errors and to provide greater observability and availability for the rover.

The single baselines can be combined using a centralized or decentralized approach

(Mutambara, 1998). The decentralized approach averages the position solutions from

the various single baselines using the estimated variance-covariance matrices of the

position solutions as weight matrices. This allows for any systematic biases to be

averaged among the various baseline solutions. The decentralized approach allows for

modularity and flexibility. It is easy to implement because it does not require any

changes to the traditional single baseline methods.

The second approach is the centralized approach, where the measurements from

each of the reference stations are combined into a single filter to estimate the rover’s

position. The centralized approach is better suited to allowing for correlations be-

tween the measurements to be used. It also allows for the use of reference stations

that do not contain enough observations to provide an independent position solution,

however, this situation is unlikely in practice.

2.6.2 Network-Based RTK Methods

Network-Based RTK methods use a network of reference stations to measure the

correlated error over a region and to predict their effects spatially and temporally

within the network. Although the name suggests that these methods are real-time

specific, RTK refers to precise carrier phase positioning. Any of these methods can be

used in post-mission. This process can reduce the effects of the correlated errors much

better than the single reference station approach, thus allowing for reference stations

to be spaced much further apart thereby covering a larger service area than the
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traditional approach, while still maintaining the same level of performance. Network

RTK is comprised of three main processes:

1. Network correction computation,

2. Correction interpolation, and

3. Virtual reference station calculation and data transmission

The network correction computation uses the network reference stations to pre-

cisely estimate the differential correlated errors for the region. This is usually accom-

plished using carrier phase observations with fixed ambiguities between the network

stations. Thus, ambiguity fixing between these stations is a major part of this process.

The correction interpolation process models the network corrections to determine the

effects of the correlated errors at the rover’s position. The third process is the gener-

ation of virtual reference station (VRS) measurements to relay the corrections to the

rover receiver for use with standard RTK software.

Measuring Network Errors

The first step of Network RTK is to measure the errors at the reference stations.

In most cases, the errors are measured as the difference between the carrier phase

observations with fixed ambiguities and the theoretical range, which is calculated

using the known reference stations’ coordinates. These errors can be measured in

terms of the raw L1 and L2 carrier phase observations or a linear combination of the

L1 and L2 observations. Linear combinations are used to isolate the various error

sources and to take advantage of their unique characteristics.
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Interpolation of Measured Network Errors

Interpolation of the correlated errors to the location of the rover receiver assumes a

stochastic and physical relationship between the errors. For example, all interpolation

methods result in the closest reference stations having the most influence over the

predicted value because a close reference station is more likely to experience the same

error conditions as the rover receiver as opposed to a reference station which is further

away.

Raquet (1998) proposed a method of interpolating the observed errors between

the reference stations to a rover’s position anywhere in the network. In this method,

an exterior process determines the carrier phase integer ambiguities between the ref-

erence stations. These ambiguities are then used to estimate the differential errors

between the reference stations. The measured errors are interpolated to a rover in

the network using a linear least-squares prediction method. Covariance functions that

represent the stochastic behaviour of the errors must be determined at the outset.

This method has been implemented in a functional real-time system and provides

good improvement in post-mission and real-time (Raquet, 1998; Raquet et al., 1998;

Zhang, 1999; Fortes et al., 2000a,b, 2001; Cannon et al., 2001a,b; Alves et al., 2001;

Zhang and Lachapelle, 2001).

Wanninger (1999), Vollath et al. (2000a), and Wübbena et al. (2001a) discuss a

slightly different interpolation scheme where only the surrounding three stations are

used to predict the corrections at the rover. In this simpler model, a plane is fit

to the error estimates at the three surrounding stations. This plane represents the

differential errors within the three-station triangle. This method has also proven to

provide good positioning results under a quiet ionosphere and with a relatively high

reference station density (Wanninger, 1999; Vollath et al., 2000a,b, 2002; Wübbena
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et al., 2001b; Euler et al., 2001).

Dai et al. (2004) compare five common interpolating surfaces, including a least

squares collocation approach. This paper concludes that each of the interpolation

methods perform similarly with the exception of the distance dependent linear inter-

polation method, which performs slightly poorer.

Virtual Reference Station Calculation and Data Transmission

Once the corrections for the rover are determined, they still need to be transmitted to

the rover receiver in a suitable format. The traditional single baseline approach has

a large impact on this process because most off-the-shelf receivers are not designed

to accept network corrections. To compensate, many Network RTK systems create

a virtual reference station (VRS). A virtual reference station’s data is the adjusted

(corrected) data from one of the reference stations in the network. This data is usually

geometrically translated to be close to the region for which it is to be applied. The

rover receiver can then accept the virtual reference station data as a single reference

station. This process is described in Fotopoulos (2000).

Figure 2.3 shows an example of the VRS approach. The left view shows the con-

figuration of the network relative to the rover. To convert the network data into a

receiver-acceptable format, the network is condensed into a single virtual reference

station (shown on the right). The VRS is located closer to the rover than the near-

est network reference station to represent the reduced differential errors due to the

multiple reference station approach.

In general, the VRS approach creates a (virtual) reference station for use with

standard off-the-shelf receivers that do not have the capability of accepting network

corrections. There are many disadvantages to this approach:
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Figure 2.3: Example of the network and virtual reference station relationship. Left
shows the network of actual network reference stations in relation to the rover. Right
shows the rover’s view whereby the reference station network is replaced by a single.
virtual reference station.

1. The rover receiver will interpret the VRS as a single reference station, which may

cause the rover to use a processing scheme that is not optimal (Townsend et al.,

2000). Specifically, a GPS receiver will typically select a processing strategy

based on its distance to the nearest reference station, which is closely related to

the magnitude of the expected measurement errors. For a corrected reference

station (VRS) however, the magnitude of the measurement error remaining after

applying correction is less than if a physical reference station were present at

the same location. This is most obvious if the rover receiver’s position coincides

with the VRS position. If a rover were at the location of a reference station

then the differential errors would be limited to multipath and noise (since all

other errors would be zero). As such, the rover will choose a positioning method

which optimizes the performance based on this assumption. However the level

of error remaining in the VRS data is a function of the network geometry and

the relative position of the rover. Therefore, the distance between the VRS and
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the rover receiver should be representative of the amount of error remaining

after the network corrections have been applied.

2. A solution to the above problem would be to have the correction service provider

ensure that the VRS is an appropriate distance away from the rover to optimize

the processing scheme but this is not always possible with multiple rovers. This

alternative requires that the service providers know the approximate position

of the rover. In this case, the rover would be required to send its position

(via National Marine Electronics Association (NMEA) messages for example)

to the processing control centre to ensure that the interpolation is calculated

for the correct position and to position the VRS appropriately. This increases

the complexity of the communications network, as two-way communication is

required. In addition, the service becomes user limited.

3. This method does not comply with the Radio technical commission for mar-

itime services (RTCM) standard (RTCM, 1998) because the standard does not

allow for the reference station data to be corrected for atmospheric or orbit

errors (Townsend et al., 2000). However, if the data are corrected prior to

being transmitted to the users, then this is in clear violation of the standard.

Currently, network RTK specific RTCM corrections are under development to

address these problems.

Implementation Options

Given the limitations discussed in the previous section, the multiple reference station

approach can be implemented in many ways, which vary the order and location of

the processing steps. The use of the various options depends mainly on the commu-

nication network and the rover equipment.
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In the first approach, network corrections are sent to a computer located at the

rover (Figure 2.4). The computer then interpolates the corrections based on the

rover’s position. To do this, the GPS receiver outputs its position to the computer

so that the interpolation location is known. The interpolated corrections are then

applied along with the reference station corrections to the data for one of the reference

stations. The corrected observations are then translated to a VRS location which is

selected to avoid the problems discussed above. Finally, the corrected VRS data is

converted to RTCM format and is sent to the rover receiver. In this way, the rover

receiver never knows that the data is corrected by the network.

Figure 2.4: Implementation option for the virtual reference station approach, which
requires a computer at the location of the rover and only one way communication
between the rover and the control centre

The computer used to interpolate the corrections does not necessarily have to be
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located at the rover receiver, since the interpolation and VRS generation can also be

done at the control centre (Figure 2.5) . However, in this case the communication

network would need to support two-way communication with all of the rovers in the

region. This would also require the rovers to send their locations to the control centre.

Figure 2.5: Implementation option for the virtual reference station approach, which
requires two way communication between the rover and the control centre

If there is no computer available at the rover and the communication network

only supports one way data transfer, then the corrections must be calculated for a

range of rover location service areas. Multiple VRS data is broadcast to users without

knowing their locations. Each service area requires a different VRS.

In order for this implementation to work effectively the distance between the VRS

and the rover must be representative of the errors remaining in the observations (after

applying the network corrections), or the rover receiver may select an inappropriate

processing strategy. This implies that the VRS should be located within a minimum

and maximum distance to the VRS service area (Figure 2.6). Specifically, if the VRS

is too close to the rover, then the rover will select an inappropriate RTK method that

will yield poor position performance. At the same time, the VRS cannot be too far
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removed from the rover for the same reasons. Ideally, the VRS should be outside of

the VRS’s coverage area so that the minimum distance is not zero.

Figure 2.6: VRS in relation to the VRS service area for a broadcast service imple-
mentation

Unfortunately, when many VRSs are created to cover a large area then it is likely

that a VRS for one coverage area will be inside of another VRS’s coverage area

(Figure 2.7). Traditionally, the rover receiver will select the closest reference station

for differential positioning, because this reference station is likely to have similar error

magnitudes as the rover, such that the differential errors are small. However, in this

scenario if the rover selects the closest reference station (or VRS), then likely this

station will likely be meant for a coverage area for which the rover does not belong.

Figure 2.7: Example distribution of VRS and VRS service areas for a broadcast
service implementation
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FKP Methods

An alternative to the VRS method is to generate a regional correction model (Fo-

topoulos (2000) for example). FKP is an abbreviation of the German Flächen Ko-

rrektur Parameter, meaning area correction parameter (Odijk, 2002). This model

is usually a representation of a two dimensional surface that covers the correction

region. This model can be of any order; however, a first order model grid model is

commonly used. This approach has many advantages over the VRS approach:

• It does not violate the RTCM standard (Townsend et al., 2000)

• One model can be sent to all of the users in the field.

• The receiver has control over the use of the corrections.

This approach has not been widely used and supported by receiver manufacturers

because of disagreements over the message format. In the years ahead, when an

accepted standard FKP format is available, this will likely become the preferred

method for network-based RTK.

Network-Based RTCM Corrections

A new version of the RTCM standardized corrections is under development. Included

in these standards are a set of correction formats for network RTK. The methodology

for the use of these corrections transfers some of the operations that were previously

performed at the control centre to the rover. The network control centre is responsible

for resolving network ambiguities. With the ambiguities resolved, there are two types

of corrections:

• Master corrections provide the absolute value of the corrections. These are the

same correction format as the single reference station corrections.
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• Auxiliary station corrections are the residual differences relative to the mas-

ter station with the ambiguities removed. These corrections are divided into

dispersive and non-dispersive corrections.

The master-auxiliary concept is described by Euler et al. (2004b).

Using these corrections, the control centre is responsible for resolving the network

ambiguities. The interpolation of the measured network errors is performed by the

roving receiver. This allows for one-way communication of the corrections to any

number of rovers. It also allows the rover receiver to decide on the interpolating

function.

External Network RTK Techniques

Due to infrastructure limitations, it may not be possible to send the reference station

data to the control centre and return the corrections. An alternative may be to

use an external network with better infrastructure to to generate corrections for the

reference stations in the service network. In this case, the external network would

calculate corrections for both the reference stations and the rover, similar to the

original Network RTK procedure. The only difference being that in this case the

reference stations in the service network are not used in the calculation of the network

corrections. The external network is used purely for error modelling. The corrections

calculated from this approach can be applied using any of the implementation options

discussed above.
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Chapter 3

Development of an Adaptive Covariance Function

A covariance function is used to calculate the covariance between observations. More

specifically, the covariance function calculates the estimated covariance between the

observation’s signal components. This is used to populate the covariance matrix of

the observations of a least squares adjustment. The covariance function is particularly

important in least squares collocation because it is the prediction weighting function,

however Fortes (2002) shows that least squares prediction is insensitive to the choice

of the covariance function.

The least squares collocation equations for estimating the signal at a given set of

GPS observations are (Raquet, 1998)

ŝ = −CslsB
T (BCllB

T )−1(Ax̂−Bl) (3.1)

where ŝ is a vector of the estimated signals (corrections), Csls is the covariance matrix

between the signal components of the network observations and the predicted signal,

B is the observation matrix, Cll is the variance-covariance matrix of the network ob-

servations, which is the sum of the signal covariance and the noise variance-covariance

matrix, A is the design matrix of the estimated parameters, x̂ is a vector of estimated

parameters, and l is a vector of network observations. This equation can be broken

down into two prediction weighting parts: −CslsB
T and (BCllB

T )−1.

(BCllB
T )−1 weights each double differenced observation based on their variance

and covariance. This ensures that observations that are more precise have more weight

than observations that are noisier. This is shown in the equation; observations with
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low levels of error and noise have lower variance (diagonal of Cll). When BCllB
T is

inverted the low variance values become large and the high variance values become

small. When the inverse matrix is multiplied by the misclosures, Ax̂ − Bl, the high

weight for the precise observations and low weight for noisy observations is applied.

The second part of this equation, CslsB
T , relates each of the network observations

to the predicted signals of the observations. Again, these weights are determined

by the covariance function, which defines the characteristic shape of the predictions

throughout the geographic region. Different covariance functions will produce differ-

ent shapes and prediction characteristics.

Fortes (2002) suggests that the only requirement of the covariance function is

that it always produces a positive definite variance covariance matrix. In addition

to positive definiteness the prediction should represent the likelihood that the errors

measured at the reference stations are the same as the errors measured at the rover.

To this end, the covariance should converge to zero with increasing distance (for

example), meaning that errors measured at the reference stations are likely not the

same as the errors measured at the rover (computation point). The policy of this

covariance function is then, if no reference station is in a position to predict the

errors at the rover, then the covariance of the signal and network observation’s signal

should be zero.

Given these desired characteristics, the following section describes the process of

selecting and estimating the parameters of a covariance function.
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3.1 Covariance Function Modelling

The covariance function gives the covariance between the signal components of two

observations. This can be described using the expected value operator for observation

φ1 and φ2 by

E{(φ1 − E{φ1})(φ2 − E{φ2})} = E{(s1 + n1)(s2 + n2)}

= E{s1s2}

= σφ1,φ2 (3.2)

where s is the signal and n is the noise of the observations.

The covariance function attempts to model the covariance of the observation’s

signals (i.e., φ1 and φ2) as a function of deterministic parameters (distance or elevation

for example) as follows

σφ1,φ2 = f(·). (3.3)

3.1.1 Parameters of the Covariance Function

Before the form of the covariance function can be discussed, the deterministic pa-

rameters must first be chosen. The candidate parameters must be determined based

on the physical properties governing the measurement errors. The function will give

the relationship between the parameter and the covariance of the measurement er-

rors. To calculate the variance of the measurement errors, measurement residuals are

sorted by the candidate parameter. The covariance of the measurement residuals is

found by dividing the residuals into bins of the parameter. This collection of points

is modelled and reproduced by the covariance function. A plot of the measurement

covariance as a function of the candidate parameter also exposes the functional form

of the covariance function.
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If the measurement error is a function of more than one parameter, then this

procedure may not properly expose the covariance function form, because the effect

of the other parameters may clutter the distribution of the residuals. For example, if

the errors are a function of longitude distance and latitude distance then plotting as

a function of longitude alone will average the effect of the latitude for each longitude

bin. A more appropriate approach would be to create two dimensional bins of easting

and northing and plot the two dimensional surface. This would also expose any

possible correlation between the parameters.

The error sources found are precisely measured in differential form in this work.

Equation 3.2 can be expanded for the double difference case:

E{(∆∇φ12
ab − E{∆∇φ12

ab})

(∆∇φ34
cd

T − E{∆∇φ34
cd

T})} = E{((s1
a − n1

a)− (s2
a − n2

a)

−(s1
b − n1

b) + (s2
b − n2

b))

((s3
c − n3

c)− (s4
c − n4

c)

−(s3
d − n3

d) + (s4
d − n4

d))} (3.4)

where a, b, c and d are receivers observing satellites 1, 2, 3 and 4. The expanded

variance-covariance equation for this double difference equation is

E{(∆∇φ12
ab − E{∆∇φ12

ab})

(∆∇φ34
cd − E{∆∇φ34

cd})T} = σφ1
a,φ3

c
− σφ1

a,φ4
c
− σφ1

a,φ3
d
+ σφ1

a,φ4
d

−σφ2
a,φ3

c
+ σφ2

a,φ4
c
+ σφ2

a,φ3
d
− σφ2

a,φ4
d

−σφ1
b
,φ3

c
+ σφ1

b
,φ4

c
+ σφ1

b
,φ3

d
− σφ1

b
,φ4

d

+σφ2
b
,φ3

c
− σφ2

b
,φ4

c
− σφ2

b
,φ3

d
+ σφ2

b
,φ4

d
. (3.5)

In terms of covariance function modelling, each σ in this equation is a function of
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deterministic parameters. This limits the ability to plot the product of two error

sources as a function of some parameter, because each double difference involves a

minimum of four parameters. However, there are particular models that will allow

for the product to be plotted.

