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ABSTRACT 

 

The primary objective of this thesis is to seek a ground-based location scheme suitable 

for mobile positioning in cellular phone networks. To this end, several techniques are 

proposed to handle issues that may occur in a cellular network and which may deteriorate 

wireless location performance. These issues include the lack of signal availability due to 

co-channel interference, the inefficiency in mobile location calculations, and the 

significant Non-Line-of-Sight (NLOS) errors resulting from multipath propagation. With 

the IS-95 CDMA pilot signal as an example, signal availability - or hearability - is 

thoroughly analyzed. The analysis shows that hearability is poor for location purposes. To 

improve signal hearability, two methods that are known to be effective - the enhanced 

signal processing method and the idle period down link (IPDL) method - are fully 

discussed. Another promising solution in poor signal hearability environments is the 

combination of cellular network-based methods with other positioning methods. As an 

example, the integration of GPS and a cellular network is proposed. Better location 

performance can be obtained by epoch-by-epoch Least Squares (LS)-based integration 

schemes or by Kalman filter-based integration schemes. The position of a mobile handset 

is normally obtained by solving non-linear equations. However, it represents a high 

computational burden and may suffer from a convergence problem. To resolve these 

issues, an enhanced two-step LS solution is proposed for hybrid time difference of arrival 

(TDOA)/angle of arrival (AOA) wireless location schemes. This method can provide 
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performance which is almost equivalent to that of Taylor-series-based solutions while 

imposing a low computational burden. Because NLOS errors within time of arrival 

(TOA), TDOA, and AOA measurements are very large compared to receiver noise, 

NLOS errors should be mitigated before the measurements are used in the position 

calculation. Two NLOS error mitigation methods are proposed. One is a distribution 

function-based method which depends on system redundancy and a high clear 

intersection density. The other is a channel estimation-based method which mitigates 

NLOS errors by using only the earliest signal from among all multipath replicas. The 

effectiveness of all of the proposed methods has been proved by simulation tests, 

verifying that these methods can be successfully applied in an actual wireless location 

system design. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivations for Wireless Location 

The basic problem of wireless location is that of estimating the geographic position of 

cellular phones. It has received considerable attention over the past few years. The 

impetus for this research stems mainly from a series of regulations passed in 1996 by the 

United States Federal Communications Commission (FCC). The intent of these 

regulations is to encourage cellular service providers to improve the quality of Enhanced 

911(E-911) service for cellular phone users. The mandate was deemed necessary due to 

the rising number of emergency calls made from cellular phones. A recent study shows 

that wireless 911 calls account for 43 percent of all 911 calls received and that this 

percentage is increasing rapidly (Porcino, 2001). The accuracy requirement of the E-911 

mandate was initially set to within 125 metres for 67% of users and within 300 metres for 

95% of users. However, these numbers were subsequently reduced to within 50 metres 

and 150 metres, respectively, for handset-based solutions; 100 metres and 300 metres, 

respectively, for network-based solutions (FCC, 2001). Besides FCC E-911, there are 

other benefits that motivate wireless location, such as roadside assistance, fleet 

management, and intelligent transportation systems (Caffery and Stüber, 1994). Wireless 
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location can also be used for cellular network performance improvement (Paton et al, 

1991); for example, it can be used in mobile management and for handover assistance. 

 

Generally, ground-based wireless location methods utilize signals of a cellular network 

itself. The raw measurements can be signal strength, signal transmission time, or signal 

transmission direction. The position of a mobile station (MS) can be determined by 

multilateral or multi-angular principles. Ground-based wireless location methods can be 

further divided into network-based methods and MS-based methods in terms of the 

functionalities of the MS and the cellular network involved in. More detailed discussion 

can be found in Chapter 2. 

 

Unfortunately, wireless location was not a consideration in the original cellular phone 

system design. Due to the complexity of mobile channels, there exist many challenges in 

realizing a wireless location scheme meeting the performance requirements proposed in 

the FCC E-911 mandate. Among the most significant of these challenges are hearability, 

multipath/NLOS propagation, and interference problems (Caffery, 2000). In this thesis, 

several methods are proposed to handle these issues to mitigate wireless location errors. 

1.2 Technical Challenges in Wireless Location 

At first glance, the accuracy requirement appears to be relatively loose, since the most 

stringent accuracy requirement is 50 metres at a probability of 67%. However, several 

error sources stemming from the complicated system of radio channels make this a 
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difficult level to reach. The following are challenges that need to be considered when 

designing a wireless location system. 

1.2.1 Accuracy Problem 

Two types of accuracies are often studied. One is measurement accuracy and the other is 

location estimate accuracy. These two classes of accuracy are related by the following 

formula 

mp DOP σσ ⋅=                                                                                      (1.1) 

where pσ  is the standard deviation of location estimate; mσ  is the standard deviation of 

measurements; and DOP  is the dilution of precision (DOP). This formula indicates that 

in order to get a better location estimate one needs to not only improve measurement 

accuracy but also receive signals from multiple base stations (BSs) with good geometry 

to minimize . DOP

1.2.2 Hearability Problem 

Hearability is defined in this thesis as the ability of a mobile station (MS) to receive 

signals from multiple BSs, and it is evaluated by the number of BSs that a MS can detect 

or hear. The higher the value, the better is the hearability (Bartlett, 2002). Significantly, 

there exists an operational conflict between wireless location and wireless 

communications. Whereas wireless location requires that the MS hear as many BSs as 

possible to improve location accuracy, wireless communications tries to minimize the 

power of all signals to mitigate interference and to increase system capacity. As a 
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consequence, it is difficult for an MS to detect enough BSs for location purposes in 

current cellular phone networks. The lack of available BSs limits the location service 

coverage area and impedes the implementation of location systems. 

1.2.3 The Non-Line-of-Sight (NLOS) Propagation Problem 

Most location systems require Line-of-Sight (LOS) communication links. However, such 

direct links do not always exist in reality because of the intrinsic complexity of mobile 

channels. Quite often, an MS can only hear multipath signals from a BS, resulting in the 

introduction of Non-Line-of-Sight (NLOS) errors. NLOS errors are normally much larger 

than receiver noise and can degrade the location estimate substantially. Several papers 

have addressed this issue. In Woo et al (2000), NLOS errors are identified by calculating 

the standard deviation of a series of range measurements and comparing that with a 

certain threshold. A time-history based hypothesis test is proposed in Wylie and 

Holtzman (1996) to identify and remove NLOS errors. In Borrás et al (1998), a 

theoretical decision framework for NLOS identification is formulated where NLOS errors 

are modeled as non-zero mean Gaussian random variables. For an unknown NLOS error 

distribution, a residual weighting algorithm is proposed in Chen (1999b) for a time of 

arrival location system to identify BSs which suffer from NLOS propagation, based on 

the weighted residuals for all possible BS combinations. 
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1.3 Scope of Research 

This thesis is a study of ground-based wireless location system design. It discusses, and 

then attempts to solve, some critical problems that may appear in real world wireless 

location system implementation. Finally, it proposes feasible wireless location schemes. 

The study in the thesis is in fact a high level concept study since all algorithms proposed 

herein are based on raw measurements that are independent of the signals and techniques 

used. As a result, the algorithms are somewhat universal and can be applied to GSM, 

CDMA, and UMTS systems. It is worth noting that the pilot signal based on the IS-95 

CDMA system is taken as an example in the hearability analysis, but the method that is 

developed in this thesis to conduct the analysis can be applied to other systems. 

 

The diagram of a proposed wireless location scheme containing the major work of this 

thesis is shown in Figure 1.1. 

TOA/TDOA

AOA

NLOS Mitigation

NLOS Mitigation

Kalman Filter

Hearability Analysis

Kalman Filter Based MS Tracking Solution

GPS/AGPS
Epoch-by-epoch Solution

TOA/TDOA

AOA

NLOS Mitigation

NLOS Mitigation

Kalman Filter

Hearability Analysis

Kalman Filter Based MS Tracking Solution

GPS/AGPS
Epoch-by-epoch Solution

 

Figure 1.1: Proposed Wireless Location Scheme 
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Hybrid solutions are usually preferred since they are able to make use of more 

information to achieve superior performance. In the thesis, such a hybrid algorithm- time 

difference of arrival/angle of arrival (TDOA/AOA) solution is discussed in detail. Both a 

strictly theoretical study and simulation tests have been done to analyze algorithm 

performance. As expected, the results demonstrate an obvious performance improvement 

compared to TDOA-only solutions. 

 

In a TDOA wireless location system, the position of an MS is obtained by solving a 

hyperbolic system as that in the LORAN-C navigation system (Enge et al, 1990). This is 

by no means a trivial problem. In reality, a Taylor-series linearization method and two-

step least squares (LS) method (Chan and Ho, 1994) can be applied. However, both of 

these techniques have their drawbacks. The former imposes a heavy computational 

burden and divergence issues while the latter provides inferior location accuracy. To 

improve performance on these fronts, a so-called enhanced two-step LS method is 

proposed. Simulation tests show that it has almost the same level of accuracy as that of a 

Taylor-series linearization method while maintaining the computational advantage of the 

original two-step LS method. 

 

As mentioned above, NLOS propagation errors are a significant concern in wireless 

location because they are much larger than receiver noise and are difficult to eliminate 

due to their time variant property. If not properly handled, they can result in poor MS 

position estimation. This thesis proposes two methods to remove or mitigate NLOS 

errors. The first is called the Distribution Function-based method. It mitigates NLOS 
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errors in TOA/TDOA measurements by studying the spatial distribution of all the 

possible MS locations that are actually the intersections of hyperbolas derived from 

TDOA measurements. The second is a channel estimation-based method. It mitigates 

NLOS errors of both TOA measurements and AOA measurements by only using the 

earliest signals since, the earlier the arriving signal, the smaller the NLOS error. To 

extract the earliest signals, a two dimensional array signal processing technique, 2-D 

Unitary-ESPRIT (Haardt and Nossek, 1995), is utilized. It can estimate both TOAs and 

AOAs accurately while imposing a low computational burden. 

 

Hearability is another important consideration in wireless location. Cellular Network- 

based schemes require that at least three BSs be heard by the MS to be located. However, 

hearability is poor for normal cellular systems due to the near-far effect and multiple 

access interference. Two methods are fully discussed in the thesis to improve hearability. 

One is an enhanced signal processing method which tries to improve hearability by 

extending the integration time of incoming signals. The second method is the idle period 

down link (IPDL) method (Ericsson, 1999) where the near-far effect is mitigated by 

stopping the transmission at the serving BS to let MSs hear signals from other BSs. 

 

MS tracking is usually realised by Kalman Filter (KF) techniques. Compared to the 

normal LS method, a KF-based method can make use of past data to improve location 

performance. Kalman filtering is also an ideal technique to integrate data from different 

sensors. In the thesis, KF is used to integrate GPS data and cellular network data since 

both systems suffer from hearability or signal availability issues and the combination of 
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them provides more information for location estimation. Test results show that the 

integration can improve location accuracy and availability. 

Original Work 

The summary of the original work in this thesis is as follows: 

• Proposes the enhanced two-step LS algorithm and applies it to the hybrid 

TDOA/AOA wireless location scheme. This algorithm can decrease 

computational burden while maintaining positioning accuracy. 

• Proposes a Distribution Function-based NLOS error mitigation algorithm for 

TOA/TDOA measurements. 

• Proposes a channel estimation-based NLOS error mitigation algorithm for AOA 

measurements.  

• Proposes two schemes to integrate GPS with cellular network measurements to 

improve wireless location performance. They are an epoch-by-epoch integration 

scheme and a Kalman filter-based MS tracking scheme. 

• Signal availability/hearability is also fully discussed herein. Hearability 

improvement due to the enhanced signal processing technique and IPDL 

techniques is demonstrated by both theoretical analysis and simulation results 

although these two methods are originally proposed by other researchers. 
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1.4 Thesis Outline 

After a brief introduction in this chapter, an overview of the background knowledge 

related to ground-based wireless location is presented in Chapter 2. The background 

information includes the basic principles of a cellular system, commonly used wireless 

location algorithms, and a general description of the mobile signal channel architecture. 

In Chapter 3, the hearability analysis is addressed and the performance of the enhanced 

signal processing technique and the IPDL technique is fully discussed. 

 

Chapter 4 proposes an enhanced two-step LS TDOA wireless location algorithm. This 

method can achieve similar accuracy to that of a Taylor-series linearization method while 

maintaining the computational advantage of the original two-step LS method.  

 

To mitigate NLOS errors, two efficient methods are proposed in Chapters 5 and 6. The 

distribution function method discussed in Chapter 5 identifies and removes NLOS errors 

by studying the spatial distribution of hyperbola intersections that are actually coincident 

with possible MS locations. The channel estimation-based method discussed in Chapter 6 

mitigates NLOS errors in both TOA and AOA measurements by only using early arriving 

signals. 

 

MS tracking is discussed in Chapter 7 where an extended KF is introduced to integrate 

GPS and cellular network measurements. Compared to cellular network only solutions, 

the method presented herein improves both location determination accuracy and solution 
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availability. Chapter 8 contains the final conclusions and some recommendations for 

future work. 
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CHAPTER 2 

AN OVERVIEW OF WIRELESS NETWORK AND WIRELESS 

LOCATION TECHNIQUES 

2.1 Introduction 

Ground-based wireless location techniques need to measure signals emitted from either 

base stations or mobile stations. To develop high performance wireless location schemes, 

it is, thus, important to know how a cellular system works; how signals are propagated in 

wireless channels; and how various wireless location schemes work. Thus, three major 

areas are covered in this chapter: 

• Wireless communications systems 

• Wireless channels 

• Overview of wireless location techniques 

2.2 Wireless Communications Systems 

In recent times, wireless communications have had profound effects on our day-to-day 

lives. In less than 10 years, cellular telephones have attracted more than several hundred 

million subscribers in the United States, Europe, and Asia (Caffery, 2000). This dramatic 
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development is just the start of the forthcoming revolution in telecommunication services. 

In the near future, telecommunication devices will be associated with homes, offices, and 

vehicles. To meet the unprecedented demand for a new mode of communications, a 

significant number of wireless communication techniques have emerged sine the 1970’s 

(Kuruppillai et al, 1997). 

 

The first-generation cellular systems which appeared in the 1980’s were analog systems, 

such as the AMPS (Advanced Mobile Telephone System) in Northern America and 

TACS (Total Access Communications System) in Europe. AMPS and TACS use a 

frequency modulation (FM) technique for radio transmission. Cellular traffic is 

multiplexed onto an FDMA (frequency division multiple access) system at a data rate of 

8 to 10 kbps. 

 

The second-generation (2G) systems used digital multiple access technologies such as 

TDMA (time division multiple access) and CDMA (code division multiple access). 2G 

systems, such as GSM in Europe and IS-95 CDMA in North America, appeared in the 

1990’s and operate using a data rate of 14.4 kbps. 

 

Currently, third-generation systems are being developed to try to solve several 

challenging technical issues, such as the provision of seamless services across both wired 

and wireless networks and universal mobility. Examples of third-generation systems 

include UMTS in Europe and CDMA2000 in North America. Both of these systems use 

wide band CDMA techniques to increase the data rate up to 2 Mbps. Such a high data 
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rate makes these two systems suitable for high-volume data transactions including 

multimedia communications.  

2.2.1 Cellular Network Architecture 

A 2G cellular network is composed out of the following entities (Walters and Kritzinger 

2000) as shown in Figure 2.1: 

 

Figure 2.1: 2G Network Architecture 

• Mobile station (MS) - Device used to communicate over the cellular network. 

• Base station transceiver (BST) - Transmitter/receiver used to transmit/receive 

signals over the radio interface of the network. 

• Base station controller (BSC) - Controls communications between a group of 

BSTs and a single MSC. 

• Mobile switching centre (MSC) - The heart of the network, it sets up and 

maintains calls made over the network. 
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• Public switched telephone network (PSTN) - The land-based section of the 

network. 

Figure 2.1 illustrates how the entities are related to one another within the network. BSTs 

and their controlling BSC are often collectively referred to as the base station (BS) 

subsystem. A geographic region is divided into cells. Each cell has a BST which 

transmits data via a radio link to MSs within the cell. A group of BSTs are connected to a 

BSC. A group of BSCs, in turn, are connected to a mobile switching center (MSC) via 

either microwave links or telephone lines. The MSC connects to the public switched 

telephone network (PSTN), which switches calls to other mobile stations or to land-based 

telephones.  

2.2.2 Cellular Coordinate System 

In this section, the Cellular Coordinate System (Lee and Miller, 1998) is discussed as an 

important fundamental concept in understanding cellular systems and in conducting 

simulations to verify proposed algorithms. Conceptually, an omni-directional base station 

transmitter has a circular coverage area. As illustrated in Figure 2.2, a large geographical 

area can be divided into overlapping circular areas. If the circles completely cover the 

area (i.e. there are no “holes” in coverage) and are all of the same size, they support the 

concept of hexagonal “cells,” each defined as the location affiliated with the nearest base 

station. Note that the “size” of a hexagonal cell can be given as , the radius of the 

coverage area, or as 

cR

( ) ccc RRRR 866.02330cos o === . 
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Figure 2.2: Hexagonal Shape Associated with Circular Coverage Area 

Figure 2.3 shows a detail of a hexagonal cell layout in a non-orthogonal coordinate 

system. Using the cell position coordinates ( )vu,  in this system, the cell centres are 

located at the positions defined by the coordinate pair, 

( ) ( )jRiRvu cc 3,3, = ,                                                                    (2.1) 

where i  and j  are integers. In terms of the ( )vu,  coordinate system, an arbitrary position 

in a rectangular  coordinate system with the same origin is ( yx, )

3
2
130cos o uux == , vuvuy +=+=

2
130sin o                                   (2.2) 

 

Figure 2.3: Non-orthogonal Cellular Coordinate System 
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Therefore, the square of the distance between the centres of cell a , whose centre is 

located at , and cell , whose centre is located at ( aa vu , ) b ( )bb vu , , can be computed as 

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )[ ]
( ) ( ) ( ) ( )( )[ ]babababaC

babababa

babababa
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 (2.3) 

In particular, the distance of a cell’s centre from the origin of this coordinate system is 

jijiRjijiRd c ⋅++=⋅++= 2222 32                                                      (2.4) 

 

Figure 2.4: Ring Cellular Coordinate System 

Another cellular geometry emphasizes the rotational symmetry of the hexagonal grid 

system by using the notion of a hexagonal “ring” of cells around a center cell, as shown 

in Figure 2.4. The diagram consists of the centre cell and one of the six sectors 

around the origin. The coordinates of a cell in the sector are 

o60

( )in, , where n is the “ring” 
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number and  indexes the cells in the sector that are in ring n . The squared 

distance of the  ring is 

ni ,,2,1 L=

thn

( ) ( ) ( ) ( )( )
( )niinR

RiRnRiRnind
−+=

−+=
222

o222

4
60cos22222,

                                       (2.5) 

which gives the distance formula 

( ) niinRniinRind c −+=−+= 2222 32,                                          (2.6) 

2.3 Effects of Signal Propagation through Wireless Channels 

Wireless channels pose a great challenge for reliable high-speed communications. When 

a radio signal is transmitted through a wireless channel, the wave propagates through a 

physical medium and interacts with physical objects and structures, such as buildings, 

hills, trees, moving vehicles, etc. (Rappaport, 1996). The propagation of radio waves 

through such an environment is a complicated process that involves diffraction, 

refraction, and multiple reflections. Also, the speed of the mobile impacts how rapidly the 

received signal level varies as the mobile moves in space. Modeling all these phenomena 

effectively has been one of the most challenging tasks related to wireless system design. 

 

A typical wireless communication scenario in an urban area usually involves an elevated 

fixed base-station antenna, a mobile handset, and a line-of-sight (LOS) propagation path 

in addition to many reflected paths due to the presence of natural and man-made objects 

between the mobile and the base station. Figure 2.5 illustrates such an environment (e.g. 
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Sengupta, 1998). The different propagation paths (LOS as well as reflected paths) change 

with the movement of the mobile or the movement of objects in its surroundings. 

 

Figure 2.5: A Typical Wireless Propagation Environment 

Radio propagation models usually attempt to predict the average signal strength based 

upon the separation between the transmitter and the receiver. In terms of signal strength 

variation rate, signal fading can be roughly divided into two categories. Variation in 

average signal strength over large distances (typically several hundreds of metres) is 

called large scale fading. Rapid signal strength fluctuation over short distances (typically 

a few wavelengths) is called small scale fading. 

2.3.1 Large Scale Fading 

Both theoretical analysis and experimental measurements indicate that the large scale 

fading is proportional to some power of the distance between the transmitter and the 

receiver: 

( )
µ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∝

0d
ddL                                                                                          (2.7) 
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or in dB 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

0
100 log10

d
ddLdL µ                                                            (2.8) 

where  is the separation between the transmitter and the receiver;  is a reference 

distance which is determined from measurements close to the transmitter; and 

d 0d

µ  is the 

large scale fading exponent. The fading exponent determines the rate at which the path 

loss increases with the separation, d ; its value depends on the propagation environment. 

2.3.2 Small Scale Fading 

Small scale fading refers to rapid variations in signal strength over short distances or 

short time intervals. It results mainly from multipath propagation due to the presence of 

reflectors and scatterers near the transmitter and receiver. These paths may add up either 

constructively or destructively depending on the relative phase differences between 

individual paths. The amplitude of the composite signal varies over time and distance 

rapidly because of the short signal wavelength and thus gives rise to small scale fading. 

Large scale attenuation

Small scale fading

Large scale attenuation

Small scale fading

 

Figure 2.6: Effect of Large Scale Fading and Small Scale Fading 
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Figure 2.6 shows the signal strength changes with respect to propagation distance (Said, 

2002 and Caffery, 2002). The low frequency component is due to large scale fading, and 

the high frequency component is due to small scale fading resulting from multipath 

propagation. 

 

From a statistical point of view, the following three statistical distributions are normally 

represented in a wireless channel: log-normal, Rayleigh, and Ricean. The log-normal 

distribution describes the envelope of the received signal shadowed by obstructions such 

as hills, buildings, and trees. The Rayleigh distribution describes the envelope of the 

received signal resulting from multipath propagation only. The Ricean distribution 

describes the envelope of the received signal with multipath propagation plus a line-of-

sight component. The statistical properties of a wireless channel are discussed in detail in 

Lee (1997). 

2.4 Wireless Location Techniques 

2.4.1 Cellular Network-Related Techniques 

Cellular network-related wireless location methods can be subdivided into three 

categories according to the MS and network functionalities. These three categories are 

pure network-based methods, MS-assisted network-based methods, and MS-based 

network-assisted methods (Laitinen et al, 2001). 
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For a pure network-based method, the network fulfills all the positioning functionalities 

including location measuring and position calculations. An MS itself does not take any 

active part in the process. Obviously, these methods are applicable to legacy cellular 

phones. However, the network may require some modifications to accommodate a wide 

range of hardware products. 

 

The second category, MS-assisted network-based methods, consists of methods which 

require at least some active participation from the MSs. An MS can take part in location 

measuring or doing some other positioning-dedicated tasks, while most of the positioning 

functionalities are still completed in the network. The role of an MS is solely to assist the 

network in positioning.  

 

In MS-based network-assisted methods, the roles of the MSs and the cellular network are 

reversed in comparison to those in the second category method. An MS makes location 

measurements and calculates its own position. Thus, the role of the network is simply to 

assist MSs in location estimation. Methods of this type enable a more dense position 

fixing rate. In the following section, several network-related wireless location methods 

are briefly discussed.  

2.4.1.1 CELL-ID 

CELL-ID is the simplest method for locating a cellular phone and is based on cell 

identification. An MS can be assigned a location if the cell in which the MS is located 

can be identified. Since this is an inherent feature of all cellular systems, minimal 
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changes to existing systems are needed. A cell only has to be associated with a location, 

such as by association with the coordinates of the BS of this cell, as shown in Figure 2.7. 

 

Figure 2.7: CELL-ID Wireless Location Method 

This method boasts the additional advantage that no calculations are needed to obtain 

location information. Thus, the CELL-ID based method is fast and suitable for 

applications requiring high capacity. However, the drawback is that accuracy depends 

directly on cell radius which can be very large, especially in rural areas. 

2.4.1.2 Angle of Arrival (AOA) Methods 

The AOA-based location method is one of the oldest positioning methods. Its early use 

began during the development of radar, sonar, and antenna array techniques. By means of 

array signal processing techniques, the direction of an MS with respect to BSs can be 

measured at BSs. Thus, the MS is at the intersection of the lines derived from AOA 

measurements as illustrated in Figure 2.8. 
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Figure 2.8: AOA Wireless Location Method 

The accuracy of the AOA method is dependent on the distances between the MS to be 

located and the antenna arrays at BSs. The further the MS is from the antenna arrays, the 

larger is the positioning uncertainty. NLOS signal propagation is a significant source of 

inaccuracy. When NLOS components exist, AOA measurements will be distorted, thus 

resulting in degraded positioning accuracy. 

2.4.1.3 Time of Arrival (TOA) Methods 

The measurements required in this type of positioning method are the absolute signal 

transmission times between MS and BSs that are equivalent to MS-BS distances. The MS 

is located at the intersection of several circles, of which the centres are the BSs used, and 

the radii are the measured MS-BS distances. At least three TOA measurements are 

required to uniquely determine the 2-D position of an MS, as shown in Figure 2.9. 
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Figure 2.9: TOA Wireless Location 

TOA wireless location methods require that all base stations be precisely synchronized to 

each other and that the MS to be located also be synchronized to the network. For this 

reason, TOA positioning is feasible only in fully synchronized networks; for example, in 

IS-95 CDMA systems (Caffery and Stüber 1998). 

2.4.1.4 Time Difference of Arrival (TDOA) Methods 

The measurements in this type of methods are relative signal transmission times which 

are equivalent to distance differences. A TDOA measurement defines a hyperbola with 

the two BSs as the foci. At least three hyperbolae are needed for unique MS position 

determination, as shown in Figure 2.10 
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Figure 2.10: TDOA Wireless Location 

A TDOA method requires that all base stations involved be synchronized. This can be 

done either by synchronizing all BSs physically or by bringing all BSs to a common 

reference time by measuring time differences between BSs. MSs do not need to be 

synchronized since the MS clock bias is the same with respect to all BSs and differencing 

any two TOA measurements will cancel out the MS clock bias. 

2.4.2 Satellite-Based Positioning Techniques 

2.4.2.1 GPS 

The Global Positioning System (GPS) is a satellite-based positioning system that can 

provide 3-D position, velocity and time information to users anytime and anywhere on or 

near the surface of the Earth. The system currently consists of 28 satellites operated by 

the United States Air Force, under the control of the U.S. Department of Defence (DoD). 
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Figure 2.11: GPS 

The signals transmitted by GPS satellites are the Course Acquisition (C/A) code and the 

Precise (P) code, both of which are modulated by navigation messages. By means of well 

designed phase locked loop and delay locked loop (PLL/DLL) techniques (Kaplan 1996), 

a GPS receiver can acquire and keep track of such GPS signals to provide very accurate 

pseudorange measurements. The positioning error of a stand-alone GPS receiver is at the 

metre level (Parkinson and Spilker, 1996). As shown in Figure 2.11 (Dana, 2000), a GPS 

receiver can calculate its three-dimensional location using measurements from at least 

four satellites. 

 

The main advantages of GPS are its global coverage and high accuracy, especially 

without selective availability (SA) degradation. Another advantage of this location 

technique is that GPS receivers are not required to transmit anything to satellites, so there 

is no limit to the number of users that can use the system simultaneously. 
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However, there also exist several issues that affect the effectiveness of GPS, especially in 

dealing with emergency services: response time, time-to-first-fix (TTFF), accuracy, and 

service coverage in weak signal case. GPS signals are quite weak in city core areas and 

inside buildings. In such environments, a GPS receiver cannot track a sufficient number 

of satellites because of serious signal attenuation and, therefore, cannot provide location 

information. Besides these limitations, weak signals require a long processing time which 

will result in longer response time and longer TTFF. Taking all of these drawbacks into 

consideration, one finds that traditional GPS techniques are not suitable for wireless 

location applications. 

