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ABSTRACT

Precise relative positioning of multiple moving platforms using GPS carrier phase

observables has numerous applications. The essential point for this research is the fast

and reliable OTF carrier phase ambiguity resolution. Algorithms for single baseline

resolution cannot provide optimal performance for this application because it does not

make use of the redundancy available in the configuration of multiple moving platforms.

In this thesis, a novel method called MultiKin is proposed for OTF ambiguity resolution

for multiple moving platforms. First, MultiKin applies Delaunay triangulation to select

necessary baselines and to build an optimal structure of ambiguity constraints. Second, it

improves the reliability of the OTF ambiguity resolution of single-baselines by

optimizing the ambiguity monitoring algorithm. Finally, the resolved ambiguities from

each baseline are processed using the multiple triangular constraints, which can speed up

fixing ambiguity and detecting wrong fixes.

To fully evaluate the performance of MultiKin, a sophisticated GPS software simulator is

developed. Its significance lies in a GPS error simulator. New GPS error models are built

based on the investigation of the existing models. The spatial correlation and temporal

variation of errors are highlighted in the new models; thus, these models are proper for

error simulation in both single-point and differential GPS systems. In addition, all the

models have adjustable parameters that allow users to generate a wide range of testing

conditions.

The results of extensive simulation tests and field tests with MultiKin indicate that

MultiKin is effective in speeding up ambiguity resolution. The time required to fix

ambiguities can be reduced by up to 67% over the single-baseline method time. Also,

MultiKin increases the limit on the distance by two to three kilometres over which

ambiguity resolution can be performed. An increased magnitude of the GPS errors and

weaker satellite visibility can degrade the efficiency improvement of MultiKin, but it can

fix more baselines than the single-baseline method even under those critical conditions.

Besides improving efficiency, MultiKin can also provide higher reliability in ambiguity
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resolution. Its time to detect wrong fixes is reduced by up to 29% over the single-baseline

method. Consequently, MultiKin increases the confidence that positioning is precise.
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1 INTRODUCTION

1.1 BACKGROUND

The Global Positioning System (GPS) is a RF satellite-based navigation system that was

developed by the United States Department of Defense as a replacement for the Transit

Navy Navigation Satellite System. GPS was designed to enhance the coverage and

accuracy of Transit and the first GPS operational satellite was launched on Feb 22, 1978.

The system became fully operational in 1994 (Parkinson, 1996).

A Standard Positioning Service (SPS) is provided by GPS for civilian users. Prior to May

2000, The Selective Availability (SA) was on and the horizontal 2 DRMS positioning

accuracy was 100 m and the vertical (95% level) accuracy was150 m. Although SA has

been switched off since May 1, 2000, the ionospheric error can still limit the accuracy of

the SPS to a few tens of metres when the solar activity is very high. To improve relative

positioning accuracy for civilian users, the differential GPS (DGPS) method is usually

used.

The purpose of DGPS is to transmit the spatial and temporal correlated corrections from a

fixed or mobile reference station to adjust the measurements of a rover station, which can

be either fixed or mobile. The DGPS method is often used to reduce errors in the code

measurements, and the resulting accuracy is of the order of one to a few metres. The

differential method can also be used for carrier phase positioning. When the GPS carrier

phase of a rover station is compared to the carrier phase at a reference site, the equivalent

range measurement accuracy is within a few percent (typically a few centimetres) of the

carrier wavelength. Thus, the positioning accuracy can be improved to the centimetre

level if other errors cancel out.

This accurate positioning technique has numerous applications, such as precise

surveying, deformation monitoring, attitude determination of a vehicle, precision landing

of aircraft, integrated navigation systems, atmospheric parameter estimation and solar

activity monitoring. The endless demand from users for higher accuracy and reliability
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drives the continuous improvement of these techniques. High-accuracy positioning using

GPS carrier phase observables is a GPS research topic.

1.2 STATEMENT OF PROBLEM

Differential carrier phase is a relative positioning technique, where only the inter-

platform position vector between a reference and a rover station can be directly derived

from the carrier phase observables. The accurate absolute position of a rover station still

relies on the accurately known coordinates of the reference station. Nowadays, in a lot of

applications, relative positioning rather than absolute positioning is the main concern. For

most non-professional GPS users, the absolute coordinates of an object, namely the

latitude, longitude, and altitude in the World Geodetic System 1984 (WGS84) cannot

give them a simple understanding of the object’s location. However, if its location is

given in a relative way, such as 500 metres north and 1000 metres west of an established

reference, the user can more easily make a connection with the location of the object.

The present research is related to the technique of precise (centimetre to sub-decimetre

level) positioning of multiple moving platforms relative to each other or to some fixed

reference stations. This technique can simultaneously process GPS measurements from

multiple moving platforms and can achieve a fast and precise estimation of the relative

positions of these platforms. This research has numerous applications; for instance, fleet

management, traffic control, deformation monitoring of large moving vehicles, numerous

military applications, etc. Another example, illustrated in Figure 1.1, is GPS ‘radar’.

Different from the usual radar, the GPS radar technique does not obtain positions of

surrounding objects from sounding and echo detection, but from the wireless data link.

The surrounding object must be equipped with both a GPS receiver and data link. After

receiving position data of other stations, one station can clearly derive the spatial

distribution of surrounding objects. Therefore, GPS radar can give the same results as a

usual radar, but at a lower cost. The GPS radar technique is currently being developed for

the safe approach and landing of aircraft, collision avoidance of vehicles, automatic

driving, etc (Heppe, 2000).

The research of positioning multiple moving platforms has the following characteristics:
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[1] In this application, the absolute positions of the objects are not important but rather

their relative positions, so that the configuration of the reference station with

precisely known coordinates is not mandatory;

[2] High relative positioning accuracy and reliability are required;

[3] There are multiple platforms in the configuration, which implies that the multiplicity

of platforms may improve the effectiveness of relative positioning.

Data Processing
Centre

Data Link

GPS measurement

Relative positions of
objects

GPS Radar
Display

object

GPS satellite signal

Figure 1.1 GPS radar for aeronautical application
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For the first point, most of the existing methods of relative positioning assume that the

precise position of a reference station is given a priori. Thus, the accuracy of the relative

positioning only depends on the measurement errors. However, in this research, such a

precondition is not given. Therefore, those previous approaches cannot be directly used

for this research. Modifications are required to process the kinematic data

simultaneously. The impact of these modifications on the effectiveness of relative

positioning is to be investigated in this thesis.