Assume that the correlation (correlated error model) is a linear function of the

form

σ = mx + b (3.6)

where x is the deterministic parameter, and m and b are coefficients of the model. If

this functional model is inserted in Equation 3.5 the result can be factored into the

form

E{∆∇φ12
ab∆∇φ34

cd
T} = (xφ1

a,φ3
c
− xφ1

a,φ4
c
− xφ1

a,φ3
d
+ xφ1

a,φ4
d

−xφ2
a,φ3

c
+ xφ2

a,φ4
c
+ xφ2

a,φ3
d
− xφ2

a,φ4
d

−xφ1
b
,φ3

c
+ xφ1

b
,φ4

c
+ xφ1

b
,φ3

d
− xφ1

b
,φ4

d

+xφ2
b
,φ3

c
− xφ2

b
,φ4

c
− xφ2

b
,φ3

d
+ xφ2

b
,φ4

d
)m. (3.7)

The bias, b, cancels in the double difference. The slope of the function, m, can be

estimated using the plotting method described above. This linear model will be used

to expose the deterministic parameters to describe the covariance function.

To maximize the number of data elements, all available double difference residuals

are used with all others. The double difference covariance shown in Equation 3.5

assumes that none of the observations from one of the double difference residuals

(used in the product) are used in the other double difference residuals. If the same

double difference residuals are used in the product then Equation 3.5 becomes

E{(∆∇φ12
ab − E{∆∇φ12

ab})
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(∆∇φ12
ab − E{∆∇φ12

ab})T} = σ2
φ1

a
+ σ2

φ2
a
+ σ2

φ1
b
+ σ2

φ2
b

−2σφ1
a,φ2

a
− 2σφ1

a,φ1
b
+ 2σφ1

a,φ2
b

+2σφ2
a,φ1

b
− 2σφ2

a,φ2
b
− 2σφ1

b
,φ2

b
. (3.8)

The covariance terms in Equation 3.8 consist of only correlated errors and the

variance terms contain both correlated and uncorrelated terms. The linear model

shown in Equation 3.6 only models the correlated error terms therefore the variance

elements of Equation 3.8 require an additional uncorrelated error term (σ2
u). This

assumes that the noise is uncorrelated between the measurements:

σ2 = mx + b + σ2
u

= b + σ2
u (3.9)

As with Equation 3.7, Equations 3.6 and 3.9 can be substituted into Equation 3.8 to

give

E{(∆∇φ12
ab − E{∆∇φ12

ab})

(∆∇φ12
ab − E{∆∇φ12

ab})T} = 4σ2
u + 2m(−xφ1

a,φ2
a
− xφ1

a,φ1
b

+xφ1
a,φ2

b
+ xφ2

a,φ1
b
− xφ2

a,φ2
b
− xφ1

b
,φ2

b
). (3.10)

The uncorrelated error term (4σ2
u) will bias the analysis when the variance terms are

combined with the purely covariance terms. Fortunately, the measurement residual

products that include the variance terms have lower double difference parameters

than residual products that do not. This effect is apparent in the following analysis

plots.

The differential error sources have two main components. These will be modelled

individually to better model the changing effects of each. These two error com-

ponents are the dispersive (ionospheric error) and non-dispersive (tropospheric and



62

orbital errors) effects. Two parameters are proposed to described the covariance of

the troposphere and orbit components: the baseline length and the angle between the

measurements. The angle between the measurements represents the variation in the

signal path as a function of the separation of the signal paths.

The first parameter to investigate is for distance dependant errors. The effect

of baseline length on differential errors is well known. This example will deviate

from the linear model described above because a distance only dependent covariance

function has the same generalized properties with any model. Replacing the σ terms

in Equation 3.5 with functions of the distance between the stations as the functional

form of Equation 3.3 gives

E{(∆∇φ12
ab − E{∆∇φ12

ab})

(∆∇φ34
cd − E{∆∇φ34

cd}T} = f(a, c)− f(a, c)− f(a, d) + f(a, d)

−f(a, c) + f(a, c) + f(a, d)− f(a, d)

−f(b, c) + f(b, c) + f(b, d)− f(b, d)

+f(b, c)− f(b, c)− f(b, d) + f(b, d)

= 0. (3.11)

Each covariance is a function of the locations of the two stations and can more

specifically be replaced by a function of the distance between the stations. However,

this will still result in a value of zero for any double difference combinations.

This shows that the covariance function can not be modelled as a function of

baseline distance alone. This observability problem can be overcome if assumptions

are made. For example, Raquet (1998) assumes that there is only correlation between

the same satellites observed at different stations. Applying this assumption, the
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following model can be used:

E{(∆∇φ12
ab − E{∆∇φ12

ab})

(∆∇φ12
ab − E{∆∇φ12

ab})T} = σφ1
a

2 + σφ2
a

2 + σφ1
b

2 + σφ2
b

2

−2σφ1
a,φ1

b
− 2σφ2

a,φ2
b
. (3.12)

Replacing the σ terms with a function of the distance between the stations gives

E{(∆∇φ12
ab − E{∆∇φ12

ab})

(∆∇φ12
ab − E{∆∇φ12

ab})T} = f(da,a) + f(da,a) + f(db,b) + f(db,b)

−2f(da,b)− 2f(da,b)

= 4f(0)− 4f(da,b) (3.13)

where da,b is the distance between stations a and b. Although this assumption solves

the observability problem it is overly simplified. Two satellites that are observed

from the same station but are relatively close to one another are highly correlated.

The paths of these signals will be similar and, consequently, the observations will be

correlated.

The other covariance function components are analyzed using the linear model

approach described above. Figure 3.1 shows the troposphere and orbit errors modelled

as a function of the double difference angle between the vector of the satellite-receiver

measurements, as shown in Equation 3.7. The data for this analysis is from the

MAGNET network.

The linear arrangement of data points suggests that a linear model is a valid

covariance model for this parameter. The the data points with double difference

angles less than -20 degrees include variance components.

The baseline length could also be a parameter to incorporate into the covariance
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Figure 3.1: The double difference troposphere error modelled as a linear function of
the great circle angle between two measurements.
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model; Unfortunately, it cannot be shown with this method of analysis for reasons

already discussed.

The parameter chosen for the ionospheric error is the distance between the pierce

points of two zenith observations on an ionospheric shell located 350 km above the

surface of the Earth. This height was chosen because it is in the vertical region that

contains the usual maximum electron density (Klobuchar, 1996). The zenith value is

calculated using the mapping function derived by Skone (1998). The distance between

two pierce points includes both the angle between the observations and the distance

between the two stations. This is the most logical metric for the ionosphere because

this is a representation of the separation of the paths through the ionosphere. Figure

3.2 shows the linear model as a function of the double difference ionospheric pierce

point distance. This parameterization shows a linear trend although with less slope

than the troposphere model. Again the effect of the variance bias can be seen when

the double difference distance is less than -220 kilometres.

The linear model appears to be a reasonable model for both the tropospheric and

ionospheric errors but, unfortunately, the linear model does not result in a positive

definite covariance matrix, which is a requirement for this covariance function. The

angle and pierce point distance functions need to be modelled by a function that is

positive definite.

3.1.2 Form of the Covariance Function

The covariance function used in Raquet (1998) is a double difference specific function

that is dependent on the location of the fictional P0 point. The function used to

predict the distance dependent errors cannot be separated from P0. The covariance

functions compared by Fortes (2002) are increasing as a function of distance because
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Figure 3.2: The double difference zenith ionosphere error modelled as a linear function
of the pierce point distance between two measurements
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they are in relation to the distance in relation to P0 and the separation of the two

measurement stations. If P0 is not used then the covariance functions must be a

decreasing function in order to produce a positive define variance covariance matrix.

The covariance functions shown below are similar in form to the covariance function

used in Raquet (1998) and Fortes (2002). Unfortunately, these functions may not

produce a positive definite covariance matrix in all cases but will be used to compare

the prediction characteristics against other potential covariance functions:

CF1(d) = 1− d

τ

CF2(d) = 1−
(

d

τ

)2

(3.14)

CF3(d) = 1− d

τ
−
(

d

τ

)2

where d is the distance between two measurements and τ is the correlation distance.

Radovanovic (2002) and Kennedy (2002) use a decreasing exponential function as

the functional model. This will be tested in two forms:

CF4(d) = e(−
d
τ )

CF5(d) = e

(
−( d

τ )
2
)
.

(3.15)

To demonstrate the prediction properties of these covariance functions, a simple

observation and prediction test is shown. In this scenario two observations of the

signal are predicted. The observations are shown in Table 3.1.

Table 3.1: Observations of the signal for a simple prediction characteristic test of the
covariance functions.

Location (x location) Observation (measured y value)
-2 1
2 5
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This test simulates the prediction of observations from two reference stations for a

region using the covariance functions shown in Equations 3.14 and 3.15. Two scenarios

are shown. The first represents a closely spaced network with a large correlation

length. The results of this test are shown in Figure 3.3. The predicted values are

very similar between the observation locations for each of the covariance functions.

Each of the covariance functions has a particular extrapolation characteristic but, in

general, they either use the observation from one station or both to predict outside

of the observation locations.

Figure 3.3: Prediction characteristics for various covariance functions with a long
correlation length (10 units)

The greatest differences in the prediction characteristics between the covariance
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functions will be when the network is sparse or the correlation length is short. In

this case the reference stations are not close enough to observe the errors throughout

the entire network. Figure 3.4 shows the prediction characteristics for the various

covariance functions with a short correlation distance. Each of the covariance func-

tions provides slightly different prediction qualities between and outside the control

(reference) stations. The exponential covariance functions from Equation 3.15 have

the best characteristics, because if the reference stations do not measure the same

errors as the predicted location, then the corrections converge to zero. This is the

best prediction behaviour because it is better to provide no improvement than it is to

degrade the performance. These covariance functions also provide similar behaviour

when extrapolating outside of the observation points.

This test demonstrates the prediction behaviour between the various covariance

function forms assuming that the observations are undifferenced at each of the ob-

served locations. In practice the regional errors are predicted though differential

measurements. This affects the shape and behaviour of the predictions. In this next

test the signal is measured using the difference between the measurements. This is

similar to the double differenced observations that are used to measure the signal in

network RTK. Only single differenced observations are used in this evaluation because

double differenced observations require azimuths and elevations of the measurements,

which would overly complicate the location-based evaluation. Now that differential

measurements are used, the P0-based covariance function used by Raquet (1998) and

Fortes (2002) can be compared to the functions in Equations 3.14 and 3.15.

The P0 covariance function used for this comparison is

σφ1,φ2 =
σ(P1, P0) + σ(P2, P0) + σ(P1, P2)

2
(3.16)
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Figure 3.4: Prediction characteristics for various covariance functions with a short
correlation length (1 units)
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where σ(Pa, Pb) is a distance dependant function and P0 is the location of an arbitrary

point which should be located in or around the network. The distance dependant

function used in this evaluation is

σ(Pa, Pb) =
da,b

τ
+

(
da,b

τ

)2

. (3.17)

This covariance function limits the magnitude of the variance and covariance values

such that they are allowed to increase as the location moves further away from the

P0 location. This covariance function is inappropriate for undifferenced observations

because the observations from any reference station located at the P0 location would

have variances and covariances of zero.

Figure 3.5 shows the predicted signal for each of the covariance functions when

estimated using single differenced observations from Table 3.1. In the differenced

solution the linear functions provide the same predicted solution within the obser-

vation points. The exponential functions now converge to the average value of all

the measurements. These functions again show a prediction that is a function of the

expected correlation around each of the observation points. When the computation

point is outside of the influence of the nearest observation point then the exponential

functions converge to the average network measurement. In practice, the average of

all double differenced residuals should be zero, in which case the prediction converges

to zero. As in the undifferenced test, the estimated signal within the observation

points is very similar; however, outside of the observation points the prediction for

the functions is considerably different.

To expose the differences between the functions, a third observation is added to

the observations shown in Table 3.1. The observations used for the following tests

are shown in Table 3.2.
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Figure 3.5: Prediction characteristics for various covariance functions with a short
correlation length (1 units) using single difference observations

Table 3.2: Observations of the signal for a simple differential prediction characteristic
test of the covariance functions.

Location (x location) Observation (measured y value)
-2 1
2 5
4 6
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Figure 3.6 shows the differential prediction characteristics for the various covari-

ance functions. The datum used by each of the covariance functions differs, shown in

the figure by the vertical biases between the solutions. This bias has no effect on the

performance of the covariance functions, because the corrections are only applicable in

differential form. This shows that the spatial shape of the predictions for the P0-based

covariance function is the same as the linear covariance function, CF2(d) = 1−
(

d
τ

)2
.

The distance weighting function of the P0-based covariance function and the linear

function are very similar in form.

Figure 3.6: Prediction characteristics for various covariance functions with a short
correlation length (1 units) using single difference observations

When the corrections are differenced (to be applied) the bias is removed from
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each of the solutions. Figure 3.7 shows the normalized prediction characteristics for

the covariance functions. The predicted signal at the first observation point (−2) is

constrained to zero. This is used to compare the shape of the functions and their

performance when applied. Once again the linear covariance functions provide the

same prediction between the observation points. The second order exponential decay

function provides a better prediction shape than the first order function, because the

local values are preserved for a longer distance before converging to the mean value.

Figure 3.7: Prediction characteristics for various covariance functions normalized at
location -2 with a short correlation length (1 units) using single differenced observa-
tions

This test also illustrates how the prediction is tied to the observation points. Fig-

ure 3.8 shows the prediction for one of the covariance functions in the previous test.
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The corrections are only valid when differenced and in practice they are differenced

with a reference station in the network. The figure shows the value of the differential

correction for each of the two closest measurement points. The value of the differ-

enced correction is the difference between the correction at the rover’s computation

point and the correction at the observation point. This is shown as Correction A and

Correction B. As shown by this test, the difference of the corrections at the measure-

ment points is the difference in the observations of the two points. In this way the

corrections applied to the rover from either station A or station B are tied together

through the stations’ measurements. This means that the rover will get the same

correction when using either station A or station B.

In the network approach the rover solution is thus tied to every station in the

network. The performance of the network approach is often compared to that of

the single baseline approach. The network approach and the single reference station

approach are similar in terms of the representation of the corrections. An example is

shown in Figure 3.9. Using this error profile allows the network approach to mimic

the single baseline approach.

In the single reference station approach the errors measured by the single reference

station are assumed to be the same as the errors measured by surrounding stations.

This is why each reference station has a horizontal estimated signal. The vertical

discontinuities are the locations at which the user would switch from one reference

station to the next. These transition locations are shown at the midpoint between

the two adjacent reference stations.

This generalization is limited by the resolution of the network ambiguities. The

corrections are tied to each of the reference stations because the differenced correc-

tions from one station are the corrections from another station minus the difference
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Figure 3.8: Differential prediction values in relation to the observation point correc-
tions
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Figure 3.9: Differential prediction values in relation to the observation point correc-
tions for the single baseline approach
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in station observations. The differences in station observations, in practice, are a

function of the estimated or fixed ambiguities between the two stations. If the ambi-

guities are incorrectly estimated or resolved then the difference in the errors from one

station to the other will contain ambiguity estimation error as well as atmospheric

errors.

The logical alternative for small to medium scale networks would be to only gen-

erate corrections using fixed ambiguities. If this is the case then it is important to

ensure that the observations that have corrections are not differenced from observa-

tions for which corrections were not calculated because then the undifferenced form of

the corrections will be used. For example, if two corrected observations, φ1 − s1 and

φ2 − s2, are differenced then the corrections (s1 and s2) are also differenced. In the

case of double differenced observations, the result is the double difference observation

minus the double difference correction. If only one satellite has corrections then the

resulting adjusted (corrected) observation is the double difference measurement mi-

nus the single difference correction. In this way the network correction generation is

either an all or nothing process.

3.1.3 Final Covariance Function

The previous sections have shown that the troposphere covariance is a function of

the angle between the observations and the ionosphere covariance is a function of the

pierce point distance on the ionosphere shell. The troposphere covariance is also a

function of the inter-antenna separation, however this cannot be taken into account

using the linear model technique.

The exponential covariance functions shown in Equation 3.15 provide the desired

characteristics, namely
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• the function is positive definite,

• the function converges to zero as the distance increases, and

• the function represents the statistical likelihood that the signal observed is the

same as the signal at the computation point.

The coefficient of this covariance function will need to be calibrated using a least

squares adjustment. Although the second order exponential decay function provides

a better prediction shape, the coefficients of the first order function will be easier to

estimate because they are linear.

When all of the covariance function terms are included the first order covariance

function is

CF6(d, α, dI) = e
−
(

d
βd

)
e−( α

βα
)σ2

T + e
−
(

dI
βdI

)
σ2

I (3.18)

and the second order covariance function is

CF7(d, α, dI) = e
−
(

d
βd

)2

e−( α
βα

)
2

σ2
T + e

−
(

dI
βdI

)2

σ2
I (3.19)

where d is the inter-antenna distance between the stations, βd is the correlation length

for the inter-antenna distance between the stations for the troposphere, α is the angle

between the observations, βα is the correlation angle for the great circle angle of the

troposphere, σ2
T is the variance of the troposphere error, dI is the distance between the

pierce points on the ionosphere shell, βdI
is the correlation length for the pierce point

distance for the ionosphere, and σ2
I is the variance of the ionosphere. These covariance

functions are a function of the inter-antenna distance, the great circle angle between

the observations, and the pierce point distance between the observations. They can

calculate the correlation between any two observations.
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3.2 Estimating the Coefficients of the Covariance Function

The coefficients of the covariance function can be estimated using a least squares

adjustment (Radovanovic, 2002). The coefficients of the covariance function in Equa-

tions 3.18 and 3.19 are the correlation angle, βα, the two correlation lengths, βd and

βdI
, and the two variances, σT and σI . The following section shows how the co-

efficients of the covariance function are estimated using the covariance function in

Equation 3.18 as an example. A similar procedure is used for the covariance function

in Equation 3.19.

To assist with the linearization of the covariance function in terms of the coeffi-

cients, the correlation lengths and angle are estimated as their inverses. The estimated

covariance function is then

CF (d, α, dI) = e−dβ′de−αβ′ασ2
T + e

−dIβ′dI σ2
I (3.20)

where

β′d =
1

βd

β′α =
1

βα

β′dI
=

1

βdI

The vector of estimated parameters is

x =
[

β′d β′α σ2
T β′dI

σ2
I

]T
(3.21)

These parameters are estimated using the ionosphere-free and geometry-free linear

combinations. These are used instead of the raw L1 and L2 observations because the

linear combinations can observe the tropospheric and ionospheric coefficients indepen-

dently. This simplifies the estimation procedure because the tropospheric coefficients
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can be estimated in a separate filter than the ionospheric coefficients. For simplicity,

this example will estimate all of the coefficients in one filter however the filter may

be partitioned into two independent parts.