2.4.2.2 High Sensitivity GPS (HS-GPS) 

The GPS signal is not specifically designed for indoor use. The guaranteed signal level, 

on the surface of the earth, for a right hand circular polarized antenna is –130 dBm. This 

is a very low power with the signals buried deep in noise and the signals must be 

acquired through the correlation process which gives a large processing gain. The signal 

power becomes even lower, less than -150 to -160 dBm, in urban canyons or inside 

buildings due to extra attenuation. A GPS receiver with higher sensitivity is required in 

these situations. 

 

In general a longer correlation time enables a receiver to extract or detect signals with 

lower power levels because the signal to noise ratio at the output of the correlators is in 

part defined by the integration interval (the time for which the correlation is carried out). 
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Analysis of detection performance of a single sample of correlation output is well known 

in detection theory. 

 

However, the integration time is limited by the following factors: 

• Time to acquisition: Signal acquisition inside a GPS receiver is a frequency-code 

delay two dimensional search process. The integration time is the dwell time in a 

search bin. Obviously, given the frequency-code delay search region, the longer 

the integration time, the longer the time to acquisition. Besides this, the 

integration time also affects bin size. A longer coherent integration time implies 

smaller frequency bins since the power goes to zero at a smaller frequency error. 

This means smaller bin sizes have to be used when the integration time is 

extended, which will also increase the time to acquisition for a given search 

region. 

• Data bit transition: The data bits in the GPS signal cause the polarity of the 

coherent integration to change. This disallows very long coherent integration. If 

data bits cannot be correctly removed, the maximum integration time is 20 ms. 

However, the integration time can exceed this limit if the data bits can be 

correctly predicted and removed. 

 

To decrease the acquisition time, two techniques have been proposed: 

• Massive correlator technique: Several hundred or as many as one or two thousand 

correlators are used in parallel. Thus, the GPS receiver can search multiple bins at 

the same time to decrease acquisition time. 
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• Signal frequency prediction technique: The frequency search region can be 

dramatically narrowed down if the frequency drift can be roughly estimated. 

Frequency drift is due to three factors: GPS satellite movement which can be 

easily predicted; receiver clock drift which can be estimated via aiding 

information; user movement which can predicted in low dynamic situations. 

 

To exceed the 20 ms integration limit, the data bit transition needs to be removed. Two 

methods are proposed: 

• Stand-alone GPS receiver case: Utilize receiver position and other information to 

predict message bits (Syrjärinne, 2001). 

• Assisted GPS: Utilize reference GPS receiver together with communication links 

to transmit message bits to a high sensitive GPS receiver. This is a promising 

method in wireless location and will be discussed in the following section. 

 

2.4.2.3 Assisted GPS (AGPS) 

Any GPS positioning operation needs to fulfill four principal functions (Baumann et al, 

2001): 

• determining the code phases (pseudoranges) to the various GPS satellites 

• demodulating the satellite navigation message 

• determining the time of arrival for measured pseudoranges based on the 

navigation message 
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• computing the user’s positions via the measured pseudoranges, timing and 

navigation message data. 

 

Most commercial GPS receivers perform all of these operations independently and allow 

satellite navigation messages to be extracted from GPS signals after they have been 

acquired and tracked. With respect to the E-911 requirements, two factors are 

problematic: collecting information is time-consuming - typically taking between thirty 

seconds and several minutes - and a high received signal level is required. 

 

Assisted GPS is simply a variation of the conventional GPS system. It works by 

increasing GPS receiver sensitivity and decreasing the time to first fix (TTFF). In an 

assisted GPS system, the above functions are distributed among a GPS reference receiver, 

a location server and a GPS-enabled MS. An example of this system (Porcino, 2001) is 

shown in Figure 2.12: 

 

Figure 2.12: AGPS 
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A reference GPS receiver gathers navigation message and differential GPS (DGPS) 

correction data for all visible satellites. The location server receives and stores data from 

the reference GPS receiver and provides aiding data to GPS-enabled MSs. The final MS 

location can be calculated onboard the MS itself or in the location server. The aiding data 

consist of a list of satellites in view from the MSs and their relative Doppler offsets. With 

aiding information, a MS can acquire and track GPS signals much faster than in the 

unaided case. It can also track far weaker GPS signals because longer integration beyond 

one message bit can be conducted to obtain a higher processing gain (Chansarkar and 

Garin, 2002). 

 

Compared to standard GPS schemes, an Assisted-GPS system provides smaller response 

times, reduced power consumption, higher accuracy, higher sensitivity, and higher 

location availability in serious fading environments such as urban areas and inside 

buildings. 

2.4.3 Performance Comparison of Location Techniques 

Performance comparisons between several wireless location algorithms are presented in 

this section. The results shown in Figure 2.13 are based on a combination of theoretical 

analysis and empirical data (Syrjärinne, 2002). The methods under comparison include 

GPS, AGPS, CELL-ID, TOA and TDOA as described above. 
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Figure 2.13: Performance Comparison between Location Methods 

In the figure, the horizontal axis represents location accuracy and the vertical axis 

represents location availability. As shown, the CELL-ID method provides very good 

positioning availability but very poor location accuracy because it depends only on the 

cell identification technique. The TOA and TDOA methods are moderate in both location 

accuracy and location availability. The GPS method provides high accuracy from several 

metres to tens of metres, which is within the range of E-911 requirements. However, its 

location availability is not good, especially in urban areas and indoor environments due to 

serious signal attenuation. Such poor location availability can be improved by HSGPS/ 

AGPS methods since it allows tracking of weak signals with the addition of aiding 

information. Table 2.1, which is repeated from Syrjärinne (2001), depicts performance 

differences in terms of reliability, latency, and applicability. Latency is evaluated by 

TTFF and applicability is evaluated by such factors as power consumption, hardware and 

software size, network dependency, cost and standardization issues. It is clear from this 

table and Figure 2.13 that the TDOA and AGPS methods may be feasible for a real world 
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realization if the effects of environments that produce serious signal attenuation are taken 

into consideration. 

 

Table 2.1: Comparison among Wireless Location Techniques 

Low<10 smediumTOA/TDOA

Low~10 smediumAOACellular 
Network

Medium1-10 smediumAGPS

High<35 shighStand-aloneGPS

ApplicabilityLatencyReliabilityPosition Techniques

Low<10 smediumTOA/TDOA

Low~10 smediumAOACellular 
Network

Medium1-10 smediumAGPS

High<35 shighStand-aloneGPS

ApplicabilityLatencyReliabilityPosition Techniques

 

2.5 Dilution of Precision 

DOP is an indication of the geometry between the MS to be located and the BSs used in 

location estimation. It significantly affects the final positioning accuracy. After 

linearization, a location system can be expressed by 

Axl =                                                                                                  (2.9) 

where  are the raw measurements, x  is the MS position to be estimated, and A  is the 

design matrix. Applying the LS method, can be solved as  

l

x

( ) lQAQAAx T1T ⋅=
−                                                                         (2.10) 

where Q is the variance-covariance matrix of the measurements. 

 

If all of the measurements are assumed to be of the same accuracy and are independent, 

 is a diagonal matrix is of the following form . In this case, the variance-

covariance matrix of the MS position is  

Q IQ l ⋅= 2σ
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( ) ( ) 21
lAAxxP σ⋅=⋅Ε=

−TT .                                                            (2.11) 

Obviously, (  is the matrix of multipliers of raw measurement variance which in 

turn gives position variance. It is thus named the DOP matrix. It contains east DOP 

(EDOP), north DOP (NDOP), vertical DOP (VDOP), and some covariance terms, and 

has the following format if suitably arranged 

) 1−AAT

( )
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
−

2

2

2

1

 termscovariance

 termscovariance

VDOP
NDOP

EDOP
T AA          (2.12) 

Given equation (2.11), smaller DOP values, which indicate better geometry, are desired. 

Normally, position DOP (PDOP), horizontal DOP (HDOP), and vertical DOP (VDOP) 

are preferred in positioning accuracy analysis. They are related by the following 

equations. 

22 EDOPNDOPHDOP +=                                                             (2.13) 

22222 VDOPHDOPVDOPEDOPNDOPPDOP +=++=          (2.14) 

 

The DOP matrix is only dependent on MS-BSs directions. If the direction of the MS to 

BSi is evaluated by azimuth angle ( ) and elevation angle ( ) with the MS at the 

origin, the design matrix can be expressed as 

iAz iE

( ) ( ) ( ) ( ) (
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∗∗

∗∗
∗∗

=

MMMMM EAzEAzE

EAzEAzE
EAzEAzE

sincoscossincos

sincoscossincos
sincoscossincos

22222

11111

MMM
A

)

             (2.15) 

where M  is the number of BSs involved in location estimation. 
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Figure 2.14: 7-Cell Sub-System Used in DOP Analysis 

In the following, a 7-cell network, shown in Figure 2.14, is taken as an example to study 

the variation of the HDOP and VDOP with respect to the number and positions of BSs 

involved. For simplicity, the MS is assumed to be in the central cell and BSs are selected 

as a function of their distance to the MS. For example, if 5 BSs are used, the 5 BSs 

nearest to the MS are selected. All of the 7 cells are of the same size with a cell radius of 

3 km and all of the BS antennas are of the same height, i.e. 30 metres. 

 

 

Figure 2.15: HDOP and VDOP with 4 BSs Involved 
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Figure 2.16: HDOP and VDOP with 5 BSs Involved 

  
Figure 2.17: HDOP and VDOP with 6 BSs Involved 

 

Figure 2.18: HDOP and VDOP with 7 BSs Involved 
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Figures 2.15 to 2.18 demonstrate HDOPs and VDOPs as a function of MS location when 

4, 5, 6, and 7 BSs are used. Obviously, the greater the number of BSs involved, the better 

the HDOPs. But, the VDOPs in all of these scenarios are extremely bad. This is because 

BSs are normally very low in height difference (tens of metres) compared to the MS-BS 

separations (several kilometres) and thus the elevation angle is very small giving a poor 

VDOP. 

 

If GPS is also available, GPS satellites can be used as extra BSs to improve DOPs. 

Figures 2.19 and 2.20 demonstrate the HDOPs and VDOPs when 5 BSs and 1 or 2 GPS 

satellites are available. It is evident that with the help of GPS satellites, VDOP can be 

significantly reduced from about 200 to 1.3 when GPS satellites are in favourable 

locations. 

 

Figure 2.19: HDOP and VDOP with 5 BSs and 1 GPS Satellite Involved 
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Figure 2.20: HDOP and VDOP with 5 BSs and 2 GPS Satellite Involved 
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Figure 2.21: Variation of HDOP and VDOP with 5 BSs and 1 GPS Satellite Involved 
with Respect to GPS Satellite Position 
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Figure 2.22: Variation of HDOP and VDOP with 5 BSs and 2 GPS Satellite Involved 
with Respect to GPS Satellite Position 
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Figures 2.21 and 2.22 show the variation of HDOP and VDOP with respect to GPS 

satellite position. The positions of GPS satellites do not change the HDOP very much 

since the ground-based BSs have already provided a reasonably good geometry, 

especially when the number of BSs used is more than 5. VDOP changes significantly 

with the change of satellite positions. Generally, the higher the satellites, the smaller the 

VDOP. For example, when 5 BSs and 1 GPS are involved, the VDOP decreases from 

about 3.5 when the GPS satellite is low to about 1.2 when the GPS satellite is high. 
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CHAPTER 3 

HEARABILITY ANALYSIS 

3.1 Introduction 

To locate a cellular phone using network-based methods such as TOA and TDOA, the 

cellular phone needs to be able to communicate with at least three geometrically 

dispersed BSs. Unfortunately, this computational condition may not be satisfied due to 

the “near-far” effect occurring in some radio channels such as CDMA channels. 

Hearability is further deteriorated by a “Power Control” scheme which attempts to adjust 

signal power to the minimum required level to maximize system capacity. 

 

Several methods have been proposed to improve hearability. The strategies include: 

expanding signal integration time (Bartlett, 2002); the Power Up Function method (PUF) 

(Landa et al, 2000); and Idle Period Down Link method (IPDL) (Ericsson, 1999). Taking 

the IS-95 CDMA pilot signal as an example, this chapter evaluates the improvement in 

hearability due to each of the above-mentioned methods. The discussion is conducted in a 

step by step manner, as follows.  First, the pilot signals used for wireless location are 

discussed. Then the nature and degree of Same-cell interference, Other-cell interference, 

and Signal to Interference Ratio (SIR) of the desired signal at receivers are discussed in 
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detail since it is the SIR that determines whether or not a signal can be reliably received. 

Finally, to what extent these methods can improve the hearability is evaluated by 

theoretical analysis and simulation experiments. 

3.2 IS-95 CDMA Forward Link (Pilot Channel) Hearability Analysis 

3.2.1 IS-95 Forward Link Signals 

There are 64 physical channels in the forward link of an IS-95 CDMA cellular system; 

these are distinguished by the 64 orthogonal Walsh functions, { }63,,2,1,0: L=iWi  which 

serve as digital carriers. These physical channels form four types of logical channels of 

which the functionalities can be summarized as follows (Chen, 1999a). 

• Pilot Channel: The channel is identified by Walsh function zero, . It 

continuously broadcasts a known signal to provide the MSs a robust time, 

frequency, and phase reference for demodulation in other channels. 

0W

• Synchronization Channel: The channel is identified by Walsh function, , and 

is also a continuously broadcasting channel. It provides MSs with BS timing 

information, cell site identification number, and other information for 

synchronization. 

32W

• Paging Channel: There can be up to seven paging channels, with carriers from  

to . A paging channel contains paging messages and conveys other control 

messages from the BSs to the MSs. 

1W

7W
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• Traffic Channel: There are at least 55 traffic channels. They carry user 

information. They also carry control messages using “blank and burst” or “dim 

and burst” techniques. 

 

The pilot channel signal is preferred for wireless location purposes because it provides 

some advantages over other signals from the location estimation point of view: 

• The pilot channel possesses dominant transmission power. Approximately 15-

20% of the maximum transmission power of a BS is dedicated to the pilot channel 

to ensure the visibility of the pilot signal over the coverage area. This also makes 

pilot signals more easily acquired from neighbouring cells as well. 

• The pilot signal is a known continuous broadcasting signal. It enables an MS to 

keep locked on the pilot Pseudo Noise (PN) code. 

• All BSs transmit the same PN sequence but with different offsets. This makes it 

easier in the search process of a receiver to acquire TDOA measurements. 

3.2.2 IS-95 CDMA Pilot Channel Signal 

 

The process of generating a pilot signal is shown in Figure 3.1. Walsh function zero with 

a chip rate of 1.2288 Mcps (mega chips per second) is first modulated by the pilot 

baseband “data”. Then, this intermediate signal is separated into an I-component and a Q-

component to further modulate the I-channel PN sequence and the Q-channel PN 

sequence. Wave shaping, amplification, and RF carrier modulation are finally conducted 

to generate the actual signal transmitted to MSs. 
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Pilot Channel: 
all 0s (no data)

W0 (all 0s)

I-PN

Q-PN

cosωct

sinωct

Transmitted 
Pilot signals

Pilot Channel: 
all 0s (no data)

W0 (all 0s)

I-PN

Q-PN

cosωct

sinωct

Transmitted 
Pilot signals

 

Figure 3.1: Generation of Pilot Channel Signals 

The Walsh code is one type of orthogonal code. It is used in IS-95 CDMA systems to 

separate different physical channels. One can refer to Lee and Miller (1998) for detailed 

information about the Walsh code. Both the I-channel PN sequence and the Q-channel 

PN sequence are maximal length sequences generated by 15-stage shift registers and 

lengthened by the insertion of one chip per period in a specific location in the sequences. 

Thus, the sequence length is chips. Each base station is distinguished 

by a different phase offset in both the I-channel and the Q-channel PN sequences. The 

offset is a multiple of 64 PN chips, which yields 512 possible 64-chip offsets. At a rate of 

1.2288 Mcps, the I-sequence and Q-sequence repeat every 26.66 ms, or 75 times every 2 

seconds. The characteristic polynomials of the I-sequence and Q-sequence are 

3276811215 =+−

( ) 151087621 xxxxxxxf I ++++++= ,                                                       (3.1) 

( ) 1512111095431 xxxxxxxxxfQ ++++++++=                                        (3.2) 

which can be generated using the modular shift register generator. It must be emphasized 

that the signal modulating PN sequences are actually at a constant value of 0 since both 

the pilot data bits and the Walsh function 0 bits are all zeros. This means that, 
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theoretically, coherent signal integration can be done for a longer time because there is no 

data bit change. The demodulation of a pilot signal is the reverse process of signal 

generation, and is fully discussed in Section 3.3.1. 

3.2.3 SIR Model of Pilot Signals 

In IS-95 CDMA systems, a pilot signal can be reliably received only when its SIR is 

larger than a threshold (Chen, 1999a). The SIR of a pilot signal can be expressed as 

NI

P

PP
P

SIR
+

=                                                                                (3.3) 

where  is the power of the received pilot signal;  is the cellular network 

interference; and  is the MS receiver thermal noise. According to signal propagation 

theory, the received signal power is related to the transmitted power, the 

transmitter/receiver antenna pattern, and path loss. Thus, the received pilot signal power 

can be further expressed as 

PP IP

NP

LGGPP mCCPP ⋅⋅⋅⋅= ς                                                                   (3.4) 

where  

 Pς = fraction of the transmit power allocated to the pilot channel 

CP = total transmit power of the BS being studied 

CG = BS antenna gain, including cable loss 

mG = mobile antenna gain, including cable loss 

L = propagation loss 
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The cellular network interference, , contains two components, namely Same-Cell 

interference, , and Other-Cell interference  (Lee and Miller, 1998), 

IP

SCIP , OCIP ,

OCISCII PPP ,, += .                                                                        (3.5) 

Same-Cell interference results from the multipath reception of the serving BS if different 

forward link channels are assumed to be perfectly orthogonal. Suppose that is the 

total received power at the MS due to the serving BS and that  is the received power 

for the signal of path k . We have the following equation if there are 

fP ,0

kP ,0

K multipath 

replicas: 

∑∑∑
===

===
K

k
kf

K

k
fk

K

k
kf PPPP

1
,0

1
,0

1
,0,0 ββ ,                                                  (3.6) 

where kβ  is the fraction of the received power of path k  with respect to total received 

power . Obviously, fP ,0

1
1

=∑
=

K

k
kβ .                                                                                         (3.7) 

A common assumption about Same-Cell interference is that it is of the same power as 

that of the direct signal (Lee and Miller, 1998). This assumption means that 2
1

2

=∑
=

K

k
kβ  

and the power of Same-Cell interference is 

LGGPPP mCCdirectSCI ⋅⋅⋅== ,0, .                                                              (3.8) 

Signals received from the base stations of other CDMA cells act as Other-Cell 

interference to an MS, as shown in Figure 3.2. Thus, the average interference power can 

be calculated via a propagation loss model, 
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( ) ( )∑∑∑ =⋅==
i

iC
i

iC
i

iIOCI rLPrLPPP ,, ,                                                   (3.9) 

where all BSs are assumed to have the same transmission power, .  is the 

corresponding propagation loss which is a function of MS position, BS position, and an 

appropriate propagation model. 

CP ( )irL

 

Figure 3.2: Other-Cell Interference at MS ( )θ,r  

From Figure 3.3, the distance from the MS to the interfering base station is thi

( ) ( )iiiiii rddrdrr θθ cos2,, 22 −+= .                                                    (3.10) 

Assuming a thµ  order power propagation model, ( ) µε −×= ii rrL  where ε is a constant 

coefficient, the total Other-Cell interference after considering all surrounding BSs can be 

easily found as 

( )( )∑ −⋅⋅=
i

iiiCOCI drrPP µθε ,,, .                                                     (3.11) 

Recalling that Same-Cell interference actually can also be expressed as 

                         , µε −⋅⋅= rPP CSCI ,
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the ratio of Other-Cell interference power to Same-Cell interference power at the MS 

becomes 

([ )]∑=
i iiiSCI

OCI

drr
r

P
P

µ

µ

θ,,,

, .                                                                      (3.12) 
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Figure 3.3: Geometry of Other-Cell Interference 

This equation shows the relationship between Same-Cell interference and Other-Cell 

interference. The ratio is a function of propagation channel and BS-MS distances. As 

illustrated in Figure 3.4, Same-Cell interference (shaded in red) is normally strongest 

because the serving BS is closest to the MS especially when the MS is in the central area 

of the serving cell. The Other-Cell interference resulting from the inner-most ring cells 

(shaded in orange) is weaker compared to that of the serving cell. The Other-Cell 

interference resulting from the second or the third ring cells (shaded in pink) is much 

weaker because of the longer distances between these BSs and the MS inside the serving 

cell. We know from this phenomenon that the hearability is affected mainly by the 

nearest BSs such as the serving BS. As a result, hearability can be improved if these 

major interference sources can be eliminated. 
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Figure 3.4: Comparison of Same-Cell Interference and Other-Cell Interference 

Finally, receiver thermal noise needs to be evaluated to determine the SIR of pilot 

signals. The power of the thermal noise can usually be calculated either from the noise 

temperature or from the noise figure (Lee and Miller, 1998). For the IS-95 CDMA 

system, the thermal noise power density at a MS antenna can be expressed as 

( )( )
HzWF

FKKJ

FkTN
oo

o

21

23
0

10043.4
2931038.1

−

−

⋅=

⋅=

=

                                                                  (3.13) 

Expressed in terms of dB and including the noise figure, 

( ) ( )dBNFHzdBWdBN +−= 9.2030                                                         (3.14) 

where  is Boltzman’s constant,  is the reference noise temperature in Kelvin,  F  is 

the noise factor, and  N

k 0T

F  represents the noise figure. For a MS receiver, the noise figure 

is normally around 5 to 8 dB, thus the noise density is about 

( ) HzdBmHzdBWdBN 1691990 −=−= . 
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Figure 3.5: Hearability of a Normal Cellular Network 

 

Figure 3.5 demonstrates the hearability of pilot signals; the parameters used in the 

calculation are summarized in Table 3.1. The two horizontal axes in the figure represent 

the Eastern and Northern coordinates with the serving BS at the origin. The vertical axis 

represents the number of BSs that can be heard from an MS located within the cell being 

studied. It is apparent that the number of BSs that can be heard is 1 when the MS is in the 

area near the centre of the cell; 2 when the MS is at the edge area of the cell; and 3 when 

the MS is at the tri-cell boundary where the MS has the chance to be “close” to three BSs. 

The average number of BSs heard over all places inside the serving cell is only about 1.5 

and significantly less than 3. The poor hearability that characterizes the original cellular 

network diminishes its usefulness for location purposes. 

 

 

 



50 

Table 3.1: Parameters Used in Hearability Analysis 

8 dBNoise Figure

0 dBMS antenna gain

0 dBBS antenna gain

0.2Pilot signal fraction

16 WBS transmit power

-15 dBDetection threshold

CCIR model with antenna height of 20 mPropagation model

Radius: 2 kmCell size

37 Cell layoutCellular phone network

8 dBNoise Figure

0 dBMS antenna gain

0 dBBS antenna gain

0.2Pilot signal fraction

16 WBS transmit power

-15 dBDetection threshold

CCIR model with antenna height of 20 mPropagation model

Radius: 2 kmCell size

37 Cell layoutCellular phone network

 

 

The propagation model used in the simulation is the CCIR model (Lee and Miller, 1998). 

It is normally used for typical 850 MHz cellular systems, with the mobile height assumed 

to be 2 m. The median pass loss is 

( ) BddBL km −+= 10logβα                                                                     (3.15) 

where α  and β  describes a “power law” propagation loss;  is the distance between 

the MS and the BS; and B  is a correction factor. Table 3.2 depicts the empirical 

parameter values of the model where  is the transmitter antenna height.  depends on 

the construction density of the built-up environment. It can be chosen as 0 dB when about 

15% of an area is covered by buildings or –2.5 dB when 20% of the area is covered by 

buildings. 

kmd

1h B
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Table 3.2: CCIR Model Parameters 

1h α β

35.22124.5030 m
36.38126.9320 m
38.35131.0910 m

1h α β

35.22124.5030 m
36.38126.9320 m
38.35131.0910 m

 

 

The number of BSs that can be heard at a particular location is actually a random variable 

since mobile signal propagation suffers from channel fading; the path loss is of log-

normal distribution which is of the following form: 

( ) ( ) ( ) ( )1,0Ν×+= dBdBLdBL cmed σ                                                         (3.16) 

where  denotes a zero-mean Gaussian random variable with unit variance; ( 1,0Ν ) cσ , 

normally between 8 dB and 10 dB, is the log-normal fading variance; and  is the 

median path loss discussed above which can be described by equation (3.15) or by 

several other propagation models (Lee, 1997). Written into ratio format, the above 

equation becomes 

(dBLmed )

1010
ξ

µd
AL =                                                                                              (3.17) 

where d  is the distance between the MS and a BS; µ  is the pass loss exponent order; A  

is a coefficient describing transmitted signal power and ( )2,0~ cσξ Ν  is a Gaussian 

random variable describing the log-normal fading. In the following, L in equation (3.17) 

is used to analyze the stochastic property of the hearability. 
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If receiver thermal noise is neglected and a derivation similar to that appearing in Chen 

(1999) is followed, then the SIR for  can be expressed as iBS

(
( )

)∑
≠

+
= K

ik iiCi

kkCk

P
i

dLP
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SIR

ξµ
ξµ

ς

,,
,,1

.                                                               (3.18) 

It can easily be seen that 
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is a sum of scaled log-normal random variables. Applying the results in Yeh and Schwart 

(1984) to the above equation, the sum of these log-normal random variables can be 

closely approximated by another log-normal random variable as  
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where  is a Gaussian random variable with the mean and the variance expressed as iz
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2
cσ  is the variance of the Gaussian random variable; and iξ  characterizes the log-normal 

fading and is assumed to be the same for all BSs. Thus, the final SIR is also a random 

variable with the following expression: 

10101
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Whether or not the pilot signal of a BS can be heard is, in fact, a random event. Denoting 

this event with a random variable, , one has the following event description iA

                          
⎩
⎨
⎧ ≥

=
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 T  thresholddetection SIR when1 i
iA

Thus, the number of BSs being heard is the summation of all of these random variables,  

∑=
K

i
iAH                                                                                                  (3.22) 

with its mean and variance derived as follows, if all events related to these BS’s are 

assumed to be independent, 
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In order to determine  and , it is first noted that  is a two-value variable  
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where  is the probability that the pilot signal of  can be heard, and can be 

determined by the following formula: 
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Here,  is the complementary Cumulative Distribution Function (CDF) of the 

standard normal distribution, 

( )⋅Q

( ) dtesQ
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∞ −= 22

2
1
π

. 

 

Figure 3.6 shows the mean and the standard deviation of the number of BSs that can be 

heard. The horizontal axis represents the distance between the MS and its serving BS; the 

solid curve and the error bars are the mean and the standard deviation, respectively, of the 

number of BSs heard. Figure 3.6(a) is the random property when an MS moves along a 

line directly connecting its serving BS and an adjacent BS as shown by line O-A in 

Figure 3.7. Figure 3.6(b) is the random property when an MS moves on a line which 

passes its serving BS and has the same distance to two adjacent BSs as shown by line O-

B in Figure 3.7. In both cases, we can see that an MS can hear only its serving BS when it 
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is near its serving BS. Only at the edge of the cell can an MS hear 2 or 3 BSs. However, 

this is still not sufficient for location purposes and, in order to improve the chief 

deficiency, hearability, special techniques need to be applied. 
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(a) O-A direction                                                  (b) O-B direction 

Figure 3.6: Hearability in a Log-Normal Propagation Channel 
Cell size: 3000 m 4th order propagation model log-normal standard deviation dB8=σ  
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Figure 3.7: Two Cases in the Hearability Analysis 
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3.3 Hearability Improvement 

Several methods have been proposed to increase hearability while maintaining 

communication performance. An attempt to resolve this problem is presented in IS-95B 

where a feature called the Power Up Function (PUF) enables a MS to sporadically 

increase its transmission power in order to enhance its visibility to other BSs. A detailed 

study of this method through the use of simulations can be found in Landa et al (2000). 