To achieve high positioning accuracy, the double-differenced GPS carrier phase method

is usually adopted. When the inter-platform distances are short, e.g., less than 10 km,

double differencing can largely reduce spatially correlated errors in the carrier phase

measurements. Satellite and receiver clock errors are cancelled, regardless of the inter-

platform distance. When the remaining errors are small, centimetre-level accuracy

relative positions can be obtained with fixed integer ambiguities.

An integer ambiguity is an unknown whole-cycle constant that occurs when integrating

the beat frequency between the received GPS carrier and the replicated carrier in a GPS

receiver. High accuracy relative positioning depends mostly on successful integer

ambiguity resolution of the double-differenced carrier phase measurements. Only after

the ambiguities are fixed to the correct integers can centimeter-level accuracy be

achieved. Therefore, integer ambiguity resolution is one of the crucial problems to

resolve for high accuracy relative positioning.

There are many methods that have been developed for solving On-The-Fly (OTF)

ambiguity since the 1980’s. OTF ambiguity resolution refers to the case when the

ambiguities are resolved when at least one receiver is moving, i.e., when the receiver is in

kinematic mode. The major challenges of OTF ambiguity resolution are relative error

modeling, and the efficiency and reliability of the ambiguity search technique. Earlier

work focused on improving ambiguity resolution on a single-baseline, such as optimal

filtering and reduction of the ambiguity correlation. Later, more effort was put into using

constraints for further improvement. Constraints are generally provided by the geometric

information existing in the configuration of multiple platforms, or other known
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information such as the height difference between two receivers. Recent results

(Weisenburger, 1997; Raquet, 1998; Luo and Lachapelle, 1999) using constraints have

shown significant improvement in level of success and time to integer ambiguity

resolution. The research in this thesis will include investigations into the optimization of

ambiguity resolution using constraints for the case of multiple moving platforms (more

than two). The final objective is to develop a fast, reliable, and realizable approach for

precise relative positioning of multiple moving platforms that could ultimately be

implemented in real-time. The impact of the number of platforms simultaneously

available is to be addressed.

To thoroughly test the effectiveness of the approach to position multiple moving

platforms, a series of tests must be performed to evaluate the impact of various system

parameters on this approach. It is however difficult to assess performance using full-scale

field tests due to the difficulties in reproducing the wide range of differential errors that

may prevail under different atmospheric conditions, and in establishing accurate

reference trajectories for the mobile receivers. The use of controlled simulated scenarios

is therefore preferred for this purpose. Actual field tests will still be performed however

to demonstrate the effectiveness of the method under actual field conditions.

A major problem faced by the use of simulations is the validity of the differential GPS

error models. Various GPS error models are in existence, however most of them are

designed for single-point positioning. After differencing, the simulated errors can show

quite different behaviors compared to the real situation. In these models, either the spatial

and temporal correlations are not properly simulated or the achieved resolution is not

high enough for testing a small GPS network. Therefore, the development of

sophisticated DGPS error models forms another important part of this thesis in order to

enhance the confidence of the simulation tests.

1.3 RELATED RESEARCH

1.3.1 OTF Ambiguity Resolution

OTF integer ambiguity resolution is the heart of the algorithm to position multiple

moving platforms, thus, the highlights of related research are summarized as follows.
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1.3.1.1 OTF Ambiguity Resolution Between Two Receivers

This is the foundation of all ambiguity resolution techniques. Generally, this sort of

method includes two common procedures. The first is to define the ambiguity search

range, the second is to select the best solution from all possible candidates. The

ambiguity uncertainty is reduced by using optimal filtering techniques, conditional least

squares and matrix transformation, etc. These techniques have greatly improved the

efficiency of OTF ambiguity searching and made it applicable to real-time applications.

The reliability of OTF ambiguity search is also improved by the optimal design of

various distinguishing tests. Following are some representative methods developed in the

past 20 years for OTF integer ambiguity resolution. A more detailed comparison of these

methods is presented in Chapter 2.

[1] Ambiguity Function Method (Counselman and Gourevitch, 1981; Mader, 1990;

Remondi, 1991; Al-Haifi et al, 1998)

[2] Least Squares Search (Hatch, 1990; Lachapelle et al, 1992; Landau and Euler, 1992;

Borge and Forssell, 1994))

[3] Fast Ambiguity Resolution Approach (Frei and Beutler, 1990; Erikson, 1992)

[4] Fast Ambiguity Search Filter (Chen, 1993; Chen and Lachapelle, 1995)

[5] Least Squares AMBiguity Decorrelation Adjustment (Teunissen, 1994)

1.3.1.2 OTF Ambiguity Resolution with Constraints

In many applications, due to the special configuration of multiple GPS antennas,

constraints can be used to increase the speed and reliability of integer ambiguity

resolution. For instance, baseline constraints have been used to aid the ambiguity

resolution for attitude determination using GPS (Lu, 1995), while ambiguity constraints

have been used by Lachapelle et al. (1993) to enhance the effectiveness of relative

positioning of aircraft. Several marine tests were conducted by Weisenburger (1997) to

determine the effectiveness of different constraints and their combinations for ambiguity

resolution. All the results have shown that the use of constraints remarkably improves the
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ambiguity resolution process. However, most of these methods are based on fixed

baseline constraints, where baselines with constant lengths are available. This implies

that at least two antennas must be mounted on a rigid body, which is not the case for

many GPS applications.

1.3.1.3 OTF Ambiguity Resolution Using a Static GPS Network

Research work in this area can be subdivided of two parts: one is OTF ambiguity

resolution in a fixed GPS network (Sun et al, 1999); the other is the OTF ambiguity

resolution for a mobile user inside a multiple GPS reference station network (Raquet,

1998).

For network ambiguity resolution, dual-frequency measurements and the precisely known

coordinates of all reference stations are used to estimate the initial search space of

network ambiguities. Then many inappropriate ambiguity candidates are rejected by

ambiguity constraints; thus, the ambiguity search space can be reduced and the search

speed can be improved. However, the method required to optimally construct ambiguity

constraints in a GPS network is not discussed in Sun et al (1999).