The ionosphere-free linear combination is used to estimate the coefficients of the

tropospheric covariance. The ionosphere-free combination residual is

∆∇rIF = ∆∇φL1 + λL1∆∇NL1 −∆∇ρ + εL1

−f2
L2

f2
L1

(∆∇φL2 + λL2∆∇NL2 −∆∇ρ + εL2)

=
(
1− f2

L2

f2
L1

)
∆∇T + εIF .

(3.22)

The geometry-free linear combination is used to estimate the ionospheric coeffi-

cients of the covariance function. The geometry free combination residual is

∆∇rGF = ∆∇φL1 + λL1∆∇NL1 + εL1 − (∆∇φL2 + λL2∆∇NL2 + εL2)

=
(
1− f2

L1

f2
L2

)
∆∇I + εGF .

(3.23)

These frequency combinations are equivalent to those shown in Tables 2.5 and

2.6. In this case the measurements in units of length (m) are differenced and in

Tables 2.5 and 2.6 the carrier phase ambiguities are differenced in units of length

(cycles). The frequency ratio between L1 and L2 is the property that is used to

isolate (geometry-free) or remove (ionosphere-free) the ionosphere error in all cases.

Each of these frequency combination equations involves four observations. To

observe the covariance function from a linear combination, the expected value of the

product of two ionosphere free or geometry free observations is calculated in a similar

way to Equation 3.5. Each σ is estimated as the covariance from Equation 3.18.

Let i and j represent each of the undifferenced observations of the double difference

combination, a and b, respectively. The misclosure for the estimation of the covariance



82

function coefficients is

wIF ab =

(
1− f 2

L2

f 2
L1

)2 4∑
i=1

4∑
j=1

(Sign(i)Sign(j)e−αi,jβ′αe−di,jβ′dσ2
T )

−∆∇rIF a∆∇rIF b (3.24)

wGF ab =

(
1− f 2

L1

f 2
L2

)2 4∑
i=1

4∑
j=1

(Sign(i)Sign(j)e
−dI i,jβ′dI σ2

I )

−∆∇rGF a∆∇rGF b (3.25)

where Sign is an array that represents the order in the double difference:

Sign(i) =
[

1 −1 −1 1

]
(3.26)

The elements of the design matrix are the partial derivatives of wIF and wGF with

respect to the estimated parameters (Equation 3.21).

Each observation for this estimation contains the product of two double difference

residuals. The total number of observations is the number of combinations that can

be formed from all of the double differences with fixed carrier phase ambiguities. In

this case, only linearly independent ambiguities are estimated.

The correlation between these observations cannot be properly modelled because

the observations are not linear combinations of the untransformed observations. As

a result, each of the observations is given a unit weight and observation correlations

are ignored. This means that the values of the variance-covariance matrix of the

estimated parameters will not be correct in an absolute sense.

When the covariance function parameters are estimated in real-time using a Bayes

filter, the variance-covariance matrix of the estimated parameters smooths the pa-

rameters from one epoch to the next. When process noise is added to the variance-

covariance matrix of the estimated parameters then they will adapt to changing error
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conditions. This adaptive property allows the covariance function coefficients to dy-

namically tune themselves to changing atmospheric conditions.

The observability of this filter is a function of the number of reference stations,

spacing of the reference stations, and the distribution of satellites in view. As a

result, the contribution of the update for each epoch may vary. To prevent the filter

from applying too much process noise and weakening the estimates, the variance

terms of the variance-covariance matrix are multiplied by a process noise factor. The

process noise factor used herein is 1.01 for the variance components and 1.001 for the

correlation lengths and angle. These values are chosen through trial and error. A

low value for the process noise factor constrains the estimated parameters and limits

their adaptation to changing conditions. A value that is too large gives too much

variability to the estimated parameters, which may lead to divergence. This applies a

process noise relative to the level of convergence of the filter. This will ensure that a

reasonable level of process noise is added regardless of the contribution of the update.

A similar approach is shown in Gertler (1998) whereby a forgetting factor is used to

gradually deweight previous solutions by multiplying the variance-covariance matrix

from the previous epoch by a factor.

As stated earlier, the correlations in this matrix are not properly calculated be-

cause the correlation between the observations are not properly modelled. Conse-

quently, the covariance components of the variance-covariance matrix of the estimated

parameters are set to zero after each update. This also prevents the parameters from

becoming overly correlated.

The range of the covariance function coefficients are limited because they must be

positive. This can be a problem if the errors are small. To ensure that the range of

the estimated parameters is enforced, the change in the parameter values due to the
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update is restricted so that the parameter remains positive after the update.

In addition, to prevent divergence of the filter, the change in value due to the

update is limited to a percentage of the value of the parameter. This forces the es-

timated parameters to vary slowly over time, which prevents them from oscillating

around the correct value or diverging due to one large update. The variance com-

ponents are limited to a maximum change due to one epoch of 20 percent and the

correlation lengths and angle are limited to a change of 5 percent. These values were

chosen by evaluating the rate of change of the estimated parameters before and during

divergence.

3.3 Results

The above covariance function coefficient estimation was applied to three consecutive

days of data from the MAGNET network for both 3.18 and 3.19 covariance functions.

Figure 3.10 shows the estimated value of the troposphere standard deviation com-

ponent of the covariance function. The absolute value of these estimates are smaller

than expected for the troposphere. This is not an absolute estimate of the undiffer-

enced variance of the troposphere because it is measured through the double difference

residuals. There are no unexpected trends in these estimates however the visual sim-

ilarities in the values between the days suggests a small influence of multipath error

in the estimates. The covariance functions each provide a similar estimate of the

troposphere standard deviation. The values at the end of one day and the beginning

of the next day should be the same. This is somewhat true in these plots however,

the initial convergence time of the estimated parameters will distort this validation.

Figure 3.11 shows the estimated ionosphere standard deviation. The standard
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Figure 3.10: Estimated standard deviation of the troposphere error (covariance func-
tion coefficient) for Oct 26, 27, and 28 for a first order exponential decay (top) and
second order exponential decay (bottom) covariance functions
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deviation estimates show the expected daily variation of the ionosphere. The iono-

sphere error is relatively low at night and high during the day. This pattern is very

repeatable from one day to the next, as expected. The two covariance functions have

very similar estimates of the ionosphere standard deviation, however the magnitude

of the estimates are very different. This is discussed in Section 3.5. Similar to the

troposphere standard deviation, the values at the end of one day should be similar

to those at the beginning of the following day. This is again, somewhat true in these

plots, however, the values will differ because of the initial convergence of the estimated

parameters.

Figures 3.12, 3.13, and 3.14 show the correlation angle and length of the tropo-

sphere and the correlation length of the ionosphere, respectively. These coefficients

converge to a value and vary only a little for the remainder of the data set. This

may be due to the low separability of these parameters. For example, the correlation

length for the troposphere is only measured at the discrete intervals defined by the

reference station spacing. The correlation angle and correlation length have very sim-

ilar variations. This may be because these parameters are difficult to separate due

to their low observability. Further results show that although the separability of the

estimated parameters is low the double difference covariance is effectively modelled.

The variances of the L1 and L2 pseudorange measurements are also tracked using

the code residuals with fixed positions. This is to allow the software to adapt to the

wide variety of code qualities from various receivers and reference station networks.

Figure 3.15 shows the estimated standard deviation of the L1 and L2 pseudorange

measurements. The day-to-day repeatability shows the effect of day-to-day multipath

on the estimate.
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Figure 3.11: Estimated standard deviation of the ionosphere error (covariance func-
tion coefficient) for Oct 26, 27, and 28 for a first order exponential decay (top) and
second order exponential decay (bottom) covariance functions
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Figure 3.12: Estimated correlation angle of the troposphere error (covariance function
coefficient) for Oct 26, 27, and 28 for a first order exponential decay (top) and second
order exponential decay (bottom) covariance functions
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Figure 3.13: Estimated correlation length of the troposphere error (covariance func-
tion coefficient) for Oct 26, 27, and 28 for a first order exponential decay (top) and
second order exponential decay (bottom) covariance functions
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Figure 3.14: Estimated correlation length of the ionosphere error (covariance function
coefficient) for Oct 26, 27, and 28 for a first order exponential decay (top) and second
order exponential decay (bottom) covariance functions
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Figure 3.15: Estimated pseudorange standard deviation for Oct 26, 27, and 28 for L1
and L2
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3.4 Validation

The covariance functions produce an estimate of the variance and covariance of each

observation. This can be compared to the measured error of the observation to

validate the covariance function as a model.

This test compares the estimated standard deviation of an observation versus the

standard deviation calculated directly by the measured data. The measured errors are

derived from the measurement residuals using fixed positions and ambiguities. With

all fixed parameters there is no difference between the variance-covariance of the

residuals and the variance-covariance of the observations. To calculate the standard

deviation of the residuals as a function of the estimated standard deviations produced

from the covariance function, the residuals are divided into bins. Bins with less than

300 observations are rejected.

A plot of the standard deviation of the residuals versus the estimated standard

deviation of the observations calculated from the covariance function should be linear

with a slope of one meaning that the estimated double difference standard devia-

tion using the covariance function is equal to the actual double difference standard

deviation of the data.

Figure 3.16 shows a comparison of the standard deviation of the residuals and

the estimated standard deviation of the observations for the two covariance func-

tions for Oct 26, 27 and 28. Each of these covariance functions provide a linear

relationship between the actual and estimated standard deviations. This shows that

as the measurement errors increase so does the estimated standard deviations of the

measurements. This relationship is due to the covariance function and the adaptive

method. The lines shown in the figure are a least squares fit to the points. The
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slopes of these lines are greater than one showing that these covariance functions are

optimistic; the standard deviations provided by the covariance function are generally

less than the actual measurement errors.

Figure 3.16: Comparison of the standard deviation of the residuals and the estimated
standard deviation of the observations calculated from a first order and second order
exponential decay covariance functions for Oct 26

3.5 Discussion of Observability

There are many issues that affect the observability of the covariance function coef-

ficients. In general, these estimated parameters are weakly determined because the
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single observation covariance function is estimated using the double difference resid-

uals from the network. Although the absolute values of the estimated parameters are

weakly observable, the relative values of the covariance function coefficients can be

estimated, which provide an accurate double difference covariance function.

The range of observations with respect to the covariance function coefficients is

also an important factor in observability. For example, the correlation length of

the troposphere error is estimated. This parameter requires a wide range of base-

line lengths in order to be observable. Unfortunately, the networks generally used

usually consist of less than ten stations, which does not allow for a wide variety of

observations.

To illustrate the ability of the covariance function filter to estimate the relative val-

ues of the coefficients, the a-priori ionosphere standard deviation is changed without

changing the a-priori ionosphere correlation length. Figure 3.17 shows the estimated

standard deviation of the ionosphere for the three different initial a-priori values for

Oct 26. Figure 3.18 shows the estimated correlation length of the ionosphere for three

different initial a-priori ionosphere standard deviations. The ionosphere variance was

doubled (shown in red) and divided by two (shown in blue) relative to the previous

results (shown in green). This provides a range of initial estimates. The a-priori

correlation length is the same for these three tests.

The correlation length is biased for each of the tests, however the error behaviour

remains the same. This is because the correlation length is compensating for changes

in the standard deviation. The relative values of the parameters are being estimated

such that the double difference variance-covariance is correctly modelled. The double

difference is a function of the variances and covariance between the observations. The

variances are all positively added and the covariance terms are mixed between being
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added or subtracted (depending on the order of the observations) to calculate the

double difference variance. With this in mind, an increase in the standard deviation

requires an increase in the correlation length to maintain a similar double difference

observation variance. This results in the behaviour shown in Figures 3.17 and 3.18.

Figure 3.17: Estimated standard deviation of the ionosphere error (covariance func-
tion coefficient) for Oct 26 for a first order exponential decay (top) and second order
exponential decay (bottom) covariance functions using different a-priori estimates

Figure 3.19 shows a comparison of the standard deviation of the residuals and

the estimated standard deviation of the observations for the two covariance functions

for Oct 26. As expected, each tests shows a linear relationship between the actual
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Figure 3.18: Estimated correlation length of the ionosphere error (covariance function
coefficient) for Oct 26 for a first order exponential decay (top) and second order
exponential decay (bottom) covariance functions using different a-priori estimates for
the ionosphere standard deviation (covariance function coefficient)
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and estimated standard deviations. In general, there is very little change in the dou-

ble difference covariance functions when changing the a-priori value of the standard

deviation of the ionosphere.

Figure 3.19: Comparison of the standard deviation of the residuals and the estimated
standard deviation of the observations calculated from a first order and second or-
der exponential decay covariance functions for Oct 26 for three a-priori ionosphere
standard deviations

3.6 Prediction

Real-time estimation of the coefficients of the function allows for adaptive modelling

of the changing error conditions. This change is most substantial with the ionosphere
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error because it varies greatly throughout the day.

This adaptive modelling is especially useful for prediction in the collocation-based

approach to multiple reference station positioning. The collocation-based approach

uses the correlation between the reference stations’ and the rover’s observations to

interpolate the errors (signals) measured at the reference stations to the rover’s obser-

vation’s signals. This adaptive covariance function model uses the covariance between

the reference stations’ observations to estimate the covariance between the reference

stations’ observations and the rover’s observations. Given a well distributed network

of reference station this approach could provide significant improvement over other

methods, especially in the presence of changing environmental conditions or iono-

spheric storms. For example, if an atmospheric event occurs that causes large spatial

variations of the errors then the reference stations will measure the event, and the

covariance function will adapt and provide appropriate corrections.

The collocation equations used in previous work assume that the values of all es-

timated parameters are known. Taking into account the uncertainly of the estimated

parameters is important in the calculation of the estimated variance-covariance of the

corrections.

The relationship between the estimated parameters and the prediction collocation

equations is especially important when predicting using estimated parameters. When

using stochastic ionosphere modelling only a subset of the estimated parameters and

observations are used to predict the corrections. The development of the collocation

equations with estimated parameters is discussed in the following chapter.
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Chapter 4

Correction Equations for Collocation-Based

Multiple Reference Station Approaches

4.1 Introduction

The generalized least squares collocation equations for prediction of a signal s that is

observed by a process y where E{s} = 0 and E{y} = 0 are derived in Section 2.2.2.

The collocation prediction general formula is repeated from Equation 2.17.

ŝ = CsyC
−1
yy y (4.1)

where Cyy is the variance-covariance matrix of y and Csy is the covariance matrix

between the predicted signal and y (Moritz, 1980; Raquet, 1998).

In terms of carrier phase-based differential positioning using the multiple reference

station approach proposed by Raquet (1998), the correlated error at an arbitrary

position for an arbitrary satellite is the stochastic process observed through the double

differenced carrier phase estimated residuals.

ŝ = Csr̂C
−1
r̂r̂ r̂ (4.2)

where ŝ is a vector of the estimated signals, otherwise referred to as the corrections. In

terms of differential carrier phase-based positioning, the ŝ vector contains the correc-

tions for observations that are to be used in the estimation of the rover’s parameters,

namely the observations for the rover and one reference station. r̂ is a vector of the

estimated residuals. In the case of network positioning the estimated residuals are
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the double differenced carrier phase range plus double differenced estimated carrier

phase ambiguities minus the double differenced carrier phase observations.

4.2 Correction Computation

The calculation of residuals can be generalized for the residuals for any linear implicit

adjustment

r̂ = Ax̂−Bl (4.3)

where A is a design matrix, x̂ is a vector of estimated parameters, B is a linear

transformation of the measurements, and l is a vector of measurements.

x̂ is a vector of estimated parameters after the observations, l, have been applied.

In other words, these are the best estimates of the parameters at the time. These

parameters are updated with the current observations using sequential least squares

(Krakiwsky, 1990), also referred to as the alternative form of the discrete Kalman filter

(Brown and Hwang, 1997). From Equation 2.11 the estimation of the parameters is

x̂ = x◦ + δ̂

= x◦ − (AT (BCllB
T )−1A + C−1

x◦x◦)
−1AT (BCllB

T )−1(Ax◦ −Bl) (4.4)

Cx̂ = (AT (BCllB
T )−1A + C−1

x◦x◦)
−1 (4.5)

where x◦ is the a-priori estimate of the parameters and Cx◦x◦ is its associated variance-

covariance matrix. The variance-covariance of the measurements is the sum of the

signal covariance and noise variance components:

Cll = E{(l − E{l})(l − E{l})T}. (4.6)

It is necessary to separate the observations into a systematic component that is
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the true measurement range (l◦) and signal (ls) and noise (ln) components as follows

l = l◦ + ls + ln. (4.7)

The expected value of the observations is the bias component because the expected

values of the random components equals to zero. Using the observation components

gives

Cll = E{(l◦ + ls + ln − l◦)(l◦ + ls + ln − l◦)
T}

= E{(ls + ln)(ls + ln)T}

= Cls + Cln . (4.8)

It is assumed throughout that the signal and the noise are zero mean as follows

E{s} = 0 (4.9)

E{n} = 0 (4.10)

as well as that the expected value of an estimated or random variable is equal to the

true value as shown in the following cases

E{x̂} = E{x} = x (4.11)

E{ŝ} = E{s} = 0 (4.12)

E{l} = l◦. (4.13)

Equations 4.3 and 4.4 can be used to calculate the conditional estimation equa-

tions. The covariance matrix of the residuals (Cr̂r̂) can be calculated using error

propagation

Cr̂r̂ = E{(Ax̂−Bl − E{Ax̂−Bl})(Ax̂−Bl − E{Ax̂−Bl})T}

= E{(Ax̂−Bl − (Ax−Bl◦))(Ax̂−Bl − (Ax−Bl◦))
T}



102

= E{(A(x̂− x)−B(ls + ln))(A(x̂− x)−B(ls + ln))T}

= AE{(x̂− x)(x̂− x)T}AT + BE{(ls + ln)(ls + ln)T}BT

−AE{(x̂− x)(ls + ln)T}BT −BE{(ls + ln)(x̂− x)T}AT

= ACx̂x̂A
T + BCllB

T − 2AE{(x̂− x)(ls + ln)T}BT . (4.14)

E{(x̂− x)(ls + ln)T} can be calculated using Equation 4.4 as follows

E{(x̂− x)(ls + ln)T} = E{(x◦ +
ˆ̂
δ − x)(ls + ln)T}

= E{x◦(ls + ln)T}+ E{ˆ̂δ(ls + ln)T}

−xE{(ls + ln)T}. (4.15)

The last term in this equation is zero because the expected value of the observation

signal and noise is zero.