Another method proposed is the so-called enhanced signal receiving method (Chen, 

1999a and Bartlett, 2002). Enhanced signal receiving makes use of the signal structure of 

pilot signals by increasing the signal integration time to increase receiver sensitivity. The 

hearability is improved since the required minimum SIR for pilot signal reception 

becomes smaller. The third method is the well-known Idle Period Downlink (IPDL) 

method (Ludden and Lopes, 2000), proposed for application in the UMTS system. The 

near-far effect is mitigated by interrupting the signal transmission at the serving BS to let 

the MS inside the cell to measure pilot signals of other cells. In this section, how the 

hearability is improved by the latter two methods is fully discussed. The results of this 

discussion provide context and guidance to all of the simulations presented in the 

following chapters. 

3.3.1 Enhanced Signal Receiving Technique 

In this section, an IS-95 pilot signal is taken as an example to depict the hearability 

improvement that is achieved by extending the signal integration time. Figure 3.8 (Lee 

and Miller, 1998) shows how a pilot signal is acquired and detected inside an IS-95 
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CDMA receiver. The received pilot signal is first down-converted to base band, and then 

the in-phase PN code and the quadrature phase PN code are removed from the I and Q 

components. After being integrated for a certain length of time, the I and Q components 

form the final signal that is used for signal detection and acquisition. Pilot signal 

acquisition is a two-dimensional searching process; one dimension is carrier searching, 

the other being PN code searching. The detection threshold - otherwise known as receiver 

sensitivity - is related to the signal integration time. 
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Figure 3.8: Diagram of IS-95 Signal Acquisition  

As shown by Lee and Miller (1998), the received pilot signal is 

( ) ( ) ( ) ( ) ( )[ ] ( )tnttCttC
T
Etr QI
c

c ++++= ωω φωφω 00 sincos2                     (3.26) 
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where  is  the chip energy of the received pilot signal;  is chip length; andcE cT ( )tCI  and 

 are the I-channel  and Q-channel PN sequences, respectively, which assume ( )tCQ 1±  

values. The noise represents both receiver noise and noise coming from other signals 

acting as interference and is assumed to be narrow band additive white Gaussian noise 

around the carrier frequency. 

( ) ( ) ( ) ttnttntn sc 00 sin2cos2 ωω −=                                                    (3.27) 

with 

( ) ( ) ( ) 0
2222

2
1
N==== σtntntn sc                                                            (3.28) 

where  is the noise power and 2σ 20N  is the two-sided noise power spectral density. 

After being processed through the down converter and low pass filter, the I and Q 

components of the pilot signal are of the following form 

( ) ( ) ( ) ( )tntC
T
EtC

T
Etr IQ

c

c
I

c

c
I ++= ωω φφ sincos                                   (3.29) 

and 

( ) ( ) ( ) ( )tntC
T
EtC

T
Etr QI

c

c
Q

c

c
Q ++= ωω φφ sincos                                   (3.30) 

where ωφ  is the phase difference between the incoming carrier and the locally generated 

carrier; and  and  are in-phase noise and quadrature phase noise, respectively, 

with a power spectral density of 

( )tnI ( )tnQ

20N . Removing the I-channel PN code and Q-channel 

PN code, and combining the PN free signals results in completion of the second phase 

shown in Figure 3.8. At this point, two intermediate signals are obtained,  and ( )tX ( )tY , 

to be used in the subsequent signal integration phase 
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Integrating  and  for a time interval, ( )tX ( )tY cTNT ⋅= , produces two additional 

intermediate signals 
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and  
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In the above integration, it is assumed that ωφ  is unchanged and that the autocorrelation 

functions of ( )tCI  and  are the same ( )tCQ
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1N  and  represent the noise components in  and . They contain receiver noise, 

along with some co-channel and cross-quadrature interference. Normally, they are of the 

following distributions: 

2N mZ1 mZ 2

( )'
01 ,0G~ NN    and  ( )'

02 ,0G~ NN                                                  (3.36) 

where  is the effective noise spectral density that is due to both receiver noise and 

interference. The final decision variable is given by 

'
0N

2
2

2
1 mmm ZZZ +=                                                                                 (3.37) 

 

Pilot signal acquisition is a two dimension searching process, one dimension is in 

frequency and the other is in code. When the current searching bin does not coincide with 

the received pilot signal,  is a central Chi-squared random variable with two degrees 

of freedom since both  and  contain only noise in this case. As shown in Figure 

3.9, the probability density function (pdf) is 
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Figure 3.9: pdfs of Central Chi-Squared Distribution 

When the current searching bin coincides with the received pilot signal,  is a non-

central Chi-squared random variable with two degrees of freedom since  and  

contain both signals and noise in this case. The non-centrality parameter is 
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and the pdf is 
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where  and  is the modified Bessel function of the first kind. Such 

pdfs are plotted in Figure 3.10. 
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Figure 3.10: pdfs of Non-Central Chi-Squared Distribution 

In this figure, the pdf of a non-central Chi-squared distribution shifts to the right when λ  

increases. Actually, λ  is proportional to the ratio of signal power to noise power. The 

larger theλ , the further the shift to the right, and the easier the detection of pilot signals. 

Thus, to increase receiver sensitivity a larger λ  is preferred. 

 

Signal detection is actually a hypothesis test problem:  denotes that the received pilot 

signal does not reside in the current searching bin, whereas  denotes that the received 

pilot signal resides in the current searching bin. A signal is thought to be detected if  is 

accepted. The probability density functions conditioned on  and  are 
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To solve this hypothesis test problem, a detection threshold, Tβ , needs to be derived first 

from a selected false alarm probability threshold, , and a selected detection probability 

threshold, . As shown in Figure 3.11, the vertical line corresponds to

FP

DP Tβ . If  is 

larger than 

mZ

Tβ , then  is expected to have a non-central Chi-squared distribution. 

Therefore,  is accepted and a pilot signal is thought to be successfully detected. 

mZ

1H
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Figure 3.11: Pilot Signal Detection 

After some simplification derived in Lee and Miller (1998), the relationship among , 

, signal integration time (

DP

FP N ), and the required minimum signal SIR ( 0NcE ) can be 

expressed as 
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where  denotes Gaussian complementary cumulative probability function ( )tQ

( ) ∫
∞ −

=
a

deaQ λ
π

λ
2

2

2
1 . 

 

An illustration of the above relationship is shown in Figure 3.12. The horizontal axis 

represents false alarm probability while the vertical axis represents detection probability. 

As an example, it can be found that an integration time equivalent to 112 chips is 

required to achieve a detection probability of 95% and a false alarm probability of 10% 

when 0NcE  equals -15 dB. This relationship can be used to determine how long a 

signal needs to be integrated to decrease the required minimum 0NcE  to a certain 

value. 
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Figure 3.13 shows the change of the required minimum 0NcE  with respect to the 

change of integration time, N . The false alarm probability threshold is kept constant at 

5%. The four plots correspond to four detection probabilities: 95%, 90%, 80%, and 70%. 

The horizontal axis is the length of signal integration time and the vertical axis is the 

required minimum 0NcE . Figure 3.14 also shows the change of the required minimum 

0NcE  with respect to the change of integration time but with the detection probability 

fixed at the 90% level. The four plots correspond to four false alarm detection 

probabilities, 5%, 10%, 15%, and 20%. The horizontal axis still represents the length of 

signal integration time and the vertical axis still represents the required minimum 0NcE . 

It is obvious from both figures that the required minimum 0NcE  decreases when the 

integration time increases. This means that receiver sensitivity is increased accordingly. 

 

Longer signal integration is preferred for detecting and tracking very weak pilot signals 

and improving signal hearability for wireless location purposes. Unfortunately, there are 

at least two factors that prevent integration of signals for very long periods of time. First, 

the required minimum 0NcE is not sensitive to the integration time when the integration 

time is already large. From Figures 3.13 and 3.14, it can be clearly seen that the required 

0NcE  decreases rapidly when  is small, while quite slowly when  is already large. 

This means that there exists an efficient length of signal integration time. Empirically, the 

longest integration time should preferably fall within 1000 to 1500 chips. 

N N

 



66 

0 500 1000 1500 2000 2500 3000
-35

-30

-25

-20

-15

-10

-5

0

Integration Length N (chips)

R
eq

ui
re

d 
 m

in
im

um
  E

c/N
0 (

dB
)

The sensitivity of the required minimum Ec/N0 on the integration time (PF = 5%)

PD = 95%
PD = 90%
PD = 80%
PD = 70%

 

Figure 3.13: Relationship Between Integration Length and Receiver Sensitivity (  
fixed) 
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The second factor preventing longer integration is phase uncertainty. As mentioned 

above, the phase difference, ωφ , should not change during the period of signal 

integration. However, the following two reasons may result in a changed phase 

difference:  

• Message bit transition 

• Frequency uncertainty 

 

For IS-95 CDMA pilot signals, the integration time is constrained only by frequency 

uncertainty since the message bits of pilot signals are constant. Such frequency 

uncertainty is caused by: 

• Oscillator frequency deviation: The oscillator of an MS is steered to the pilot 

signal of its serving BS; but the oscillators of BSs contain frequency deviations 

from their theoretical values. As a result, pilot signal reception will suffer from 

the oscillator errors. 

• Doppler Frequency Shift: The movement of an MS will introduce a shift to its 

carrier frequency as well. This is the Doppler frequency, cDoppler f
c
vf =∆ , where c  

is the speed of propagation,  is the MS speed, and is the carrier frequency. v cf

 

The signal part in the final detection variable becomes weaker if frequency errors exist. 

The non-centrality parameter, in this case, changes to 
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Compared to the λ in the frequency error-free cases, fλ  is degraded by  which 

is of the following form (Viterbi, 1995): 

( NfD ,∆ )

( ) ( ) 2
sin, ⎥

⎦

⎤
⎢
⎣

⎡
∆
∆

=∆
c

c

fNT
fNTNfD

π
π                                                                      (3.45) 

where  is the frequency error, f∆ N  is the integration time in chips, and  is the chip 

duration. 

cT

 

Figure 3.15 shows that the non-centrality parameter is actually a function of integration 

time and frequency errors. If there is no frequency error ( 0=∆f ), the non-centrality 

parameter increases linearly with integration time. If there are frequency errors, the non-

centrality parameter, however, will drop from its maximum values after a certain 

integration time depending on the amount of frequency errors. For , the non-

centrality parameter reaches its maximum with an integration time of around 1000 chips. 

For , the non-centrality parameter is maximized when the integration time is 

about 500 chips. As aforementioned, the non-centrality parameter is an indication of 

receiver sensitivity; the larger the non-centrality parameter, the higher the receiver 

sensitivity. Thus, a large non-centrality parameter is preferred for hearability 

improvement and the maximum integration time needs to be carefully selected to prevent 

Hz400=∆f

Hz1000=∆f

λ  from being deteriorated by frequency errors.  
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Figure 3.15: Relationship between Non-Centrality Parameter and Integration Length with 
Respect to Frequency Error 

In the following, three types of receivers are studied to demonstrate the hearability 

improvement due to this enhanced signal receiving technique. The first receiver, Rx1, is a 

normal receiver of which the integration time is 112 chips. The second receiver, Rx2, is 

an enhanced signal receiving receiver of which the maximum frequency error is assumed 

to be 400 Hz and the integration time is 650 chips; and the third receiver, Rx3, is also an 

enhanced signal receiving receiver but with a maximum frequency error of 160 Hz and an 

integration time of 1500 chips. 

 

The propagation model used in the simulations is a log-normal propagation model of the 

following form: 

( ) ( ) ( ) ( )1,0Ν×+= dBdBLdBL cmed σ                                                        (3.46) 
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(dBLmed )  is described by the CCIR model; ( )dBcσ  is the random path-loss of which the 

typical value is from 8 dB to 10 dB; and ( )1,0Ν  is the standard Gaussian distribution. 

 

Table 3.3 shows the simulation results when the false alarm probability, , is fixed at 

5% while the detection probability, , is varied between 95%, 90%, and 80%. 

FP

DP 0NcE is 

the required minimum SIR;  is the smallest number of BSs heard; and m# M#  is the 

largest number of BSs heard. Except for the detection threshold which depends on the 

length of integration time, all of the other parameters used are the same as those in Table 

3.1. 

 

Table 3.3: Hearability Improvement due to Enhanced Signal Reception ( ) %5=FP

%95=DP %90=DP %80=DP

0N
cE

0N
cE

0N
cE

41-23.841-22.741-21.9650400
Rx2

3.232.852.65

4.934.333.91

1.691.521.40

MeanMeanMean

81-27.461-26.461-25.51500160
Rx3

31-16.231-15.131-14.3112
Rx1

#M#m

(dB)

#M#m

(dB)

#M
#m

(dB)

Integ. 
Length 
(chips)

Freq 
Error 
(Hz)

Receiver
%95=DP %90=DP %80=DP

0N
cE

0N
cE

0N
cE

41-23.841-22.741-21.9650400
Rx2

MeanMeanMean

81-27.461-26.461-25.51500160
Rx3

31-16.231-15.131-14.3112
Rx1

#M#m

(dB)

#M#m

(dB)

#M
#m

(dB)

Integ. 
Length 
(chips)

Freq 
Error 
(Hz)

Receiver

3.232.852.65

4.934.333.91

1.691.521.40

 

 

From the simulation results, it can be seen that the required minimum, 0NcE , decreases 

from approximately –15 dB to –25 dB when the enhanced receiver technique is used. 

Such a dramatic increase of receiver sensitivity can produce better hearability for wireless 

location purposes. Taking the %90=DP case as an example, the maximum number of 
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base stations heard increases from 3 to 6 and the average number of BSs increases from 

1.5 to 4.3. To describe the above results more clearly, hearability plots for these three 

receivers are drawn in Figures 3.16 to 3.18. Here, the false alarm probability, , is set at 

5% and the detection probability, , is chosen as 90%. The required minimum 

FP

DP 0NcE  

decreases from -15 dB for receiver Rx1, to -22.7 dB for receiver Rx2, and to -26.4 dB for 

receiver Rx3. Consequently, the average number of BSs heard increases from 1.5, to 2.9, 

and to 4.3, respectively. The area with optimal hearability for location purposes also 

increases accordingly. 

 

 

Figure 3.16: Hearability of Receiver Rx1 (Integration Length = 112 Chips) 
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Figure 3.17: Hearability of Receiver Rx2 (Integration Length = 650 Chips) 

 

Figure 3.18: Hearability of Receiver Rx3 (Integration Length = 1500 Chips) 
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3.3.2 IPDL Technique to Improve Forward Link Hearability 

The hearability in the region near the BSs is still very poor. This is because of serious 

“near-far” effects resulting from the signal transmission at the serving BS. To mitigate 

this effect for further hearability improvement, a BS can discontinue signal transmission 

for a short time to provide an opportunity for the MSs inside its cell to hear BSs of other 

cells. This is the so-called Idle Period Down Link (IPDL) method. There exist two IPDL 

schemes. One is the pseudorandom–IPDL (PR-IPDL) scheme (Ericsson, 1999); the other 

is the time aligned-IPDL (TA-IPDL) scheme (Motorola, 1999 and Ludden and Lopes, 

2000). For the sake of performance comparison with the previous hearability analysis 

results, the IS-95 pilot signal is used here to study the hearability improvement produced 

by IPDL techniques. 

3.3.2.1 PR-IPDL (Pseudorandom--IPDL) 

In this scheme, the idle periods are arranged with a pseudo random pattern among BSs as 

shown in Figure 3.19 and made known to all MSs in advance. The frequency of idle 

periods is a parameter that the operator can change to trade off positioning response time 

against capacity loss. The idle period frequency and the length of the idle period should 

be as short as possible to ensure that capacity loss is minimized. Normally, the idle 

frequency is about 1~10 Hz, and the idle period is about 5 or 10 256 chip intervals 

(Ericsson, 1999). 
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Figure 3.19: PR-IPDL Idle Period Pattern (Shaded Block Represents the Idle Period) 

Let Non-IPDL denote the methods that do not employ IPDL techniques. The difference 

between a Non-IPDL method and a PR-IPDL method is depicted in Figure 3.20. In the 

Non-IPDL case, measurements are made when all BSs are transmitting signals. However, 

in the PR-IPDL case, measurements are made only during the idle period of its serving 

cell. Therefore, the interference is mitigated due to the lack of strong Same-Cell 

interference and the SIR of a pilot signal of a non-serving BS at a MS becomes 

NOCI

P

PP
LPSIR

+
⋅

=
,

ς                                                                                     (3.47) 

where  is path loss due to the transmission from the non-serving BS to the MS. This 

equation does not contain Same-Cell interference which is actually the strongest 

interference. The simulation results are summarized in Table 3.4. To make the 

performance comparison more equitable, the parameters used here are the same as those 

in Tables 3.1 and 3.3. 

L
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Figure 3.20: Difference between Non-IPDL Methods and PR-IPDL Methods 

 

Table 3.4: Receiver Hearability with PR-IPDL   ( ) %5=FP

%95=DP %90=DP %80=DP

0N
cE

0N
cE

0N
cE

81-23.871-22.771-21.9650400Rx2

6.165.314.90

10.758.837.91

2.722.422.20

MeanMeanMean

121-27.4101-26.481-25.51500160Rx3

31-16.231-15.131-14.3112Rx1

#M#m

(dB)

#M#m

(dB)

#M#m

(dB)

Integ. 
Length 
(chips)

Freq 
Error 
(Hz)

Receiver
%95=DP %90=DP %80=DP

0N
cE

0N
cE

0N
cE

81-23.871-22.771-21.9650400Rx2

MeanMeanMean

121-27.4101-26.481-25.51500160Rx3

31-16.231-15.131-14.3112Rx1

#M#m

(dB)

#M#m

(dB)

#M#m

(dB)

Integ. 
Length 
(chips)

Freq 
Error 
(Hz)

Receiver

6.165.314.90

10.758.837.91

2.722.422.20

81-23.871-22.771-21.9650400Rx2

MeanMeanMean

121-27.4101-26.481-25.51500160Rx3

31-16.231-15.131-14.3112Rx1

#M#m

(dB)

#M#m

(dB)

#M#m

(dB)

Integ. 
Length 
(chips)

Freq 
Error 
(Hz)

Receiver

6.165.314.90

10.758.837.91

2.722.422.20

 

 

Hearability improves significantly, as compared to the results shown in Table 3.3. Taking 

the  case as an example, although the minimum number and the maximum 

number of base stations heard for receiver Rx1 are still 1 and 3, respectively, the average 

number increases from around 1.5 to 2.4. The maximum number of BSs heard increases 

%90=DP
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dramatically from 4 to 7 for enhanced receiver Rx2 and from 6 to 10 for enhanced 

receiver Rx3, The average number increases from 2.9 to 5.3 for receiver Rx2 and from 

4.3 to 8.8 for receiver Rx3. To further describe this, 3D herability plots for several 

scenarios are shown in Figures 3.21 to 3.23. These scenarios depict: a normal receiver 

Rx1 with , , and a required minimum %5=FP %90=DP 0NcE of -15.1 dB; an 

enhanced receiver Rx2 with %5=FP , %90=DP , and a required minimum 0NcE of -

26.4 dB; and an enhanced receiver Rx3 with %5=FP , %90=DP , and a required 

minimum 0NcE of -25.7 dB. Compared to Figures 3.16 to 3.18, there is a marked 

increase in the size of the area with better hearability. 

 

 

Figure 3.21: Hearability of Receiver RX1 with PR-IPDL 
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Figure 3.22: Hearability of Receiver Rx2 with PR-IPDL 

 

Figure 3.23: Hearability of Receiver Rx3 with PR-IPDL 
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In a real world implementation, a BS cannot shut off its transmit power completely 

during the short idle period; normally, it experiences only a –35 dB attenuation instead. 

Such power leakage will result in poor levels of hearability in the area very close to the 

serving BS. The existence of this phenomenon can be inferred from the above figures. 

3.3.2.2 TA-IPDL (Time Aligned - Idle Period Down Link) 

Unlike PR-IPDL, the idle periods in TA-IPDL are synchronized so that each BS goes idle 

at the same time in the idle frame. The idle pattern is shown in Figure 3.24. During the 

idle period, all BSs either transmit only pilot signals or keep silent. 

 

Figure 3.24: TA-IPDL Idle Period Pattern 

Such synchronization of idle periods offers some advantages by providing chances to 

further improve hearability. First, a BS can boost the pilot transmit fraction from 

0.1~0.15 to 1.0 since it does not transmit any other signals. This could potentially result 

in a gain of 7–13 dB in transmit power, thus increasing the pilot range by 1 to 2 octaves 

depending on the path loss. Secondly, interference can be further decreased since BSs 

transmit their pilot signal with a probability less than one, namely 0.3 (Thomas, 2001). 

However, the TA-IPDL method also has disadvantages. First, the time interval between 

two consecutive measurements has to be extended since the pilot signal of a BS is not 

transmitted in every idle period. Second, tight synchronization between BSs is required 
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although it does not impose an additional burden to the cellular network since time 

synchronization between BSs is necessary for TDOA wireless location. The difference 

between PR-IPDL and TA-IPDL is depicted in Figure 3.25. During the idle period of the 

serving BS, all BSs of other cells transmit signals in the PR-IPDL case while only some 

BSs transmit signals in the TA-IPDL case. Thus, the interference is further mitigated via 

TA-IPDL. 

MS

Serving BS First Ring

Second Ring

MS

Serving BS First Ring

Second Ring

TA-IPDL

MS

Serving BS First Ring

Second Ring

MS

Serving BS First Ring

Second Ring

PR-IPDL

MS

Serving BS First Ring

Second Ring

MS

Serving BS First Ring

Second Ring

TA-IPDL

MS

Serving BS First Ring

Second Ring

MS

Serving BS First Ring

Second Ring

PR-IPDL  

Figure 3.25: Difference between PR-IPDL Method and TA-IPDL Method 

In TA-IPDL, the SIR of a pilot signal is 

N

M

studiedbetoBSi
BSservingi

i
iPi

P

PLP

LPSIR
+⋅

⋅
=

∑
≠
≠
=1

ρ
                                                                    (3.48) 

where  is the total transmitting power of a BS which is assumed to be equal for all 

BSs;  is the path loss; and 

PP

iL iρ  is the probability that  transmits a pilot signal during 

an idle period. Compared to that of a Non-IPDL method and a PR-IPDL method, the 

interference here contains only a portion of Other-Cell noise. 

iBS
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Table 3.5 contains the simulation results from the TA-IPDL method used. The scenario 

parameters are the same as those in previous experiments. It can be seen that an enhanced 

receiver can even detect more than 20 base stations. This improvement results from the 

two advantages mentioned above. Actually, the BSs of the first ring are preferred since 

they are close to the mobile and introduce less errors to time and direction measurements. 

In the following chapters, a 7-cell cellular system is often used for simulation tests. 

 

Table 3.5: Receiver Hearability with TA-IPDL    ( ) %5=FP

%95=DP %90=DP %80=DP

0N
cE

0N
cE

0N
cE

231-23.8191-22.7191-21.9650400Rx2

20.6316.7315.58

3128.6025.60

7.686.585.85

MeanMeanMean

371-27.4341-26.4311-25.51500160Rx3

91-16.271-15.171-14.3112Rx1

#M#m

(dB)

#M#m

(dB)

#M
#m

(dB)

Integ. 
Length 
(chips)

Freq 
Error 
(Hz)

Receiver

%95=DP %90=DP %80=DP

0N
cE

0N
cE

0N
cE

231-23.8191-22.7191-21.9650400Rx2

MeanMeanMean

371-27.4341-26.4311-25.51500160Rx3

91-16.271-15.171-14.3112Rx1

#M#m

(dB)

#M#m

(dB)

#M
#m

(dB)

Integ. 
Length 
(chips)

Freq 
Error 
(Hz)

Receiver

20.6316.7315.58

3128.6025.60

7.686.585.85

231-23.8191-22.7191-21.9650400Rx2

MeanMeanMean

371-27.4341-26.4311-25.51500160Rx3

91-16.271-15.171-14.3112Rx1

#M#m

(dB)

#M#m

(dB)

#M
#m

(dB)

Integ. 
Length 
(chips)

Freq 
Error 
(Hz)

Receiver

20.6316.7315.58

3128.6025.60

7.686.585.85

 

 

3.4 Conclusions 

In this chapter the concept of hearability has been examined. It has been shown that in a 

CDMA system the hearability is poor for a normal mobile due to very strong co-channel 
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interference and receiver noise. Such a poor level of hearability makes wireless location 

almost impossible.  

 

Special techniques are needed to improve system hearability. One method is the 

enhanced signal receiving technique. It decreases the required minimum 0NcE  by 

expanding the signal integration time in signal detection and acquisition. However, the 

integration length is limited by at least two factors, the sensitivity of the decrease of the 

0NcE  threshold on longer integration time and the frequency difference between 

incoming pilot signals and local replicas. 

 

Another strategy is found in the IPDL method which improves hearability by mitigating 

Same-Cell and Other-Cell interference. Two IPDL schemes, PR-IPDL and TA-IPDL, are 

fully discussed. Simulation results show that both schemes are able to improve the 

hearability to a satisfactory level: a MS can hear at least 5 BSs at any place inside the 

cellular network. 
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CHAPTER 4 

AN ENHANCED TWO-STEP LEAST SQUARED APPROACH FOR 

TDOA/AOA WIRELESS LOCATION 

4.1 Introduction 

Various wireless location schemes have been proposed (e.g. Reed and James, 1997; 

Lähteenmäki, 2000; and Caffery and Stüber, 1998). In this chapter, two types of schemes 

are explored in particular. The first one is a time-based location scheme where the TOAs 

(time of arrival) or TDOAs (time difference of arrival) of incoming signals are measured 

and used in MS location estimation. The second one is a direction-based location scheme 

where AOAs (angles of arrival) of incoming signals are measured and used in MS 

location estimation. Both schemes have their unique advantages and disadvantages. 

TDOA/TOA schemes require at least three BSs be heard for a two-dimensional location 

estimation and generally have a better accuracy than that of AOA schemes. AOA 

schemes, on the other hand, require only two BSs for location purposes. In practice, these 

two schemes are often combined, resulting in greater accuracy based on the larger 

amount of information that is accessible in comparison to individual implementations. 
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It is not trivial to solve the TDOA/AOA wireless location problem because of the 

nonlinear relationship between the MS location and TDOA/AOA measurements. Two 

methods have been proposed to solve this nonlinear problem. In Foy (1976) and Torrieri 

(1984), a Taylor-series is applied to linearize the problem and calculate the solution. This 

method is of high accuracy but suffers from a heavy computational burden and 

divergence issues. To overcome these drawbacks, a two-step LS solution is proposed for 

TDOA wireless location in Friedlander (1987), Chan and Ho (1994), and Cong and 

Zhuang (2002). It is a closed-form solution. An intermediate estimate of the MS location 

is derived in the first step which approximates the original nonlinear problem with a 

linear one by assuming that MS location is independent of the distance between the 

reference BS and the MS, although they are actually correlated. The second step attempts 

to achieve a better result by taking into consideration the relationship between the MS 

location and the distance between the reference BS and the MS. 