By using the geometric constraints available in a static GPS network, the behavior of

spatially correlated double-differenced errors, such as ionospheric, tropospheric and

orbital errors, can be estimated through least squares collocation (Raquet, 1998). Before

solving the ambiguities for a mobile user in such a network, double differenced

measurements between the user and a reference station are adjusted by least squares

collocation using information derived from the network. This procedure also mitigates

errors in the raw measurements and hence further reduces the uncertainty in ambiguity

search and speeds up the ambiguity fixing process. In other words, a longer baseline can

be resolved within the same time compared to the case of a single reference station. The

improvement when using a multiple reference station network to aid OTF ambiguity

resolution for mobile users has proven significant  (Raquet, 1998).
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1.3.1.4 OTF Ambiguity Resolution for Multiple Moving Platforms

The redundancy provided by the multiplicity of moving platforms can also decrease the

time to ambiguity resolution while improving reliability. Early results involving the

relative positioning of two aircraft with two receivers mounted rigidly on each aircraft

fuselage suggest a very significant improvement in time to resolution (Lachapelle et al,

1994). Tests performed by Luo and Lachapelle (1999) also resulted in an obvious

ambiguity resolution improvement for a configuration of three moving platforms, each

equipped with only one GPS receiver. Herein, a more generalized method is developed to

improve OTF ambiguity resolution of multiple (more than three) moving platforms.

1.3.2 GPS Error Modeling

Many GPS error models have been developed for error simulation and reduction. Among

them, the spatially correlated errors (ionosphere, troposphere and broadcast orbit) and

multipath have the largest impact on DGPS performance. The modeling of these errors is

introduced herein.

Generally, the ionospheric error model consists of two parts, namely a model for the

vertical ionospheric delay and a mapping function. The most commonly used mapping

function, which is widely used for many ionospheric models (e.g., Mannucci et al., 1993;

Draganov et al., 1996; RTCA, 1998; FAA, 1997) is

( )
2

ERh1
Ecos11EM ��

�

�
��
�

�

+
−=

(1.1)

where E is the elevation of a satellite,

H is the height of the ionosphere (single layer), and

RE is the radius of the earth.

The major effort of modeling ionospheric errors has focused on the vertical ionospheric

delay. One of the earliest vertical ionospheric error model was developed by Klobuchar

(1987), and is also called the half cosine model. This model contains four parameters to
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describe the diurnal change of the vertical ionospheric delay. It is simple and can only

model up to 50% of the real ionospheric delay at mid-latitude, which is not accurate

enough for DGPS performance analysis.

In models based on the use of spherical harmonics (e.g., El-Arini et al, 1994; Komjathy

and Langley, 1996; Schaer, 1997; Hansen et al, 1997), the ionospheric delay is

represented as an expansion of spherical harmonics. The coefficients of the spherical

harmonics model are derived from globally distributed GPS monitor stations. Therefore,

this model is much more accurate than the Klobuchar model to describe the global

distribution of the ionospheric delay, but its spatial resolution is low, due to the low

density of GPS stations.

Another type of ionosphere model is the grid model (e.g., Kee, 1996; Enge and Van

Dierendonck, 1996; Skone, 1999). The ionosphere layer is partitioned into n×m grids

with the vertical delay at a pierce point being interpolated from surrounding grid points.

Different interpolation methods are used, however they lead to similar performance (El-

Arini et al, 1994). The grid model is appropriate for ionospheric error modeling in a

regional network (Mannucci et al, 1997) and has been suggested for the WAAS system

(FAA, 1994).

Many models have been developed for modeling tropospheric effects, such as the

Saastamoinen total delay model (Saastamoinen, 1972, 1973), the Hopfield dual-quartic

model (Hopfield, 1969), the Black and Eisner model (Black and Eisner, 1984). A

summary of tropospheric models is given by Spilker Jr. (1996). Most of these models can

very well model the dry tropospheric delay.  However, the wet delay and its spatial

correlation and temporal variation are rarely considered, and these can impact adversly

the performance of DGPS.

The orbital error has a relatively smaller impact on DGPS than the atmospheric error

does. If real-time processing is not required, precise orbits derived by IGS centres can

almost eliminate the orbital error. Even for real-time applications, if the baseline is not

very long (<10 km), the orbital error can be neglected. Therefore, orbital error models are
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seldom used. However, the statistical properties of orbital errors derived by IGS centres

are helpful in building error models for simulation (Zumberge and Bertiger, 1996).

The Department of Geomatics Engineering at the University of Calgary has developed a

different approach especially for differential GPS error modeling (Raquet 1997, 1998).

This approach is based on least squares collocation, and requires a static GPS reference

network. By integrating the double-difference measurements from all the GPS reference

stations, this approach can estimate the spatial distribution of various correlated errors

within the network. A linear estimator is used and certain statistical properties are used

for the differential error behavior. However, the model parameters are only valid in the

GPS network. The statistical properties for these parameters have not been obtained on a

global scale. In addition, the limitation of this method is that it can estimate only

differential errors.

Multipath decorrelates with distance very rapidly and usually cannot be reduced by

differencing; thus, it can have a large impact on DGPS performance. In addition,

multipath is highly correlated to the reflecting environment surrounding a GPS station;

thus, it is also difficult to model multipath in kinematic applications where the reflective

properties of the environment vary dramatically as a function of location.  However, the

multipath generating mechanism  is well understood. Multipath simulation can be

performed by modeling signal reflection from a modeled environment.  For instance,

such models have been developed by Ray (2000) and Ryan (2000).

1.4 OBJECTIVES

The major objectives of this thesis are as follows:

[1] To design a carrier phase-based relative GPS method to position multiple moving

platforms with respect to each other. The multiplicity of moving platforms are to be

used to form constraints for integer ambiguity resolution, and hence to decrease the

time to fix and to increase the reliability of ambiguity solution. In this research, the

number of GPS platforms tested is up to 10. No reference station with precisely

known coordinates is required.
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[2] To develop a GPS software simulator to generate various scenarios for testing. The

resolution of the spatial correlation and temporal variation of DGPS errors should be

enhanced compared to the existing models. This simulator can output GPS time,

range, and range-rate for both code and carrier phase measurements and includes

three major parts:

•  GPS constellation generator, which can simulate a standard 24-satellite GPS

constellation and an enhanced 30-satellite constellation.

•  Trajectory generator, which is designed to generate the trajectory and velocity of

a GPS platform.

•  GPS error generator, which can simulate the major error sources of the GPS

measurements, such as SA, receiver noise, multipath, ionospheric, tropospheric

and orbital errors. In order to properly test both the stand-alone and the

differential GPS systems, the temporal and spatial variation of errors is

emphasized. Furthermore, adjustable parameters, such as time, meteorological

data, strength of solar activity, etc., are required, in order to simulate various

testing scenarios from benign to extremely adverse conditions.

[3] To fully test the approach developed for multiple moving platforms positioning using

the GPS software simulator and real field data. The impact of various system

parameters on the performance of the positioning algorithm is to be investigated.

Those parameters include the magnitude of differential errors, the number of moving

platforms, satellite geometry and visibility, the use of different observables (L1 or

widelane - WL), and the different types of ambiguity solutions (integer or float). The

efficiency, reliability, robustness, and accuracy of relative positioning using

constraints are compared with those of the single reference station (also called single

baseline) method in order to check the improvement provided by the multiplicity of

the moving platforms.