It is assumed that the parameter estimates from the previous epoch, x◦, are not

correlated to the observations at this epoch, l:

E{x◦(ls + ln)T} = 0. (4.16)

The level of correlation is a function of the measurement rate and although may not

be zero, is small for typical GPS data rates of one second or more. This is one of the

assumptions required for sequential least squares estimation.

For ease of reading the following substitution is used

M = BCllB
T . (4.17)

E{(x̂− x)(ls + ln)T} = 0 + E{δ̂(ls + ln)T}

= E{−Cx̂x̂A
T M−1(Ax◦ −Bl)(ls + ln)T}

= Cx̂x̂A
T M−1BCll. (4.18)
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Substituting Equation 4.18 into Equation 4.14 gives

Cr̂r̂ = ACx̂x̂A
T + BCllB

T − 2ACx̂x̂A
T (BCllB

T )−1BCllB
T

= ACx̂x̂A
T + BCllB

T − 2ACx̂x̂A
T

= BCllB
T − ACx̂x̂A

T . (4.19)

A similar derivation can be made to determine Csr̂:

Csr̂ = E{(s− E{s})(r − E{r})T}

= E{(s− 0)(Ax̂−Bl − (Ax−Bl◦))
T}

= E{s(A(x̂− x)−B(ls + ln))T}

= E{s(x̂− x)T}AT − E{s(ls + ln)T}BT

= E{sx◦T}AT + E{sδ̂T}AT − E{sxT} − CslsB
T . (4.20)

It is assumed that the estimated signal, ŝ, is not correlated to the estimate of the

parameters at the previous epoch, x◦. This is similar to the assumption in Equation

4.16 except that in this case the correlation refers to only the signal instead of the

observation:

E{sx◦T} = 0 (4.21)

In addition the expected value of s is zero therefore

E{sxT} = E{s}xT = 0. (4.22)

Csr̂ = E{−s(Ax◦ −Bl)T}M−1ACx̂x̂A
T − CslsB

T

= CslsB
T M−1ACx̂x̂A

T − CslsB
T

= CslsB
T M−1(ACx̂x̂A

T −M)

= −CslsB
T M−1Cr̂r̂. (4.23)
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The combined generalized conditional estimation equation from Equation 4.2 is

ŝ = −CslsB
T M−1Cr̂r̂C

−1
r̂r̂ (Ax̂−Bl)

= −CslsB
T M−1(Ax̂−Bl). (4.24)

Equation 4.24 can be used to derive the error covariance of the estimated signal,

Cεŝεŝ
= E{(ŝ− s)(ŝ− s)T}

= E{ŝŝT}+ E{ssT} − E{ŝsT} − E{sŝT}. (4.25)

This is separated into components,

E{ŝŝT} = CslsB
T M−1E{(Ax̂−Bl)(Ax̂−Bl)T}M−1BClss

= CslsB
T M−1Cr̂r̂M

−1BClss

= CslsB
T M−1(M − ACx̂x̂A

T )M−1BClss, (4.26)

E{ssT} = Css (4.27)

where covariance matrix of the signal is calculated by the covariance function.

E{ŝsT} = −E{CslsB
T M−1(Ax̂−Bl)sT} (4.28)

= −CslsB
T M−1(AE{x̂sT} −BE{lsT}). (4.29)

Similar to previous cases

E{lsT} = E{(l◦ + ls + ln)sT}

= l◦E{sT}+ E{lssT}+ E{lnsT}

= Clss. (4.30)
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The covariance between the estimated parameters and the signal at the computa-

tion point can be determined by expanding the least squares solution for the estimated

parameters:

E{x̂sT} = E{(x◦ − Cx̂x̂A
T M−1(Ax◦ −Bl))sT}. (4.31)

After applying the assumption in Equation 4.21 whereby the estimated parameters

from the previous epoch not correlated with the signal

E{x̂sT} = Cx̂x̂A
T M−1BClss. (4.32)

Substituting Equation 4.32 into Equation 4.28 gives

E{ŝsT} = −CslsB
T M−1(ACx̂x̂A

T M−1BClss −BClss)

= −CslsB
T M−1(ACx̂x̂A

T −M)M−1BClss. (4.33)

Comparing Equations 4.33 and 4.26 shows that these are equivalent:

E{ŝsT} = E{ŝŝT}. (4.34)

This is used to simplify Equation 4.25 into

Cεŝεŝ
= E{ŝŝT}+ E{ssT} − E{ŝsT} − E{sŝT}

= E{ŝŝT}+ E{ssT} − E{ŝŝT} − E{ŝŝT}

= E{ssT} − E{ŝŝT}

= Css − CslsB
T M−1(M − ACx̂x̂A

T )M−1BClss

= Css − CslsB
T M−1BClss + CslsB

T M−1ACx̂x̂A
T M−1BClss. (4.35)

This shows that the variance of the estimated signal (estimated corrections) de-

creases as the estimated parameters converge. In the case of ambiguities, the variance

of the estimated signal is lowest when the ambiguities are fixed to their correct values.
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Equation 4.24 matches that derived by Raquet (1998) and are the same as the

equations to calculate the residuals from an implicit adjustment (Krakiwsky and

Abousalem, 1995; Krakiwsky, 1990).

4.3 Applying Corrections

The corrections determined in the previous section are applied to the observations

of one reference station and the mobile remote user. The corrections from Equation

4.24 are subtracted from the observations. In practice the corrections are applied to

the rover station and one reference station however in theory corrections could be

calculated for any location or any station. The adjusted (corrected) observations are

l̂ = l − ŝ

where l̂ is a vector of the adjusted observations. The variance-covariance matrix for

the corrected observations can be determined via error propagation:

Cl̂l̂ = E{(l̂ − E{l̂})(l̂ − E{l̂})T}. (4.36)

The components of this expectation can be reduced to

l̂ − E{l̂} = l − ŝ− E{(l − ŝ)}

= l − ŝ− l◦

= ls + ln − ŝ. (4.37)

Assuming the signal in the observations and the true signal are equal and replacing

it into Equation 4.36 gives

Cl̂l̂ = E{(ln − (ŝ− s))(ln − (ŝ− s))T}
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= Clnln + Cεŝεŝ
(4.38)

= Clnln + Css + CslsB
T M−1(ACx̂x̂A

T −M)M−1BClss

= Cll − E{ŝŝT}. (4.39)

The variance of the corrected observations has an interesting form in Equation

4.38. The corrected observations are a function of the noise variance and the accuracy

of the estimated signal. If the signal is known then it is completely removed from the

observations and all that remains is measurement noise.

There is an interesting relationship between the convergence of the estimated pa-

rameters and the accuracy of the estimated corrections and the resulting accuracy

of the adjusted observations. When a least squares solution (Bayes or Kalman filter

based) has no redundancy the observations and the parameters have the same pre-

cision or BCllB
T − ACx̂x̂A

T = 0. When additional observations are included then

(BCllB
T − ACx̂x̂A

T )i,i > 0 for any i. This is a result of the added information given

by the estimated parameters and the system model defined in the design matrix and

the a-priori information. As Equation 4.35 shows, when BCllB
T − ACx̂x̂A

T = 0 the

variance of the corrections is equal to the variance of the signal. Moreover, Equation

4.39 shows that under the same conditions the variance of the adjusted measurements

equals the variance of the uncorrected measurements. In other words, the corrections

have no effect. Equation 4.35 also shows that as long as redundant observations are

used then the error variance of the corrections will be less than the variance of the

signal.

As the network parameters become better known, the error variance of the correc-

tions decreases and the variance of the rover’s observations decreases. This decrease

in the rover’s observation variance will directly impact the variance of the rover’s
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estimated parameters, as follows

(Cxx)i,i ≤ (Cx̂x̂)i,i

((AT C−1

l̂l̂
A + Cx◦x◦)

−1)i,i ≤ ((AT C−1
ll A + Cx◦x◦)

−1)i,i

((AT (Cll − E{ŝŝT})−1A + Cx◦x◦)
−1)i,i ≤ ((AT C−1

ll A + Cx◦x◦)
−1)i,i (4.40)

where subscript i, i represent each variance element of the variance-covariance matrix

and x is the vector of estimated parameters when the adjusted observations are used.

This clearly shows the improvement due to the multiple reference station corrections

and, ultimately, the multiple reference station approach.

4.4 Estimating the reference station corrections

The correction-based multiple reference station approach is usually regarded as a three

step process: resolution of the network ambiguities, correction calculation, and rover

station estimation. The covariance function, which is used to calculate the variance-

covariance matrix of the signal (Css and Csl), must remain consistent throughout

these three steps in order to achieve the simplifications and reductions shown. It

is common to separate these processes but they must share information and, conse-

quently, must be consistent in terms of stochastic and mathematical models. In other

words, the covariance function, the design matrix (A), and the linear measurement

transformation matrix (B) for the ambiguity estimation and corrections generation

processes must be the same.

The correlations between the reference stations’ corrections and the rover correc-

tions should not be overlooked. Raquet (1998) separates the generation of rover and

network station corrections because the correction equation allows for independent

determination of each correction set. However, this separation is not valid when the
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variance-covariance matrix of the corrections is considered because of correlations

between the rover and reference station corrections. This correlation is especially

important in the determination of the double difference observation variance between

the stations. Due to this correlation induced inseparability, the corrections for both

the reference stations and the rover are contained in the correction vector (ŝ). If

the correction (signal) vector ŝ is divided into a rover correction and network station

corrections then Equation 4.38 must be adjusted because the noise of the reference

station is correlated with the estimated corrections. It is more appropriate to estimate

the signal at the control point (reference stations in this case) as well as filter the

noise of these observations. In this case the predicted value is not only the observation

signal but also the observation noise. It is then necessary to separate the predicted

control point observations from the complete set of control points. Predicted control

points will be denoted with a ∗.

From Equation 4.2 the estimated signal and noise for a control point is

l̂∗s + l̂∗n = C(l∗s+l∗n)r̂Cr̂r̂r. (4.41)

As shown, the variance of the residuals remains unchanged, however the covariance

between the estimated quantities and the residuals is changed. Similar to Equation

4.30

E{l(l∗s + l∗n)T} = Clsl∗s + Clnln
∗

= Cll∗ . (4.42)

Replacing s for l∗s + l∗n in Equation 4.23 gives

C(l∗s+l∗n)r = E{−(l∗s + l∗n)(Ax◦ −Bl)T}M−1ACx̂x̂A
T − Cl∗lB

T
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= Cl∗lB
T M−1(ACx̂x̂A

T −M)

= −Cl∗lB
T M−1Cr̂r̂. (4.43)

The estimated value of the signal and the noise is

l̂∗s + l̂∗n = −Cl∗lB
T M−1Cr̂r̂C

−1
r̂r̂ (Ax̂−Bl)

= −Cl∗lB
T M−1(Ax̂−Bl)

= −(Cl∗s ls + Cl∗nln)BT M−1(Ax̂−Bl). (4.44)

The final solution for the estimated signal has a very similar form to the estimated

signal in Equation 4.24. If this equation is applied for observations that are not used in

the prediction then the matrix Cl∗nln would equal zero and this equation would match

the equation for the estimated signal of the rover only (Equation 4.24). Estimated

signal and noise is analogous to predicting the complete error at the computation

point or the control point.

The resulting error variance is

Cεŝεŝ
= Css − Cl∗lB

T M−1(M − ACx̂x̂A
T )M−1BCll∗ . (4.45)

The adjusted observations are still the differences between the raw observations

and the estimated observation error (signal plus noise). However the noise compo-

nent in calculating the estimated variance of the adjusted observations (Equation

4.38) is not correct because observation noise component is correlated with the noise

component of the estimated error.

Cl̂∗ l̂∗ = E{(l∗n − (ŝ− s))(l∗n − (ŝ− s))T}

= Cl∗nl∗n + Cεŝεŝ
− E{l∗nŝT} − E{ŝl∗n

T}. (4.46)



111

where

E{ŝl∗n
T} = −Cl∗lB

T M−1E{(Ax̂−Bl)l∗n
T}

= −Cl∗lB
T M−1Cr̂r̂M

−1BClnl∗n , (4.47)

Cl̂∗ l̂∗ = Cl∗nl∗n + Cεŝεŝ
+ Cl∗lB

T M−1Cr̂r̂M
−1BClnl∗n

+Cl∗nlnBT M−1Cr̂r̂M
−1BCll∗

= Cl∗nl∗n + Cl∗s l∗s − (Cl∗s ls + Cl∗nln)BT M−1Cr̂r̂M
−1B(Cl∗s ls + Cl∗nln)

+Cl∗lB
T M−1Cr̂r̂M

−1BClnl∗n + Cl∗nlnBT M−1Cr̂r̂M
−1BCll∗

= Cl∗nl∗n + Cl∗s l∗s − Cl∗s lsB
T M−1Cr̂r̂M

−1BClsl∗s . (4.48)

This equation is the same as the equation for the prediction of the signal in

Equation 4.39. Only the covariance of the signal influences the level of increased

accuracy due to the prediction.

4.5 Fixed Ambiguities

The previous derivation uses the adjustment residuals from the float ambiguity so-

lution to determine the corrections for the rover. For the most precise corrections,

the fixed carrier phase ambiguities should be used. For this case a fixed solution is

denoted by a check ( ·̌ ). The reference network parameters are now determined using

the fixed ambiguities

x̌ = x̂− Cx̂âC
−1
ââ (â− ǎ) (4.49)

Cx̌x̌ = Cx̂x̂ − Cx̂âC
−1
ââ Câx̂ + Cx̂âC

−1
ââ CǎǎC

−1
ââ Câx̂ (4.50)

where a is a vector of ambiguities, which have fixed ambiguity values. The a vector

only contains ambiguities for which fixed ambiguities could be determined to a certain
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level of statistical confidence. In a practical sense, the covariance matrix of the fixed

ambiguities, Cǎǎ, can not be determined. The covariance of the fixed ambiguities

would be a function of the confidence of the validation of the ambiguity set. The

fixed ambiguities are discrete processes because they are limited to integer values. The

probability distribution of the fixed ambiguities is also discrete (Joosten and Tiberius,

2000), therefore Equation 4.50 cannot be evaluated in the continuous sense as shown.

The discrete covariance of the fixed ambiguities is a function of the likelihood that a

fixed ambiguity value is indeed the correct value. To overcome these difficulties, the

fixed ambiguities are assumed to be correct (deterministic) for the remainder of this

derivation. As a result, all further results shown are slightly optimistic. The resulting

variance-covariance matrix of the parameters is

Cx̌x̌ = Cx̂x̂ − Cx̂âC
−1
ââ Câx̂. (4.51)

In the case where the integer ambiguities are fixed, and assumed to be known, the

residuals are calculated as

ř = Ax̌x̌−Bl + Aǎǎ. (4.52)

The design matrix for the fixed and float parameters are separated from the un-

scripted design matrix, which was used to determine the float parameters.