 

However, the original two-step LS approach does not produce the optimal solution 

because the aim of the second step is to adjust the intermediate result to fit only the 

relationship between the MS and the reference station. It does not take into account any 

measurement equations although they actually constrain the final solution. As a result, the 

original approach exhibits inferior performance. In this chapter, an enhanced two-step LS 

method is proposed to take care of this deficiency. This enhanced method differs from the 

original approach only in the second step where it begins by approximating the 

relationship between the MS and the reference BS with a linear model around the 

intermediate result; it then transforms the original nonlinear TDOA/AOA wireless 
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location system into a linear one by combining the approximated MS-reference BS 

relationship with all the measurements used in the computation of the intermediate 

solution. The final result of this enhanced method is a constrained LS solution of this 

linear system. 

 

As an example, this enhanced Two-Step LS approach is applied to a hybrid TDOA/AOA 

wireless location scheme. In addition to this, the performance differences between the 

TDOA-only solution and the TDOA/AOA hybrid solution are also compared to show the 

extent to which AOA measurements can help to increase estimation accuracy. The 

organization of this chapter is as follows: following this introduction, the hybrid 

TDOA/AOA wireless location scheme, the Taylor-Series solution, and the original two-

step LS solution are discussed in succession. The enhanced two-step LS approach is then 

explained in detail and simulation results are presented to demonstrate the performance 

improvement achieved. 

4.2 Hybrid TDOA/AOA Wireless Location Scheme 

A TDOA wireless location system is a hyperbolic system in which the MS to be located 

is at the intersection of two or more hyperbolas. The TDOA scheme also constitutes a 

non-linear problem and tries to solve the following optimization problem to find the MS 

position (Chen, 1999a): 

( )∑
≠∈

−−−−=
jiSji

jiijr
,,

2
minargˆ XxXxx
x

                                          (4.1) 
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where is the range difference measurement of the MS to the  and  BSs; is the 

set of all BSs; and and are coordinates of BS

ijr thi thj S

iX jX i and BSj, respectively. 

 

An AOA system normally tries to solve the following problem to determine the MS 

location (Chen, 1999a): 

( )

( ) ( ) ( )iiiii

Si
i

yyxx −+−−=

= ∑
∈

βββ

β

cossin,dist

,distminargˆ 2

x

xx
x                                           (4.2) 

where the function ( i )β,dist x  is the distance between the MS position (  and the 

direction line specified by the angle measurement 

)yx,

iβ  at . iBS

 

To improve positioning accuracy, it is best to use as much of the available information as 

possible. One possible hybrid solution is the hybrid TDOA/AOA wireless location 

scheme which combines TDOA and AOA measurements together to solve the following 

problem: 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−−−= ∑∑

∈≠∈ '

2

,,

2
,distminargˆ

Si
i

jiSji
jiijr βxXxXxx

x
          (4.3) 

4.3 Solutions to the Hybrid TDOA/AOA Scheme 

The hybrid TDOA/AOA scheme is a nonlinear problem, so it is not trivial to produce a 

closed-form solution. The most convenient way to solve this problem may be a Gauss-

Newton method together with a Taylor-Series linearization. However, this method is 

recursive and is, thus, computationally burdensome and may suffer from convergence 
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issues. Another method, the two-step LS method, can yield a closed-form solution and 

overcome the disadvantages of a Taylor-series method. However, it is not an optimal 

solution because it does not make use of as much measurement information as possible to 

maximize solution accuracy. 

4.3.1 Taylor-series Linearization Method 

The hybrid TDOA/AOA wireless location method tries to solve the following equations 

in a Least Squares sense: 
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which are equivalent to  
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where  is the TDOA measurement with  as the reference BS; S  is the BS set that 

generates TDOA measurements;  is the BS set that generates AOA measurements; 

and ( are locations of the reference BS and other BSs generating TDOA 

measurements respectively; 

1ir 1BS

'S

( Tyx 11, ) )Tii yx ,

( )Tkk yx , are the locations of the BSs generating AOA 

measurements; and  and  are TDOA measurement error and AOA 

measurement error. The above equations form a nonlinear parametric case LS problem. 

After linearization with a Taylor-Series expansion, the final solution can be derived as 

TDOA
in 1

AOA
knβ
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and Q  is the variance-covariance matrix of TDOA and AOA measurements which can 

be derived as follows 
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since the TDOA measurement noise and the AOA measurement noise are zero mean 

noise and uncorrelated with each other. The noise in one TDOA measurement is actually 

the combination of the measured BS TOA noise and the reference BS noise, so the 

variance-covariance matrix of TDOA measurements,  is of the following form TDOAQ
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The AOA measurement noise at different BSs is assumed to be uncorrelated but related 

to the separation between the MS and the BS. The variance-covariance matrix of AOA 

measurements, , is of the following form AOAQ
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where  is AOA observation variance in radians and is assumed identical for all BSs 

where AOA measurements are available,  is the distance between the MS to be 

located and the BSs where AOA measurements are available. 

2
βσ

kDβ

4.3.2 Original Two-Step LS Method 

The two-step LS method, originally proposed for a TDOA location system, can provide 

closed-form solutions and overcome the drawbacks of the recursive LS method by 

transforming this non-linear problem into two constituent linear problems. This method is 

based on two relationships. On the one hand, 11 rrr ii += . Squaring this quantity, it can 

be found that 

2
111

2
1

2 2 rrrrr iii ++=                                                                               (4.10) 

where  is the distance between the MS to be located and . On the other hand, ir iBS

iir xx −= . Squaring this expression and writing it in component form gives 

( ) ( )
( ) .2 2222

222

yxyyxxyx

yyxxr

iiii

iii

+++−+=

−+−=
                                                  (4.11) 

Letting 
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2222 and iii yxKyxK +=+= , 

the above equation can be written as 

( ) KyyxxKr iiii ++−= 22                                                                  (4.12) 

Equalizing equations (4.10) and (4.12) gives 

( ) ( ) ( )2
111111 2

1
iiiii rKKrryyyxxx −−=+−+−                                        (4.13) 

Taking all TDOA measurements into consideration, the equations in matrix form are 
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where all variables except ,1r x , and are known either from measurements or system 

design. The system becomes a linear system if ,

y

1r x , and are independent. However, 

they are actually related by 

y

( ) ( )21
2

1
2

1 yyxxr −+−=                                                                           (4.15) 

Because of this, such a system is called a pseudo-linear system. This property results in 

the original two-step LS method. In the first step, ,1r x , and  are assumed to be 

independent and an intermediate result is calculated by solving this pseudo-linear system. 

In the second step, the intermediate result is further adjusted to satisfy equation (4.15), 

the relationship among ,

y

1r x , and . y

 

Such a two-step LS method can also be applied to a hybrid TDOA/AOA wireless location 

scheme. Taking both TDOA and AOA measurements into consideration, the pseudo-

linear system becomes 
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Or, in matrix form, 

lGz =                                                                                                       (4.17) 

In this way, the intermediate result, [ ]Tryx 0
1

000 =z , can be calculated using the 

normal LS method 

( ) lQGGQGz 1110 −−−= TT                                                                           (4.18) 

where Q  is the variance-covariance matrix of measurements l . The derivation of Q  for 

the two-step LS method can be explained as follows. Due to the measurement noise, 

(4.16) cannot exactly hold and a non-zero misclosure vector  thus exists w
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Since the TDOA measurement noise and the AOA measurement noise are uncorrelated 

with each other,  is a block diagonal matrix Q
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Q                                                                            (4.20) 

Comparing (4.6) and (4.16) gives 
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a
TDOAQ  can be determined by studying a TDOA related misclosure element, for example, 

 which is equal to iw
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iiiiii rKKrryyyxxxw −−−+−+−= .                        (4.22) 

Expressing  as  and substituting it and  into the above equation 

gives 
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Thus, the TDOA related misclosure vector is 
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where ( )00
3

0
2 ,,,diag Nrrr L=B , [ ]TNTDOA nn 121 L=n , and ⊗  represents the element-

by-element product. Therefore,  is  a
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In practice, the TDOA measurement noise is usually much smaller than the separation 

between a MS and the BSs, i.e., . In this case,  can be simplified to 0
1 i
TDOA
i rn << a

TDOAQ

( ) BQBBnnBQ ⋅⋅=⋅⋅Ε⋅= TDOA
TT

TDOATDOA
a
TDOA                                   (4.26) 

 



92 

where  is the variance-covariance matrix of the original TDOA measurement noise 

and is of the form shown in equation (4.8). 

TDOAQ

 

In the second step, this intermediate result , is further adjusted to account for the 

relationship among ,

0z

1r x , and  by means of an artificially created linear problem which 

is of the following form: 
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where  is the variance-covariance matrix of measurements, , and the detailed 

derivation can be found in Chan and Ho (1994). The final solution of the MS position, 

, is  

aQ al
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Solution ambiguity exists since there are four candidate solutions and special care should 

be taken to select the correct one. For example, with some effort, the candidate solution 
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associated with the region of interest can be selected – an element of the problem that is 

known in advance. 

4.3.3 Enhanced Two-Step LS Method 

As mentioned above, the original two-step LS approach is not optimal because, in the 

second step, the method takes only the relationship among ,1r x , and into account. 

However, in addition to this, the equations in the pseudo-linear system also need to be 

satisfied by the final result so as to maintain positioning accuracy. The enhanced two-step 

LS approach is proposed to take care of this deficiency by making use of equations (4.15) 

and (4.16) simultaneously. In the second step, the enhanced approach first studies 

equations (4.15) and (4.16) in  3-D space to identify the non-linear component; 

then it approximates the non-linear component with a linear one around the intermediate 

result to make the whole system truly linear. In the last stage, it applies a constrained LS 

method to calculate the final result which is of higher accuracy than that of the original 

two step LS method. 

y

),,( 1ryx

 

Rewriting equations (4.15) and (4.16) gives: 
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( ) ( )21
2

1
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1 yyxxr −+−=                                                                   (4.32) 
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If x , , and  are considered as three independent variables of a 3-D space, the 

equations in (4.31) actually represent a set of planes. They form a linear subsystem. 

However, equation (4.32) - the relationship among 

y 1r

x ,  and,  - is nonlinear. It is 

actually a cone in 3-D space as shown in Figure 4.1. 

y 1r

    

(a) Relationship between x ,  and  is a Cone                           (b) Small Region of the Cone y 1r

Figure 4.1: Relationship Among x ,  and  y 1r

It can be found from the above plot that a small region of the cone closely approximates a 

plane especially when the MS is far from the reference base station. This prompts the 

approximation of the small region of the cone near the intermediate result with a plane 

cbyaxr ++=1                                                                                        (4.33) 

where , , and c  are parameters to be determined. Since only equation (4.32) is 

nonlinear, the whole system becomes a true linear system after this approximation, and 

LS can then be used to determine the better final result. 

a b

 

The idea behind the approximation of the cone with a plane in a small area is 

straightforward. First, select an initial point surrounding a region of interest on the cone 
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based on the intermediate result; then approximate this region with a plane passing 

through this initial point; and, finally, adjust this plane to best fit the region of interest. 

Supposing the intermediate result computed in the first step is ( , the 

linearization can be made around 

)',',' 1ryx

( )',' yx  where the MS is assumed to be located. For the 

sake of simplicity, the coordinates of the reference base station, BS1, are assumed to be 

 and  in the following discussion. Thus, the initial point corresponding to 

 on the cone can be chosen as 

01 =x 01 =y

( ',',' 1ryx ) ( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ += 22 '',','P yxyx . The best plane 

passing through P to approximate the cone is the one that is tangent to the cone. To find 

it, the normal vector of the cone passing point P is needed. From the relationship among 

x ,  and , it can found that this normal vector is y 1r ( ) ( )22 '',',' yxyx +−− . Thus, the 

best plane passing through point P is: 

( ) ( ) ( ) 0'''''''' 22
1

22 =+−++−−−− yxryxyyyxxx                                (4.34) 

 

However, this plane, named the original approximation plane, is not optimal because the 

distance between this plane and the cone is not minimized. To get a strictly optimal 

result, the following problem needs to be solved  

( )∫∫=
S

cone dss )plane,Point(distminargplane 2                                          (4.35) 

where  is the region of interest. It is difficult to solve this optimization problem and, in 

reality, it is also not necessary since the shape of the cone is well defined and can easily 

be described as a reasonably adequate plane, even if it is not, strictly speaking, the 

optimal plane. This desired plane is chosen in the way shown in Figure 4.2  

S
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(a) Original approximation                                  (b) Final desired approximation 

Figure 4.2: Cone Approximation 

In this figure, the circular area with the centre at ( )',' yx  and the radius of σ is the region 

of interest. σ , determines the region’s size, and is related to the accuracy of the 

intermediate result. Rectangles represent the planes that are optimized. The leaf-shaped 

region is the conical region of interest. In Figure 4.2(a), the plane is the one expressed by 

equation (4.34). It passes through the initial point and is tangent to the cone as well, but it 

is not the optimal. If only the region of interest is investigated, then the maximum 

distance from the cone to this plane occurs at point of which the coordinates are: maxP
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The desired approximation in Figure 4.2(b) is the shifted version of this original plane. 

The shift is conducted in such a way that the maximum distance between the cone and the 

desired plane is one-half of the original maximum distance. Supposing the desired plane 

is  

0'''' 1
22 =+++−− Dryxyyxx ,                                                        (4.38) 

the maximum distance is 
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Thus  
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                                                  (4.40) 

and  can be easily determined from this equation as D

( )ppp ryxyyxxD 1
22 ''''

2
1

+−+= .                                                            (4.41) 

 

Figure 4.3 illustrates the result of the original approximation and the desired 

approximation. Figure 4.4 illustrates the approximation accuracy in terms of the 

maximum distance between the cone and the desired plane. Obviously, the larger the 

region of interest, the larger the approximation error; and the farther the MS position is 
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away from the reference station, the smaller the approximation error. σ  can be selected 

at a value from 100 m to 150 m, depending on the accuracy of the intermediate result. In 

this case, the maximum approximation error is normally at the level of 3 to 10 metres. 

 

Figure 4.3: Original and Desired Approximation 

 

Figure 4.4: Approximation Error 
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After the approximation, the combination of equations (4.31) and (4.32) becomes a true 

linear system. MS location can be readily solved from equation (4.31) by means of a 

constrained LS algorithm with the constraint, 

0'''' 1
22 =+++−− Dryxyyxx .                                                                   (4.42) 

4.4 Simulation Results 

This section presents simulation results to demonstrate the performance improvement of 

the enhanced two-step LS approach compared to the original two-step LS method and the 

Taylor-series method. In the simulation, a 7-cell 2-D cellular phone system layout is 

assumed, as shown in Figure 2.14. Furthermore, it is also assumed that the MS to be 

located is in the central hexagonal cell, surrounded by six adjacent hexagonal cells of the 

same size. The cell radius is 2 km. For simplicity, all TDOA measurement noise is 

assumed to be of the same standard deviation. All experiments here are Monte Carlo 

experiments and each scenario contains 1000 independent runs. 

4.4.1 Algorithms Studied 

In this section, a performance comparison among the Taylor-series method, the original 

two-step LS method, and the enhanced two-step method is conducted. Also investigated 

is the performance improvement in comparing TDOA-only methods to hybrid 

TDOA/AOA methods and the influence of AOA measurement accuracy on the final 

positioning accuracy. The following table summarizes all algorithms studied here. 
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Table 4.1: Algorithms for Comparison 

Enhanced TDOA/AOA Two Step LSEnhanced TDOA-Only Two Step LS

Original TDOA/AOA Two Step LSOriginal TDOA-Only Two Step LS

TDOA/AOA Taylor SeriesTDOA-Only Taylor Series

TDOA/AOA AlgorithmsTDOA-Only Algorithms

Enhanced TDOA/AOA Two Step LSEnhanced TDOA-Only Two Step LS

Original TDOA/AOA Two Step LSOriginal TDOA-Only Two Step LS

TDOA/AOA Taylor SeriesTDOA-Only Taylor Series

TDOA/AOA AlgorithmsTDOA-Only Algorithms

 

4.4.2 Performance Comparison at One Point 

Figures in this subsection demonstrate performance differences at one point. In this 

scenario, it is assumed that only 4 TDOA measurements and 2 AOA measurements are 

available and the MS is at (1000 m, 1000 m) with its serving BS at the origin. The 

method employed to evaluate positioning accuracy is shown in Figure 4.5 where the 

cumulative probability with respect to position error threshold is shown. The horizontal 

axis represents the position error threshold and the vertical axis represents the cumulative 

probability by which the positioning error is smaller than the corresponding error 

threshold. Obviously, the higher the cumulative probability, the better the performance. 
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Figure 4.5: Algorithm Performance Comparison at a Single Point  
(4 TDOAs, 2 AOAs, STDTDOA =100 m, STDAOA =1 degree) 
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In the scenario for Figure 4.5, the standard deviation of TDOA measurements is assumed 

to be 100 m; the standard deviation of AOA measurements is assumed to be 1 degree; 

and the cell size is 2 km in radius. It can be seen from the figure that: (1) the TDOA/AOA 

Taylor-series method and enhanced TDOA/AOA two-step LS method produce the best 

performance and the accuracy difference between these two methods is insignificant; (2) 

the original TDOA/AOA two step LS method and original TDOA-only two step LS 

method yield the worst performance; and that AOA information is not extremely helpful 

in accuracy improvement in this case; and (3) the TDOA-only Taylor-series method and 

enhanced TDOA-only two-step LS method offer moderate performance as compared to 

the above methods. It can concluded that the enhanced two-step LS method yields 

comparable performance to that of the Taylor-series method from an accuracy point of 

view. With the incorporation of AOA information, the positioning accuracy of both the 

Taylor-series method and enhanced two-step method can be improved. By comparison, 

the original two-step LS method provides degraded performance even if AOA 

information is available. This is expected since the original method does not take 

TDOA/AOA measurements into account when the intermediate result is modified to fit 

equation (4.32) in the second step.  

 

To investigate the influence of AOA measurement accuracy on final positioning 

accuracy, an additional pair of experiments were conducted. In the first experiment, 

shown in Figure 4.6, the standard deviation of AOA measurements is 5 degrees. In this 

case there is almost no performance improvement when AOA information is used. This is 

because the accuracy of the AOA measurements is so poor that it provides no useful 
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information. In the second experiment, the results of which are shown in Figure 4.7, the 

standard deviation of the AOA measurements is 0.3 degrees and it is evident that location 

accuracy is significantly improved for the TDOA/AOA Taylor-series and enhanced 

TDOA/AOA two step LS methods. 
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Figure 4.6: Influence of AOA Measurement Accuracy on Location Accuracy 
4 TDOAs, 2 AOAs, STDTDOA =100 m, STDAOA =5 degrees 
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Figure 4.7: Influence of AOA Measurement Accuracy on Location Accuracy 
4 TDOAs, 2 AOAs, STDTDOA=100 m, STDAOA =0.3 degree 
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Table 4.2 shows the positioning error of all the above methods when the accumulative 

probability is 50%. The values give an evaluation of the performance of these solutions. 

 

Table 4.2: Positioning Error with the Cumulative Probability of 50%  
(4TDOAs 2AOAs STDTDOA = 100 m) 

55.6 m32.1 m18.6 mEnhanced TDOA/AOA Two Step LS

140.4 m142.9 m140.0 mOriginal TDOA/AOA Two Step LS

51.9 m 29.5 m18.6 mTDOA/AOA Taylor Series

57.2 m56.4 m56.8 mEnhanced TDOA-Only Two Step LS

142.9 m150.6 m133.5 mOriginal TDOA-Only Two Step LS

53.6 m54.5 m51.8 mTDOA-Only Taylor Series

STDAOA = 5 degreesSTDAOA = 1 degreesSTDAOA = 0.3 degrees

55.6 m32.1 m18.6 mEnhanced TDOA/AOA Two Step LS

140.4 m142.9 m140.0 mOriginal TDOA/AOA Two Step LS

51.9 m 29.5 m18.6 mTDOA/AOA Taylor Series

57.2 m56.4 m56.8 mEnhanced TDOA-Only Two Step LS

142.9 m150.6 m133.5 mOriginal TDOA-Only Two Step LS

53.6 m54.5 m51.8 mTDOA-Only Taylor Series

STDAOA = 5 degreesSTDAOA = 1 degreesSTDAOA = 0.3 degrees

 

4.4.3 Performance Comparison with Respect to Different MS-BS Separations 

The simulations presented in this section demonstrate the positioning accuracy of the 

above methods with respect to the distance between the MS to be located and its serving 

BS. The cellular system used here is still the 7-cell system but with a radius of 3 km. The 

MS is located in the central cell and all 7 BSs are assumed to be available for 

TOA/TDOA measurements, while only the serving BS is assumed to be available for 

AOA measurement. 

 

Figure 4.8 shows the variation of HDOP with respect to different MS-serving BS 

separations. It can be seen that HDOP is about 0.8 and is almost constant when all of the 

BSs are available. 

 



104 

0 500 1000 1500 2000 2500 3000
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Distance between MS and serving BS (m)

H
D

O
P

 

Figure 4.8: HDOP with Respect to MS-Serving BS Separation 

Figures 4.9(a) to 4.9(d) are the results when the standard deviation of TDOA 

measurements is 35 m and the standard deviations of AOA measurements are 0.2 

degrees, 1 degree, 5 degrees, and 10 degrees, respectively. The horizontal axis represents 

the MS-serving BS separation in metres and the vertical axis represents the RMS value of 

horizontal positioning errors, also plotted in metres. From these figures, the following 

conclusions are drawn: 

• The TDOA/AOA Taylor-series method and enhanced TDOA/AOA two step LS 

method produce the best performance 

• The TDOA-only Taylor-series method and enhanced TDOA-only two step LS 

method are the second-best methods 

• The final positioning accuracy of the Taylor-series method and the enhanced two 

step LS method are almost the same. Therefore, the enhanced two step LS method 
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is preferred since its computational burden is light and it does not suffer from 

divergence issues. 

• The original two step LS method is the worst. Its RMS error is 2~4 times higher 

than that of the Taylor-series and enhanced two step LS methods. Furthermore, 

the error increases at a faster rate with the increase of MS-BS separation. 

• AOA information allows improvement in positioning accuracy; the higher the 

accuracy of AOA, the greater the improvement.  

• With the increase of MS-BS separation, the uncertainty introduced by AOA 

measurements will also increase. As a result, the incremental improvement due to 

AOA information is lessened as MS-BS separation increases. 

 

Figures 4.10(a) to 4.10(d) are the simulation results when the standard deviation of 

TDOA measurements is 100 m and the standard deviations of AOA measurements are 

0.2 degrees, 1 degrees, 5 degrees, and 10 degrees. Compared to Figure 4.9, it can be seen 

that there is no marked difference except that the location accuracy decreases somewhat 

owing to the larger TDOA measurement errors. Similar conclusions can be drawn from 

Figure 4.10 as those drawn from Figure 4.9. The only difference is that AOA information 

can improve location performance more in the situation represented in Figure 4.10 than 

that in Figure 4.9. This distinction is obvious since TDOA measurements in the scenario 

of Figure 4.10 are noisier; by comparison, AOA measurements are able to contribute 

credible and useful information to the solution due to the superiority. 
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 (a) σAOA = 0.2 degrees                                          (b) σAOA = 1 degree 
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 (c) σAOA = 5 degrees                                      (d) σAOA = 10 degrees 

 

Figure 4.9: Positioning Accuracy Comparison in the Case of Different AOA 
Measurement Accuracies and the same TDOA Measurement Accuracy (σTDOA = 35 m)  
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 (a) σAOA=0.2 degree                                          (b) σAOA = 1 degree 
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 (c) σAOA = 5 degrees                                      (d) σAOA = 10 degrees 

 

Figure 4.10: Positioning Accuracy Comparison in the Case of Different AOA 
Measurement Accuracies and the same TDOA Measurement Accuracy (σTDOA = 100 m) 
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4.4.4 Performance Comparison When NLOS Errors Exist 

Only measurement noise was considered in the TOA measurements in the previous 

section. Here, the influence of NLOS errors on the performance of all methods is studied. 

NLOS errors are obtained as the excessive delay multiplied by the speed of light. Their 

magnitude depends on the nature of the propagation environment, and is subject to 

change from time to time. NLOS errors are normally treated as random variables and can 

be derived from the delay profiles described by a probability density function of 

excessive propagation delay with respect to a direct path. Three frequently used delay 

profiles to generate random NLOS errors are presented here.  

• Exponential Distribution (Yacoub,1993) 

( )
⎪⎩

⎪
⎨
⎧

>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

otherwise
D

rmsrms

0

0exp1 τ
τ
τ

ττ                                               (4.43) 

• Uniform Distribution: 

( )
⎪⎩

⎪
⎨
⎧ >>

=
otherwise

D rms
rms

0

032
32
1 ττ
ττ                                                   (4.44) 

• Delta Distribution (Lee, 1997) 

( ) ( ) ( )[ ]
⎪⎩

⎪
⎨
⎧ >−+=

otherwise
D rms

0

02
2
1 τττδτδτ                                        (4.45) 

where rmsτ  is the delay spread which depends on the physical environment. Greenstein et 

al (1997) suggested that rmsτ  is log-normally distributed and could be further 

characterized by four environmental dependence variables. 
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ξτ εdTrms 1=                                                                                      (4.46) 

where 

1T  is the median value of rmsτ  at km1=d  

d  is the distance between the transmitter and receiver in kilometres 

ε  is an exponent that lies between 0.5-1.0 

ξ  is a log-normal random variable. Specifically, ξlog10  is a Gaussian random 

variable having zero mean and a standard deviation, ξσ , that lies between 2-6 dB. 

 

The typical values of these parameters for bad urban, typical urban, suburban, and rural 

areas are listed in Table 4.3. A typical urban area represents a non-hilly urban area where 

multipath signals are not clustered; a bad urban area represents a hilly area where 

multipath signals are clustered. In the simulations that follow, rmsτ  is chosen as 0.6 µs for 

a typical urban situation. 

 

Table 4.3 Typical NLOS Error Parameter Values for Different Environments 

4 dB0.50.1Rural

4 dB0.50.3Suburban

4 dB0.50.4Urban

4 dB0.51.0Bad Urban

Environment types

4 dB0.50.1Rural

4 dB0.50.3Suburban

4 dB0.50.4Urban

4 dB0.51.0Bad Urban

Environment types ( )sT µ1 ε ξσ

 

 

Two methods can be used to create samples of a random variable with a special 

distribution. They are the inversion method and the rejection method (Klukas, 1997). In 
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this chapter, exponential NLOS errors are simulated. So, only the inversion method is 

briefly described here. 

Inversion method: Let  be the cumulative distribution function of ( )xF X . A random 

number from distribution  can be generated by the following two steps: (1) Generate 

; (2) Solve 

( )xF

(0,1uniform~u ) ( )xFu =  for x  and return x  as a generated random number. 

Taking the exponential NLOS error distribution (4.43) as an example, the cumulative 

distribution function is  

( ) 0exp1 >⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= τ
τ
ττ
rms

F                                                      (4.47) 

Solving this equation gives 

( )urms −−= 1lnττ                                                                              (4.48) 

τ  is of the desired exponential distribution when  is uniformly distributed in ( ) . u 0,1

 

Figures 4.11 and 4.12 depict positioning errors of the methods being studied. The 

standard deviations of TDOA measurements are 35 m in Figure 4.11 and 100 m in Figure 

4.12. The associated standard deviations of AOA vary between 0.2 degrees, 1 degree, 5 

degrees, and 10 degrees. TOA measurements are assumed to suffer from NLOS errors 

with urban exponential distribution (4.43) of which the distribution and the samples are 

shown in Figures 4.13 and 4.14. Although the absolute positioning accuracies are 

different, the changes of the positioning accuracies for all of the methods in these two 

figures are similar to those presented in Figures 4.9 and 4.10. The inference can, 

therefore, be drawn that NLOS errors affect all of the methods in a similar manner. This 

is a reasonable conclusion since all methods studied here are merely different solutions to 

 



111 

essentially the same location problem. To improve positioning accuracy, such NLOS 

errors need to be mitigated or removed from the measurements before an MS position can 

be calculated. An effective NLOS mitigation algorithm is proposed in the next chapter.  
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 (a) σAOA = 0.2 degree                                          (b) σAOA = 1 degree 
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 (c) σAOA = 5 degrees                                      (d) σAOA = 10 degrees 

Figure 4.11: Positioning Accuracy with NLOS Errors Exist (σTDOA = 35 m) 
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 (a) σAOA = 0.2 degree                                          (b) σAOA = 1 degree 
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(c) σAOA = 5 degrees                                      (d) σAOA = 10 degrees 

 

Figure 4.12: Positioning Accuracy with NLOS Errors Exist (σTDOA = 100 m) 
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Figure 4.13: Histogram of Exponential NLOS Errors in an Urban Environment 
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Figure 4.14: Samples of Exponential NLOS Errors in an Urban Environment 
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4.4.5 Computational Burden Comparison 

In this section, the computational burdens of these methods are briefly compared. The 

methodology used is to compare the processing time for each method to complete the 

same task. This is an easy and reasonable method since the necessary processing time is 

proportional to computational burden. The computer used is a desktop computer with a 

Pentium 4 CPU (Speed: 2.4 GHz) and 512 Mega byte memory; and the software used is 

MATLAB 6.5 with the Windows XP operating system. 