[4] To analyze data transmission and processing requirements for real-time applications.

The approach developed herein is designed for real-time positioning. On the one
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hand, the effectiveness of the algorithm is important; on the other hand, realistic

implementation of the algorithm is also important. The double differenced approach

requires data transmission and processing in real-time. The larger the number of

moving platforms, the higher the system capability required (including the capability

of the data link and the processor). This analysis will help to understand the necessary

requirements for data processing, including the optimal structure of the data, the data

link required, the functional inter-platform distance, and the platform configuration.

1.5 OUTLINE OF DISSERTATION

The remaining parts of thesis consist of the following chapters:

Chapter 2 describes the fundamentals of GPS relative positioning, which includes the

selection of GPS observables, the major GPS error sources and their impact on

positioning. In the last section, the principle of OTF ambiguity resolution is reviewed.

Chapter 3 first discusses the available constraints for ambiguity resolution for the case of

multiple moving platforms. Then the new methodology proposed herein for relative

positioning using multiple-platform constraints is described. The newly developed

approach is called 'MultiKin' (Multi-Platforms Kinematic). It includes adaptive

constraints construction (Delaunay triangulation), modification and optimization of the

existing algorithms for OTF ambiguity resolution, and application of available constraints

to improve the effectiveness of relative positioning.

Chapter 4 describes the design of major GPS error models involved in the DGPS

applications, namely models for the ionospheric, tropospheric, orbital errors, multipath,

and SA. The first three are spatially correlated errors; thus, the simulation of spatial and

temporal correlation of errors is emphasized. Multipath is the dominant error for short-

baseline resolution. Two models are discussed for multipath simulation in static and

kinematic applications. A simple discussion of SA modeling is also given in this chapter

for completeness.
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Chapter 5 deals with the other two parts of the GPS software simulator, i.e., the

constellation generator and the trajectory generator. To fully test MultiKin, the design of

various simulation scenarios for testing is also described.

Chapter 6 presents the results of simulations and field tests for MultiKin. It analyzes the

effects of all kinds of parameters on system performances, including the number of

platforms, satellite geometry, inter-platform distance, magnitude of GPS errors, selection

of observables, etc. Performance is assessed by comparing the results based on the use of

constraints to the single-baseline method. The design and results of two field tests using

multiple receivers are presented to confirm the conclusions drawn through the

simulations.

Chapter 7 discusses operational considerations for implementation of the relative

positioning of multiple moving platforms, namely, capability of data link and processor,

configuration, functional distance, etc.

Chapter 8 provides conclusions and recommendations for further research.
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2 GPS THEORY

2.1 GPS OBSERVABLES

Figure 2.1 shows the principle of stand-alone GPS positioning. The range from a satellite

to a user’s antenna, denoted as R, is measured by the propagation time of the GPS signal.

The position of a satellite is calculated from the broadcast ephemeris. The position of the

user’s antenna is on a sphere centered at the satellite with the radius of R. When four

satellites are observed, the three-dimensional position of the antenna and the receiver

clock error can be estimated.

Measured Range

Receiver clock error

Position of Antenna

Figure 2.1 Principle of stand-alone GPS positioning

The accuracy of positions depends on the errors in the range measurements scaled by the

satellite geometry. The range measurement is obtained by comparing either the PRN

(pseudo random noise) code phase or the carrier phase of the received GPS signal with

the replica signal generated by the GPS receiver. The observation equations of the GPS

code and carrier phase measurements are:
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( ) Pmptropion dddTdtcdP εερρ ++++−++= (2.1)

( ) NdddTdtcd mtropion λεερρΦ ΦΦ ++++−−++= (2.2)

where P is the code measurement (m),

ρ is the geometric range from a satellite to a receiver (m),

ρd is the orbital error (m),

c is the speed of light (m/s),

dt is the satellite clock error (m),

dT is the receiver clock error (m),

iond is the ionospheric delay (m),

tropd is the tropospheric delay (m),

mpε is the code multipath error (m),

Pε is the receiver noise in code measurement (m),

Φ is the carrier phase measurement (m),

Φεm is the carrier phase multipath error (m),

Φε  is the receiver noise in carrier phase measurement (m),

λ is the wavelength of the GPS carrier (m/cycle), and

N is the integer cycle ambiguity (cycle).

The ionospheric error in the code measurement has the same magnitude but a different

sign from that in the phase measurement. Also, the carrier phase measurement differs
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from the code measurement by an ambiguity term N, which is an unknown integer

resulting from the periodic property of the GPS carrier. Generally, the range

measurement is quite noisy. Even when SA is off, the accuracy of stand-alone positioning

can only be a few metres. In order to achieve a higher accuracy, a reference station with

precisely known coordinates is needed, and the differential method is used to measure the

relative position between a reference and a rover station. The major GPS errors observed

at the reference and rover stations are spatially or temporally correlated. Differential

methods can reduce most correlated components when the separation of the receivers is

not very large. The observation equation for the single differenced GPS carrier phase

between a reference and a rover station is

i
reference

i
rover ΦΦ∆Φ −= (2.3)

This equation can be rewritten as:

NdddTcd mtropion ∆λε∆ε∆∆∆∆ρ∆ρ∆∆Φ ΦΦ ++++−++= (2.4)

After differencing, the spatially correlated errors are reduced, the satellite clock error is

cancelled, and the uncorrelated errors are amplified. Usually, the uncorrelated error

amplification is much smaller; thus, the differenced measurement has a much lower level

of error than a single measurement.

As shown in Equation (2.4), the receiver clock error dT still exists and is coupled with the

ambiguity term; thus, the single differenced method is seldom adopted, except in some

attitude determination systems. In these systems, either a dedicated receiver is used to

process the RF input of multiple antennas, or multiple receivers are driven by a common

external clock (Keong, 1999). Both schemes can eliminate the receiver clock errors.

However, in most other applications, the requirement of a common clock is not practical

because of the large separation between a reference and a rover station. The double

differenced technique is therefore adopted. It can be formulated as follows:

( ) ( )j
reference

j
rover

i
reference

i
rover

ji ΦΦΦΦ∆Φ∆ΦΦ∆ −−−=−=∇ (2.5)
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This equation can be rewritten as:

Nddd mtropion ∇+∇+∇+∇+∇−∇+∇=∇ ∆λε∆ε∆∆∆ρ∆ρ∆Φ∆ ΦΦ (2.6)

For a receiver, the different receiving channels are driven by a common internal clock,

which implies that the clock errors of different channels are basically the same and can be

removed by differencing between two satellites. Therefore, the double-differenced carrier

phase is the most often used observable in precise relative positioning. Herein, the carrier

phase ambiguity is always referred to as the double-differenced ambiguity unless

indicated otherwise.