The corrections to the signal using the fixed ambiguities can be determined using

the variance-covariance matrix of the fixed-ambiguity residuals and the covariance

matrix between the rover’s observations and the network residuals as in the previous

derivation. The variance-covariance matrix of the residuals is calculated as

Cřř = E{(Ax̌x̌−Bl + Aǎǎ− E{Ax̌x̌−Bl + Aǎǎ})

(Ax̌x̌−Bl + Aǎǎ− E{Ax̌x̌−Bl + Aǎǎ})T}, (4.53)
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Ax̌x̌−Bl + Aǎǎ− E{Ax̌x̌−Bl + Aǎǎ} = Ax̌x̌−Bl + Aǎǎ

−(Ax̌x−Bl◦ + Aǎa)

= Ax̌(x̌− x)−B(ls + ln)

+Aǎ(ǎ− a). (4.54)

The expected value terms that contain a vector of the fixed ambiguities are zero

because

E{ǎ− a} = E{ǎ} − a = a− a = 0 (4.55)

E{ǎǎ} = 0, (4.56)

Cřř = Ax̌E{(x̌− x)(x̌− x)T}AT
x̌ + BE{(ln + ls)(ln + ls)

T}BT

−Ax̌E{(x̌− x)(ls + ln)T}BT −BE{(ls + ln)(x̌− x)T}AT
x̌

= Ax̌Cx̌x̌A
T
x̌ + BCllB

T

−Ax̌E{(x̌− x)(ls + ln)T}BT −BE{(ls + ln)(x̌− x)T}AT
x̌ , (4.57)

E{(x̌− x)(ls + ln)T} = E{(x̂− x)(ls + ln)T}

−Cx̂âC
−1
ââ E{(â− ǎ)(ls + ln)T}. (4.58)

E{(x̂ − x)(ls + ln)T} and E{â(ls + ln)T} can be determined by expanding the

definitions of x̂ and â. As with the previous section, the state vector from the previous

epoch is uncorrelated with the observations from this epoch.
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In this method of applying fixed ambiguity information through a conditional

reduction, x and a are initially estimated in the same adjustment, but in later steps

the fixed ambiguities are removed. For this reason, the definitions of x̂ and â are

shown using matrix partitioning:

E{(x̂− x)(ls + ln)T} = −
[

Cx̂x̂ Cx̂â

]
AT M−1E{(Ax◦ −Bl)(ls + ln)T}

=
[

Cx̂x̂ Cx̂â

]
AT M−1BCll, (4.59)

E{â(ls + ln)T} = −
[

Câx̂ Cââ

]
AT M−1E{(Ax◦ −Bl)(ls + ln)T}

=
[

Câx̂ Cââ

]
AT M−1BCll. (4.60)

The expected values in Equations 4.59 and 4.60 are replaced into Equation 4.58

to give

E{(x̌− x)(ls + ln)T} =
([

Cx̂x̂ Cx̂â

]
− Cx̂âC

−1
ââ

[
Câx̂ Cââ

])
AT M−1BCll

=
([

Cx̂x̂ Cx̂â

]
−
[

Cx̂âC
−1
ââ Câx̂ Cx̂â

])
AT M−1BCll

=
[

Cx̂x̂ − Cx̂âC
−1
ââ Câx̂ Cx̂â − Cx̂â

]
AT M−1BCll

=
[

Cx̌x̌ 0

]
AT M−1BCll (4.61)

The zero sub-matrix in this equation removes the effect of the once floating am-

biguities when multiplied by AT . As a result

AT
x̌ =

[
I 0

]
AT (4.62)

This relationship is used to reduce Equation 4.61 to

E{(x̌− x)(ls + ln)T} = Cx̌x̌A
T
x̌ M−1BCll. (4.63)
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Equation 4.63 is inserted into Equation 4.57 to give

Cřř = Ax̌Cx̌x̌A
T
x̌ + BCllB

T − 2Ax̌Cx̌x̌A
T
x̌ M−1BCllB

T

= Ax̌Cx̌x̌A
T
x̌ + BCllB

T − 2Ax̌Cx̌x̌A
T
x̌

= BCllB
T − Ax̌Cx̌x̌A

T
x̌ . (4.64)

The variance-covariance matrix of the residuals with fixed ambiguities, Equation

4.64, has the same form as the variance-covariance matrix of the residuals with float

ambiguities, Equation 4.19.

The covariance between the signal and the residuals, Csř, can be determined in a

similar manner

Csř = E{sřT}

= E{(s− E{s})(Ax̌x̌−Bl + Aǎǎ− E{Ax̌x̌−Bl + Aǎǎ})T}, (4.65)

Ax̌x̌−Bl + Aǎǎ− E{Ax̌x̌−Bl + Aǎǎ} = Ax̌x̌−Bl + Aǎǎ

−(Ax̌x−Bl◦ + Aǎa

= Ax̌(x̌− x)−B(ls + ln)

+Aǎ(ǎ− a), (4.66)

Csř = E{s(x̌− x)T}AT
x̌ − E{s(ls + ln)T}BT

= CslsB
T M−1Ax̌Cx̌x̌A

T
x̌ − CslsB

T

= CslsB
T M−1(Ax̌Cx̌x̌A

T
x̌ −M)

= −CslsB
T M−1Cřř. (4.67)
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Equations 4.64 and 4.67 can be used to determine the corrections and the error

covariance matrix of the corrections:

š = CsřCřř

= CslsB
T M−1CřřC

−1
řř (Ax̌x̌−Bl + Aǎǎ)

= −CslsB
T M−1(Ax̌x̌−Bl + Aǎǎ), (4.68)

Cεšεš = Css − CslsB
T M−1(BCllB

T − Ax̌Cx̌x̌A
T
x̌ )M−1BClss. (4.69)

The corrections determined using float or fixed ambiguities only differ by the am-

biguities used in the calculation of the residuals. This difference is shown in the error

covariance matrix of the signal where each is dependant on the variance-covariance of

the remaining floating parameters. If all the parameters are fixed to known quantities

then the error covariance matrix of the signal (Equation 4.69) reduces to

Cεšεš = Css − CslsB
T (BCllB

T )−1BClss. (4.70)

Equation 4.70 is the error covariance matrix for a conditional model adjustment

where there are no estimated parameters (Krakiwsky and Abousalem, 1995).

4.5.1 Applying Corrections

The application of the corrections is identical to the float ambiguity case except with

fixed ambiguity corrections and variance-covariance matrix of the corrections. The

corrected observations and variance-covariance matrix of the corrected observations

are

ľ = l − š, (4.71)
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Cľľ = Clnln + Cεšεš . (4.72)

The most precise adjusted measurements will have the minimum observation vari-

ance. In terms of the precision of the corrections, the error covariance matrix of the

corrections should be as small as possible. Comparing Equations 4.69 and 4.70 shows

that the variance of the corrections is smaller when all the parameters are known

(fixed). As one would expect, a solution with fixed parameters will provide the best

corrections and the lowest, correction applied, measurement variance for the rover.

4.6 Practical Considerations

The derivation from the previous section makes two assumptions: (1) that the esti-

mated parameters are not predicted and (2) that all the observations that were used

to determine the network parameters are used to predict the residual errors and the

computation point corrections. However, in practice the network adjustment may

estimate parameters to absorb correlated errors in an attempt to better resolve the

network ambiguities. These correlated errors should be predicted along with the re-

maining correlated errors to reduce their effects on the rover. For example, the slant

ionosphere error may be estimated to reduce the effect of the ionosphere on ambiguity

resolution. The residuals of the parameter estimation would not contain ionosphere

error. However the rover’s corrections should contain ionosphere error and need to

be reintroduced into the predicted residuals.

The second assumption may also be false. The weighted ionosphere model outlined

by Odijk (2000) requires the addition of ionosphere pseudo-observations to assist with

the convergence of the filter. In general, these observations should not be used to

predict correlated errors. Especially with fixed (integer) ambiguities, it is unnecessary
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to include pseudo-range code observations because of their high noise and multipath

characteristics.

The derivation from the previous section is repeated with these assumptions re-

moved. The complete list of estimated parameters are in the state vector, x̂, and the

complete list of observations are in the vector l. Two different design matrices, A

and Ag, are used to distinguish between estimated parameters used in the estimation

and the prediction. This assumes that a subset of the estimated parameters is used

in the prediction. This is an obvious assumption because unknown parameters that

are not estimated would not contribute to the prediction. Two observation matrices,

B and Bg, are used to distinguish between the observations used in the estimation

and prediction. Subscript g represents the design matrix and observation matrix used

specifically for generating corrections (prediction).

The variance-covariance matrix of the residuals is now defined as

Cr̂r̂ = E{(Agx̂−Bgl − E{Agx̂−Bgl})(Agx̂−Bgl − E{Agx̂−Bgl})T}

= AgCx̂x̂A
T
g + BgCllB

T
g − AgE{(x̂)(ls + ln)T}BT

g

−BgE{(ls + ln)(x̂)T}AT
g . (4.73)

E{x̂(ls + ln)T} is the same as shown in Equation 4.18 giving

Cr̂r̂ = AgCx̂x̂A
T
g + BgCllB

T
g − AgCx̂x̂A

T (BCllB
T )−1BCllB

T
g

−BgCllB
T (BCllB

T )−1ACx̂x̂A
T
g . (4.74)

It is already apparent that this derivation is much less elegant than the previous.

The covariance matrix relating the signal and the residuals, Csr, is similar to that of

the previous section:

Csr̂ = E{(ls + ln)x◦T}AT
g + E{(ls + ln)δ̂T}AT

g − CllB
T
g
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= CslsB
T (BCllB

T )−1ACx̂x̂A
T
g − CslsB

T
g . (4.75)

The conditional estimation equation without the assumptions is

s = (CslsB
T (BCllB

T )−1ACx̂x̂A
T
g − CslsB

T
g )

(AgCx̂x̂A
T
g + BgCllB

T
g − AgCx̂x̂A

T (BCllB
T )−1BCllB

T
g

−BgCllB
T (BCllB

T )−1ACx̂x̂A
T
g )−1(Agx̂−Bgl). (4.76)

This equation cannot be reduced as in the previous derivation without the assump-

tions taking affect. The conditional estimation equation is much more cumbersome

in this case.

The complications in this derivation are due to two factors: the parameters es-

timated are not used in the prediction and the observations used to estimate the

parameters are not used in the prediction. The first of these factors can be removed

by decorrelating the estimated parameters that are not to be predicted similar to

the decorrelation of the ambiguities shown in Equation 4.49. Decorrelating the pa-

rameters removes their effect on the remaining parameters as though the removed

parameters had not been estimated but constrained to their final values.

Using this technique, the parameters that are not used in the prediction are decor-

related from the remaining, predicted parameters. In the case of ambiguities, the

decorrelation is meant to constrain their estimated float values to their integer val-

ues. The estimated ionosphere parameters, for example, should be decorrelated from

the other estimated parameters using their correct values, which are unknown. The

best estimate of the ionosphere is its current estimated value. As a result, the decorre-

lation performed by Equation 4.49 will not adjust the remaining parameters because

the difference between the estimated value and the constrained value is zero. The

decorrelation will, however, remove the effect of estimating these parameters from the
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variance covariance matrix of the remaining parameters (Equation 4.51). Assuming

that all of the observations that were used to estimate the parameters are being used

in prediction, the unwanted parameters can be decorrelated to simplify the prediction

equations to Equations 4.24 and 4.38.

4.7 Properties of the collocation-based approach

This section describes important properties of the collocation-based corrections. These

properties are important because they affect or validate the use and application of

the corrections.

4.7.1 Differencing the undifferenced corrections

A vector of undifferenced corrections is calculated through the collocation-based mul-

tiple reference station approach. The undifferenced corrections are biased by an

arbitrary value determined by the inner constraints of the solution. Consequently,

the undifferenced corrections are only valid in differential form and any double differ-

ence combination produces valid double difference corrections. This is shown in the

following proof.

Any double difference combination of the corrections would be the same if the

single observation corrections were generated with a different double difference com-

bination. The simple correction equations for the network reference stations are

s = −CllB
T (BCllB

T )−1(Ax̂−Bl). (4.77)

Network corrections are used because if they are transformed into the double

difference combinations used in the misclosures (Ax̂−Bl) then the double difference

corrections are equal to the double difference misclosures, as shown in the following
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equation:

Bs = −BCllB
T (BCllB

T )−1(Ax̂−Bl)

= −(Ax̂−Bl). (4.78)

When the corrections are transformed into double differenced corrections the vec-

tor of corrections is multiplied by a linear transformation matrix, B′, giving

B′s = −B′CllB
T (BCllB

T )−1(Ax̂−Bl). (4.79)

The transformation matrix B′ can be represented in the form A′B where A′ is a

linear transformation matrix. A′B is substituted for B′ in Equation 4.79 to yield

B′s = −A′BCllB
T (BCllB

T )−1(Ax̂−Bl)

= −A′(Ax̂−Bl)

= −(A′Ax̂− A′Bl)

= −(A′Ax̂−B′l). (4.80)

It is obvious from these equations that the solution is the same as though the

original observations were calculated using the linear transformation B′. It is also

obvious from these equations that since the observations are transformed into the

double difference space defined by B′, the transformation of A′A must also transform

it into the same double difference observations.

4.7.2 Correction and ambiguity convergence

The objective of the variance-covariance estimate of the corrections is to provide a

correction measurement weight to correction users. The error variance of the cor-

rections decreases as the ambiguities of the network converge and are resolved. A
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decrease in the error variance of the corrections results in a decrease in the variance

of the rover’s corrected observations.

Figure 4.1 shows the prediction values for a zero baseline test. Zero baseline means

that the rover is located at a reference station in the network. The focus of this figure

is the standard deviation of the corrected rover measurements. The convergence of the

network ambiguities is shown in the slowly decreasing estimated rover measurement

standard deviation prior to 3:00 local time. At approximately 3:00 local time the

network ambiguities are resolved, which removes the uncertainty in the ambiguities

from the corrections. The estimated standard deviation of the rover’s measurements

are then reduced to the magnitude of the carrier phase measurement noise because

this is a zero baseline and the rover is located at a network reference station.

This is an interesting property of the collocation-based approach that has not

be previously explored. This allows for a mixed group of float and fixed ambiguity

measurements to be weighted when applied by the rover.

4.7.3 Choice of reference station

The choice of reference station in the network to use in the rover baseline calculation

is arbitrary. Any reference station in the network provides the same solution given a

few assumptions, which will be discussed shortly.

Consider for example that a rover is at a network reference station. This is a

zero baseline with respect to the network. The corrections of the co-located reference

station are within the measurement noise level to the corrections of the rover, therefore

if the co-located reference station is used as the corrected single reference station then

this is indeed a standard zero baseline. However, if a different reference station in the

network is used then the difference in the corrections between this reference station
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Figure 4.1: Sample double difference and the estimated standard deviations of the
rover’s corrected and uncorrected measurements for a zero baseline.
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and the rover is equivalent to the residuals between the reference station and the co-

located reference station. Assuming that the station coordinates are correct and that

the ambiguities are fixed correctly, this residual difference is the difference between

the measurement errors at the reference stations. When this correction is applied to

the non co-located reference station, the errors in the station become the errors at

the co-located station, hence the errors at the rover.

Once again, this assumes that the reference station coordinates are correct and

that the ambiguities between the stations are correctly resolved. This may not be

the case for every baseline in the network and it may not be practical to transmit the

data from all of the reference stations to the user - depending on the setup this may

be required. It is the best practice to use the closest reference station to the rover

as the corrected single reference station when estimating the rover’s position. If this

is not possible then a station in the centre of the network is preferable to a station

near the edge of the network to reduce the accumulation of ambiguity errors across

multiple baselines.
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Chapter 5

Results for the Collocation-Based Multiple

Reference Station Approach

Data from the MAGNET network are used to show the effectiveness and properties

of the collocation-based multiple reference station approach described in the previous

chapter. A 15 degree elevation cutoff angle was used for all cases.

5.1 Test methodology and figures of merit

The multiple reference station approach is performed in a series of steps that must

each be monitored to properly describe the effectiveness of the method. The first step

is the resolution of the network integer carrier phase ambiguities. The ability of the

network to resolve ambiguities affects the accuracy of the corrections. The magnitude

of the corrections and their estimated variances constitute a measure of the difference

between the single reference station approach and the network approach. This chapter

demonstrates improvement due to this technique. This section describes how each of

these quality measures are obtained and why they are important.

All of the processing in the following section simulates real-time performance by

processing using an epoch-by-epoch approach.

5.1.1 Network ambiguity resolution

The ability of the network to resolve ambiguities is a function of the network geometry,

satellite geometry, accuracy of the network reference station positions and magnitude
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of the measurement errors. The network ambiguity resolution performance shown in

the following results shows the percentage of fixed ambiguities for the network when

calculating network corrections. The percentage of fixed ambiguities considers every

epoch of every ambiguity as opposed to each pass of the satellites. This measure is

used because it includes convergence time of the filter in real-time.

The accuracy of the ambiguities affects the accuracy of the corrections and the

estimated error variances of the corrections. If the network is unable to resolve the

network ambiguities then less improvement is to be expected from the calculated cor-

rections using float ambiguities. This is represented in the variance of the corrections

but will degrade the quality of the rover’s solution.

5.1.2 Rover corrections

In the network approach the single observation corrections are generated so that they

can be applied to the raw observations of a network reference station. However, the

corrections are only valid in differenced form. Consequently, the double difference

corrections are shown using the nearest network reference station and the rover re-

ceiver. The variances of the double difference corrections are also calculated, however

the rover’s measurement variances before and after applying corrections are shown.

This is a more intuitive presentation of the variance of the corrections. These two

figures are shown together to correlate periods with high measurement errors and the

given variances of the measurements.

5.1.3 Observation domain

The effect of the corrections on the rover measurement errors is shown. To remove

the effect of the changing rover position, the rover and nearest network reference
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station positions are fixed. The best known fixed or float ambiguities are used to

calculate the double difference measurement residuals. The residuals are shown for

the L1 code measurements, L1 phase measurements, L2 phase measurements, as well

as the following linear phase combinations: wide-lane, ionosphere-free, and geometry

free. No code corrections are applied because the code observations are dominated

by uncorrelated measurement errors and these can delay or prevent convergence of

the positioning filter.

The L1 and L2 phase residuals show the reduction of measurement errors on the

raw rover measurements. The wide-lane linear combination is commonly used in GPS

carrier phase positioning. The ionosphere-free and geometry-free linear combinations

are included to separate the effect of the corrections into troposphere plus orbit errors,

and ionosphere error, respectively. The ionosphere and troposphere plus orbit errors

have significantly different magnitudes, as shown in the following figures. Separating

the errors into the two components shows the ability of the method to predict the

differing error types.

5.1.4 Position domain

The position accuracy is, in most cases, the ultimate performance measure of concern

to GPS users. This is the most important quality shown and is a function of all the

previous quality measures. The positions are estimated using the method described

in the following chapter with the exception that only a single baseline is used. This

positioning filter estimated the L1 and L2 ambiguities, and the dual frequency slant

ionosphere bias for each satellite pair. This is an ionosphere-free approach. It is one of

the best positioning methods as evaluated by Liu (2003) in the assessment of various

carrier phase positioning techniques.
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The best available float or fixed ambiguities are used at each epoch in a Bayes

filter approach. A first order Gauss Markov process is used to model the temporal

behaviour of the rover velocity. Although the position is static, it is estimated assum-

ing a kinematic mode. This simulates the accuracy of the real-time rover position

using either the single reference station or multiple reference station approaches.

5.2 MAGNET Network with TU as a rover

The configuration of the MAGNET network shown in Figure 5.1 is used to demon-

strate the effectiveness of the collocation-based multiple reference station approach.

The rover is completely surrounded by reference stations and is 25 km from the near-

est reference station. 25 km is an unreliable inter-antenna distance for single reference

station fixed ambiguity carrier phase positioning. The network baseline lengths of this

medium scale network range from 50 to 75 km.