 

Figures 4.15 and 4.16 demonstrate the variation of processing time for each method with 

respect to MS-serving BS separations. The difference between these two figures is the 

initial point selected for the Taylor-series method. The initial point for Figure 4.15 is 

selected 450 metres away from the true MS position while the initial point for Figure 4.16 

coincides with the true MS position. Each scenario in the figures contains 1000 

independent runs and the Taylor–series solution stops when the difference between two 

sequential MS position estimates is less than 1 metre.  
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Figure 4.15: Processing Time Comparison between Taylor-Series Method and Two-Step 
LS Method (Initial Error: 450 metres) 
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Figure 4.16: Processing Time Comparison between Taylor-Series Method and Two-Step 
LS Method (Initial Error: 0 metres) 

It is evident that Taylor-series method has the heaviest computation burden; the original 

two-step LS method has the lightest computation burden; the computational burden of the 

enhanced two-step LS method is only slightly greater than that of the original two-step 

LS method. This is expected since, as mentioned above, the Taylor-series method is a 

recursive method and each step needs to conduct linearization and solve the LS problem. 

The two-step LS method is a non-recursive method and only two LS problems need to be 

solved. The approximation of the cone and a larger dimension LS problem in the second 

step of the enhanced two-step LS method results in a slight greater computation burden 

compared to the original version method. 

 

It is also worth noting that processing time for the TDOA/AOA case is slightly longer 

than for the TDOA-only case because more measurements are involved and the model 

dimension is larger. The processing time for the two-step LS method is almost 

independent of MS-serving BS separation since the computation procedure is nearly 

constant. The processing time for the Taylor-series method decreases when the MS 
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moves away from its serving BS. This means that more iterations are required for the 

solution to converge when the MS is near its serving BS. 

4.5 Conclusions 

In this chapter, an enhanced two-step LS approach was proposed for hybrid TDOA/AOA 

wireless location. Compared to the original two-step LS algorithm, the method herein is 

capable of providing better performance, and is almost as accurate as a Taylor-series 

estimator. The reason is that unlike the original two-step method, the second step of this 

enhanced version can make use of all available measurement information. Compared to 

the Taylor-series solution, the method has the advantage of lightness of computational 

burden and the absence of convergence issues. Performance of the hybrid TDOA/AOA 

scheme can be improved compared to a TDOA-only wireless location scheme. However, 

performance improvement can be obtained only when AOA measurement accuracy is 

sufficiently high with respect to TDOA measurement accuracy. For example, AOA 

measurement accuracy needs to be better than 1 degree in standard deviation in order to 

improve positioning performance when the standard deviation of TDOA measurements is 

about 35 metres. 
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CHAPTER 5 

A NON-LINE-OF-SIGHT ERROR MITIGATION METHOD FOR 

TOA MEASUREMENTS 

5.1 Introduction 

The major error sources in wireless location consist of non-line-of-sight propagation 

errors and receiver noise. NLOS errors are actually the dominant error compared to 

receiver noise (Caffery and Stüber, 1998). Actual field testing shows that the average 

NLOS range error can be as large as 0.589 km in an IS-95 CDMA system (Woo et al, 

2000). 

 

NLOS error identification and removal techniques have to be applied to prevent 

observations from being seriously corrupted and to yield satisfactory positioning 

accuracies. In Woo et al (2000), NLOS errors are identified by comparing the standard 

deviations of range measurements with a detection threshold. In Wylie and Holtzman 

(1996), a time-history based hypothesis test is proposed to identify and then remove 

NLOS errors. In Borrás et al (1998), a decision framework for NLOS identification is 

formulated which can process both Gaussian and non-Gaussian NLOS errors. In Chen 

(1999b), a residual weighting algorithm proposed for a TOA location system is also able 
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to identify NLOS errors with unknown distribution. Additional efforts are currently being 

made in this area and a substantial number of NLOS mitigation algorithms (e.g. Ma et al, 

2002; Venkatraman and Caffery, 2002; and Venkatraman et al, 2002) have recently been 

proposed. 

 

In this chapter, the NLOS errors in a TDOA based wireless location system are 

investigated and an algorithm is proposed for NLOS error identification and mitigation. 

Simulation results are presented to demonstrate the performance improvement achieved 

due to the NLOS error mitigation method proposed. 

5.2 Error Issue 

 

BBSS33

BBSS44
BBSS22

MMSS

BBSS11

BBSS77BBSS55

BBSS66

Figure 5.1: NLOS Error 

As illustrated by the signal transmission between BS7 and MS in Figure 5.1, an NLOS 

error results from the blockage of direct signals and the reflection of multipath signals. It 

is the extra distance that a signal travels from transmitter to receiver and as such always 
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has a nonnegative value. Normally, an NLOS error can be described as a deterministic 

error, a Gaussian error, or an exponentially distributed error. However, at a given instant 

in time, it can be treated as a constant (Cong and Zhuang, 2001). 

 

This section demonstrates the performance degradation of a time-based wireless location 

scheme due to NLOS errors. The MS location in a time-based wireless location scheme is 

usually obtained by solving an estimation problem. The observations are a set of range 

measurements (TOA) or range difference measurements (TDOA), and the parameters to 

be estimated are the MS coordinates. Taking the TOA method as an example, the LS 

estimator used for MS location estimation is of the following form,  

( )∑
∈

−−=
Si

iir
2minargˆ Xxx

x
                                                                  (5.1) 

where ⋅ denotes the norm operation over a vector; x  represents MS position;  

represents the estimate of MS position; is the position of the  BS; 

x̂

iX thi iXx −  is the 

distance between x  and ;  is the set of BSs used;  is the range measurement from 

the MS to the  BS, ; and 

iX S ir

thi Si∈ ( )iir Xx −−  is, thus, the range residual. 

 

If no observation errors exist, then x  is equal to the true MS position. However, x  

normally contains estimation errors because raw measurements are, in reality, always 

observation-error corrupted. If receiver noise and NLOS errors are taken into 

consideration, the range measurements of an MS with respect to 

ˆ ˆ

N  BSs can be expressed 

as:  

NiNLOSnLr iiii ,...,1=++=                                                 (5.2) 
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where  is the range observation to the  BS;  is the LOS range ir thi iL iiL Xx −= ; is 

receiver noise; and  is the NLOS error. The receiver noise, , is assumed to be a 

zero mean Gaussian random variable with a standard deviation of about 60 m~100 m for 

an IS-95 CDMA system. It can be much smaller if better signal receiving techniques are 

applied. 

in

iNLOS in

 

Expressed in matrix-vector form, the measurements in a TOA wireless location scheme 

are 

NLOSnLr ++=                                                                                       (5.3) 

where  are the true distances between the MS and the BSs; n  is receiver noise; and 

 are NLOS errors. If the true MS location is used as the initial point in the LS 

solution, the range measurements can be expressed via a Taylor-series expansion as 

L

NLOS

⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

+≈
y
x

GLr                                                                                            (5.4) 

where G  is the design matrix, and [ ]Tyx ∆∆ is the MS location error. Obviously, the 

final solution of the problem is 

( ) ( ) NLOSGGGnGGG 1T1T ⋅+⋅=⎥
⎦

⎤
⎢
⎣

⎡
∆
∆ −−

y
x

.                                                (5.5) 

Because NLOS errors are much larger than the measurement noise, the positioning errors 

result mainly from NLOS errors if NLOS errors exist.  
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5.3 NLOS Error Mitigation Algorithm 

Since NLOS errors seriously degrade positioning accuracy, they must be removed from 

measurements before these measurements are applied in the MS location calculation. In 

this section, an algorithm is proposed to mitigate NLOS errors. Without losing generality, 

the TDOA location scheme is taken here as an example to illustrate how the NLOS errors 

are mitigated. 

 

This algorithm depends on system redundancy and its idea is quite straightforward. As 

illustrated in Figure 5.2, each TDOA measurement determines a hyperbola between two 

BSs and two of these hyperbolas determine an intersection that is actually a candidate for 

the MS location to be computed. Using the hearability improvement techniques discussed 

in Chapter 3, there are normally more hyperbolas than the minimum number required. 

Thus, a set of intersections can be produced to form an intersection distribution. 

 

Figure 5.2: Hyperbola Intersection 
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The intersection distribution has the following properties. The area of uncertainty is small 

if there are no NLOS errors. In other words, the intersections are concentrated near the 

true MS location as shown in Figure 5.3(a). The area of uncertainty is large if there are 

BSs suffering from NLOS errors. Assuming that the LOS signal of a BS is blocked, the 

TDOA measurements related to this BS will have a bias equal to the NLOS error and the 

associated hyperbolas will be offset from the true MS location. Consequently, the 

intersections between these biased hyperbolas and other hyperbolas will also be offset 

from the true MS location, forming a larger area of uncertainty. As shown in Figure 

5.3(b), hyperbola H4 contains an NLOS error, so both this hyperbola and all of its 

intersections with other hyperbolas are offset from the true MS location. 

H1
H2

H3 H4

H1
H2

H3

H4MS

MS

H1
H2

H3 H4

H1
H2

H3

H4MS

MS

 

(a) NLOS Error Free Case                                                         (b) NLOS Error Corrupted Case 

Figure 5.3: Intersections Offset by NLOS Errors 

The proposed NLOS error mitigation algorithm is based on the different distributions of 

NLOS-free intersections (clear intersections) and NLOS-corrupted intersections (biased 

intersections). A clear intersection is calculated from two NLOS-free TDOA 

measurements, and a biased intersection is calculated from two TDOA measurements at 
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least one of which is NLOS error corrupted. If the system redundancy is high enough and 

only a small number of observations contain NLOS errors, it can be expected that there 

exists a significant number of clear intersections near the true MS position. Therefore, a 

higher intersection density should occur near the true MS position. By seeking the 

maximum point of the intersection distribution, a rough estimate of the MS position can 

be computed from which NLOS errors can be identified and removed. The procedure to 

mitigate NLOS errors is summarized in Figure 5.4, and all of these steps are thoroughly 

discussed in the following sections. 

 

Distribution 
Function 
Generation

MS 
Location 
Estimation 

TOA/TDOA  Intersection 
calculationMeasurement 

NLOS Error 
Identification

NLOS Error 
Correction

 

MS Location 
Calculation by 
WLS

Figure 5.4: Steps in NLOS Mitigation Algorithm 

In this chapter, it is assumed that the original measurements are TOA measurements and 

that TDOA measurements are derived by the combination of these TOA measurements. 

5.3.1 Hyperbola Intersection Calculation 

The intersection of two hyperbolas is the solution of the following two equations. 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

=−+−−−+−

=−+−−−+−

2
2

4
2

4
2

3
2

3

1
2

2
2

2
2

1
2

1

TDOAyyxxyyxx

TDOAyyxxyyxx
                           (5.6) 

 



124 

where , ( )T
111 , yx=X ( )T

222 , yx=X , ( )T333 , yx=X , and are the 

coordinates of four BSs, and 

( T
444 , yx=X )

( )T, yx=X  represents the intersections to be solved. It is 

difficult to obtain a closed-form solution since these equations are non-linear in nature. In 

this chapter, the following optimization problem is solved to calculate hyperbola 

intersections: 

( ) ( ){ }2
243

2
121minargˆ TDOATDOA −−−−+−−−−= XxXxXxXxx

x
     (5.7) 

since the intersection satisfying the equations (5.6) will also minimize the cost function in 

equation (5.7). This method is not suitable for real-world implementation because of a 

high computational burden, but is convenient for performance analysis with MATLAB. 

 

5.3.2 Construction of Distribution Function 

The distribution function is key in this NLOS mitigation algorithm. It is used to quantify 

the intersection distribution density and thereby to arrive at an intermediate MS location 

estimate. This estimate will be used for succeeding NLOS error identification and 

mitigation. The Distribution function is defined as 

( ) ( ) ( )( )∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −+−
−=

M

i

ii yyxxyxDF
1

2

22

exp,
ε
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where M is the total number of intersections; ( )ii yx ,  are the coordinates of the 

intersections computed via the method proposed above; and  is a value to control the 

coverage or the contribution of an intersection to the final distribution function. 

2ε

ε  needs 

to be well selected because it corresponds to the solution uncertainty due to receiver 
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noise. If one is too optimistic and selects a very small value of ε , the uncertainty area of 

each intersection will be unreasonably small such that the final distribution function has 

only discrete spikes. In this case, one is unable to determine where the distribution 

density is high and where it is low. If one is too pessimistic and selects a very large value 

ofε , the uncertainty area of each intersection will be too large and the final distribution 

function will be too flat. This will result in the insensitivity of the optimization process to 

receiver errors and will result in poor location accuracy. As a rule of thumb, ε  should be 

chosen as 1 ~ 2 times the standard deviation of the receiver noise. Figure 5.5 

demonstrates how a distribution function varies with ε . In Figure 5.5(a), ε  is selected as 

0.1 times the standard deviation of the measurement noise. In this case, the final 

distribution function has only discrete spikes that prevent estimation of the MS position 

because of the lack of a dominant peak. In Figure 5.5(b), because ε  is chosen to be equal 

to 10 times the standard deviation of the measurement noise, the final distribution 

function has only one flat peak that will result in poor estimation accuracy. In Figure 

5.5(c), ε  is equal to 1.5 times of the standard deviation of the measurement noise; here, 

the final distribution function has a much better-shaped peak and yields an adequate 

estimate of the MS position. 
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(a)   TDOASTD1.0 ⋅=ε  

 

(b) TDOASTD10 ⋅=ε  

 

(c) TDOASTD5.1 ⋅=ε  

Figure 5.5: Selection of ε  for Distribution Function Construction 
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 5.3.3 MS Location Estimation 

Two types of solutions can be used as the estimate of the MS position. One is the point 

that maximizes the distribution function 
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The other is the weighted combination of local maximum points. Supposing that there are 

N  local maximum points, ( ) NiyxP iii ,,1,, L==  with the corresponding distribution 

density values of , the MS estimation is ( iii yxDFq ,= )
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The solution of equation (5.9) is used in each of the simulation tests that is described in 

this chapter. 

5.3.4 NLOS Identification 

For each BS, a cost function can be formed to identify if the measurement of this BS is 

NLOS error corrupted. The cost function proposed here has the following form: 
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where M is the number of BSs used,  is the measured distance difference 

between  and , and  is the true distance difference. By 

m
kiTDOA ,

iBS-MS kBS-MS 0
,kiTDOA
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definition, a measured distance difference can be further expressed as its true value plus 

NLOS error and receiver noise. 
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If there is no receiver noise, the cost function reduces to 
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For those BSs which are not NLOS-corrupted, the cost functions simplifies to  
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It is negative since all NLOSs are non-negative. For the BS, say , which contains the 

largest NLOS error, the cost function is 
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It is positive since . For other BSs, the cost functions can be either 

negative or positive, but lie in the region of 
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Based on this property, the following can be derived: (1) the number of NLOS-free BSs 

or the number of NLOS-corrupted BSs. This can be found by identifying how many cost 
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functions have the same smallest negative value; and (2) the values of NLOS errors. The 

subtraction of a cost function of an NLOS-corrupted BS ( ) and that of an NLOS-free 

BS ( ) is 

nBS

cBS
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thus, 
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Taking receiver noise into consideration, a cost function in this case consists of two parts; 

one is the NLOS error component, and the other is the measurement noise component, as 

shown in the following equation 
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Receiver noise has a zero mean Gaussian distribution, ( )2,0 σN , so that the noise portion 

- a combination of receiver noise - is also zero mean Gaussian distributed but with a 

different variance, ( )( )21,0 σ−MMN . As a result, the cost function in this case is of a 

Gaussian distribution but with a non-zero mean value, 
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Specially, the cost function of an NLOS-free BS is of the following distribution 
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To identify if a BS is NLOS-corrupted or not, hypothesis tests need to be conducted. To 

this end, , the difference between the cost function of the BS to be evaluated and that 

of an NLOS-free BS, is selected 
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i
cγ  is a Gaussian random variable with a mean of and a variance of . 

Obviously, the hypothesis test is to decide whether or not  is a zero mean Gaussian 

random variable.  is zero mean if  is a NLOS-free BS; otherwise,  is of a 

positive mean and  is NLOS-corrupted. 
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Figure 5.6: The Distribution of  for NLOS-Free BS and NLOS-Corrupted BS i
cγ

The distributions of  in the NLOS-free case and in the NLOS-corrupted case are shown 

in Figure 5.6. Techniques of quality control or reliability analysis can be used to identify 

which type of distribution  is. If 

i
cγ

i
cγ 2α  is chosen as the false-alarm probability of 

recognizing a NLOS-free  as NLOS-corrupted and i
cγ β  as the miss-detection probability 

of accepting a NLOS-corrupted  as a NLOS-free one, the minimum detectable NLOS 

error can be calculated from Figure 5.7 and the results are presented in Table 5.1 

i
cγ

 

Figure 5.7: Determination of Minimum Detectable NLOS Error 
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Table 5.1: Minimum Detectable NLOS Error 

α  β  Minimum detectable  

NLOS Error 

5.0% 20% 3.96σ  

2.5% 20% 4.38σ  

5.0% 10% 4.58σ  

2.5% 10% 4.98σ  

0.1% 20% 5.83σ  

0.1% 10% 6.46σ  

 

 

Supposing that α  is 5% and β is 20%, the minimum detectable NLOS error is 3.96σ . If 

σ  is 60 m ~ 80 m for TOA measurements, the minimum NLOS error that can be 

identified is around 250 m ~ 320 m. This value is sufficiently large that the positioning 

accuracy cannot be improved to a satisfactory level. Two methods can be used to 

decrease measurement noise and to increase NLOS error removal capability. One method 

is using advanced signal reception techniques to decrease measurement noise. Similar 

techniques to those used in modern GPS receivers can be applied here. A narrow 

correlator technique, together with coupled PLL-DLL tracking loop techniques, can 

reduce the receiver noise to less than 1 m (Parkinson and Spilker, 1996). With this small 

level of receiver noise, most NLOS errors can be identified. The second method to 

decrease measurement noise is based on the phenomenon that NLOS errors are low 

frequency components compared to receiver noise, especially in low kinematic situations. 
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In this case, the cost functions of several consecutive time epochs in which NLOS errors 

are generally unchanged can be combined together as follows 
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where N  is the number of consecutive cost functions combined together. Obviously, the 

new cost function is of the following distribution: 
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The variance decreases from ( ) 21σ−MM  to ( )
N

MM 21σ− .  changes to i
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It now has the distribution of ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Ν

N
NLOSi

22, σ . When 16 cost functions are combined 

together, the minimum detectable NLOS decreases to σσ
≈=

16
96.3

minNLOS  with the 

same probabilities of %5=α  and %20=β . 

 



134 

5.3.5 NLOS Error Correction 

A higher positioning accuracy can be obtained if only NLOS-free TDOA measurements 

are used and a better geometry is maintained. However, these two requirements cannot be 

easily satisfied at the same time due to poor hearability. To get better positioning 

accuracy, one must estimate and remove NLOS errors from the BSs first and then use the 

corrected measurements from all available BSs to compute the MS location. This is 

especially true when the geometric layout of LOS BSs does not favour location 

estimation, i.e. when  is relatively large. LOSDOP

 

NLOS errors can be explicitly estimated via the following method that requires the true 

MS location and an NLOS-free BS. Since the true MS location is unknown, it is quite 

natural to use the intermediate MS location derived from the Distribution Function. The 

NLOS-free BS can be selected as that BS for which the cost function is the smallest. 

 

BS1   
BS2   

MS  

MS’

 

Figure 5.8: NLOS Error Correction 
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As shown in Figure 5.8, BS1 is assumed to be an NLOS-free BS; BS2 is the BS for 

which the range measurement contains an NLOS error, MS is the true MS position, and 

MS’ is the NLOS-corrupted MS position estimate due to BS2. On the one hand, one can 

get a calculated TDOA between BS1 and BS2 with the knowledge of the true MS 

location, 

2121 LLTOATOATDOA −=−= .                                                               (5.28) 

On the other hand, the direct measurement of this TDOA is 

221
'
21' NLOSLLTOATOATDOA −−=−=                                                 (5.29) 

if receiver noise is neglected. Thus, 

'2 TDOATDOANLOS −= .                                                                        (5.30) 

The NLOS error is the difference between the true TDOA and the measured TDOA if no 

receiver noise exists. Of course, with receiver noise, this estimated NLOS error will 

deviate from its true value. The NLOS error can also be directly estimated from  since 

it is equal to 

i
cγ

( )cii
i
c nnNLOS −+=γ . Obviously, the smaller the receiver noise, the 

smaller the minimum detectable NLOS error, and the higher the NLOS estimation 

accuracy. 

5.3.6 NLOS Error Detection Ability 

The NLOS error mitigation algorithm proposed here depends on system redundancy 

since the intermediate MS location necessary for NLOS error identification and removal 

is computed from clear hyperbola intersections. Given the total number of BSs that can 

be heard and the number of NLOS-free BSs, the ratio of clear intersections to all 
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intersections can be determined in advance. Only when the number of clear intersections 

is larger than one can the clear intersection density be thought to be much larger than that 

of biased intersections (NLOS-corrupted) since the biased intersections are assumed to be 

randomly distributed. The number of independent intersections can be calculated via the 

following equation 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

4
*3

3
MM

p                                                                              (5.31) 

where p is the total number of intersections and M  is the number of BSs that can be 

heard. The first item is the number of intersections derived from three distinct BSs and 

the second item is the number of intersections derived from four distinct BSs. Similarly, 

the number of clear intersections when there are n  NLOS errors is  
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The first item is the number of intersections calculated from 3 distinct NLOS-free BSs 

and the second item is the number of intersections calculated from 4 distinct NLOS-free 

BSs. 

 

Table 5.2 is a summary of the ratios of clear intersections to total intersections. 

Obviously, one cannot mitigate NLOS errors if the number of BSs is less than or equal to 

four because of the lack of redundancy. With five BSs heard, up to one NLOS error can 

be identified and removed. With six BSs heard, up to two NLOS errors can be removed. 
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Table 5.2: Ratios of Clear Intersections to Total Intersections  
in TDOA Wireless Location 
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5.4 Simulation Results 

Monte Carlo simulation tests have been done to verify the performance improvement due 

to the proposed NLOS error identification and removal algorithm. In the simulation, a 7-

cell 2D cellular system is used and the MS to be located is in the central hexagonal cell 

surrounded by six adjacent hexagonal cells of the same size. The results of the following 

experiments are presented in the following sections: 

• Investigation of NLOS error detection capability with respect to the number of 

BSs used 

• Evaluation of the positioning accuracy improvement due to NLOS error 

mitigation for constant NLOS errors 

• Investigation of the NLOS error mitigation capability with respect to receiver 

noise and the number of consecutive cost functions combined 

• Evaluation of the positioning accuracy improvement in real wireless location 

environments 
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5.4.1 Successful NLOS Error Detection Probability with Respect to the Number of BS 

useds 

Two types of receiver noise are simulated to evaluate the NLOS error detection 

capability. The first type of receiver noise in TOA measurements is assumed to have a 

standard deviation of 70 m. This value comes from the work of Wylie and Holtzman 

(1996) and is currently thought to be pessimistic. The second type of receiver noise is 

assumed to have a standard deviation of 25 m. It is obtainable via advanced receiver 

techniques. The cell radius is 3 km, the MS to be located is at (700m 1200 m), and each 

Monte Carlo test contains 500 independent runs. 

 

Figure 5.9 shows the successful NLOS error detection probabilities when two NLOS 

errors exist. A successful NLOS error detection is defined here as a correct identification 

of NLOS-free BSs and NLOS-corrupted BSs. The horizontal axis shows the number of 

BSs used and the vertical axis represents the successful detection probability. Six 

scenarios are studied: 

• NLOS errors: 250 m and 450 m; STD of receiver noise: 25 m 

• NLOS errors: 350 m and 550 m; STD of receiver noise: 25 m 

• NLOS errors: 450 m and 750 m; STD of receiver noise: 25 m 

• NLOS errors: 250 m and 450 m; STD of receiver noise: 70 m 

• NLOS errors: 350 m and 550 m; STD of receiver noise: 70 m 

• NLOS errors: 450 m and 750 m; STD of receiver noise: 70 m 
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Figure 5.9: Successful NLOS Error Detection Probability with Two NLOS Errors 
(250 m, 450 m), (350 m, 550 m) , and (450 m, 750 m) 

It is obvious that: it is easier to identify NLOS errors when the receiver noise is smaller; 

the larger the NLOS errors the higher the detection probability; it can not be guaranteed 

that successful detection probability increases with an increase in the number of BSs used 

although higher redundancy is preferred. This is because the accuracy of the intermediate 

MS location may not improve when more BSs are used. 

 

Figure 5.10 shows the successful NLOS error detection probabilities when three NLOS 

errors exist. The horizontal axis again represents the number of BSs used and the vertical 

axis represents the successful detection probability. Six scenarios are studied here: 

• NLOS errors: 250 m, 350 m and 450 m; STD of receiver noise: 25 m 

• NLOS errors: 350 m, 450 m and 550 m; STD of receiver noise: 25 m 

• NLOS errors: 450 m, 550 m and 750 m; STD of receiver noise: 25 m 

• NLOS errors: 250 m, 350 m and 450 m; STD of receiver noise: 70 m 
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• NLOS errors: 350 m, 450 m and 550 m; STD of receiver noise: 70 m 

• NLOS errors: 450 m, 550 m and 750 m; STD of receiver noise: 70 m 
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Figure 5.10: Successful NLOS Error Detection Probability with Three NLOS Errors 
(250 m, 350 m, 450 m), (350 m, 450 m, 550 m) and (450 m, 550 m, 750 m) 

Compared to Figure 5.9, it is clear that the successful detection capability degrades 

significantly. This is because increasing the number of NLOS errors results in less 

redundancy and thus decreases the NLOS error detection capability. Even in this case, the 

proposed algorithm can still detect NLOS errors if the receiver noise is small. 

5.4.2 MS Location Accuracy 

The positioning accuracies of three methods are compared here. The first is the Least-

Squares method with NLOS error detection and correction and is denoted as NLOS-LS. 

The second is the Least-Squares method without NLOS error detection and correction 

and is denoted as RAW-LS. The third, denoted as DF, is the distribution function method 
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where the intermediate MS location derived from an intersection distribution function is 

used as the MS location solution. 

 

Figures 5.11 to 5.13 show the respective performances of these three methods when there 

is only one NLOS error. It can be seen that the accuracy of RAW-LS decreases with an 

increase in NLOS error, especially when the number of BSs used is small (for example, 4 

or 5). DF exhibits a similar performance as that of NLOS-LS when the number of BSs 

used is small. Good NLOS error removal can be obtained when receiver errors is small. 