For carrier phase positioning, the high accuracy depends on ambiguity fixing. For the L1

frequency, the wavelength is only 19 cm; centimetre-level accuracy positions can be

achieved provided that the ambiguities can be correctly fixed. However, successful fixing

mainly depends on the error magnitudes (in cycles) in the carrier phase observations. If

the separation between a reference and a rover station is large, the residual error after

differencing can result in difficulty fixing ambiguities. In this case, the combination of

dual-frequency carrier phase observables can be used instead of the single-frequency

observables:

21j,i ji ΦΦΦ += (2.7)

where 1Φ  is the observed carrier phase of L1 in cycles, and

2Φ  is the observed carrier phase of L2 in cycles.

The widelane observable is often used to solve the ambiguities of long baselines. This is

because the widelane observable not only has a relatively longer wavelength, but also

reduces the atmospheric errors (in cycles) by differencing between L1 and L2. Five

different errors in observations are shown in Equation (2.4). They can be categorized into

three types:

[1] Indε , Independent, e.g., receiver noise and multipath,
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[2] FDε , Frequency-dependent, e.g., ionospheric error, and

[3] FCε , Frequency-consistent, e.g., tropospheric and orbital error.

If Φε  is the total carrier phase error in cycles, then the errors in L1 and L2 can be

described as:

cycles1,FC1,FD1,Ind1, εεεεΦ ++= (2.8)

cycles2,FC2,FD2,Ind2, εεεεΦ ++= (2.9)

Given the properties of these errors, they can be derived as follows:

22,FD11,FD ff εε = (2.10)

22,FC11,FC f/f/ εε = (2.11)

where f1=1575.42 MHz,

 f2=1227.60 MHz.

Thus, the error (in cycles) of a dual-frequency combination can be written as:

( ) ( ) ( )121,FC211,FD2,Ind1,Ind2,1,ij, ffjiffjijiji +++++=+= εεεεεεε ΦΦΦ

( ) 1,FC1,FD2,Ind1,Ind 77
j60i77

60
j77i60ji εεεε +++++=    cycles

(2.12)

Assuming that εInd,1 and εInd,2 have the same variance and are independent of each other,

according to the covariance law, the variances in cycles2 of the L1 and dual-frequency

combined observables can be derived as:

22
1,FC

2
1,FD

2
Ind

2
1, cyclesσσσσΦ ++= (2.13)
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( ) 22
1,FC

2
2

1,FD

2
2
Ind

222
ij, cycles

77
j60i77

60
j77i60ji σσσσΦ �

�

�
�
�

� ++�
�

�
�
�

� +++=
(2.14)

The variance in metres is 2
ij,

2
ij Φσλ ,

where λ1 and λ2 are the wavelengths of L1 and L2 carriers respectively,

12

21
ij ji λλ

λλλ
+

=  is the resulting wavelength of the dual-frequency observable.

Table 2.1 gives the most commonly used dual-frequency combined observables in GPS,
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Table 2.1 GPS carrier phase combinations

Observable i j ijλ

(metre)

Coefficients of

Variances ( cycles2)

Coefficients of

Variances ( metres2)

L1 1 0 0.190 ( )111 ( )111

Widelane 1 -1 0.862 ( )049.008.02 ( )165.116.41

Narrowlane 1 1 0.107 ( )17.321.52 ( )165.1634.0

Ionosphere

Free
2

2
2

1

2
1

ff
f
− 2

2
2

1

21

ff
ff

−
− 0.484 ( )1042.10 ( )49.606.67

The variances in cycles2 represent the difficulty in fixing ambiguity. It is obvious that the

widelane observable can greatly reduce the atmospheric impact on ambiguity resolution

because the variances (in cycles2) of the ionospheric and tropospheric errors are scaled by
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0.08 and 0.049 respectively. Thus, widelaning is proper for resolution of a long baseline

provided that the effect of independent errors is relatively small. However, the

positioning accuracy derived by the widelane observable is poorer than that derived by

the L1 observable because the variance in metres2 is amplified after widelaning.

For very short baselines, the impact of the spatially correlated errors can be neglected so

the use of narrowlane can lead to high-accuracy positions. This can be verified from the

smaller coefficient (0.634) of independent errors (metres2) for the narrowlane as opposed

to the L1 (1.0).

To attract more civilian users to use the GPS system for navigation and positioning, the

US government announced not only to make the C/A code on L2 available, but also to

add a third civilian frequency, L5 (1176.45 MHz), on GPS. When implemented, the third

frequency will greatly improve the reliability and robustness of the system, because more

combinations of the three frequencies can be formed, which can have both longer

wavelengths and reduced atmospheric errors (Han and Rizos, 1999).

2.2 GPS ERROR SOURCES

Equation (2.4) shows seven different GPS error sources which can be categorized into

three different types according to their spatial and temporal correlations:

[1] Only satellite correlated : satellite clock error, SA (until May 2000),

[2] Spatially correlated: satellite orbital error, ionospheric and tropospheric error,

[3] Independent error: receiver noise, multipath error.

The first type of errors can be totally removed by single differencing between two

receivers. The second type of error can be reduced by single differencing; however, the

residual errors increase as the separation increases. The third type of error cannot be

removed by any differencing techniques and they are independent of baseline lengths.
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2.2.1 Orbital Error

Orbital error results from the uncertainties in the broadcast ephemeris. These

uncertainties are due to the accuracy limitations associated with the predicted nature of

the broadcast ephemeris. Tests have shown that the orbital error is generally a few

metres; but sometimes, it can reach tens of metres due to the problem of orbit prediction.

Orbital error can be greatly reduced by differencing between receivers. A more effective

way to handle orbital error is to use post-processed precise orbits. Precise orbits are

derived from an extensive reference network and the accuracy can be as high as a few

centimetres (JPL website). However, precise orbits are not available for real-time

applications.

2.2.2 Ionospheric Error

Ionospheric error is caused by the presence of free electrons when GPS signals pass

through the upper layer of the atmosphere. The effect on range may vary from 150 metres

(at midday, during periods of maximum sunspot activity, with the satellite near the

horizon of the observer) to less than five metres, (at night, during periods of minimum

sunspot activity, with the satellite at the zenith) (Wells et al. 1987). For GPS carrier

frequencies, the ionospheric delay is dispersive. This fact can be used to advantage, since

a special linear combination of the dual-frequency GPS observations can be formed to

eliminate most of the ionospheric effect. Ionospheric correction coefficients from the

broadcast ephemeris can only remove 50% of the ionospheric delay at mid-latitudes

(Wells et al. 1987). Recent research on precise prediction of the ionospheric delay using a

wide-area GPS network, such as WAAS, or using a regional network (Raquet, 1998), has

shown some good results for correcting the ionospheric delay using interpolation or least

squares collocation.