5.2.1 Percentage of fixed network ambiguities

The percentages of fixed ambiguities are shown in Table 5.1, whereby 55 to 92 percent

of the network ambiguities are resolved. This is a high level of fixed ambiguities for

a network of this scale, with baselines ranging from 50 to 74 km. The increased error

on October 28 has a noticeable affect on the ambiguity resolution performance.

5.2.2 Network corrections and variances of rover observations

Figures 5.2 to 5.4 shows the double difference L1 phase corrections and standard

deviations of the rover’s, and corrected rover’s, double difference measurements for

October 26 to October 28. The magnitudes of the corrections are as expected for a

25 km baseline. The measurement errors are smallest at night. The measurement
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Figure 5.1: MAGNET network configuration with TU as the rover

Table 5.1: Percentage of fixed ambiguities.

Station 1 Station 2 Distance Oct 26 Oct 27 Oct 28
MA ME 50.6 km 82.1 % 87.3 % 86.8 %
DU UL 55.9 km 81.8 % 92.4 % 72.4 %
DU UC 58.8 km 82.2 % 87.5 % 87.1 %
DU KA 60.9 km 83.6 % 72.3 % 62.8 %
KR UL 70.6 km 72.9 % 85.8 % 54.5 %
KR MA 74.0 km 81.0 % 77.6 % 73.1 %
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corrections vary up to 3 ppm with the exception of a few satellite corrections of up

to 15 ppm. Discontinuities in the double difference corrections are due to changes in

the base satellite. For these examples, the base satellite with the lowest PRN number

was selected. The corrections are larger on October 28 when the measurement errors

are larger.

The estimated standard deviation of the rover measurements decrease when the

corrections are applied. This is the estimated improvement due to the network cor-

rections. The method suggests that the corrections will provide approximately a 20

percent reduction in the measurement errors over the single reference station case.

The reduction of the measurement standard deviation is due to the correlation of the

atmospheric errors and the network geometry.

5.2.3 Observation domain

Table 5.2 shows the RMS of the measurement residuals for the rover, and corrected

rover’s, measurements. The improvement due to the corrections is 6 to 26 percent

for the raw L1 and L2 phase measurements. This improvement is due to a reduc-

tion of the ionosphere errors, evident by the 5 to 22 percent improvement in the

geometry-free residuals and a negative improvement in the ionosphere-free residuals.

The degradation of the troposphere and orbit components is because these compo-

nents are very small in magnitude; The negative improvement is less than 0.1 cm

in all cases. Figures 5.5 to 5.7 show the residuals for the single reference station

and multiple reference station approaches for the three days. There is a noticeable

reduction in the error magnitude and a few large magnitude residuals are removed.

Although there is the an overall reduction of the measurement residuals, there are

still large remaining residuals in the corrected data. These are errors that either the
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Figure 5.2: Double difference L1 phase corrections and double difference rover mea-
surement standard deviations for the single reference station and corrected reference
station observations for Oct 26
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Figure 5.3: Double difference L1 phase corrections and double difference rover mea-
surement standard deviations for the single reference station and corrected reference
station observations for Oct 27
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Figure 5.4: Double difference L1 phase corrections and double difference rover mea-
surement standard deviations for the single reference station and corrected reference
station observations for Oct 28
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network was not able to measure or was not able to predict.

Table 5.2: RMS residuals for the single and corrected rover station baseline measure-
ments

L1 L2 WL IF GF
Oct 26 Single RS 3.7 cm 6.0 cm 4.7 cm 0.3 cm 2.4 cm

Multiple RS 2.7 cm 4.5 cm 4.0 cm 0.4 cm 1.8 cm
Improvement 27 % 25 % 15 % -33 % 25 %

Oct 27 Single RS 4.1 cm 6.6 cm 5.1 cm 0.4 cm 2.6 cm
Multiple RS 3.5 cm 5.6 cm 4.7 cm 0.4 cm 2.2 cm
Improvement 15 % 15 % 8 % ¿ -1 % 15 %

Oct 28 Single RS 8.4 cm 13.8 cm 10.8 cm 0.4 cm 5.4 cm
Multiple RS 7.9 cm 13.0 cm 10.4 cm 0.4 cm 5.1 cm
Improvement 6 % 6 % 4 % ¿ -1 % 6 %

5.2.4 Position domain

Table 5.3 shows the RMS position errors for the north, east, up and 3D components

and the percentage of fixed ambiguities. There is an 11 to 33 percent improvement

in the 3D position accuracy when the network corrections are applied, relative to

the single baseline approach using the nearest network reference station. In general,

there is an improvement in all cases when the corrections are applied however the

reduction of 3D position RMS errors ranges from 0.7 cm to 2.5 cm. There is also an

improvement in the percentage of fixed ambiguities, however the improvement is at

most 21 percent and is usually less than 5 percent.

The level of improve decreases as the measurement errors increase. This is be-

cause as the measurement errors increase the spatial correlation decreases. The mea-

surement errors can not be interpolated as effectively when the spatial correlation

decreases. The network approach would provide the greatest improvement when the

measurement errors are high and the spatial correlation is also high. Further tests
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would be required to determine if the high measurement error, high spatial correla-

tion occurs in GPS network data. The results do suggest that using the network of

reference stations improves performance relative to the single baseline approach.

Table 5.3: RMS position errors and percentage of fixed ambiguities for the single and
corrected rover station baseline measurements

North East Up 3D % fixed
Oct 26 Single RS 2.2 cm 4.6 cm 5.8 cm 7.7 cm 37 %

Multiple RS 1.7 cm 2.8 cm 4.0 cm 5.2 cm 58 %
Improvement 24 % 40 % 31 % 33 % 21 %

Oct 27 Single RS 2.0 cm 2.8 cm 6.5 cm 7.3 cm 50 %
Multiple RS 1.5 cm 3.0 cm 4.7 cm 5.8 cm 50 %
Improvement 25 % -6 % 27 % 21 % < 1 %

Oct 28 Single RS 1.8 cm 3.4 cm 4.9 cm 6.3 cm 43 %
Multiple RS 1.7 cm 2.1 cm 4.9 cm 5.6 cm 48 %
Improvement 10 % 39 % < 1 % 11 % 5 %

Figures 5.8 to 5.10 show the north, east, up, and 3D position errors and the

percentage of fixed ambiguities as a function of time for the three days. The improve-

ment in the position accuracy is obvious in these figures. There is also a noticeable

improvement in the convergence time on October 26. Some of the main position er-

rors are reduced when the corrections are applied. Similar remaining position errors

common to both the single and multiple reference station solutions suggest that some

of the measurement errors could not be predicted by the network. Some of these

characteristics may also be geometry effects, which include multipath and changes in

dilution of precision. Similarities in the position errors from one day to the next also

suggest related geometry effects. For example, the single reference station position

errors are similar between October 27 and 28.

The ambiguity resolution performance is also similar between the single and mul-

tiple reference station approaches however the multiple reference station approach
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generally resolves more ambiguities than the single reference station approach. There

is low level of fixed ambiguities for both approaches around 16:00 because of the

increase in measurement errors.
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Figure 5.8: North, east, up, and three dimensional position errors and percentage of
fixed ambiguities for single and corrected reference station solutions for Oct 26
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Figure 5.9: North, east, up, and three dimensional position errors and percentage of
fixed ambiguities for single and corrected reference station solutions for Oct 27
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Figure 5.10: North, east, up, and three dimensional position errors and percentage of
fixed ambiguities for single and corrected reference station solutions for Oct 28
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Chapter 6

Tightly Coupled Approach

Network RTK implementation consists of three main steps (Lachapelle and Alves,

2002). In the first step, the errors at the reference stations are estimated using

carrier-phase observations. The second step interpolates these errors to the rover

receiver location whereas the third step is to transmit the corrections to the rover.

This is usually carried out by generating virtual reference station data that the rover

can accept, using a single reference station data format.

Real-time network kinematic positioning is limited by many factors, one of which

is the communication network used between the network control centre and the rovers.

Due to bandwidth limitations with multiple rovers and an attempt to allow for user

privacy, real-time network kinematic positioning methods have attempted so far to

operate a broadcast-only system (one-way communication), whereby the network cor-

rections are broadcast to all rovers and there is no information communicated from

the rover back to the network.

If two-way communication is used, not only can the network stations assist the

rover but the rover can also assist the network with additional information. In this

case, the rover actually becomes part of the network and the reduced inter-receiver

distances and additional ambiguity constraints provided by the rover improve the

overall ambiguity resolution process very significantly using the now established re-

ceiver multiplicity concept initially proposed by Lachapelle et al. (1993) and further

tested by Luo and Lachapelle (2003). This enhanced procedure is also ideal for

post-mission applications that are numerous for verification of hydrographic surveys,
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airborne surveys and land surveying.

Network RTK systems use reference stations to precisely measure the correlated

errors affecting the region. These errors can only be measured when all other pa-

rameters are precisely determined, namely the station position and carrier phase

ambiguities. With this in mind, the better a station’s position and ambiguities are

known, the more accurately one can separate measurement errors and systematic bi-

ases. Reference stations are an obvious choice because their positions are known, but

any receiver can be used to estimate measurement errors. For example, a static or

kinematic rover can be treated as a reference station. In terms of error modelling,

multiple rovers in an area can each give an indication of the local environmental er-

ror conditions. Combining all of this information into a coherent model allows for

new network rovers, with less defined position and velocity estimates, to benefit from

decreased measurement error.

The assistance of the rover to the network can be seen in the baseline configura-

tions for the network. Ambiguity resolution performance is a function of inter-receiver

distance separation because the correlated errors increase in magnitude as the sep-

aration increases. In a broadcast-only Network RTK system, baselines are formed

between the various reference stations. Rovers within the network will, by definition,

be between two or more reference stations. Therefore connecting baselines to the

rovers as well as the reference stations will shorten the overall network inter-receiver

separations within the network, thus giving a higher likelihood of resolving the carrier

phase ambiguities.

Instead of applying a weighted average (prediction) approach, the rover’s data and

estimated states are added to the network filter. The network filter is used solely to

estimate and resolve the network ambiguities in the real-time approach. The addition
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of the rover’s information into the network filter maintains all the information used in

the least-squares collocation approach and adds the rover information. The difference

is that the network not only assists the rover but the rover also assists the network.

In the loosely coupled approach network ambiguities (and other nuisance param-

eters, such as the ionosphere) are estimated using Bayes filtering. The ambiguities

estimates are then searched and, if validated, resolved. The resulting ambiguities are

then used to predict the errors to the locations of the rovers.

The integrated approach does not require the error prediction phase of the loosely

coupled approach because the error estimates are reduced from the rover’s estimates

when the rover’s position is estimated. This is accomplished by the covariance func-

tion, which is used to evaluate the contribution of each of the reference station’s

observations on the rover. The covariance function determines the level of correlation

between measurements. If two measurements are highly correlated then when they

are differenced the variance of the resulting, differenced, observation becomes low.

Consider the case where the rover is involved in every baseline in the network. The

reference station observations that are highly correlated with the rover be assigned

a low variance and as a result, will be given more weight in the adjustment than

an observation whose errors are different than those of the rover. This method of

weighting produces an error model using all of the surrounding reference station’s

data.
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6.1 Implementation

The design matrix of the integrated (tightly coupled) approach has the form

A =



∂∆∇φ1

∂x
∂∆∇φ1

∂y
∂∆∇φ1

∂z
λ 0 0 0

∂∆∇φ2

∂x
∂∆∇φ2

∂y
∂∆∇φ2

∂z
0 λ 0 0

. . .

0 0 0 0 0 λ 0

0 0 0 0 0 0 λ

. . .



(6.1)

where the first n rows correspond to the double difference observations between the

rover and one of the reference stations, and the second set of m rows correspond

to double difference observations between the fixed reference stations with known

coordinates. n is the number of double difference observations between the rover

and the reference station(s) and m is the number of double difference observations

between reference stations. The first three columns correspond to the rover’s position

estimates and the following n+m columns correspond to the ambiguities of all of the

double difference observations. No partial derivatives with respect to the coordinates

exist between reference stations because their coordinates are assumed known and

held fixed.

The design matrix can be extended to accept any number of reference stations

and rovers. The processing results shown include the code and carrier phase observa-

tions processed in a single Bayes filter. This model can be expanded to incorporate

any observation (system) model (estimating troposphere delay, ionosphere error, or

the rover’s velocity estimates, for example). The selection of the double difference

observables is based on the shortest inter-receiver separations, with the conditions
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of linear independence and connectivity being preserved. Thus a rover may be con-

nected to one or several reference stations, depending on the reference station-rover

receiver configuration. Short distances are selected to minimize the magnitude of the

differential errors. As an example, in the case of four reference stations and one rover,

the double differences over the shortest four linearly independent receiver separations

would be used. The rover may be involved in one to four sets of double differences.

The mathematical and stochastic information are used in the integrated approach.

The mathematical correlation is due to inter-receiver separations that share a common

reference station (or rover station) which use the same observations in their double

difference measurements. This is represented in the filter by the double difference

measurement matrix, B. This matrix is not block diagonal because the observations

from one station may be used in multiple baselines. The measurement matrix shown

below is for the scenario where there are four stations and each station is used in a

maximum of two baselines, as follows

B =


Bsd −Bsd 0 0

0 Bsd −Bsd 0

0 0 Bsd −Bsd

 (6.2)

where Bsd is the single difference measurement matrix for each of the stations assum-

ing each station has the same satellites in view. This correlation is often neglected in

multiple baseline processing.

Stochastic correlation is defined by the covariance function. The covariance func-

tion states the likelihood of two values being the same based on a physical process.

For example, it is known that the ionosphere is a spatially correlated error, therefore

two stations close to each other are likely to have a similar ionospheric error. Stochas-

tic correlation is represented in the Bayes filter in the variance-covariance matrix of
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the observations. This is a fully populated matrix because each of the measurements

should be somewhat correlated through their correlated errors.

6.2 Ionosphere Modelling

This model has been extended in this research to estimate the dual frequency slant

ionosphere delay using the ionosphere free model Odijk (1999). In addition to the

rover’s position, velocity and ambiguity states, and the network’s ambiguity states,

an ionosphere parameter for each dual frequency satellite pair is estimated. The

corresponding rows and columns are added to the design matrix in Equation 6.1.

The design matrix is partitioned into sub-matrices as shown

A =

 A(1,1) A(1,2)

A(2,1) A(2,2)

 (6.3)

where the first row of matrices refer to the measurements of baselines that include

the rover as one of the stations. The second row refers to measurements of baselines

with only network stations. As there are no common estimated parameters between

the network and rover, one can write

A(1,2) = A(2,1) = 0. (6.4)

The first sub-matrix is

A(1,1) =



Apos λL1I 0 I

Apos 0 λL2I
f2

L1

f2
L2

I

Apos 0 0 −I

Apos 0 0 −f2
L1

f2
L2

I


(6.5)

where the four row of the sub matrix (A(1,1)) represent the four different measurement

types L1 phase, L2 phase, L1 code, and L2 code, respectively. Apos is a 3 column sub
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matrix that includes the partial derivatives of the double difference measurements

with respect to the three position components of the rover (similar to Equation 6.1).

This matrix is repeated because the satellite geometry is the same for each mea-

surement type from the same satellites.
f2

L1

f2
L2

is the scalar transformation of the L2

ionosphere in metres to the L1 ionosphere.

The sub matrix for the network observations (A(2,2)) has a similar form as A(1,1))

without the first column:

A(2,2) =



λL1I 0 I

0 λL2I
f2

L1

f2
L2

I

0 0 −I

0 0 −f2
L1

f2
L2

I


. (6.6)

As with A(1,1)) each of the four rows represent the four measurement types: L1 phase,

L2 phase, L1 code, and L2 code, respectively.

6.3 Practical Real-Time Use

The tightly coupled approach to multiple reference station GPS positioning is a nat-

ural extension of the single reference station approach. Users in an array of single

operating reference stations commonly transition from one reference station to an-

other. There is an ambiguous transition zone when the rover is between the reference

stations. In this zone the rover has the option to estimate the baseline between

the rover and one reference station or the other. The tightly coupled approach is a

method for estimating both baseline parameters to improve positioning performance

and remove the ambiguous zone.

Although the multiple reference station approach is usually regarded as a large



150

infrastructure method with a control centre, this method incorporates a network of

reference stations without the need for a centralized control center.

6.3.1 Implementation with RTCM Version 3.0

The latest version of the standardized RTCM differential GPS messages was recently

released. Included in these messages is tentative proposed messages for multiple

reference station positioning. These messages implement the master-auxiliary concept

(Euler et al., 2004b). The master-auxiliary concept uses two types of messages:

• The master station corrections are the standard single reference station cor-

rection data. Using this message as both the the master and single reference

station messages allow for seamless integration of the multiple reference station

and single reference station messages.

• The auxiliary messages provide observation differences relative to the master

station with the ambiguities removed.

The master-auxiliary concept requires a control centre to estimate and remove

the ambiguities between the reference stations. All of the auxiliary stations within

the same network or sub-network are on the same ambiguity level, meaning that the

ambiguities have been removed relative to the same master station.

The intended implementation of these messages are to model the differential errors

using either a surface or least squares collocation and interpolate the errors to the

location of the rover. Although this model focuses on the usual definition of the

multiple reference station approach, it can easily be adapted with the tightly coupled

approach. There are a few options for this model.
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The reduced reference station network ambiguities can be eliminated from the

tightly coupled filter estimation or the ambiguities can be estimated and compared

to zero. The ambiguity values should be zero because they are removed from the

control centre processing. This allows for an additional stage of reliability testing of

the ambiguity values when incorporating the additional information provided by the

rover data.

Also included in the master-auxiliary concept is an ambiguity flag to signify the

confidence of the ambiguity values. These possibly incorrect ambiguities may cause

significant errors in the multiple reference station prediction. This is not an issue in

the tightly coupled approach because the network’s float ambiguities can be estimated

and may be further refined using the rover’s data.