For example, the RMS value of positioning errors can reduce to 40 metres when the 

standard deviation of receiver noise is 25 metres while it is about 100 metres when the 

standard deviation of receiver noise is 70 metres. 
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Figure 5.11: MS Position Estimation Accuracy with One NLOS Error of 200 m 
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Figure 5.12: MS Position Estimation Accuracy with One NLOS Error of 300 m 
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Figure 5.13: MS Position Estimation Accuracy with One NLOS Error of 400 m 
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Figures 5.14 to 5.19 demonstrate the positioning accuracies of these three methods when 

there are two or three NLOS errors. The same conclusions can be drawn as those in the 

single NLOS error case. RAW-LS has the worst positioning accuracy since it does not try 

to remove NLOS errors. The NLOS-LS and DF methods produce better results especially 

when the receiver noise is small. However, the positioning accuracy is not as high as in 

the one NLOS error case shown in Figures 5.11 to 5.13. This is because the NLOS error 

mitigation algorithm becomes less effective when measurement redundancy decreases. 

Occasionally, the accuracy can be even worse than the RAW-LS method. 
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Figure 5.14: Positioning Accuracy with Two NLOS Errors (of 250 m, 450 m) 
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Figure 5.15: Positioning Accuracy with Two NLOS Errors (of 350 m, 550 m) 
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Figure 5.16 Positioning Accuracy with Two NLOS Errors (of 450 m, 750 m) 
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Figure 5.17: Positioning Accuracy with Three NLOS Errors (250 m, 350 m, 450 m) 
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Figure 5.18: Positioning Accuracy with Three NLOS Errors (350 m, 450 m, 550 m) 
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Figure 5.19: Positioning Accuracy with Three NLOS Errors (450 m, 550 m, 700 m) 

5.4.3 NLOS Error Mitigation Capability with Respect to Measurement Noise 

The experiments in this section aim to demonstrate the importance of minimizing 

receiver noise for NLOS error mitigation. As mentioned above, two methods can be 

applied to decrease receiver noise. One method uses advanced signal tracking techniques 

to physically decrease receiver noise as done in GPS receiver design. In the other method, 

TOA/TDOA measurements or consecutive cost functions are averaged to decrease the 

influence of receiver noise on TOA/TDOA measurements. This is based on the 

phenomenon that NLOS errors are low frequency components in low dynamic situations. 

 

A 7-cell cellular network is used, but with a cell radius of 3 km and the MS to be located 

is at (800 m, 1380 m). Three BSs (BS3, BS5 and BS7) are assumed to be NLOS error 
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corrupted, with associated constant NLOS errors of 100 m, 200 m and 500 m, 

respectively. Receiver noise with three different standard deviations are simulated. The 

three standard deviations are m100TOA =σ , m35TOA =σ , and m10TOA =σ . With 

measurement averaging taken into account, six test scenarios are fully discussed. In the 

measurement averaging, the measurements of 30 epochs are averaged to generate one 

smoothed data for location estimation. 

• Scenario 1: m100TOA =σ  without measurement averaging 

• Scenario 2: m100TOA =σ  with measurement averaging 

• Scenario 3: m35TOA =σ  without measurement averaging 

• Scenario 4: m35TOA =σ  with measurement averaging 

• Scenario 5: m10TOA =σ without measurement averaging 

• Scenario 6: m10TOA =σ with measurement averaging 

 

The actual standard deviation of receiver noise for these scenarios is summarized in the 

following table. 

Table 5.3: Receiver Noise for Six Scenarios 

σTOA= 1.8 m6: σTOA= 10 m with measurement averaging

σTOA= 10 m5: σTOA= 10 m

σTOA= 6.4 m4: σTOA= 35 m with measurement averaging

σTOA= 35 m3: σTOA= 35 m

σTOA= 18.3 m2: σTOA= 100 m with measurement averaging

σTOA= 100 m1: σTOA= 100 m

STD of receiver noiseScenarios

σTOA= 1.8 m6: σTOA= 10 m with measurement averaging

σTOA= 10 m5: σTOA= 10 m

σTOA= 6.4 m4: σTOA= 35 m with measurement averaging

σTOA= 35 m3: σTOA= 35 m

σTOA= 18.3 m2: σTOA= 100 m with measurement averaging

σTOA= 100 m1: σTOA= 100 m

STD of receiver noiseScenarios
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Figure 5.20: Probability of Successful NLOS Error Detection (Both missing detection 
and false detection not allowed) 

Figure 5.20 is the probability of successful NLOS error detection without missing 

detection and false detection. Missing detection describes the situation where a BS that 

contains NLOS error is not detected; false detection means that an NLOS-free BS is 

thought of as NLOS error corrupted by mistake. When receiver noise is large as for 

scenario 1 (see Table 5.3), the minimum detectable NLOS error is very large, so that 

missing detection occurs frequently and NLOS detection capability is poor. On the other 

hand, when receiver noise is very small as for scenario 6, false detection occurs 

frequently and the NLOS detection capability is also poor.  
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Figure 5.21: Probability of Successful NLOS Error Detection (Missing detection not 
allowed; False detection allowed) 

If false detection is allowed in successful NLOS detection, the probability plot is as 

represented in Figure 5.21. It can be seen that the smaller the receiver noise, the higher 

the successful probability. The reason one may consider allowing false detection is that 

the estimated NLOS error in false detection cases is small and the positioning accuracy 

will not degrade significantly. To demonstrate this, Figure 5.22 shows the NLOS error 

estimation for each BS. When the receiver noise is small, only the NLOS error estimates 

of BS3, BS5 and BS7 are large and roughly equivalent to their true NLOS errors; those of 

the NLOS -free BSs are relatively small. 
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Figure 5.22: Estimated NLOS Errors for Each BS 
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Figure 5.23: Positioning Accuracies of Three Positioning Methods 

Figure 5.23 shows the positioning accuracy of these three algorithms in the six different 

scenarios. Evident is that a normal least squares method without NLOS error mitigation 

produces poor accuracy, even when receiver noise is very small. A least squares method 

with NLOS error mitigation and a distribution function-based method yield much better 

performance because both of them are able to mitigate the influence of NLOS errors. It is 

worth emphasizing that such performance improvement can be achieved only when the 

receiver noise is small. Fortunately, receiver noise is theoretically receiver-dependent and 

can be made quite small by means of sophisticated receiver design techniques. 

5.4.4 Positioning Accuracy Improvement in Multipath Propagation Environments 

To evaluate the benefits of this NLOS error mitigation method in real world situations, it 

was applied to a multipath propagation channel where NLOS errors are assumed to be 
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time-variant and have exponential distribution characteristics in urban areas. The 7-cell 

system is still used here and the cell size is 3 km in radius. The exponentially distributed 

NLOS errors are simulated by the inversion method discussed in Section 4.4.4. The 

location accuracy is evaluated with respect to MS-serving BS separations. 
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Figure 5.24: Positioning Accuracy with σTOA=100 m 

Figure 5.24 illustrates the location accuracies of the different algorithms when the 

receiver noise is equal to m100TOA =σ . The horizontal axis represents the MS-serving 

BS separation and the vertical axis shows RMS values of positioning errors. Note that 

positioning accuracy may degrade with the use of NLOS error mitigation when the 

receiver noise is large. This is because large receiver errors make it difficult to correctly 

estimate NLOS errors and, thus, may introduce residual errors in MS location 

computation. However, if measurement averaging is applied, the receiver noise can be 

decreased. In this case, better NLOS mitigation can be achieved and superior location 

performance is obtained.  
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Figure 5.25: Positioning Accuracy with σTOA=35 m  
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Figure 5.26: Positioning Accuracy with σTOA=10 m 
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Figures 5.25 and 5.26 show the location accuracies of the different algorithms when the 

receiver noise is equal to m35TOA =σ  and m10TOA =σ , respectively. Due to the smaller 

receiver noise in these two cases, the performance of the NLOS error mitigation method 

is much better than that of a normal LS method without NLOS mitigation. However, the 

accuracy is worse than that shown in Figure 5.23 (see scenarios 3 and 5). This is because 

the NLOS errors in Figure 5.23 are constant and the number of NLOS errors is within the 

NLOS error detection capability discussed in Section 5.3.6. In a real multipath 

propagation environment, NLOS errors are time-variant and all of the BSs may have 

NLOS errors, so the number of NLOS-corrupted BSs is beyond the capability of the 

proposed method. Even though, the positioning accuracy can still be greatly improved as 

shown in the above figures. 

5.5 Conclusions 

The NLOS error corruption problem is a serious issue in wireless location. The proposed 

DF and NLOS-LS algorithms provide the capabilities to explicitly reduce NLOS errors in 

TOA or TDOA measurements. Thus, they can be used to enhance the performance of the 

commonly used LS algorithm. The proposed NLOS mitigation method is a position-

domain method and is suitable for low dynamic users since no spatial diversity is 

required. Another benefit is that NLOS errors can be thought of as constant over a longer 

time period. In this case, receiver noise can be decreased by measurement averaging to 

achieve better performance. 
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CHAPTER 6 

NLOS ERROR MITIGATION FOR AOA MEASUREMENT 

6.1 Introduction 

The accuracy of AOA observations can significantly impact wireless location 

performance. For example, the performance of hybrid TDOA/AOA location schemes will 

not be superior to that of TDOA-only schemes if the standard deviation of the AOA 

measurements is larger than 5~10 degrees (Ma et al, 2003). Unfortunately, the true AOA 

of an incoming signal is usually obscured in real world applications because of multipath 

propagation and receiver noise. Due to reflectors and scatterers around base stations and 

mobile stations, the signals received by a BS or an MS contain not only the desired LOS 

signal but also some NLOS replicas. The AOAs of these NLOS signals can be 

significantly different from that of the LOS signal, which makes it difficult to measure 

the true AOA. Environmental noise and system thermal noise also result in degraded 

AOA measurements because they obscure the character of incoming signals. 

 

This chapter focuses on the mitigation of NLOS errors in AOA measurements in a 

wireless channel characterized by significant multipath effects. The concept is described 

briefly as follows. The true AOA is the AOA of the LOS signal and the earlier a 
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multipath replica arrives after the LOS signal, the smaller the AOA NLOS error. It 

follows, therefore, that more accurate AOA observations can be obtained if one can 

identify the LOS signal or the earliest multipath replica based on TOA estimation of all 

multipath signals. To this end, a spatio-temporal 2-D signal processing technique is 

proposed: (i) to estimate TOAs and AOAs of all incoming signals; and (ii) to select the 

AOA of the earliest component as the final AOA observation. 

 

The outline of this chapter is as follows. The Geometry Based Single Bounced model 

(GBSB) is first presented to describe the TOA-AOA distribution of a multipath channel 

(e.g. Liberti and Rappaport, 1996; Petrus and Reed, 2002). Following this, an array signal 

processing technique (Van der Veen et al, 1998; Wang et al, 2001) and a 2-D Unitary-

ESPRIT technique (Zoltowski et al, 1996) are applied to estimate the vector channel 

impulse response and the TOAs/AOAs of multipath signals. Finally, simulation results 

are presented to demonstrate the effectiveness of this algorithm. 

6.2 TOA-AOA Distribution in a Multipath Channel 

Multipath signals represent the delayed versions of the signals as originally transmitted 

when electromagnetic waves encounter reflection from large objects, diffraction around 

small objects, and scattering as it traverses the wireless channel. All of the possible paths 

within a wireless channel have different properties, so that each multipath signal has its 

own distinct amplitude, carrier phase shift, time delay, angle of arrival, and Doppler shift 

characteristics. Furthermore, as multipath channels are time-varying channels, all of the 

parameters change with time (Nuckols, 1999). 
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6.2.1 TOA Spread (Delay Spread) 

Multipath signals arrive at a receiver at different instants of time, thus giving an arrival 

time expansion or TOA spread. If an impulse, ( )tδ , is transmitted at time instant 0=t , 

the received signal will be  ( )th

( ) ( )∑
=

−=
n

i
ii Ttath

1

δ                                                                            (6.1) 

where  is the number of multipath replicas;  is the “amplitude” of the received 

impulse due to the  path; and  is the time delay of the delayed impulse. The 

longer the path, the larger the time delay and, normally, the lower the received signal 

power. 

n ia

thi iT thi

 

The impulse arrival time, T , is usually characterized by a probability density function, 

such as a negative exponential distribution (Yacoub, 1993). Accordingly, the mean time 

delay is the mean of this density function, and the delay spread corresponds to its 

standard deviation. In practice, the delay spread varies from fractions of microseconds to 

many microseconds. In urban areas the delays can reach a few microseconds whereas, in 

suburban areas and in open areas, they are shorter (0.5 sµ  and less than 0.2 sµ , 

respectively). Figure 6.1 depicts typical impulse arrival profiles for different propagation 

environments. 
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Figure 6.1: Macrocell Power-Delay Profiles (Vanderveen, 1997) 

6.2.2 Angle of Arrival (AOA) Spread 

Multipath signals arrive at receivers from different directions due to the irregular spatial 

distribution of scatterers. This results in an expansion of angle of arrival. Paulraj and 

Papadias (1997) reported a typical angular spread of  in indoor scenarios,  in o360 o20
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urban scenarios, and in flat rural scenarios. Piechocki et al (1998) presented a general 

formula for the pdf of AOAs based on the circular scatterer model. The angular 

distribution is 

o1

( )
( ) ( ) ( )

⎪
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⎩

⎪⎪
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⎧
≤≤−−+

=

−−

otherwise

drdrdr
r
d

f

0

sinsin1coscos2 1122
2

2

ααα
παα      (6.2) 

where  is the MS–BS separation and d r  is the radius of the circular scatterer area around 

the MS. The equation is only valid for . A reasonable estimate for the LOS AOA 

could be the mean AOA of all multipaths, the AOA of the first arrival, or a composite 

mean with higher weightings ascribed to the earlier arriving multipaths.  

rd ≥

 

To numerically describe the TOA and AOA distributions of a multipath channel, another 

simpler channel model, the GBSB model, is presented in the following section. One can 

see from this model that AOA spread decreases when only earlier signals are considered. 

This results in better AOA measurements and, consequently, results in superior location 

accuracy. 

6.3 GBSB Model 

The GBSB model is a simple and efficient statistical channel model. Based on the 

following assumptions, it can provide analytical solutions to joint TOA-AOA 

distributions: 

• The signals received at the base station are assumed to be plane waves arriving 

from the horizon, and hence the AOA calculation includes only the azimuth angle. 
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• Scatterers are assumed to be uniformly distributed around MSs and BSs. 

• Each scatterer is assumed to be an omni directional reradiating element whereby 

the plane wave, on arrival, is reflected directly to receiver antennas without 

influence from other scatterers. 

• Scatterers are assigned equal scattering coefficients with uniform random phases. 

 

A mobile network has two types of cells, the macrocell and the microcell, depending on 

the cell radius and the serving BS antenna height. Accordingly, there also exist two types 

of GBSB models, the GBSB macrocell model and GBSB microcell model, each of which 

has its own joint TOA-AOA distribution and properties.  

6.3.1 GBSB Macrocell Model 

For a macrocell, the cell radius is quite large (around 10 km), and the BS antenna is well 

above surrounding objects. In this case, scatterers are assumed to be only near MSs which 

are normally quite low, about 1~2 m above ground level. Such a GBSB macrocell model 

is illustrated in Figures 6.2 and 6.3. 

 

Figure 6.2: GBSB Macrocell Model 
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Figure 6.3: Scatterer Region of a GBSB Macrocell Model 

The distance between the base station and the mobile station is . Scatterers, denoted by 

, are assumed to be uniformly located around the MS inside a circle of radius

D

S R . As a 

result, the AOAs of multipath components at the base station are restricted to an angular 

region of max2θ , where  

⎟
⎠
⎞

⎜
⎝
⎛= −

D
R1

max sinθ                                                                                (6.3) 

The joint distribution of TOA and AOA can be obtained by studying scatterer density 

within the scatterer circle as a function of TOA and AOA. Based on the detailed 

derivation in Ertel et al (1998), such a joint distribution is of the following form 
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where τ  is TOA and θ  is AOA measured relative to the LOS BS-MS direction. The 

respective distributions of τ  and θ  can be further derived by calculating the marginal 

probability. Only the AOA distribution (Petrus and Reed, 2002) is provided here  
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Figure 6.4: Joint TOA/AOA Distribution of GBSB Macrocell Model 

 

Figure 6.4 is an example of the joint TOA-AOA distribution. Evident from this figure is 

that 

• The probability is non-zero only in the region where scatterers occur; and 

• The earlier the incoming signals, the narrower the AOA spread. 
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Figure 6.5: AOA Distribution with All multipaths Signals Considered 

 

These conclusions can also be drawn from the marginal distribution of AOA, ( )θθf . 

Figure 6.5 depicts plots of ( )θθf  for cases of DR  equal to 0.15, 0.35, and 0.65. 

Suppose that the time difference between the earliest signal and the latest signal is T , 

which corresponds to the largest TOA NLOS error, . If one is able to distinguish 

the arriving signals with a resolution of 

maxNLOS

16T  and only the earliest 16T  incoming 

signals are used, the plots of the AOA distributions of these earliest signals will change to 

those shown in Figure 6.6. Compared to the plots in Figure 6.5, one can easily see that 

the angle spread decreases significantly. 
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Figure 6.6: AOA Distribution with Only Early Multipath Signals Considered 

6.3.2 GBSB Microcell Model 

For a microcell, the cell radius is small (about 2~3 km) and the BS antenna is not well 

above the surrounding objects. In this case, both the BS and MS are surrounded by 

scatterers. Such a GBSB microcell model is illustrated in Figure 6.7. 

BS MS

D b

Scatterer region

S

a

BS MS

D b

Scatterer region

S

a  

Figure 6.7: GBSB Microcell Model 

In this figure, the distance between the base station and the mobile station is D . 

Scatterers, denoted by S , are assumed to be uniformly located around both the MS and 
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the BS inside an ellipse. If the maximum time delay of concern is mτ , the major semi-

axis, , and the minor semi-axis, b , are expressed by a

2
mca τ

=                                
2

222 Dc
b m −
=

τ
. 

Unlike a macrocell, where the AOAs of multipath components are restricted to an angular 

region of max2θ  at the base station, AOAs in a microcell can originate from any direction 

(i.e., from  to ). If the scatterers are assumed to be uniformly distributed in the 

ellipse, the joint TOA-AOA distribution in the microcell case can also be obtained by 

studying the scatterer density within the scatterer region as a function of TOA and AOA. 

The joint TOA-AOA distribution has the following form (Ertel et al, 1998) 
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where τ  is TOA and θ  is AOA measured relative to the LOS BS-MS direction. The 

respective distributions of τ  and θ  can be further derived by calculating their marginal 

probability functions. Similarly, only the AOA distribution is provided here (Liberti and 

Rappaport, 1996). 
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Figure 6.8 is an example of the joint distribution of TOA and AOA for a microcell. The 

following conclusions can be drawn: 
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• The probability of AOA is non -zero in all directions; and 

• The earlier the arriving signal, the narrower the AOA distribution, and the smaller 

the AOA spread. 

 

Figure 6.8: Joint TOA/AOA Distribution in a Microcell (GBSB Microcell Model) 

These conclusions can also be drawn from analysis of the marginal distribution of AOA, 

( )θθf . Figure 6.9 depicts the plots of ( )θθf  in three cases, where the ratio of the 

maximum NLOS error, τ∆c , to the MS-BS distance, , is equal to 0.01, 0.1, and 0.3. 

Obviously, 

D

τ∆ is inversely proportional to the ability to extract the earlier signals. Not 

surprisingly, the angle spread corresponding to 01.0=∆ Dc τ  is much smaller than that 

of 3.0=∆ Dc τ . 
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Figure 6.9: Marginal AOA Distribution for GBSB Microcell Model 

From the above discussion of the GBSB macrocell and microcell models, it is obvious 

that the angle spread is smaller when only early arriving signals are considered. This 

means that AOA measurement accuracy and wireless location performance can be 

improved if one is able to make use of only early arriving signals. To this end, an 

algorithm to estimate the vector channel impulse response and to extract early arriving 

signals is proposed in the following sections. 

6.4 Vector Channel Estimation 

An antenna array becomes necessary here since AOAs and TOAs of multipath signals 

need to be estimated in the proposed algorithm. It is also worth pointing out that such an 

antenna array can only be mounted at BSs because of the large size. Based on this 

requirement, a system to estimate AOAs and TOAs should have a structure (Van der 

Veen et al, 1998) as shown in Figure 6.10. 
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Figure 6.10: Vector Channel Estimation 

At an MS transmitter, signal  is propagated through a multipath radio channel after 

waveform shaping where the shaping function is denoted as 

ks

( )tg . At a BS receiver, all 

sensors of the antenna array receive multipath signals and send them to a channel 

estimator to estimate TOAs and AOAs. Each multipath replica has its own parameters 

( iii )βθτ ,,  which are TOA, AOA, and propagation fading, respectively. Fading is 

assumed herein to be independent among paths; that is, each path has an individualized 

signal fading effect. This assumption is reasonable because only physically close paths 

are correlated and they actually can be treated as one path. In this chapter, such a mobile 

channel is called a vector channel which is a function of the AOAs and TOAs of 

multipath signals. 

 

A uniform linear array (ULA) is an adequate modelling device to estimate AOAs if only 

azimuth angle is of interest. For simplicity’s sake, assume that the following two 

conditions hold. First, that the received signal is a narrow band signal compared to the 

size of the antenna array, which means that the amplitudes of an incoming signal at all 
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sensors are the same. Second, the incoming signals are far-field signals, meaning that the 

signals are plane wave and the incident angles are the same at all sensor locations.  
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Figure 6.11: Uniform Linear Array 

Suppose that a multipath signal due to scatterer i  impinges on an M -element ULA in the 

direction of iθ , as shown in Figure 6.11. Given the above assumptions, the output of 

element m  is 

( ) ( )
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where  is the distance between two adjacent sensors;  is the amplitude of the original 

transmitted signal; 

∆ A

iβ  is the propagation attenuation of this signal (it is uncorrelated with 

those of other paths); iτ is TOA;  is signal carrier frequency; and c  is signal 

propagation velocity. Stacking the output of array elements into a vector gives 
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where ( )iθa  denotes the array response, which is normally called the array manifold.  

 

Taking all of the multipath signals into consideration, the final output of the antenna 

array consists of the superposition of each individual multipath replica since the channel 

is a linear channel and, thus, the superposition principle holds. Supposing that there are q  

multipath replicas - each with its own AOA iθ , TOA iτ , and path attenuation, iβ - the 

final output of the antenna array is 

( ) ( ) ( )∑
=

−=
q

i
iiii tsAt

1

τβθar                                                                        (6.10) 

and the vector channel impulse response is 

( ) ( ) ( )∑
=

−=
q

i
iiiic tAt

1

τδβθah                                                                      (6.11) 

The above equation is an expression of the vector channel impulse response in a 

continuous time domain. In real world wireless systems, all signals being processed are 

sampled as discrete signals, so a discrete channel model is necessary prior to channel 

estimation. 

6.4.1 Discrete Space-Time Channel Model 

Discrete channel modelling is closely related to the digital modulation procedure in a 

cellular network. Digital modulation is the process by which a digital baseband signal is 

converted into an RF signal for transmission. Normally, the base-band signal is first 

created by the convolution of digital sequences{ }ks  with a pulse shaping function ( )tg  

( ) ( )∑ −=
l

l lTtgsts                                                                                     (6.12) 
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where T  denotes symbol period. The pulse shaping function, ( )tg , is band-limited and, 

thus, is associated with a theoretically infinite length of time. However, it is usually 

truncated to a finite duration without incurring serious accuracy problems. A commonly 

used pulse shaping function is the raised cosine pulse function, given by 

( ) ( ) ( )
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α
απ

π
π                                                              (6.13) 

where α is the roll-off factor. Figure 6.12 shows an example of a raised cosine pulse 

function (Van der Veen et al, 1998). 

 

(a) Time Domain                                             (b) Frequency Domain 

Figure 6.12: Raised Cosine Pulse Function 

Let  represent the baseband output of a uniform linear array with ( )tx M  elements. Based 

on equation (6.10), the continuous received signal with measurement noise is  

( ) ( ) ( ) ( )∑
=

+−=
q

i
iii ttst

1

nax τβθ                                                                  (6.14) 
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Substituting equation (6.12) into this equation,  
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it is observed that , the output of the receiver array, is the convolution of the digital 

sequence with a new function, 

( )tx

( )th . So, ( )th  is the discrete vector channel impulse 

response, expressed by 

( ) ( ) ( )∑
=

−=
q

i
iii tgt

1

τβθah                                                                         (6.16) 

 

6.4.2 Discrete Vector Channel Estimation 

 

Channel estimation can be conducted via blind techniques and non-blind techniques. 

While a blind technique depends only on channel output, employment of a non-blind 

technique requires knowledge of the waveform of the transmitted signals - that is, a 

training sequence. In this chapter, a non-blind technique proposed by Van der Veen et al 

(1998) is used. The derivation of this algorithm is explained as below. 

 

Over-sampling the output of the antenna array during N  symbol periods at time, 

P
N

P
kkTt 1,,1,0, −== L , we then obtain, 

( ) ( )( ) ( )
P

N
P

kkTTlkskT
l

l
1,,1,0, −=+−=∑ Lnhx                          (6.17) 
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where T  is symbol period and P  is the over sampling rate, which is the number of 

samples within one symbol period. As discussed above, the pulse-shaping function, ( )tg , 

such as the truncated raised cosine pulse function, is of finite non-zero length. If the non-

zero length is symbolized by , the output can be written as L

( ) ( )( )
⎣ ⎦

⎣ ⎦
( )

P
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P
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k

Lkl
l

1,,1,0,
1

−=+−= ∑
+−=

Lhx                       (6.18) 

 

Both ( )
P

N
P

kkT 1,,1,0 −= Lx  and ( )
P

L
P

kkT 1,,1,0 −= Lh  can be rearranged into matrix form as follows: 
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After some derivation, we can prove that the following equation holds 

NHSX +=                                                                                              (6.21) 
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Equations (6.17) and (6.21) form the theoretical basis of the channel estimation algorithm 

used here. 

 

In non-blind channel estimation, the transmitted symbols, { }ks , called the training 

sequence, are carefully selected in advance, so that S  is known and  can be computed 

as  

H

( ) NSSXSH ~ˆ 1
+=

−HH                                                                                (6.22) 

Ĥ  is of the structure shown in equation (6.20), and can be rearranged into an PLM ×  

matrix, 
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which is actually of the following form based on the channel model in equation (6.16)  
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where ( )ii θaa =  is the array manifold vector for  signal and contains AOA 

information, 

thi

iθ . ( )[ ] PLPkii kg 1,,1,0 −=−=
L

τg  is a delayed version of waveform-shaping 

function; it is a LP -dimensional row vector and contains TOA information, iτ .  
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Matrix  can be further simplified by introducing the Discrete Fourier Transformation 

(DFT) to the delayed waveform-shaping functions. Let Γ  denote the DFT matrix of size 

G

LPLP× , 
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One can prove that 
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and g~  is the DFT of vector ( ) ( ) ( )[ ]PLgPgg 110 −= Lg . Thus, the vector channel 

estimate becomes 

( )gFβAΓHH ~diag'~ ⋅⋅⋅=⋅= .                                                                   (6.28) 

 

In order to make the estimation of TOA and AOA easier, it is desirable to remove the 

item ( )g~diag  from equation (6.28). This can be done by post-multiplying H~  with 

( )g~diag-1 . However, because some elements of g~  are very small or even zero, they may 

prevent the inversion operation. To avoid this, only those elements with large absolute 

values are used. W  points inside the main frequency domain lobe that are suitable for 

inverse operation can be extracted by the following matrix: 
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Applying it to H~  gives 
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where  is the array manifold matrix with dimensions of A qM × ; F  is the TOA-related 

matrix with a size of Wq× ; and  is the multipath signal amplitude-related matrix. They 

have the following component forms: 
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The above derivation of H  is the first stage of vector channel estimation. It is actually a 

deconvolution procedure because the channel impulse response is calculated from the 

array output. In the second stage, TOAs and AOAs of multipath replicas will be 

estimated from H  and will be used to obtain better AOA measurements. 