2.2.3 Tropospheric Error

Tropospheric delay is caused by the refraction of the GPS signal in the troposphere. The

delay contains two parts. The larger part is caused by the dry atmosphere component,

which is stable and predictable. The delay resulting from the water vapor is smaller, but

varies greatly. At GPS frequencies, the troposphere is non-dispersive. The tropospheric
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delay is strongly correlated over a short distance between the reference and the rover

stations when the height difference of the two stations is small. However, when the

separation or height difference is large, local atmospheric conditions will be different and

the correlation becomes weaker. Surface meteorological data is not accurate to

adequately represent atmospheric conditions along the signal path (Spilker Jr., 1996). To

get more accurate estimations, the water vapour content of the atmosphere along the

propagation path can be measured with water vapour radiometers (Resch, 1984)).

However, the instruments are very elaborate and expensive. Now, GPS networks are also

used to predict the relative tropospheric wet delay (Zhang, 1999).

2.2.4 Multipath

Multipath occurs when reflected signals, in addition to the direct signal, reach the

antenna. It depends highly on the properties of the reflector, the antenna gain pattern, and

the type of correlator used in a receiver. Multipath interferes with the correlator in a GPS

receiver to precisely determine the time instant of signal reception. It affects both

pseudorange and carrier phase measurements. The code multipath is generally much

larger than the carrier phase multipath. It can reach up to one-half of a chip length of the

PRN code, assuming an environment in which the multipath signal strength never

exceeds that of the direct signal (Goldhirsh and Vogel, 1989). By contrast, the carrier

phase multipath is always less than one-quarter of the carrier wavelength (Georgiadou

and Kleusberg, 1988). Typically, for static observations, multipath is non-Gaussian in

nature and shows sinusoidal oscillations with periods of a few minutes due to the change

of satellite geometry. In kinematic applications, multipath behaves more randomly

because the movement of the vehicle changes the reflecting geometry in a relatively

random way. For most precise positioning applications, multipath is one of the major

error sources, because it decorrelates very fast over distance and cannot be reduced by

differencing or modeling.

2.2.5 Receiver Noise

Typical pseudorange measurement resolution is approximately 0.1 to one metre on the

C/A code (Lachapelle, 1997). The NovAtel Narrow-Correlator  receivers measure the



23

pseudorange with a 10 cm noise level. The carrier phase can be measured with millimetre

or sub-millimetre precision. Receiver noise is mainly caused by thermal noise, dynamic

stress and oscillator stability in the tracking loop. It has the least effect on carrier phase

positioning.

2.2.6 Selective Availability

SA was the intentional degradation of the GPS signal in order to deny full position and

velocity accuracy to unauthorized users (van Grass and Braasch, 1996). Two different

methods could be used to deny the GPS accuracy: manipulation of the navigation

message orbit data (referred to as the ε-error) or manipulation of the satellite clock

frequency (referred to as δ-error). The real SA only contained δ-errors. SA used to be

part of the standard positioning service and was turned off in May 2000. It was the largest

error source for stand-alone positioning. Even for differential GPS, it could cause some

problems. For instance, the impact of δ-errors depended on the latency of differential

corrections.

2.3 OTF AMBIGUITY RESOLUTION

As mentioned in the Chapter 1, GPS carrier phase positioning has a higher accuracy than

code positioning, assuming the integer ambiguity is correctly fixed. OTF ambiguity

resolution is a method used to solve the carrier phase ambiguity in kinematic

applications. It differs from the static ambiguity resolution in two ways:

[1] In kinematic applications, errors of measurement cannot be reduced by time

averaging because the movement of platforms can significantly change the testing

environment.

[2] In kinematic applications, the position and velocity of the object is required for every

epoch, so the batch processing cannot be adopted if real-time processing is required.

Since less information is available and larger errors occur, OTF ambiguity resolution is

more difficult in kinematic than in static mode. Here are some major factors affecting the

OTF ambiguity resolution (Lachapelle, 1997):
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[1] Selection of observables

[2] Inter-receiver distance

[3] Number and geometry of satellites

[4] Magnitude of GPS errors

[5] Ambiguity search method

[6] Performance required, etc.

The study of OTF ambiguity resolution started in the early 1980s, with several methods

having been developed since then. Basically, they have the same strategies to fix

ambiguities, namely, float ambiguity resolution, integer ambiguity searching, and the use

of a distinguishing test.

The float ambiguity and its variance are used to define the initial search point, and the

search range of the integer candidates. Usually, the float solution is derived from the

pseudorange measurement, which is further smoothed by the carrier phase using least

squares adjustment or Kalman filtering. The recent research of GPS network adjustment

(Raquet, 1998) presents significant improvement in error reduction for long-baseline

resolution. It has shown that the double differenced errors can be reduced by up to 50% at

distances around 200 km when using the network adjustment approach. Since the model

parameters are built from real data, the network adjustment shows a brighter prospect in

error reduction than the classical Kalman filtering based on the empirical error models.

Table 2.2 gives a summary of some representative ambiguity search methods. References

for each method can be found in section 1.3.1. In several ambiguity search methods, the

covariance matrix after Kalman filtering is not directly used to define the ambiguity

search space. This is because only three of the double difference ambiguities are

independent, whereas the number of observations is generally more than that.

Consequently, the variance-covariance matrix is not diagonal due to the strong

correlation among ambiguities. This correlation is a nuisance for ambiguity resolution

because it largely elongates the search space. Therefore, the full search method is usually
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time-consuming and has a low efficiency. To reduce the correlation among ambiguities,

the matrix transformation and conditional least squares approaches are often used, such

as LAMBDA and FASF. A detailed discussion of LAMBDA and FASF method is given

in Chapter 3.