This is a main advantage of the tightly coupled approach over the modelling

approach. The modelling approach constrains the solution to the fixed (or float)

network ambiguities as well as the spatial model. Any errors in the ambiguities or

interpolation model will directly impact the rover’s corrections. The tightly coupled

approach can assign relative weights to the network ambiguities to reduce the effects

of ambiguity errors. It also allows for a relative weight for network ambiguities that

may be better determined than others.

6.4 Results of the Tightly Coupled Approach

The improvement due to the tightly coupled approach is shown in this chapter using

the three days of the MAGNET network. This consists of two comparisons. Firstly

the improvement relative to the single baseline approach. Secondly, the improvement

due to the estimation of multiple rovers.



152

The collocation-based approach, and generally all correction-based methods are in-

dependent of the number of rovers estimated. However, the tightly coupled approach

can estimate multiple rover stations at the same time. This may have significant

advantages for the relative positioning of rover stations.

6.5 Test methodology and figures of merit

To test the two objectives two rovers are removed from the network. Each rover is

processed in three separate tests:

• single baseline test using the closest network reference station,

• tightly coupled multiple reference station approach,

• tightly coupled multiple reference station approach with multiple rovers.

A comparison of the single baseline solution and the tightly coupled solution

shows the improvement due to the incorporation of the network data. Many of

the performance measures that were used to compare the single reference station

approach to the collocation-based are not applicable when comparing the tightly

coupled approach to the single reference station approach. Only two performance

measures are shown, the ambiguity resolution performance and the position domain

accuracy.

6.5.1 Ambiguity resolution

The ambiguity resolution performance is shown as the percentage of fixed ambiguities.

The percentage of fixed ambiguities includes each epoch for each ambiguity as opposed

to each satellite path. This ambiguity resolution performance measure includes time

to fix ambiguities.
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6.5.2 Position domain

The position domain accuracy is shown as the root mean squared error and plots of

the north, east, up and 3D position errors over time. The position domain accuracy

is the most important criteria for most DGPS RTK users.

6.6 MAGNET network with TU as a rover

The network configuration shown in Figure 6.1 is used to compare the single reference

station approach to the tightly coupled approach. Station DU is removed because

it will be used as the secondary rover to determine the effect of estimating multiple

rovers at the same time. The baseline lengths range from 44 to 74 km and the single

reference station baseline is between stations TU and UC.

Figure 6.1: MAGNET network configuration with TU as the rover and DU removed
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6.6.1 Percentage of fixed ambiguities

The percentages of fixed ambiguities for the single reference station and multiple

reference station approaches are shown in Table 6.1. The single reference station

approach resolves 29.5 percent of the ambiguities, while the tightly coupled approach

is able to resolve 43.6 percent of the ambiguities on the same baseline. This is a sig-

nificant increase in the number of fixed ambiguities for this baseline. In addition, the

tightly coupled approach has the advantage of two additional baselines that connect

the rover to the network. The baseline lengths that connect to the rover have a lower

percentage of fixed ambiguities than baselines that connect between two reference

stations. This is because of the errors in the rover receiver’s coordinates.

Table 6.1: Percentage of fixed ambiguities for the single reference station and multiple
reference station approach with TU as the rover.

Station 1 UC KA MA KR KR UL
Station 2 TU TU ME UL MA TU
distance (km) 43.6 48.2 81.9 72.8 80.6 24.5

Oct 26 Single RS (%) 29.5
Multiple RS (%) 43.6 48.2 81.9 72.8 80.6 24.5

Oct 27 Single RS (%) 30.3
Multiple RS (%) 44.0 42.5 88.1 87.6 75.0 21.1

Oct 28 Single RS (%) 27.5
Multiple RS (%) 38.0 26.8 86.3 70.6 73.5 21.7

6.6.2 Position domain

Table 6.2 shows the RMS position errors for the north, east, up and 3D components

for the single and multiple reference station approaches for the three days. The level

of improvement varies between the days. On the first day, the improvement is very

high (42 percent), which is a nearly 3 cm reduction of the 3D position RMS. The

worst case is on the third day where the tightly coupled approach increases the 3D
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RMS by 0.7 cm. When DU is processed at the same time as TU, the 3D position

RMS error for TU is reduced to 4.7 cm. This is an improvement of 23 percent relative

to the single reference station approach.

Table 6.2: Root mean squared position errors for the single and corrected rover station
baseline measurements with TU as the rover.

North East Up 3D
Oct 26 Single RS 2.3 cm 2.5 cm 5.1 cm 6.1 cm

Multiple RS 1.6 cm 1.4 cm 2.8 cm 3.5 cm
Improvement 30 % 44 % 45 % 43 %

Oct 27 Single RS 1.7 cm 3.2 cm 4.4 cm 5.7 cm
Multiple RS 1.5 cm 1.6 cm 3.1 cm 3.8 cm
Improvement 12 % 50 % 30 % 33 %

Oct 28 Single RS 2.1 cm 3.2 cm 4.8 cm 6.1 cm
Multiple RS 1.6 cm 3.5 cm 5.6 cm 6.8 cm
Improvement 24 % -9 % -17 % -11 %

Figures 6.2 to 6.4 show the north, east, up and 3D position accuracies as a function

of time for the three days. The tightly coupled approach appears to converge faster

than the single reference station approach. In most cases the converged position

accuracy is better than the single reference station solution.

6.7 MAGNET network with DU as a rover

The network configuration shown in Figure 6.5 is used to compare the single reference

station approach to the tightly coupled approach. The station DU is removed because

it will be used as the secondary rover to determine the effect of estimating multiple

rovers at the same time. The baseline lengths range from 51 to 74 km and the single

reference station baseline is between stations DU and UL (56 km).
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Figure 6.2: North, east, up and three dimensional position errors for single and
multiple reference station solutions for Oct 26 network with TU as the rover
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Figure 6.3: North, east, up and three dimensional position errors for single and
multiple reference station solutions for Oct 27 network with TU as the rover
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Figure 6.4: North, east, up and three dimensional position errors for single and
multiple reference station solutions for Oct 28 network with TU as the rover
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Figure 6.5: MAGNET network configuration with DU as the rover and TU removed
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6.7.1 Percentage of fixed ambiguities

The percentage of fixed ambiguities for the single reference station and multiple refer-

ence station approaches are shown in Table 6.3. The single reference station approach

resolves 49 to 71 percent of the ambiguities, while the tightly coupled approach is able

to resolve 74 to 78 percent of the ambiguities on the same baseline. For October 26

and 27 the improvement in the percentage of fixed ambiguities is small. When the

atmospheric errors increase on October 28 there is a large improvement due to the

tightly coupled approach. In this case both approaches resolve a high percentage of

ambiguities. As expected, the multiple reference station approach is able to resolve

more ambiguities than the single reference station approach.

Table 6.3: Percentage of fixed ambiguities for the single reference station and multiple
reference station approach with DU as the rover.

Station 1 UL MA UC KA KR KR
Station 2 DU ME DU DU UL MA
distance (km) 55.9 50.6 58.8 60.9 70.6 74.0

Oct 26 Single RS (%) 71.2
Multiple RS (%) 75.4 81.3 74.4 65.1 73.2 81.3

Oct 27 Single RS (%) 73.4
Multiple RS (%) 77.5 87.9 81.2 70.3 86.8 77.0

Oct 28 Single RS (%) 49.3
Multiple RS (%) 74.4 85.5 83.6 55.4 52.9 74.3

6.7.2 Position domain

Table 6.4 shows the RMS position errors for the north, east, up and 3D components

for the single and multiple reference station approaches. The position errors are

decreased by 31 to 57 percent (3D RMS) due to the incorporation of the network

data. The level of improvement does not appear to be a function of the atmospheric

errors. This suggests that this method is effective regardless of the magnitude of the
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measurement errors. The absolute position accuracy is a function of the measurement

errors but the percentage of improvement is consistent. This may change under a

wider range of measurement errors, in different geographical regions or with different

network configurations.

Table 6.4: Root mean squared position errors for the single and corrected rover station
baseline measurements with DU as the rover.

North East Up 3D
Oct 26 Single RS 1.8 cm 2.2 cm 4.1 cm 5.0 cm

Multiple RS 0.9 cm 0.9 cm 2.1 cm 2.4 cm
Improvement 50 % 59 % 49 % 52 %

Oct 27 Single RS 2.2 cm 1.5 cm 3.5 cm 4.4 cm
Multiple RS 1.1 cm 0.8 cm 2.7 cm 3.0 cm
Improvement 50 % 47 % 23 % 32 %

Oct 28 Single RS 3.1 cm 2.4 cm 8.8 cm 9.7 cm
Multiple RS 1.0 cm 2.7 cm 2.9 cm 4.1 cm
Improvement 68 % -13 % 67 % 58 %

Figures 6.6 to 6.8 show the north, east, up and 3D position accuracy as a function

of time. The tightly coupled approach performs much better than the single reference

station approach. Most of the main position errors in the single reference station solu-

tion are significantly reduced or completely removed by the tightly coupled approach.

Although the improvement is noticeable on all three days the improvement is greatest

on October 28.

6.8 MAGNET network with both TU and DU as rovers

This section will investigate the performance of the tightly coupled approach when the

positions of two rovers are estimated at the same time. Figure 6.9 shows the network

configuration used in this test. The baseline lengths for this test are considerably

shorter when the two rovers are processed at the same time. This decrease in the
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Figure 6.6: North, east, up and three dimensional position errors for single and
multiple reference station solutions for Oct 26 network with DU as the rover
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Figure 6.7: North, east, up and three dimensional position errors for single and
multiple reference station solutions for Oct 27 network with DU as the rover
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Figure 6.8: North, east, up and three dimensional position errors for single and
multiple reference station solutions for Oct 28 network with DU as the rover
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baseline lengths suggests that the position accuracy may be improved when multiple

rovers are used. In this case the rovers are connected by a baseline. This may not

always be the case. For all of these tests, the shortest baselines are used to connect

the stations regardless of whether or not the stations are rover or reference stations.

Figure 6.9: MAGNET network configuration with TU and DU rovers

6.8.1 Percentage of fixed ambiguities

Table 6.5 shows a summary of the ambiguity resolution performance for the three

methods. In general, the ambiguity resolution performance for common baseline

lengths is no significantly difference between the solutions. The percentage of fixed

ambiguities in the baseline connecting the two rovers is particularly low (41 to 45

percent). The baselines that connect to one rover and one reference station resolve
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noticeably less ambiguities than the baselines that connect two reference stations. It

may be better to estimate ambiguities between reference stations instead of connecting

them directly to the rover, although there would be a trade off between the reduction

of baseline lengths and increased errors due to the rover position.

Table 6.5: Percentage of fixed ambiguities for the tightly coupled method when the
rovers are processed independently and together.

Station 1 DU UC KA MA UL UC DA KR KR UL
Station 2 TU TU TU ME DU DU DU UL MA TU
Dist. (km) 25.5 43.7 44.7 50.6 55.9 58.8 60.9 70.6 74.0 81.2

Oct TU Only 43.6 48.2 81.9 72.8 80.6 24.5
26 DU Only 81.3 75.4 74.4 65.1 73.2 81.3

Both 41.2 45.5 54.2 81.9 69.6 73.1 81.7
Oct TU Only 44.0 42.5 88.1 87.6 75.0 21.1
27 DU Only 87.9 77.5 81.2 70.2 86.8 77.0

Both 44.7 43.4 44.1 88.5 74.3 86.6 77.3
Oct TU Only 38.0 26.8 86.3 53.9 73.5 21.7
28 DU Only 85.5 74.4 83.6 55.4 52.9 74.3

Both 41.2 34.7 32.5 86.5 73.9 53.6 74.0

6.8.2 Position domain

Table 6.6 shows the RMS position errors for the tightly coupled approach using TU

only, DU Only and both TU and DU as rovers. There is very little difference in the

performance between the solutions. Both solutions provide exceptional positioning

performance. In general, the position errors are slightly higher when the two rovers

are processed at the same time. Interestingly, the only case that produced a negative

improvement relative to the single reference station approach is significantly improved

by processing both rovers. The TU 3D RMS position error is reduced from 6.8 cm

to 4.7 cm on the Oct 28 data set when processed with DU. This suggests that there

may be an increase in the reliability of the method when processing multiple rovers,
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although there is a slight decrease in performance.

Table 6.6: Root mean squared position errors for the tightly coupled approach using
TU only and both TU and DU as rovers for the MAGNET Oct 26 data set.

TU TU Percent DU DU Percent
Only (Both) Improve. Only (Both) Improve.

Oct 26 North 1.6 cm 1.6 cm ¿ -1 % 0.9 cm 1.3 cm -44 %
East 1.4 cm 1.1 cm 21 % 0.9 cm 1.3 cm -44 %
Up 2.8 cm 2.8 cm ¡ 1 % 2.1 cm 3.3 cm -57 %
3D 3.5 cm 3.4 cm 3 % 2.4 cm 3.8 cm -58 %

Oct 27 North 1.5 cm 1.6 cm -7 % 1.1 cm 1.4 cm -27 %
East 1.6 cm 1.8 cm -13 % 0.8 cm 1.3 cm -63 %
Up 3.1 cm 3.4 cm -10 % 2.7 cm 3.1 cm -19 %
3D 3.8 cm 4.1 cm -8 % 3.0 cm 3.6 cm -20 %

Oct 28 North 1.6 cm 1.3 cm 19 % 1.0 cm 1.7 cm -70 %
East 3.5 cm 1.7 cm 51 % 2.7 cm 2.0 cm 26 %
Up 5.6 cm 4.2 cm 25 % 2.9 cm 4.3 cm -48 %
3D 6.8 cm 4.7 cm 31 % 4.1 cm 5.0 cm -22 %

Figures 6.10 to 6.15 show the north, east, up and 3D position errors over time

for the tightly coupled approach with TU only, DU only, and both TU and DU. The

differences between the solutions is usually on the level of the noise with the exception

of a few cases.

The most noticeable difference in the solutions is shown in Figure 6.14. This is

the only test case that performed worse than the single reference station approach.

When the two rover stations are processed at the same time the tightly coupled

solution performs better than the single reference station approach.

Figure 6.15 also shows a significant difference between the two solutions. The

errors beginning slightly after 10:00 local time are similar to the position errors shown

in the single reference station approach (Figure 6.8). The a small percentage of the

errors that caused the increased measurement errors in the single reference station

approach reappear when the rover is connected to another roving receiver. Comparing
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Figures 6.14 and 6.15 shows that increased position error in DU does not have a

negative effect on the position accuracy of TU for the same epochs.

In these cases, both rovers are initialized at the same time. This approach may

become more effective when some rovers are converged when new rovers are intro-

duced. In this case, the convergence of the initial rover may assist in the convergence

and performance of the additional rovers.

6.8.3 Relative position domain

This next test shows the relative position accuracy between the two rovers. Processing

the two rovers in the same filter may provide an increase in the relative position ac-

curacy even if the absolute position accuracy for the DU station is slightly decreased.

Table 6.7 shows the relative position RMS accuracy between TU and DU alone

and between TU and DU when they are estimated at the same time. Extrapolating

from the previous results, there is little difference between the results for the TU

station and the accuracy of DU is better when DU is processed alone, therefore the

relative accuracy of the stations when processed alone would be better then when

processed together. This is shown in the following results, however the difference in

performance is small and both stations provide high position accuracies for baseline

lengths of this scale.

The considerable improvement in the October 28 data set is similar to the improve-

ment in the two rover solutions shown in the previous section. This improvement is

not an increase in the relative position accuracy but an improvement in the absolute

accuracy of TU.

Figures 6.16 to 6.18 show the north, east up and 3D relative position errors be-

tween TU and DU when they are processed independently or at the same time for the
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Figure 6.10: North, east, up and three dimensional position errors for tightly coupled
approach with TU only as the rover and both TU and DU as rovers for Oct 26.
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Figure 6.11: North, east, up and three dimensional position errors for tightly coupled
approach with DU only as the rover and both TU and DU as rovers for Oct 26.
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Figure 6.12: North, east, up and three dimensional position errors for tightly coupled
approach with TU only as the rover and both TU and DU as rovers for Oct 27.
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Figure 6.13: North, east, up and three dimensional position errors for tightly coupled
approach with DU only as the rover and both TU and DU as rovers for Oct 27.
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Figure 6.14: North, east, up and three dimensional position errors for tightly coupled
approach with TU only as the rover and both TU and DU as rovers for Oct 28.
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Figure 6.15: North, east, up and three dimensional position errors for tightly coupled
approach with DU only as the rover and both TU and DU as rovers for Oct 28.
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Table 6.7: Root mean squared relative position errors between TU and DU for the
tightly coupled approach using DU only and TU only, and both TU and DU as rovers.

TU and DU Only Both Percent Improvement
Oct 26 North 1.5 cm 1.6 cm -7 %

East 1.6 cm 1.4 cm 13 %
Up 3.3 cm 4.3 cm -30 %
3D 3.9 cm 4.9 cm -26 %

Oct 27 North 1.7 cm 1.9 cm -12 %
East 1.6 cm 1.7 cm -6 %
Up 4.2 cm 4.4 cm -5 %
3D 4.8 cm 5.0 cm -4 %

Oct 28 North 1.8 cm 1.8 cm ¡ 1 %
East 3.9 cm 2.4 cm 38 %
Up 4.9 cm 3.8 cm 22 %
3D 6.6 cm 4.9 cm 26 %

three days. Comparing these figures to the position errors over time shown in Figures

6.10 to 6.15 shows that there is no apparent improvement in the relative position

accuracies by processing both rovers at the same time. This may be a function of the

low ambiguity resolution performance for the baseline between the rovers.
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Figure 6.16: North, east, up and three dimensional relative position errors between
TU and DU for the tightly coupled approach using DU only and TU only, and both
TU and DU as rovers for Oct 26.
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Figure 6.17: North, east, up and three dimensional relative position errors between
TU and DU for the tightly coupled approach using DU only and TU only, and both
TU and DU as rovers for Oct 27.
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Figure 6.18: North, east, up and three dimensional relative position errors between
TU and DU for the tightly coupled approach using DU only and TU only, and both
TU and DU as rovers for Oct 28.