6.5 TOAs and AOAs Estimation via 2D UESPRIT Super-Resolution Method 

Several methods have been proposed to conduct space-time channel estimation, such as: 

the iterative multidimensional maximum likelihood method (Wax and Leshem, 1997); 

the JADE algorithm (Van der Veen et al, 1997); and the TST-MUSIC method (Wang et 

al, 2001). In this chapter, the 2-D Unitary-ESPRIT method (Zoltowski et al, 1996) is used 

to estimate TOAs and AOAs of multipath signals because it is a closed-form solution and 

can make use of the centro-Hermitian property of a Uniform Rectangular Array (URA) to 

decrease the computational burden and improve estimation accuracy. 

 

Studying  and  in element form, it can be seen that A  and , containing AOA and 

TOA information, are of Vandermonde format. When 

A F F

H  is compared with the output of 

a URA (Yu and Lee, 1997), which is often used for azimuth and elevation direction-

finding, we can see that they are of exactly the same format. Hence, H  is actually the 

output of a URA with one dimension in the space domain and the other dimension in the 

time domain. Given this basis, techniques suitable for a URA can be directly applied 

here. 
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The 2-D Unitary ESPRIT method is preferred because it makes use of the centro-

symmetric and/or centro-Hermitian property of a URA to improve estimation accuracy 

and decrease computational burden. A URA is centro-symmetric since its element 

locations are symmetrical with respect to its centroid. A URA has the dual-direction 

invariance property; i.e. there exist two identical sub-arrays in the space domain element 

direction and two identical sub-arrays in the time domain element direction, as shown in 

Figure 6.13. 
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Figure 6.13: Dual Direction Shift Invariance Structure of a URA (Chareyre, 2002) 

In summary, the 2-D Unitary-ESPRIT method has the following advantages, making it a 

high-performance TOA/AOA-finding algorithm: 

• Like the original ESPRIT method (Roy and Kailath, 1989), TOAs and AOAs are 

estimated by exploiting the rotational invariance structure of the signal subspace 

or the translation invariance structure of the URA. 

• Unitary ESPRIT exploits the knowledge that the phase factor for two sub-arrays 

with a translation invariance property is actually a unitary matrix. The estimation 
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accuracy can be improved by taking this additional information into 

consideration. 

• The centro-symmetric property is used to transform complex matrices to real 

matrices while keeping all TOA and AOA information intact. This can decrease 

the computational burden. 

• It is a closed-form solution. 

• It has a super-resolution capability. 

• It has an automatic pairing ability, which makes this method even more powerful 

in real world applications. 

A detailed derivation of this algorithm can be found in Zoltowski et al (1996).  

6.6 Simulation Results 

In this section, simulations are used to study algorithm performance in terms of the 

following: 

• The performance of 2-D Unitary-ESPRIT method itself 

• TOA/AOA estimation accuracy for a single BS 

• Wireless location performance improvement due to mobile channel estimation 

6.6.1 Performance of 2-D Unitary-ESPRIT Algorithm 

The objective of TOA-AOA estimation is to extract signal information from signal plus 

noise environments by means of array signal processing techniques. Thus, algorithm 
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performance will be affected by the structure of the antenna array used, interference and 

noise. As to the 2-D Unitary-ESPRIT method, its performance is affected by 

• The Signal to Interference Ratio (SIR); and 

• The number of sensors in the antenna array 

In the simulations presented here, six multipath replicas are assumed to be impinging on 

an antenna array as shown in Figure 6.11. The TOA/AOA pairs are (2.5 , -27º), (2.8 , 

22º), (3.3 , -43º), (3.4 , 27º), (3.86 , -40º), and (3.98 , 30º) where  is the symbol 

period. Figures 6.14 to 6.17 show the mean AOA error, the mean TOA error, the RMS of 

AOA errors, and the RMS of TOA errors which are calculated via, 

sT sT
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where  is the number of multipath replicas; q N  is number of the Monte Carlo runs; 

 and  are the true values of TOA  and of the  multipath replica; and 

 and  are the estimated TOA  and  of the  run for the  multipath 

replica.  

0
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Figure 6.14: Mean AOA Estimation Errors vs. SIR and Sensor Number 

-15 -10 -5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SIR (dB)

M
ea

n 
er

ro
r o

f T
O

A
 (C

hi
ps

)

Element number: 6
Element number: 9
Element number: 15

 

Figure 6.15: Mean TOA Estimation Errors vs. SIR and Sensor Number 
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Figure 6.16: RMS of AOA Estimation Errors vs. SIR and Sensor Number 
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Figure 6.17: RMS of TOA Estimation Errors vs. SIR and Sensor Number 

The simulation results demonstrate that both array sensor number and SIR affect the 

performance quite dramatically. With a larger number of array sensors and a higher SIR, 

a more accurate TOA/AOA estimation can be obtained. A reasonably acceptable TOA-
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AOA estimation - say, chips2.0RMS  TOA < and degree5.0RMS  AOA < - can be obtained 

when the SIR is higher than -5dB and the number of sensors is greater than the number of 

multipath signals. 

 

6.6.2 TOA-AOA Estimation Accuracy for a Single BS 

In this part, the TOA-AOA estimation accuracy is evaluated. The tests attempt to show 

how accurately a BS can measure the TOA-AOA of an MS with variations in the MS-BS 

distance. The results indicate whether or not a TOA-AOA measurement is suitable for 

use in an MS location calculation. The following parameters are used to evaluate the 

performance: the probability of successful TOA-AOA estimation; and the mean and 

RMS values of TOA and AOA measurement errors. Assumed are that the BS is well 

above the ground and that the GBSB macrocell model can be used to describe the 

scatterer distribution. The radius of the scatterer region is 500 m with the MS as the 

centre of the circular area. A successful TOA-AOA estimation is defined here as the case 

wherein the calculated scatterer corresponding to the measured TOA-AOA lies in the 500 

m scatterer region. The mean value and the RMS value of horizontal location errors are 

based only on successful TOA measurements and successful AOA measurements. In the 

simulations, the noise figure of the receivers at the antenna array is assumed to be 5dB, 

the signal transmission power of the MS to be located is 200mW, and the path loss is 

assumed to follow the CCIR model or equation (3.16). 
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Figure 6.18 shows the probability of successful TOA-AOA estimation for a system of 

which the symbol period is sµ68.3 . Actually, it is the symbol period of the popular GSM 

system. For convenience, the discrete results are fitted with curves to clearly show the 

trend of the performance change with respect to the change of MS-BS distance. One can 

see that successful estimation probability decreases with the increase of the distance 

between the BS and MS. This is because the SIR decreases with an increase in MS-BS 

distance which greatly affects the channel estimation performance. 
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Figure 6.18: The Probability of Successful Estimation  

Figures 6.19 to 6.22 demonstrate the change of the mean value and the RMS value of 

TOA estimation errors and AOA estimation errors. All of these values increase with 

increasing MS-BS distance, demonstrating that algorithm performance deteriorates with 

increases in MS-BS distance. 
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Figure 6.19: The Mean of TOA Estimation Errors 
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Figure 6.20: The RMS of TOA Estimation Errors  
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Figure 6.21: Mean of AOA Estimation Errors 
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Figure 6.22: RMS of AOA Estimation Errors  
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6.6.3 Estimation accuracy of MS location 

 

Simulation tests were conducted to verify wireless location performance improvement 

due to multipath channel estimation. Three methods are compared: (1) the TOA-AOA 

hybrid solution without channel estimation where the TOA and the AOA are selected 

from all of the multipath replicas based on the received power of each multipath signal; 

(2) the TOA-AOA hybrid solution with channel estimation where the TOA and the AOA 

of the estimated earliest signal are used in the MS location calculation; and (3) a 

benchmark method where the TOA and the AOA of the actual earliest signal are used in 

the MS location calculation. For method (1), the TOA and AOA selected is that of the 

strongest multipath replica. For method (2), BSs are divided into two categories: BSs 

with AOA and BSs without AOA. TOAs of the BSs without AOA are those of the 

strongest multipath replica, while the TOAs and AOAs of the BSs with AOA are the 

results of channel estimation. For method (3), the TOA and AOA selected is that of the 

shortest multipath replica. The system used is a 7-cell system with a cell size of 2 km, 

and the MS is moving from point O, the centre of cell BS1, towards point A as shown in 

Figure 6.23. The symbol period is sµ68.3 . The standard deviation of TOA measurement 

errors due to receiver noise is assumed to be 70 m and the standard deviation of AOA 

measurement errors due to receiver noise is assumed to be 0.3 degrees. 
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Figure 6.23: The Cellular System Used in Simulation 

The simulation results of four scenarios are presented below. 

• Scenario 1: 4 TOAs and 1 AOA without the LOS component. Four BSs are 

assumed suitable for TOA measurement, but only one BS is suitable for AOA 

measurement. For each BS, there are 5 multipath replicas but none of them is the 

LOS signal. Simulation results are shown in Figure 6.24. 

• Scenario 2: 4 TOAs and 1 AOA with the LOS component. Four BSs are assumed 

to be suitable for TOA measurement, but only one BS is suitable for AOA 

measurement. For each BS there are 5 multipath replicas with one as the LOS 

signal. Simulation results are shown in Figure 6.25. 

• Scenario 3: 7 TOAs and 3 AOAs without the LOS component. Very good 

hearability is assumed to be available. All seven BSs are assumed suitable for 

TOA measurement and three BSs are suitable for AOA measurement. For each 

BS there are 5 multipath replicas, but none of them is the LOS signal. Simulation 

results are shown in Figure 6.26. 
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• Scenario 4: 7 TOAs and 3 AOAs with the LOS component. Very good hearability 

is assumed to be available. All seven BSs are assumed to be suitable for TOA 

measurement and three BSs are suitable for AOA measurement. For each BS 

there are 5 multipath replicas with one functioning as the LOS signal. Simulation 

results are shown in Figure 6.27. 
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Figure 6.24 Mean and RMS of Location Errors for Scenario 1 
(4 TOAs plus 1 AOA without LOS component) 
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Figure 6.25: Mean and RMS of Location Errors for Scenario 2 
(4 TOAs plus 1 AOA with LOS component) 
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The simulation results of Scenario 1 are shown in Figure 6.24. The location accuracy of 

the proposed channel estimation-based solution is improved, as compared to no channel 

estimation, especially in the edge area of a cell where good geometry for location 

purposes is obtained. The RMS of the horizontal errors changes from about 350 m to 320 

m in the area near the serving BS, and from 290 m to 220 m in the edge area (MS-BS 

distance of 2 km). 

 

Scenario 2 in Figure 6.25 contains LOS propagation. We can see from the figure that 

both the performance of the channel estimation-based solution and the performance of the 

theoretical solution increase substantially, as compared to the similar situation but 

without LOS signals. This is because very accurate TOA-AOA measurements can be 

obtained since these two methods are able to track LOS signals. Compared to Figure 

6.24, the RMS value of the horizontal location errors of the channel estimation-based 

solution decreases from 330 m to 150 m in the central area of cell BS1, and from 220 m 

to 120 m in the cell edge area. The RMS value of location errors of the theoretical 

solution are around 50 m, since the errors result only from receiver thermal noise.  
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Figure 6.26: Mean and RMS of Location Errors for the Scenario 3 
(7 TOAs plus 3 AOAs without LOS component) 
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Figure 6.27: Mean and RMS of Location Errors for Scenario 4 
(7 TOA plus 3 AOA with LOS component) 

The simulation results for Scenario 3 and Scenario 4 are shown in Figures 6.26 and 6.27, 

where all of the 7 BSs are available for TOA measurement and 3 BSs are available for 

AOA measurement. The same accuracy change trend is found in these two figures. The 

accuracy of the method without channel estimation is inferior, whereas the accuracies of 

the channel estimation-based method and benchmark are better, since they incorporate 

tracking of early multipath signals. 
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The accuracy of TOA and AOA measurements and even the final positioning accuracy 

can also be compared to the so-called Cramer-Rao-Bound (CRB) () to check the 

effectiveness of the proposed wireless location method. The comparison is meaningful 

because that the CRB, a function of the number of array elements and signal noise ratio, 

gives the bound on the covariance matrix an unbiased estimator may reach.  

6.7 Conclusions 

In this chapter, issues surrounding multipath-afflicted mobile channels are discussed. It 

was found that a GBSB model describes this issue very well. From the joint distribution 

of TOA and AOA, it is evident that a better AOA measurement can be obtained if the 

earliest multipath signal can be extracted and incorporated into the solution. 

 

An elegant multipath channel estimation method, containing two stages, is discussed 

here. The first stage is vector channel estimation from which the channel impulse 

response is obtained via an array signal processing technique. The second stage attempts 

to estimate TOA and AOA information for all multipath replicas. The 2-D Unitary-

ESPRIT method is applied for this purpose, as it has a light computational burden and 

offers super resolution. 

 

Simulation results show that a 2-D Unitary-ESPRIT method produces a good AOA 

estimation accuracy (<0.5 deg even with SIR<-5 dB) and thus can be used in multipath 

mobile channel estimation to achieve improved TOA and AOA observation for location 
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purposes. Compared to normal wireless location methods, the channel estimation-based 

method provides much better performance especially in areas with good geometry. 
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CHAPTER 7 

INTEGRATION OF GPS AND NETWORK-BASED WIRELESS 

LOCATION METHODS 

7.1 Introduction 

GPS is a high-performance satellite-based positioning system. It can provide 5-10 m 

positioning accuracy (using the L1 C/A code) 24 hours a day under any weather 

conditions. However, it requires that at least four satellites be seen simultaneously to 

provide a successful location solution. Due to signal attenuation and blockage, this 

requirement is difficult to satisfy in a densely constructed area or inside buildings where 

few if any satellites can be seen. Similarly, cellular signals also suffer from poor 

hearability problems due to co-channel interference and thermal noise as discussed in 

Chapter 3. Without using hearability enhancement techniques, a normal MS receiver can 

hear only 1-3 BSs, which is obviously not sufficient for location purposes. 

 

If working independently, neither of these two systems can provide a satisfactory location 

service in an area subject to serious attenuation and fading. However, since it is possible 

to use GPS measurements and cellular network measurements simultaneously, use of an 

approach that combines both systems may offer a workable solution. In this chapter, three 
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methods to integrate the GPS and cellular networks are discussed in detail. These 

methods are: the epoch-by-epoch LS method; the position domain Kalman filter-based 

MS tracking method; and the measurement domain Kalman filter-based MS tracking 

method. In the following section, the properties of GPS signals and cellular network 

signals are first presented, and then the three integration methods are discussed one by 

one. Performance comparisons among these three methods and some conclusions are 

given at the end. 

7.2 Property Comparison between GPS Signals and Cellular Network Signals 

Cellular Network Signals 

Mobile channels are far from ideal for wireless location purposes, since cellular systems 

were originally designed for voice communications, as opposed to MS location. Firstly, a 

mobile channel is a severe multipath propagation channel; both BSs and MSs are 

normally very low and there are many objects located nearby. Quite often, the signals 

received at BSs and MSs do not contain any LOS measurements, especially in a 

macrocell of which the cell size is quite large. Very large NLOS errors may arise in this 

case if such cellular signals are used in wireless location. Secondly, hearability is another 

difficult issue to be solved in cellular network-based wireless location schemes. A 

cellular system tries to re-use system resources and increase system capacity as much as 

possible. To this end, several techniques, including power control, have been applied to 

confine signal propagation within a limited area to decrease cross-interference. 

Unfortunately, this has the effect of also dramatically decreasing the number of BSs that 
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can be heard by an MS. As shown in Figure 7.1, an MS can normally receive only one 

pilot signal when it is near its serving BS and two to three pilot signals when it is at the 

edge of the serving cell.  

 

Figure 7.1: Hearability of a Normal Cellular Receiver 

GPS Signals 

GPS signals are transmitted through satellite communication channels. Compared to 

cellular network signals, a GPS signal has the following advantages for positioning 

purposes. Firstly, the C/A and P codes in a GPS signal are well-designed PRN codes. 

They can be accurately tracked by a GPS receiver with effective DLL and PLL 

techniques and provide metre-level positioning accuracy. Secondly, the GPS system uses 

satellite communication channels which are much more reliable than mobile radio 

channels. It is much easier for an outdoor GPS user to get LOS signals since an outdoor 

user normally has a clear view of the sky. 
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However, GPS signals also have some disadvantages. For example, GPS signals are very 

weak signals. The received power of a LOS GPS signal is about -130 to -125 dBm on the 

surface of the Earth. It is much weaker than surrounding noise and is also much weaker 

than cellular signals. Normally, the 0NC  of an LOS GPS signal is about 40 to 45 dB-

Hz. In a serious attenuation/fading environment, the signal power is further decreased. 

The 0NC  of an incoming GPS signal inside a room may be at the level of 20 dB-Hz, 

which is substantially below the tracking threshold of a standard GPS receiver and, thus, 

cannot be tracked and used for location purposes (MacGougan et al 2002; Lachapelle et 

al 2003). 

 

Some experiments have been done to demonstrate signal fading distributions in different 

environments (Ma et al, 2001). Figures 7.2 to 7.4 are histogram plots of fading 

distributions of GPS signals in open sky areas, urban canyon areas and indoor areas, 

respectively. The horizontal axis in these figures represents signal fading and the vertical 

axis represents the probability density. From experimental results, one can see that: in an 

open sky area, only small signal fading occurs to signals from low elevation satellites due 

to multipath propagation; quite a few satellites (7 - 12) can be seen in this case. In an 

urban canyon area, there exist two types of signals: clear signals and seriously faded 

signals (10 dB to 20 dB). A standard GPS receiver can see from one to three satellites in 

this type of situation, depending on satellite positions and surrounding object positions. 

Almost all GPS signals are seriously faded inside a room where a standard GPS receiver 

can potentially see one or two satellites or none at all. 
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Figure 7.2: GPS Signal Fading Distribution in Open Sky Area 

 

Figure 7.3: GPS Signal Fading Distribution in Urban Canyon Area 
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Figure 7.4: GPS Signal Fading Distribution inside a Garage 

It is evident from the above discussion that both the cellular and GPS signals suffer from 

an availability problem and it is quite possible that location performance can be improved 

if both systems are used in concert. Three methods that can be used to combine GPS and 

cellular networks to improve positioning accuracy and positioning availability are 

discussed in the following sections. 

7.3 Epoch-by-Epoch Integration of GPS and Cellular Network-Based Methods 

As an example, an LS method is used here to combine GPS and network-based TDOA 

methods together to provide an epoch-by-epoch solution. The measurements of a cellular 

network are TDOAs, while the measurements used in GPS are pseudoranges. In the 

WGS84 system, GPS measurements can be expressed by 

( ) ( ) ( ) miTczzyyxx S
i

S
i

S
ii L1222

=∆+−+−+−=ρ                          (7.1) 
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where iρ  is the pseudorange of satellite i ; ( )Tzyx ,,  is the MS position in the WGS84 

system;  is the position of satellite i  in WGS84; c  is the signal propagation 

speed; 

( TS
i

S
i

S
i zyx ,, )

T∆  is the receiver clock error; and m  is the number of satellites observed. In the 

WGS84 system, the network-based TDOA measurements are: 

( ) ( ) ( ) ( ) ( ) ( ) nizzyyxxzzyyxx BBBB
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0
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0
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0
222

=−+−+−−−+−+−=∆ρ  (7.2) 

where iρ∆  is a TDOA measurement between  and the reference base station ; 

 is the MS position in the WGS84 system; 

iBS 0BS

( Tzyx ,, ) ( )TB
i

B
i

B
i zyx ,, is the position of  in 

the WGS84 system; and n  is the number of TDOA measurements. Perfect time 

synchronization among BSs is assumed herein. 

iBS

 

     

Figure 7.5: ECEF System, WGS84, and Local Level Frame 

The above measurement equations are in the WGS84 system, which is an Earth-Centred, 

Earth Fixed (ECEF) coordinate system. This system is not suitable for wireless location 

since individual users are more interested in their position in a local system which can be 

expressed by horizontal and altitude information with respect to a reference point. 
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Therefore, a local level frame coordinate system, shown in Figure 7.5, is more suitable. 

The relation between the WGS84 system and the local level frame is as follows. 
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where  are the coordinates of the origin of the local level frame in the 

WGS84 system; (  are the coordinates of the MS in the WGS84 system; 

 are the coordinates of the MS in the local level frame; and (

( )T
WGSzyx 84000 ,,

)T
WGSzyx 84,,

( )T
LLFUNE ,, )λφ,  are the 

latitude and longitude of the origin of the local level frame in the WGS84 system. 

 

After transforming the coordinates of the GPS satellites into the local level frame, GPS 

pseudorange measurements can be expressed as 

( ) ( ) ( ) miTcUUNNEE S
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S
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S
ii L1222

=∆+−+−+−=ρ                  (7.4) 

where are the coordinates of satellite i  in the local level frame. 

Similarly, TDOA measurements from the cellular network can be expressed as 
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where  are the coordinates of BS i  in the local level frame. Combining 

GPS and cellular network measurements, the following equations in component form are 

formed 
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If  is chosen as the initial point of the MS, the equations can be linearized as ( T0,0,0 )
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or, in matrix-vector form, 

Axl =                                                                                                        (7.8) 

The LS solution to this problem is 

( ) lCAACAx l
1

l
T 11 −−−= T                                                                              (7.9) 

with a covariance matrix of  expressed as x

( 1−−= ACAC 1
l

T
x )                                                                                      (7.10) 

where  is the variance-covariance matrix of GPS and TDOA measurements and is of 

the following form 

lC
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EDOP, NDOP, and HDOP can be calculated as 

EEqEDOP =                                                                                            (7.11) 

NNqNDOP =                                                                                            (7.12) 

NNEE qqHDOP +=                                                                                   (7.13) 

 

Simulation Results 

Tests have been done to verify the performance improvement realized due to the 

integration of GPS and cellular networks. The test conducted here is an automobile 

kinematic test and was done in a suburban area near the University of Calgary. In the test, 

the GPS receiver used was a NovAtel OEM4 GPS sensor and the cellular network 

assumed was a 7-cell system with a cell radius of 2 km. The system layout is shown in 

Figure 7.6 where red triangles represent BSs and the heavy blue plot represents the 
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automobile trajectory calculated from GPS data. In the following simulations, the GPS 

data used is real GPS data whereas; the cellular network data used is simulated data. The 

simulated data was generated by first calculating the true value from the GPS-based 

benchmark and then corrupting the true value with measurement noise and NLOS errors. 
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Figure 7.6: System Layout for Simulation  

Figures 7.7 to 7.12 show the resultant trajectories and HDOPs for the different scenarios. 

These scenarios contain cellular network-only wireless location scenarios and cellular 

network plus GPS wireless location scenarios. The standard deviation of the GPS 

pseudorange measurements is assumed to be 10 metres, and the standard deviation of the 

cellular network TDOA measurements is assumed to be 100 metres. The benchmark 

trajectory and HDOP used in the performance comparisons are shown in Figure 7.7. The 

HDOP is normally below 2 except where there exists a serious blockage. Figure 7.8 is a 

cellular network-only case where only two TDOA measurements can be obtained. The 
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HDOP has a value of about 2, except at the initial stage where the MS is near the serving 

BS and, thus, results in poor HDOP. Figure 7.9 is another cellular network-only scenario 

where three TDOA measurements are used. Compared to the result in Figure 7.8, the 

HDOP at the starting stage decreases significantly. Obviously, this is because another BS 

is available to provide better geometry. Figures 7.10 to 7.12 depict the results when the 

TDOAs of a cellular network are combined with pseudoranges of the two highest GPS 

satellites. It attempts to simulate a densely constructed area where, most likely, only 

satellites at higher elevations can be seen directly. Figure 7.10 shows that, together with 

GPS, an MS can be correctly located even if only one TDOA measurement is available 

although the HDOP in this case is quite high. With a greater number of TDOA 

measurements available, higher positioning accuracy and lower HDOP can be achieved, 

as shown in Figures 7.11 and 7.12. Positioning errors in these scenarios are listed in 

Table 7.1. From the horizontal error columns, one can clearly see that the errors of the 

combined methods are much smaller than those of cellular network-only methods when 

the same numbers of TDOA measurements are used. For example, in the case of three 

TDOAs combined with two GPS satellites, the mean of positioning errors is 34 m and the 

RMS of the positioning errors is 44 m, which are both 23 m smaller than those of the 

three TDOAs-only case. 
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Combination 
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Figure 7.8: Trajectory and DOPs of Two TDOAs-Only Solution 
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Figure 7.9: Trajectory and DOPs of Three TDOAs-Only Solution 
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Figure 7.10: Trajectory and DOPs of One TDOA Plus Two GPS Satellites Solution 
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Figure 7.11: Trajectory and DOPs of Two TDOAs Plus Two GPS Satellites Solution 
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Figure 7.12: Trajectory and DOPs of Three TDOAs Plus Two GPS Satellites Solution 
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Table 7.1: Positioning Error of Epoch-by-Epoch LS Combination [m] 

44346757

54419579

8057

34-1.2270.745-2.5505.73

40-2.3370.158-6.3758.62

60-2.2561.4N/A1
RMSMeanRMSMeanRMSMeanRMSMeanRMSMeanRMSMean

HorizontalNorthEastHorizontalNorthEast

TDOAs Plus GPS(2)TDOAs OnlyTDOA
Num

#

44346757

54419579

8057

34-1.2270.745-2.5505.73

40-2.3370.158-6.3758.62

60-2.2561.4N/A1
RMSMeanRMSMeanRMSMeanRMSMeanRMSMeanRMSMean

HorizontalNorthEastHorizontalNorthEast

TDOAs Plus GPS(2)TDOAs OnlyTDOA
Num

#

 

In the above table, the mean and RMS values of west-eastern, north-southern, and 

horizontal errors are calculated via the following formulas in the local level frame 

(∑
=

−=
T

i
iiE EE

T 1

01Mean ),                                                                    (7.14) 

(∑
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i
iiN NN

T 1

01Mean ),                                                                  (7.15) 

( ) ( )∑
=
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i
iiiiH NNEE

T 1

20201Mean ,                                           (7.16) 
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iiE EE

T 1

201RMS ,                                                               (7.17) 
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i
iiN NN

T 1

201RMS ,                                                              (7.18) 

( ) ( )( )∑
=

−+−=
T

i
iiiiH NNEE

T 1

20201RMS                                           (7.19) 

where T  is the total number of position solutions, ( )ii NE ,  is the position solution at 

epoch , and i ( )00 , ii NE  is the bench mark MS position at epoch i . These parameters are 

used in all of the sections of this chapter to evaluate position errors. 
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7.4 Kinematic Tracking of MSs Based on Kalman Filter Techniques 

To improve location accuracy and to track kinematic MSs, Kalman filter-based methods 

are preferred. Kalman filter-based methods have at least the following advantages 

compared to epoch-by-epoch LS methods. First, the use of a Kalman filter is suitable for 

kinematic systems since system transition can be expressed via a dynamic model. 

Secondly, Kalman filtering makes use of not only current data but also all previous data, 

so it can obtain higher accuracy. Finally, a Kalman filter can operate based on a dynamic 

model, even if there are not enough measurements. This means that an MS can predict its 

position even when signals are totally or partially blocked. Kalman filtering is also an 

efficient method of integrating two or more different systems. For example, it is often 

used in GPS/INS integration (Salychev, 1998) and data fusion (Ostmann and Bell, 2001). 