Table 2.2 Comparison of ambiguity search methods

Method Evaluation Function Correlation Reduction
Ambiguity
Function
Method (AFM)
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−
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=
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M is the number of visible satellites
θ is the measurement residual
(x,y,z) is the position for trial
s is the weighting factor applied to L2
residuals

No reduction
Full search

Least Squares
Search

rCr 1T −
�

r is the residual vector computed using the
potential integer ambiguities of primary
satellites and corresponding integer
ambiguities of secondary satellites

�
C  is the covariance matrix of observations

Ambiguity search only
conducted for four
primary satellites

Fast Ambiguity
Resolution
Algorithm
(FARA)

rCr 1T −
�

r is the residual vector
�

C  is the covariance matrix of observations

Reject ambiguity pair
using student test

Fast Ambiguity
Search Filter
(FASF)

)NN(C)NN( intfloat
1T

intfloat
'

N
−−= −Ω

NC is the conditional covariance matrix of
the float ambiguity set Nfloat,
Nint is the integer ambiguity solution

Reduced search space
by conditional least
squares

Least squares
AMBiguity
Decorrelation
Adjustment
(LAMBDA)

)zz(C)zz( intfloat
1

z
T

intfloat
' −−= −Ω

zC is the conditional covariance matrix of
transfomed float ambiguity set zfloat,
zint is the transformed integer ambiguity
solution

ZNz =
T

NZ ZZCC =
Z is the transformation
matrix which leads to
diagonalization of the
covariance matrix zC
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When measurements from multiple GPS receivers are available, the resulting constraints

from the geometry of receivers can also be used as a way to reduce the space in

ambiguity search. Generally, a Kalman filter will be used to process the constraints:

( )�
�
�

=�=
= −+

wHX0Xf
XX (2.15)

where X is the vector of parameters,

f(X) =0 is the constraint,

H is the linearized design matrix of the constraints, and

w is the misclosure.

The first equation is the dynamic model. The second is the available constraints used as

the observation model, which is linearized in practice. The parameter X is updated by this

observation model. Weisenburger (1997) gave the derivation of the design matrix H for

multiple constraints.

After ambiguity searching, a distinguishing test is conducted to check the distinctiveness

of the best integer candidate. If the test is passed, it means the best candidate is good

enough to be the true. Otherwise, more observations are needed and the search procedure

will continue. Generally, the χ2 test (Wei and Schwarz, 1995) or the ratio test (Landau

and Euler, 1992; Chen and Lachapelle, 1995; Wei and Schwarz, 1995; Han and Rizos,

1996) are selected. However, they do not generally give a satisfactory solution. This is

because most of the current tests are based on the assumption that observations are free of

blunders and biases, and observation errors are Gaussian in nature, which is rarely true

for GPS.

Due to the errors in GPS measurements, the integer ambiguities can be incorrectly fixed.

This can result in a serious degradation of the positioning accuracy; therefore, the

monitoring of the integer solution is necessary for carrier phase positioning. Usually, a

residual test is performed to check whether the residuals exceed a confidence range. This
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test is based on the same assumption made for the distinguishing test; thus, it is not robust

when blunders are present.

Much effort has been put into research for improving the performance of single-baseline

ambiguity resolution. However, achieving further improvement is extremely difficult

because of limited information (measurements from only two GPS receivers are

available). Therefore, using constraints provided by multiple platforms to aid ambiguity

resolution seems to be a valid alternative. The proper use of these constraints has proven

beneficial for ambiguity resolution. In Chapter 3, an OTF ambiguity resolution method

using constraints from multiple moving platforms will be discussed in detail.
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3 MULTIKIN METHOD

MultiKin is a method developed for relative positioning, which can process the data from

multiple GPS platforms at the same time. It has two characteristics. First, it does not need

reference stations with precisely known coordinates. Second, it can make use of the

constraints provided by the multiplicity of receivers to improve the OTF ambiguity

resolution and hence to improve the efficiency and reliability of the relative positioning

of each baseline.

The procedure of MultiKin consists of three steps:

[1] Constraints construction

[2] Individual baseline resolution

[3] Enhancement of ambiguity fixing using constraints.

It has been shown in previous research that constraints are very helpful for ambiguity

resolution. The more the constraints are used, the greater the improvement. Herein, a

discussion of different constraints is given first. According to their properties, the

applicable constraints for this application are determined before presenting the detailed

methodology of MultiKin.

3.1 AVAILABLE CONSTRAINTS

[1] The fixed baseline constraint

A fixed baseline means that the inter-platform distance (baseline length) is precisely

known. This can be used to aid in fixing ambiguities between the moving rover pair.

Generally, the fixed baseline length is obtained from an external source other than GPS,

such as a tape measurement. This constraint is often used in attitude determination

systems (Lachapelle et al, 1993; Lu, 1995), where the antenna-array has been fixed on the

body frame of the measured object.
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[2] Attitude constraint

When the integer ambiguities of a moving baseline are fixed, the fixed baseline can help

fix the integer ambiguities between a reference station and the moving rover pair.

Because the attitude of the “moving baseline” can be precisely estimated, the solved

attitude can then be used as a constraint for the ambiguity resolution between the

reference and rover stations.

[3] Approximate coordinate constraint

The most often used coordinate constraint is a height constraint. It is extremely useful in

marine applications where the height is well known. Remondi (1992) discussed the use of

height constraints to directly aid in rejecting possible ambiguity sets.

None of the above constraints is proper for ambiguity resolution in a configuration of

multiple moving platforms for two reasons. First, there is no fixed baseline in this

application, because all platforms are mobile and each has only one antenna. If the fixed

baseline constraint cannot be used, neither can the attitude constraint. Second, this

research is not specific to marine applications, so the coordinate constraints are not valid

here either. The only effective constraint for positioning multiple moving platforms is the

ambiguity constraint.

[4] Ambiguity constraint

The concept of the ambiguity constraint is that the sum of the double-differenced

ambiguities in a closed polygon is zero, as shown in Figure 3.1. This theory was first

proved and applied by Lachapelle et al (1993, 1994). Since then, it has been widely used

to aid ambiguity resolution:

0NNNN 1,mm,1m3,22,1 =∇+∇++∇+∇ − ∆∆∆∆ � (3.1)

where, ( ) ( )B
j

B
i

A
j

A
ij,i NNNNN −−−=∇∆  is the double differenced integer ambiguities,

i,j are the indices of the GPS platforms (nodes of polygon),
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A is the common satellite observed by all platforms, and

B is the common base satellite.

m

1 2

3

4
m-1

………

  GPS station

Double-differenced

ambiguities

Figure 3.1 Concept of closed (polygonal) ambiguity constraints

As a special case of polygonal ambiguity constraints, the triangular constraint has been

proven to be the best ambiguity constraint. Here are two prominent advantages of

triangular constraints over polygonal constraints:

Higher efficiency: Once the ambiguities of any two baselines are fixed, ambiguities of

the third baseline can be fixed immediately, whereas for a polygonal constraint, �-1

baselines must be fixed before the constraint can help to fix the �th baseline.