179

Chapter 7

Comparison of the Collocation-Based and Tightly

Coupled Approaches

The two approaches discussed in this work use the same information as input to

estimate the position of the rover. Although they have the same objectives and input

they produce different solutions. This chapter discusses the difference between the

methods and shows a comparison of them using data from a network in Southern

Alberta, Canada.

7.1 Limitations of the collocation-based approach

The collocation-based approach has a few issues that limit its effectiveness. When the

corrections are calculated using this approach, any errors in the network ambiguities

are transferred into the corrections. This is a problem when the rover attempts to

resolve ambiguities because the biases introduced by the network are not absorbed

by the ambiguities. Float ambiguities in the network create non-integer biases in

the measurements, and incorrect integer fixes may create long term, non-integer,

ambiguities when the incorrect integer biases are interpolated to the user’s location.

The simple approach to solving this problem is the removal of observations with float

ambiguities. Although this would resolve the problem of incorrect ambiguity biases,

it may introduce availability problems. The first potential solution is to provide a

single baseline observation (i.e., a correction value of zero) for observations without

fixed ambiguities. Unfortunately, it is not possible to mix zero corrections with valid
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undifferenced corrections because at the rover, the zero corrections will be differenced

with the valid corrections to produce an incorrect, invalid correction. It is also not

possible to create a correction that when differenced with the valid corrections would

equal to zero because there is no way to make it equal to zero for every station in the

network. This was described in more detail in Section 3.1.2.

Euler et al. (2004a) discusses the effect of integer ambiguity biases, due to incorrect

ambiguities fixes, on the rover corrections as a function of the interpolating surface.

In general, the surface with the fewest degrees of freedom, the linear plane surface,

provided the greatest reduction of the introduced bias. This thesis does not discuss

the possibility that the bias experienced by the reference station, which is ambiguity

error in this case, may instead be local area atmospheric disturbances. There is a

trade off between predicting the correlated errors and rejecting or reducing unwanted

uncorrelated errors.

This problem is most obvious in the zero baseline case. If the network and rover are

both using float ambiguities then the rover will naturally adopt the same ambiguities

as the network. In general, the network is using more information to calculate these

ambiguities such that this bias may be an improvement as compared to the single

baseline ambiguity estimation. However, if the rover is able to resolve the ambiguities

before the network then any ambiguity error in the network will become a bias in

the rover observations. Assuming once again that the network ambiguities are better

known than the rover’s estimated ambiguities, one would expect the network to resolve

ambiguities before the rover. Unfortunately, there are practical problems in validating

the set of potentially fixed ambiguities, especially if the ambiguity set is particularly

large or small. These problems are discussed by Julien et al. (2004) in the context of

triple frequency GPS and Galileo.
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7.2 Rover data assisting the network

The network data in both approaches is used to improve the estimation of the rover’s

parameters. In the correction-based approach (collocation-based approach) there

is a one way communication between the network and rover. The network gives

corrections to the rover and no information is returned. One option of the tightly

coupled approach requires a two way communication system between the network

and the rover. In this system the rover sends their data to the control centre, where

the rover’s position is calculated and sent back to the rover. Alternatively, if all the

network reference station data is sent to the rover then the rover can calculate a

multiple reference station solution without a centralized control centre.

With this method the rover can assist the network in estimating the network

parameters, in this case ambiguities and ionosphere. With a floating position estimate

the rover will likely take more information from the network than it gives back.

However, this approach attempts to incorporate as much information as possible into

the estimation of the network and rover parameters.

Consider for example a static rover. Initially, the rover position is unknown and

therefore the rover will mainly be taking information from the network. However,

as the rover position become better known, it gives equally to the adjoining base-

lines until its position is fixed, at which time it becomes a reference station. In the

correction-based approach this static rover would never contribute to the surrounding

network and surrounding rover stations.
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7.3 Comparison of the collocation-based and tightly coupled

approaches using SAN data

In this section data from the SAN network is used to compare the position solutions

from the single reference station, collocation-based multiple reference station, and

tightly coupled multiple reference station techniques. The processing approaches and

performance measures are similar to those used in Chapters 5 and 6.4.

7.3.1 Network configurations

The network configuration used for the collocation-based multiple reference station

test is shown in Figure 7.1. This is a medium scale network with baseline lengths

ranging from 34 to 59 km. UofC is the rover station which is 24.3 km from the nearest

reference station. When the rover is included in the tightly coupled approach (shown

in Figure 7.2) the baseline lengths are somewhat reduced, ranging from 24 to 49 km.

7.3.2 Ambiguity resolution

Table 7.1 shows the percentage of fixed ambiguities for the three approaches. The

ambiguity resolution performance for the tightly coupled approach is higher than the

collocation-based approach for the common network baseline. There is an almost 40

percent difference in the percentage of fixed ambiguities for the STRA-AIRD baseline

for June 8. The improvement for June 14 is slightly smaller with only a ten percent

improvement. The baselines that are used are very different between the collocation-

based and tightly coupled approaches so it is difficult to compare the effect that the

rover baseline has on the network.
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Figure 7.1: Network configuration of the SAN network used in the collocation-based
approach.

Figure 7.2: Network configuration of the SAN network used in the tightly coupled
approach.
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Table 7.1: Percentage of fixed ambiguities for the single reference station, colloca-
tion-based multiple reference station, tightly coupled multiple reference station ap-
proaches.

Station 1 AIRD COCH AIRD BLDM STRA COCH
Station 2 UOFC UOFC COCH UOFC AIRD BLDM
Distance (km) 24.3 26.6 34.1 45.2 49.7 59.2

June 8 Single RS 94.6
Collocation-based 93.9 53.9 53.7 40.3
Tightly coupled 91.4 59.8 83.7 93.4

June 14 Single RS 89.1
Collocation-based 89.3 58.8 74.1 35.9
Tightly coupled 93.4 80.6 74.5 84.8

7.3.3 Position domain

Table 7.2 shows the north, east, up, and 3D RMS position error for the single reference

station, collocation-based multiple reference station, and tightly coupled multiple

reference station approaches. There is a progression in the level of improvement. The

collocation-based approach improves the 3D position accuracy by 10 to 35 percent

and the tightly coupled approach further improves the performance by improving

single reference station approach by 33 to 44 percent. Both network methods provide

a high level of position accuracy of better than 5 cm, 3D RMS.

This level of position accuracy and improvement due to the various methods is a

function of the network scale and the environmental conditions. Changes in either

the network scale or the magnitude of the environmental conditions may change the

level of improvement and absolute performance of the various methods.

Figures 7.3 and 7.4 show the north, east, up and 3D position errors over time for

June 8 and June 14, respectively. These show that the difference in the methods is

only due to a few short time periods. Each of the methods perform well on a network

of this scale and atmospheric conditions. There are few significant differences between
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Table 7.2: Root mean squared position errors for the single and collocation-based
multiple reference station, and tightly coupled reference station approaches for the
SAN data set.

Single Collocation Percent Tightly Percent
RS Based Improvement Coupled Improvement

June 8 North 2.4 cm 1.8 cm 25 % 1.3 cm 46 %
East 1.9 cm 1.8 cm 5 % 0.9 cm 53 %
Up 4.6 cm 4.3 cm 7 % 3.4 cm 26 %
3D 5.5 cm 5.0 cm 9 % 3.7 cm 33 %

June 14 North 1.9 cm 2.1 cm -11 % 1.4 cm 26 %
East 2.5 cm 1.3 cm 48 % 0.9 cm 64 %
Up 5.2 cm 3.1 cm 40 % 3.0 cm 42 %
3D 6.1 cm 4.0 cm 34 % 3.4 cm 44 %

the solutions.

7.3.4 Convergence analysis

The convergence of the positioning filter is an important criteria for GPS users in the

field. The convergence time is the time required for a user to wait before achieving

the highest available position accuracy. The convergence is tested through a series of

one hour trials. The rover processing is restarted every hour and the initial position

error is reset to one meter of error. The results from these trials are averaged to

produce the results shown in Figure 7.5. All of the methods show the expected

convergence behaviour. The collocation-based approach converges generally faster

than the single reference station approach and the tightly coupled approach is clearly

the best approach in terms of convergence.
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Figure 7.3: North, east, up and three dimensional position errors for single reference
station, collocation-based multiple reference station, and tightly coupled multiple
reference station approaches for June 8.



187

Figure 7.4: North, east, up and three dimensional position errors for single reference
station, collocation-based multiple reference station, and tightly coupled multiple
reference station approaches for June 14.
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Figure 7.5: Average convergence for the single reference station, collocation-based
multiple reference station, and tightly coupled multiple reference station approaches
for the SAN network.
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Chapter 8

Conclusions and Recommendations

8.1 Conclusions

This thesis derives two methods for multiple reference station positioning. The two

main methods are a collocation-based multiple reference station technique (Chapter

4), which requires the definition of a covariance function (Chapter 3), and a tightly

coupled multiple reference station technique (Chapter 6). This section summarizes

the results of these methods.

8.1.1 Adaptive covariance function

The backbone of least squares estimation and collocation is the variance covariance

matrix of the observations. In least squares estimation this matrix is used to weight

the measurements. The relative measurement weighting defines the variance covari-

ance matrix of the estimated parameters including the float ambiguities. The esti-

mated variance covariance matrix of the float ambiguities are used for the LAMBDA

decorrelation.

The values of the covariance matrix can be determined using a covariance func-

tion, which defines the covariance between measurements given a set of deterministic

parameters. The covariance function is essential for least squares collocation because

the signals of the control points are predicted without observing the signal at the

prediction point. Although the covariance function is an important component, the

performance of the least squares prediction is insensitive to the covariance function
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used. The covariance function is a method for determining the covariance between

two measurements without the values of the measurements.

In this work a covariance function form is proposed and the coefficients of the

covariance function are estimated using a real-time method. This adaptive covari-

ance function allows the covariance function model to tune to changing spatial and

temporal error characteristics.

The adaptive covariance between two observations was modelled as a function of

the distance between the ionosphere pierce points for the ionosphere, and the dis-

tance between two receivers and the great circle angle between two observations for

the troposphere. This is shown in the consecutive days for the MAGNET network

in Turkey. This estimated parameters follow expected daily variations for an equa-

torial region network. The covariance function is validated by comparing the double

difference variance as computed by the covariance function to the variance of the

measurement errors. This shows that the covariance function can effectively model

the double difference measurement errors.

Although the coefficients of the covariance function can be estimated in real-time

to generate valid double difference variances, the absolute value of the parameters is

weakly observable because the single observation parameters are estimated by double

difference residuals. A test shows that although varying initial conditions changes the

absolute estimate of the covariance function coefficients, all solutions provide valid

double difference variances.

This was used in all of the single and multiple reference station solutions, which all

provide a high level of position accuracy. There are apparent observability problems

with this method, therefore it is only recommended for use with a reference station

network, where many observations of the measurement errors are available. Although,
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the measurement residuals would be successfully tracked with this method, the effect

of blunders or estimation errors, especially in the roving position, could cause either

more or less measurement errors to be represented in the covariance function than

are actually present in the measurements.

8.1.2 Collocation-based multiple reference station approach

The next method described in this work is the development of a collocation-based

multiple reference station approach. This method uses the state vector and variance-

covariance matrix from the ambiguity estimation and resolution stage to predict the

errors of the reference stations to the measurements of a rover receiver within or

around the network. This produces a vector of single observation (undifferenced)

corrections and the variance-covariance matrix of the corrections. A method for

applying the corrections and the variance covariance matrix of the corrections is also

shown. The estimated variance covariance of the float and fixed ambiguities and the

estimated variance covariance of the estimated corrections were not used in previous

work.

The collocation-based multiple reference station approach is an effective method of

predicting the measurement residuals of the network to the rover measurements. The

estimated corrections are effective in reducing the measurement errors at the rover

and improving position accuracy. Once again, this is tested using three consecutive

days from the MAGNET network.

The network corrections provide a significant level of improvement relative to the

single reference station solution in the observation, and position domains. The L1

phase measurement errors are reduced by 16 percent on average, a majority of which

is due to a reduction of the ionosphere components of the measurement errors.
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The 3D position accuracy is improved by 24 percent on average, which is sig-

nificant. There is only a significant increase in the percentage of rover ambiguities

resolved for the first of the three days of data of 21 percent.

8.1.3 Tightly coupled multiple reference station approach

The third method introduced in this work is the tightly coupled approach to multi-

ple reference station positioning. This approach includes the rover’s measurements

and estimated parameters into the network filter. No corrections are calculated and

there is no prediction step in this approach. This method is also tested using three

consecutive days from the MAGNET network.

The tightly coupled approach provides a high level of improvement relative to the

single reference station approach in the position domain in most cases. On average

for both rovers (TU and DU), the tightly coupled method reduces 3D position RMS

errors by 44 percent.

This chapter also discusses the ability of estimating two rovers in the same filter to

improve positioning accuracy. The estimation of two rovers can improve the position

accuracy for some of the rovers, however, in general the estimation of multiple rovers

decreases the position accuracy relative to estimating them independently. Both

solutions provide extremely high position accuracies for these baseline lengths.

This approach has been shown to provide sufficient accuracy to be used for precise

deformation monitoring (Pugliano et al., 2004).

It is interesting to note that for one data set the tightly coupled approach per-

formed worse than the single reference station approach, however the multiple ref-

erence station approach performed better than the single reference station approach

when estimating multiple rovers. Every test using multiple rovers perform better than
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the single reference station approach, even though in general the position solutions

are slightly worse when estimating multiple rovers. The difference between the two

solutions may be a matter of reliability more than accuracy. Once again, further tests

are suggested to expose these properties.

The relative position accuracy between the two rovers was also compared, unfor-

tunately these tests are not able to conclusively show the effect of estimating multiple

rovers on relative position accuracy.

8.1.4 Comparison of the collocation-based and tightly coupled multiple

reference station approach

The collocation-based and tightly coupled approaches ultimately have the same ob-

jective: to accurately estimate the rover position. Chapter 7 compares the two ap-

proaches in terms of the use of information. The tightly coupled approach allows for a

greater sharing of information than the collocation-based approach because the rover

information is available to the reference station network. This is likely the reason for

the differences in the solutions. These methods are compared using the SAN network.

Tests show that the there is an apparent stepwise progression in performance

between the methods. The single reference station approach produced a 3D position

accuracy of slightly less or better than 6 cm. This is improved by the collocation-based

multiple reference station approach by 35 percent, which reduces the 3D position RMS

to 3.9 cm. This is further improved by the tightly coupled approach, which gives a

3D position RMS of 3.4 cm (or 43 percent relative to the single reference station

approach).

The difference in the methods is due to the sharing of available information and

data. The single reference station approach using only a small subset of all the data
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available. The collocation-based approach improves performance by using the data

from all of the reference stations to predict the corrections for the rover’s data. The

tightly coupled approach further improves the position accuracy by including the

rover data in combined network adjustment.

The above conclusions are valid for the data used herein. Given that many param-

eters affect performance, including the inter-station distance, the level of ionospheric

activity and the geometry and number of satellites available, one has to be very careful

in extending these findings to other cases. Alves and Lachapelle (2004) shows similar

performance using the Southern Alberta Network over a wider variety of atmospheric

activity.

8.2 Recommendations for future work

Multiple reference station positioning is a complex research topic that involves many

layers of information, methods, and processing. Consequently, there is almost an

endless amount of additional research that can be conducted in this field. This section

describes a few potential extensions of this research.

8.2.1 Prediction for initialization of the ionosphere

The collocation-based prediction can be further utilized for both the collocation-based

and tightly coupled approaches. Stochastic ionosphere modelling is used in both the

collocation-based and tightly coupled methods. The network data can be used to

predict the ionosphere for a new satellite. In this case the new satellite does not yet

have residuals so there is no feedback loop of the residuals to the corrections. The

predicted ionosphere for the new satellite can be estimated along with the estimated

variance of the predicted ionosphere. The predicted value is likely much better than
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initializing the ionosphere with a value of zero with an arbitrary variance.

In order for the network to predict the measurement errors of a new, low elevation

satellite, the covariance function must be able to calculate the covariance between

two satellites at the same station. Although the covariance function presented in this

thesis is acceptable, covariance functions that are only a function of baseline length

would not be acceptable.

8.2.2 Characterizing the effectiveness of the predictions

Further research could be conducted as to the parameters that affect the effectiveness

of the multiple reference station predictions. This characterizing of the would involve

processing multiple reference station data for a variety of baseline lengths, network

configurations and environmental conditions. A detailed evaluation of the parameters

affecting multiple reference station performance would be useful for design of reference

station networks or integrity monitoring and notification.

8.2.3 Relative positioning of multiple rovers

The tightly coupled approach can be used to estimate the positions of multiple rovers

at the same time. Tests from this work are inconclusive as to whether or not processing

the rovers in the same filter affects the relative position accuracy of the rovers. Further

tests may conclusively show wether or not the tightly coupled approach can affect

relative position accuracy. This should be tested for rovers that are connected by a

baseline and rovers that are only connected to the reference station network.
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8.2.4 External filtering of network corrections

Fortes (2002) shows a method of applying a Kalman filter to the corrections to im-

prove the accuracy of the corrections when a satellite is setting and the satellite is

slowly observed by fewer and fewer baselines. With the addition of this research,

the network corrections could be filtered using the variance-covariance estimate of

the corrections. This could further improve the accuracy for setting satellites. An

external filter approach would also help to reduce discontinuities in the corrections.

These discontinuities may cause the rover receiver to perceive cycle slips using the

phase rate method. This filtering would assist in reducing the discontinuities and the

likelihood that the rover will detect a cycle slip.
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