In this section, a Kalman filtering technique is applied to combine GPS and the cellular 

network. As examples, two integration architectures, position-domain integration and 

measurement domain integration, shown in Figure 7.13, are fully discussed in the 

following section. 
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Figure 7.13: Architecture of GPS and Cellular Network Combination 
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7.4.1 Position Domain Kalman Filtering Technique 

The method shown in Figure 7.13(a) is a combination of the epoch-by-epoch LS method 

and the position domain Kalman filtering technique. The positions calculated by means 

of the LS method act as only intermediate results. They are further smoothed by a 

Kalman filter to give better position and velocity estimations. A constant velocity model 

with random walk velocity disturbances is chosen here to describe the movement of an 

MS. The states selected are MS position and velocity, [ ]TNE VVNE ,,, , so the dynamic 

equation can be written in the following form: 
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or  

wFxx +=&                                                                                                (7.21) 

The observations are expressed as [ ]LSLS NE , , the output MS positions from an epoch-by-

epoch LS estimator. The observation equation is, thus, 
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or 

vHxz +=                                                                                               (7.23) 

The system noise w  and observation noise  are both white noise and are uncorrelated 

with each other. Furthermore, 

v

Eω  and Nω  are mutually uncorrelated, as are  and . En Nn
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The above model is a continuous model and needs to be discretized for calculation 

purposes because the data, in reality, are collected at discrete time instances. The discrete 

dynamic equation from time  to time  is of the following form (Gelb, 1974) kt 1+kt

11 ++ += kkk wΦxx                                                                                      (7.24) 

The transition matrix, Φ , can be calculated as 
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where kk ttt −=∆ +1 , and the variance-covariance matrix of system noise, , can be 

calculated via 

1+kw

[ ]

( ) ( )

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∆∆
∆∆

∆∆
∆∆

=

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Ε=

Ε=

∫∫
++

++

tt
tt

tt
tt

dvvtduut

NN

EE

NN

EE

T

t

t

N

E
k

t

t

N

E
k

T
kk

k

k

k

k

ρρ
ρρ

ρρ
ρρ

ω
ω

ω
ω

020
002

2030
0203

0
0

,
0
0

,

2

2

23

23

11
11 ΦΦ

wwQ

                           (7.26) 

where Eρ  and Nρ  are spectral densities of velocity disturbances in the west-east 

direction and in the north-south direction, respectively. In the following simulation, both 

of these quantities are assumed to be . The observation matrix is still  2/2 sm
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H                                                                                     (7.27) 
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and the covariance matrix of observation noise is 
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σ
σ

R                                                                                          (7.28) 

2
Eσ  and  can be roughly selected based on the accuracy of the epoch-by-epoch LS 

method shown in Table 7.2. 

2
Nσ

Simulation Results 

To evaluate algorithm performance, the MS position data obtained via an epoch-by-epoch 

LS method is further processed by this position domain MS tracking technique. The 

benchmark trajectory shown in Figure 7.14 is calculated by GPS measurements with high 

accuracy. The algorithm performance of cellular network-only scenarios is shown in 

Figure 7.15 where Figure 7.15(a) is the two TDOA measurement case and Figure 7.15(b) 

depicts the three TDOA measurement case. The blue dots are epoch-by-epoch LS 

solutions and the red lines are position domain Kalman filter-based MS tracking 

solutions. The performance of GPS plus cellular network scenarios are shown in Figure 

7.16, where Figure 7.16(a) uses only 1 TDOA measurement together with the two highest 

GPS satellites and Figure 7.16(b) uses two TDOA measurements together with the two 

highest GPS satellites. Similarly, the blue dots are epoch-by-epoch LS solutions and the 

red lines are Kalman filter-based MS tracking solutions. The positioning errors compared 

to the benchmark trajectory are summarized in Table 7.2. Comparing the horizontal error 

columns in this table to those in Table 7.1, one can see that positioning errors reduce to 

about half of those obtained with the epoch-by-epoch LS method. 
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Figure 7.14: Benchmark Trajectory for Position Domain Kalman Filter-Based 
Combination 
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(a)                                                                     (b) 

Figure 7.15: Trajectories of Position Domain KF Based TDOA only Solution  
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Figure 7.16: Trajectories of Position Domain KF Based TDOAs and GPS Combination 

Table 7.2: Positioning Error of Position Domain KF Based Combination [m] 
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#
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7.4.2 Measurement Domain Kalman Filtering Technique 

Figure 7.13(b) is a tight integration of GPS and cellular network measurements where 

MS position and velocity are calculated directly from raw measurements by means of a 

Kalman filter. It is expected that such methods can produce better performance than that 

of a position domain MS tracking method. TOA measurements, instead of TDOA 
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measurements, are used in the following analysis, although they are equivalent from a 

mathematical point of view. 

1/s1/s

1/s1/s
White Noise Velocity Position

White Noise 1

White Noise 2

Clock Drift Clock Bias

Clock Model

Velocity Position Model  

Figure 7.17: System Dynamic Model Used in the Measurement Domain Kalman Filter 

 

If MS height information is assumed to be known via other methods, the states selected to 

describe the system consist of six elements: Eastern position and velocity, Northern 

position and velocity, and GPS receiver clock bias and drift. The model for MS position 

and velocity is assumed to be a constant velocity model with random walk disturbances. 

The model for clock bias and drift is assumed to be a constant drift model with a random 

walk disturbance, as shown in Figure 7.17. Therefore, the continuous dynamic equation is 
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or, in matrix form, 

wFxx +=& .                                                                                                   (7.30) 
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The observations consist of TOAs  from the cellular network; GPS pseudoranges, 

; and GPS Doppler measurements, , which are equivalent to pseudorange change 

rates. TOAs from the cellular network are 
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Similarly, this continuous system model needs to be transformed to discrete form. The 

discrete dynamic equation can be written in matrix-vector form as 

11 ++ += kkK wΦxx                                                                          (7.34) 
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where ; and the transition matrix, Φ , is [ T
NE fbVNVE=x ]
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and . The covariance matrix of the system noise  is kk ttt −=∆ +1 1+kw
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where , , , and  are spectral densities of the corresponding random walk 

disturbances.  and are selected as 

ES NS bS fS

ES NS 22 sm  in simulation tests.  and  are clock 

type-dependent and can be calculated via the method shown in Brown and Hwang 

(1996). The measurement matrix, H , can be derived as follows by means of the 

linearization of the non-linear measurement equations. 

bS fS
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The covariance matrix of measurement noise is 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

2

2

2

2

2

2

doppler

doppler

epseudorang

epseudorang

TOA

TOA

σ

σ
σ

σ
σ

σ

O

O

O

R .       (7.38) 

 



220 

An extended Kalman filter technique can then be applied to the above kinematic system. 

The performance is discussed via the following simulation tests. 

Simulation Results 

The same set of raw data is used in the following simulations as that used in the epoch-

by-epoch LS method and position domain tracking method. Figure 7.18 gives the 

estimated trajectories when only TOA measurements from the cellular network are used. 

In Figure 7.19 are the estimated trajectories when both TOA measurements from the 

cellular network and pseudoranges are used, along with Doppler measurements from GPS 

satellites. 
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Figure 7.18: Estimated Trajectories by TOA only Measurement Domain Kalman Filter 
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Figure 7.19: Estimated Trajectories by TOA/ GPS Measurement Domain Kalman Filter 

Table 7.3 summarizes the positioning errors of this measurement domain MS tracking 

method in different scenarios. The benchmark is also the trajectory derived from 

unblocked GPS measurements. To simplify performance comparisons, the horizontal 

errors in Tables 7.1 to 7.3 are further rearranged in Table 7.4. In this table, the scenarios 

in each row employ the same number of BSs. Positioning errors of the three integration 

methods discussed above are listed from left to right. It is obvious that positioning 

accuracy is improved considerably, in increasing degrees, by all three methods; that is, 

the third-best performance is obtained by use of the epoch-by-epoch LS method; slightly 

better performance from the position domain MS tracking method, and the best 

performance being produced by the measurement domain MS tracking method. For 

example, when 4 BSs and two GPS satellites are used, the mean of the horizontal errors 

decreases from 34 m via the epoch-by-epoch LS method; to 18 m via the position domain 

MS tracking method; and to 12 m via the measurement domain MS tracking method. The 
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RMS decreases from 44 m, to 21 m, and to 15 m. One can also see the performance 

improvement due to the combination of GPS with the cellular network. With only 4 BSs 

available, the mean of positioning errors is 57 m for the epoch-by-epoch LS method; 24 

m for position domain MS tracking method; and 22 m for the measurement domain MS 

tracking method. Understandably, these errors are larger than 34 m, 18 m, and 12 m when 

these 4 BSs are combined with two GPS satellites. 

 

 

Table 7.3: Positioning Error of Measurement Domain KF Based Combination [m] 
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Table 7.4: Horizontal Positioning Error Comparison 
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7.5 NLOS Error Mitigation in GPS and Cellular Network Integration 

TOA/TDOA measurements in the previous simulation tests are assumed to be NLOS 

error- free. However, NLOS errors always exist in reality and will result in a degraded 

positioning performance. The values of the positioning errors in Table 7.5 and the 

trajectories in Figure 7.20 demonstrate the performance difference between the NLOS-

free case and the NLOS-corrupted case. In the simulation, receiver noise is assumed to be 

zero mean Gaussian distributed with a standard deviation of 10 m. NLOS errors are 

assumed to be of urban exponential distribution as discussed in Chapter 4 and applied to 
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all TOA measurements. To check the performance degradation due to receiver noise and 

NLOS errors, six scenarios are simulated. They are: 

• The receiver noise-only case for TOA-only system 

• The NLOS error-only case for TOA-only system 

• The receiver noise plus NLOS error case for the TOA-only system 

• The receiver noise-only case for TOA plus GPS system 

• The NLOS error-only case for TOA plus GPS system 

• The receiver noise plus NLOS error case for the TOA plus GPS system 

 

Seven BSs and the two GPS satellites with the highest elevation angles are used in the 

GPS and TOA integration scenarios. A measurement domain Kalman filter-based 

integration scheme is used. 

 

Table 7.5: Performance Degradation Due to NLOS Errors and Receiver Noise 
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Figure 7.20: Performance Degradation Due to NLOS Errors and Receiver Noise 
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From the test results, the following conclusions may be drawn: 

• Positioning accuracy is quite high (with a RMS of a few metres) in the receiver 

noise-only case. This is especially true for those receivers that manage to 

minimize the effects of noise, which can be achieved by utilizing advanced signal 

tracking techniques. 

• Positioning accuracy is low (with a RMS of tens of metres) in the NLOS error-

only case. 

• Positioning accuracy is low (with a RMS of tens of metres) in the case where both 

receiver noise and NLOS error exist. 

• Position accuracies for the latter two cases are almost the same. This means that 

performance degradation results mainly from NLOS errors. 

• NLOS errors need to be removed first before the affiliated TOA/TDOA 

measurements can be applied to the MS location calculation. 

The NLOS error mitigation method proposed in Chapter 5 is applied in the following to 

show the performance improvement due to NLOS error mitigation. In a GPS/cellular 

network integration system, NLOS error mitigation can be realized in two different ways: 

• The intersection distribution function-based solution. Based on an intersection 

distribution function calculated from TOA/TDOA measurements, the intermediate 

MS location is obtained and cost functions for each BS are constructed. Then, 

hypothesis tests are conducted to identify and remove NLOS errors. The key in 

this solution is how to get an intermediate estimate of MS location with high 
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accuracy because an inaccurate MS location estimation can make effective NLOS 

error mitigation almost impossible. 

• The GPS-assisted solution. In this solution, the intermediate MS location 

estimation used in cost function construction comes from a reference trajectory 

instead of from an intersection distribution function. This is suitable for cases 

where an accurate MS location estimate can be obtained from other methods, such 

as GPS when enough satellites are available. With the accurate intermediate MS 

location estimate, NLOS errors can be more reliably identified and removed, and 

then more accurate TOA measurements can be used to obtain a better MS location 

estimate. 

 

Simulation results in Table 7.6 and Figure 7.21 demonstrate the performance 

improvement resulting from the above two NLOS mitigation methods. In the simulation, 

receiver noise is assumed to be zero mean Gaussian distributed noise with a standard 

deviation of 10 metres. NLOS errors are assumed to be of urban exponential distribution 

as discussed in Chapter 4. Six scenarios are simulated:  

• The no NLOS error mitigation case for TOA-only system 

• The Distribution function (DF)-based NLOS error mitigation case for TOA-only 

system 

• The GPS-assisted NLOS error mitigation case for TOA-only system 

• The no NLOS error mitigation case for TOA plus GPS system 
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• The Distribution function (DF)-based NLOS error mitigation case for TOA plus 

GPS system 

• The GPS-assisted NLOS error mitigation case for TOA plus GPS system 

Similarly, seven BSs and the two GPS satellites with highest elevation angles are used in 

GPS/TOA integration scenarios and the measurement domain Kalman filter-based 

integration scheme is used. 

 

 

Table 7.6: Performance Improvement Due to NLOS Error Mitigation 
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Figure 7.21: Performance Improvement Due to NLOS Error Mitigation 
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From the simulation results, one can find that 

• Positioning accuracy is poor if the NLOS errors are not removed from 

TOA/TDOA measurements since NLOS errors are the dominant error sources and 

can reach several hundred metres. 

• DF-based NLOS error mitigation can significantly improve positioning accuracy. 

The horizontal positioning error for both the TOA-only and TOA plus GPS 

decreases from around 70 metres for the case of no LOS error mitigation, to 

around 40 metres for the DF-based NLOS error mitigation case. 

• The GPS assisted NLOS error mitigation solution produces the best performance. 

The RMS of the final horizontal location error is in the range of only 7-15 metres. 

 

The reason why the GPS-assisted NLOS error mitigation method is of superior 

performance is straightforward. In the DF-based NLOS error mitigation solution, the 

intermediate MS location derives exclusively from TOA measurements. The accuracy is 

low because large errors exist in TOA measurements. On the contrary, a very accurate 

MS location estimation can be obtained from GPS when the GPS receiver embedded in a 

MS to be located can see enough satellites. Taking it as the required intermediate MS 

location estimation, the proposed NLOS error mitigation algorithm can effectively 

identify and remove NLOS errors. Therefore, the positioning accuracy is much higher. 
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If the Kalman filter-based MS tracking method is used, the MS position predicted by the 

filter can be taken as the intermediate MS location used for NLOS error mitigation. This 

is especially useful when GPS is not available to provide an accurate MS position due to 

signal blockage. Thus, the GPS-assisted NLOS error mitigation method actually consists 

of two states: One is in the period when the GPS system itself can calculate the MS 

position. In this state, NLOS errors can be mitigated by means of a GPS-derived MS 

location. The other one is in GPS outage periods. In this state, NLOS errors are mitigated 

by means of a KF-derived MS location. Of course, such outage periods cannot be too 

long otherwise the predicted MS location will drift and the NLOS errors cannot be 

correctly removed. 

 

Table 7.7 and Figure 7.22 show the positioning accuracy when the GPS outage periods 

are 5 seconds and 10 seconds, respectively. The data rate of the TOA measurements is 5 

Hz. Seven BSs and the two GPS satellites with the highest elevation angles are used in 

the GPS/TOA integration. It is obvious that the GPS-assisted NLOS error mitigation 

method can still have high positioning accuracy when the outage length is relatively 

short. However, when the period of outage is long, the MS position predicted by the 

Kalman filter quickly deviates from its true value and, thus, results in poor NLOS 

mitigation capability and poor positioning accuracy. 
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Table 7.7: Performance of GPS Assisted NLOS Error Mitigation 
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Figure 7.22: Performance of GPS-Assisted NLOS Error Mitigation 

7.6 Conclusions 

Neither cellular network-only nor GPS-only solutions work in serious fading 

environments since both systems suffer from signal availability issues. However, the 

combination of the two may work because more information can be used and better 

geometry can be obtained. Three schemes are proposed in this chapter to combine a 

cellular network and GPS. 
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The epoch-by-epoch LS scheme combines measurements from a cellular network and 

measurements from GPS via a standard LS formula. Compared to network-only 

solutions, it can improve both location availability and positioning accuracy since more 

data elements is involved in the calculation. 

 

Kalman filter-based methods can further improve performance since the movement of the 

MS is described by a dynamic model and both current information and past information 

are utilized. While the position domain Kalman filter method processes the output of an 

epoch-by-epoch LS solution to obtain better MS location estimation, the measurement 

domain Kalman filter method uses the measurements from the cellular network and GPS 

system directly. Demonstrated by experimental results, the measurement domain method 

produces higher positioning accuracy. The RMS value of horizontal location errors can 

be less than 10 – 20 m, which is within E-911 accuracy requirements. 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

8.1 Conclusions 

The primary objective of this thesis was to seek a ground-based wireless location scheme 

suitable for mobile positioning in cellular phone networks. To this end, several 

techniques were proposed to handle issues that may occur in a cellular network and 

which may degrade wireless location performance. These issues include the lack of signal 

availability or hearability due to co-channel interference, the inefficiency in mobile 

location calculation, and the large NLOS errors in observations resulting from multipath 

propagation. With the IS-95 CDMA pilot signal as an example, signal 

availability/hearability was thoroughly analyzed. The results showed that the hearability 

is poor for location purposes. To improve signal hearability, two methods, the enhanced 

signal processing method and the idle period down link (IPDL) method, were introduced. 

In poor signal hearability environments, another acceptable solution is combining cellular 

network-based methods with other positioning methods. The integration of GPS and a 

cellular network was proposed as an example. Location performance that could be 

obtained with an epoch-by-epoch LS-based integration scheme and a Kalman filter-based 

integration scheme were discussed.  
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MS positions are normally obtained by solving non-linear equations. This entails a high 

computational burden and may suffer from convergence problems. To solve these issues, 

an enhanced two-step least squares solution was proposed for use with a hybrid 

TDOA/AOA wireless location algorithm. This method can provide almost the same level 

of accuracy as that of a normal Taylor-series-based solution while maintaining low 

computational burden. 

 

NLOS errors within TOA, TDOA, and AOA measurements are very large, compared to 

errors due to receiver noise. Therefore, NLOS errors should first be removed before 

applying the measurements to wireless location algorithms. Two NLOS error mitigation 

methods were proposed and discussed. One is a distribution function-based method. The 

mitigation of NLOS error depends on system redundancy and a high clear intersection 

density. The other is a channel estimation-based method in which the mitigation of NLOS 

error is obtained by making use of only the earliest signal from among all multipath 

replicas. 

 

Based on mathematical analysis and simulation results in previous chapters, the following 

detailed conclusions can be drawn for each of the proposed algorithms. 

Signal Hearability  

The capability of a receiver to receive desired signals is called signal hearability in this 

thesis. It depends on the Signal to Interference Ratios (SIR) of incoming signals and 

receiver sensitivity. For a normal cellular network, the hearability is poor from the point 
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of view of a wireless location application because a network tries to minimize signal 

power to increase system capacity. Actually, a MS can hear only one BS in most areas of 

a cell, while the minimum number required for MS location is three. 

 

An enhanced signal processing technique was proposed to improve the hearability, since 

the receiver sensitivity can be increased by integrating a message-free signal - such as the 

pilot signal - for a longer time. However, the integration time cannot be extended for too 

long owing to two constraints. The first is the efficient integration time requirement. If 

the integration time exceeds this value, the increase of receiver sensitivity becomes 

insensitive to the increase in integration time. The second constraint is the frequency 

error between the incoming carrier and the locally generated carrier. If a frequency error 

exists, the receiver sensitivity begins to degrade after integrating for a certain length of 

time. In fact, this maximum integration time decreases with the magnitude of the 

frequency error. Taking these constraints into consideration, the maximum integration 

time for an IS-95 CDMA pilot signal is 1500 chips with a frequency error less than 160 

Hz, or 650 chips with a frequency error less than 400 Hz. Simulation results 

demonstrated a signal hearability improvement due to such enhanced signal processing 

techniques. 

 

However, signal hearability is still not good enough for a high sensitivity receiver in the 

area near the serving BS because of strong Same-cell interference. Two IPDL methods, 

PR-IPDL and TA-IPDL, were proposed to solve the “near-far” effect. They try to mitigate 

the interference by stopping signal transmission at the serving BS and other BSs in other 
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cells. With these methods, a higher SIR of the signals of other BSs can be obtained. The 

hearability can be increased to a satisfactory level- The number of BSs that can be heard 

increase from 1 or 2 to more than 10. 

Enhanced Two-Step LS Solution to Hybrid TDOA/AOA Wireless Location Schemes 

Hybrid TDOA/AOA solutions produce higher accuracy than that of TDOA-only or 

AOA-only solutions because more information is utilized. However, the equations for the 

TDOA sub-system are non-linear ones. The normal Taylor-series-based solution entails a 

higher computational burden due to linearization and may suffer from convergence 

issues. The original two-step LS method does not make full use of system information, 

and, thus, results in degraded performance. The enhanced two-step LS method proposed 

in this thesis solves the nonlinear problem by first identifying that the nonlinear 

relationship inside the subsystem is, in fact, a cone in a three-dimensional space and then 

approximating such a cone in a small region with a plane to transform the nonlinear 

subsystem into a linear one. The linearization of a cone with a plane is quite simple 

because of the well known shape of cones. Together with all TDOA/AOA measurement 

equations, a solution with higher accuracy is obtained.  

 

This method provides a closed-form solution. As a result, it imposes as low a 

computational burden as that of the original two-step LS solution and has no convergence 

issue, while the accuracy is almost as high as that of a Taylor series-based solution. 
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Distribution Function-Based NLOS Error Mitigation 

NLOS errors are much larger than receiver noise and can easily overwhelm proposed 

solutions of a wireless location algorithm. Therefore, NLOS errors should be reduced in 

advance before the measurements are used in location calculation. The distribution 

function-based NLOS error mitigation method proposed in Chapter 5 can resolve this 

issue to some degree. It depends on system redundancy. If more BSs are available than 

the necessary, multiple candidate MS locations can be obtained and form a distribution 

function. If the number of NLOS errors is not too large, the clear intersections will have a 

higher density near the true MS location. The maximum point gives us an estimate of the 

MS location. Based on this intermediate MS location estimate, cost functions can be 

formed for every BS from which NLOS errors can be identified and reduced. Experiment 

results demonstrated the effectiveness of the algorithm. The larger the NLOS errors, the 

easier they can be identified and mitigated. The more BSs used, the higher the ability to 

identify NLOS errors.  

 

This NLOS mitigation method is a position-domain method and is suitable for low 

dynamic users since no spatial diversity is required. Another benefit is that NLOS errors 

can be seen as constant over a longer time period. In this case, receiver noise can be 

decreased by superposition of the cost function over several epochs to obtain better 

performance. 

 

 



239 

Channel Estimation-Based NLOS Error Mitigation 

Since NLOS errors result from multipath propagation, we can mitigate NLOS errors by 

conducting a multipath channel estimation to extract the LOS signal or the earliest 

multipath component. The GBSB model gives the joint distribution of TOAs and AOAs 

of multipath channels. One can draw the conclusion from this model that the accuracies 

of both TOA measurements and AOA measurements can be improved if only early 

incoming signals are used. To extract the earliest component, an effective multipath 

channel estimation method is discussed in Chapter 6. This method contains two stages. 

The first stage obtains the vector channel impulse response by means of an array signal 

processing technique. The second stage tries to estimate TOAs and AOAs of all multipath 

replicas via a 2-D Unitary-ESPRIT method that it is of super resolution and light 

computational burden. The TOA and the AOA corresponding to the multipath replica 

with the smallest TOA are used as the final observations. 

 

Simulation results show that the 2-D Unitary-ESPRIT method produces good 

performance and can be used in multipath mobile channel estimation to obtain better 

TOA and AOA observations for location purposes. Compared to those wireless location 

methods without NLOS error mitigation, this channel estimation-based method yields 

better performance, especially in an area with good geometry. 

The Integration of GPS and Cellular Networks 

In serious fading environments, both GPS and the cellular network wireless location 

method suffer from poor signal availability issues. In this case, neither of them can work 
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well independently for location purposes. However, the combination of these two 

systems may work well because more information is used and better geometry can be 

obtained. Three schemes to combine cellular network and GPS for wireless location 

purposes are fully discussed in Chapter 7: the epoch-by-epoch LS scheme; the position 

domain Kalman filter-based MS tracking scheme; and the measurement domain Kalman 

filter-based MS tracking scheme. 

 

The epoch-by-epoch LS scheme combines network measurements and GPS 

measurements and calculates the MS location via the normal LS formula. It can improve 

both location availability and positioning accuracy compared to a network-only solution 

since greater volumes of data are involved in the calculation. 

 

Kalman filter-based methods can further improve performance in some cases, since the 

movement of a MS is described by a dynamic model and both current information and 

past information are utilized. While a position domain Kalman filter method processes 

the output of the epoch-by-epoch LS solution to obtain a better MS location estimation, a 

measurement domain Kalman filter method directly uses TOA measurements from the 

cellular network and pseudorange and Doppler measurements from the GPS system. 

Comparing the experiment results, the measurement domain method provides the higher 

performance. The RMS value of horizontal location errors can be less than 10 - 20 

metres. 
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8.2 Future Work 

Besides what has been presented in this thesis, the following items are also recommended 

as topics for future research and investigation to further improve the accuracy and 

reliability of location techniques. 

Performance Analysis in Terms of Cramer-Rao Bound (CRB) 

The accuracy of TOA and AOA measurements and even the final positioning accuracy 

can also be compared to the so-called Cramer-Rao Bound (CRB) to check the 

effectiveness of the proposed wireless location method. The comparison is meaningful 

because that the CRB, a function of signal noise ratio, gives the bound on the covariance 

matrix for an unbiased estimator. In the future, the relationship between CRB and DOP 

should also be addressed. 

Application of Interactive Multiple Model (IMM) Technique 

Position calculation using one motion model, such as the standard Kalman filter, may not 

be the most suitable algorithm. It is quite often the case that using more than one motion 

model and adjusting them adaptively within an IMM frame may give better results in 

terms of location accuracy, track continuity and coverage than normal KF when the user 

is moving in urban environments (Shalom et al, 1989). A possible study in the future 

would, therefore, be focused on parallel execution of coupled dynamic filters to make the 

IMM filter able to follow the very different motions of the vehicular users or pedestrians 

without losing track and with acceptable accuracy. 
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Blind Channel Estimation Based NLOS Error Mitigation 

In Chapter 6, the channel estimation method presented is non-blind since a training 

sequence is used to estimate the vector channel impulse response. This method is suitable 

for a GSM system where the symbol period is sµ68.3 which can provide a TOA 

resolution of about 50 m. However, this method is difficult to apply to a CDMA system 

because of a large symbol period. For example, the symbol period is 128 chips long for 

an IS-95 CDMA system. One possible solution is blind channel estimation with super-

resolution. Some blind channel estimation algorithms (Doukopoulos and Moustakides, 

2003) have been proposed, but their abilities need to be further investigated to determine 

if they are suitable for wireless location purposes. 

Provision of Height Information 

A cellular network cannot provide reliable height information because all BSs are not 

high enough and the VDOP of such a solution would be extremely poor. Two methods 

may be feasible to provide height information. One is the integration of GPS and cellular 

networks since GPS satellites are high enough to allow a robust geometry that overcomes 

the BS height problem. The second method is a barometer-based technique. With a better 

temperature compensation scheme or with GPS aiding (Collin et al, 2002), a barometer 

may be able to provide satisfactory height information. Extensive experiments need to be 

done in the future to evaluate the capability. 

Field Tests 
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Usually, simulation tests tend to be optimistic since they are often based on simplified 

models and aim to verify algorithms that only solve one specific problem. However, the 

actual performance depends on a variety of conditions which are simultaneously present. 

For example, poor hearability, poor geometry, and NLOS errors may each, in and of 

themselves, result in poor performance. A combination of these, however, can exacerbate 

the situation.  Multipath in particular is difficult to model and its characterization as a 

function of the specific user environment remains a challenge. Thus actual field tests in 

different types of environments should be done to verify the claims made in this thesis. 

One example is the integration of GPS and a cellular network. In Chapter 7, only 

vehicular tests were considered which is relatively simple because the dynamics of a 

vehicle are easy to predict. The pedestrian case, for which the dynamics are difficult to 

predict by Kalman filters, should be investigated. 
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