Higher reliability: If the ambiguities of a baseline are incorrectly fixed, they will affect

only the other two baselines in the same triangle. However, for polygonal constraints, all

other �-1 baselines in the same polygon are affected by the incorrectly fixed baseline.

Therefore, the multi-triangular constraint can better localize the error in ambiguity

resolution.

Because of the higher effectiveness of the triangular constraint, the multiple-triangular

constraints are used in MultiKin.
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3.2 DELAUNAY TRIANGULATION FOR CONSTRUCTION OF

CONSTRAINTS

When there are multiple moving platforms in the application, The choices of constructing

triangular constraints are also multiple. In this section, the discussion of criteria and

methodology for optimally constructing constraints is presented.

3.2.1 Optimal Criteria for Baseline Selection

The selection of baselines determines the effectiveness of an algorithm to construct

ambiguity constraints. An optimal approach to select the baselines and construct

constraint triangles must meet all the following requirements:

[1] Reasonable computational burden

[2] Effective use of constraints

[3] Selection of the shortest baselines

In a GPS configuration containing � moving platforms, the numbers of baselines and

triangles are 2)1( −��  and 6)2)(1( −− ���  respectively. When there are only three

platforms in the configuration, the selection of baselines for ambiguity constraints is

unique. However, when the number of platforms is more than three, the numbers of

optional baselines and triangles increase dramatically. If all the baselines and possible

triangular constraints are used to aid ambiguity resolution, the extremely heavy

computational burden can result in difficulties with real-time processing. For instance,

selecting all the moving baselines and triangles under a configuration of 50 GPS

platforms leads to simultaneous processing of 1225 moving baselines and 19600

triangular constraints. This requires a very high-speed processor and a very large amount

of memory.

The effectiveness of the constructed constraints is also very important. Figure 3.2 gives

two schemes to construct constraints. It is obvious that Scheme A needs less computation

than Scheme B, but is less effective. This is because the constraints used in Scheme A are
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independent of each other, i.e., one constraint is not helpful for ambiguity resolution of a

baseline in another triangle. Therefore, optimal triangular constraints should interrelate

with each other.

A B

Figure 3.2 Effectiveness comparison of different triangular constraints

Because the resolution of a baseline is mainly dependent on the magnitude of differential

GPS errors, the optimal triangulation should avoid using baselines which could induce

large measurement errors. In Figure 3.3, both Schemes A and B have the same

computational burden and interrelation of constraints; however, Scheme A is statistically

better than Scheme B because it contains relatively shorter baselines. Shorter baselines

cannot guarantee smaller errors in the observations, since the uncorrelated errors, such as

multipath and receiver noise, are independent on the length of a baseline. However,

statistically, short baselines can be treated as a good indication of small differential errors

when the spatially correlated errors are dominant; thus, Scheme A should always be

selected over Scheme B.

As a result of considering all the above requirements, an approach called Delaunay

triangulation is selected for the optimal construction of ambiguity constraints. Here are

some properties of Delaunay triangulation:

[1] For 2D Delaunay triangulation, the numbers of selected baselines and triangles

increases linearly with the number of platforms;
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[2] Delaunay triangles interrelate with each other. The number of Delaunay triangles is

equal to the number of the independent triangular constraints;

[3] Delaunay triangulation can select the shortest baselines in most of cases.

A B

Figure 3.3 Baseline selection (reduced differential errors)

From these properties, it can be concluded that Delaunay triangulation satisfies all the

criteria for optimally constructing constraints. In the following section, experimental

results will be presented to compare the effectiveness of the Delaunay triangulation and

the full selection method.

3.2.2 Definition of Delaunay Triangulation

The definition of Delaunay Triangulation is based on the Voronoi diagram through the

principle of duality (Preparata and Shamos, 1985).

Definition of Voronoi graph: Let { }k21 p,p,pP �=  be a finite set of points in the

n-dimensional space Rn, and their position vectors jixx ji ≠∀≠ . The region given by

( ) { }ijxxxxxpV jii ≠∀−≤−= (3.2)

is called Voronoi region (Voronoi box) associated with ip and
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( ) ( )�
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=
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is the Voronoi diagram of P.

Definition of Delaunay edge: Let P be a finite set of points in a sub-domain nΩ  of the

n-dimensional space Rn. Two points pi and pj are connected by a Delaunay edge e if and

only if there exists a location nx Ω∈  which is equally close to pi and pj and closer to pi,

pj than to any other Ppk ∈ . The location x is the centre of an n-dimensional sphere

which passes through the points pi, pj and which contains no other points pk of P.

Definition of Delaunay triangle: Let P be a finite set of points in a sub-domain nΩ  of

the n-dimensional space Rn. Three non-collinear points pi, pj and pk form a Delaunay

triangle t if and only if there exists a location nx Ω∈  which is equally close to pi, pj and

pk and closer to pi, pj, pk than to any other Ppm ∈ . The location x is the centre of an n-

dimensional sphere which passes through the points pi, pj, pk and which contains no other

points pm of P.

In the case of 2D triangulation, Delaunay triangulation is known to minimize the largest

circumcircle, and to maximize the minimum angle of all triangles. In 3D triangulation,

the Delaunay triangulation is only known to minimize the largest minimum-containment

sphere (Bern and Eppstein, 1992; Rajan 1991). An important difference between 2D and

3D triangulation is the number of triangles/tetrahedra as a function of the number of

points n. While the number of triangles in 2D triangulation grows with ( )nO , the number

of Delaunay tetrahedra in a tetrahedralization can grow with ( )2nO .

3.2.3 Methodology

This section presents a brief review of Delaunay triangulation algorithms for a given

point set P without constraining boundaries. There are many algorithms used for

Delaunay triangulation, most of which focus on improving the efficiency of “nearest

neighbor” search. For a less optimal method, the number of required flip operations

grows with ( )2nO  where n is the number of points. However, for an optimal algorithm,
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the growth rate is only ( )nlognO . A detailed comparison of Delaunay triangulation

algorithms can be found in (Su and Drysdale 1995). The four major methods used for

Delaunay triangulation are

[1] Divide-and-Conquer (Preparata and Shamos, 1985)

[2] Sweepline  (Fortune, 1987)

[3] Incremental Construction (Lawson, 1977)

[4] Incremental Search (Merriam 1993 and Hitschfeld, 1993)

In this research the number of platforms in the configuration is not large (<100), so the

efficiency of Delaunay triangulation is not a major concern. An algorithm proposed by

Avis and Bhattcharya (1983) is used herein. The three major steps of this algorithm are as

follows:

[1] Set any platform (point) pi as the origin.

[2] Find a small subset of other points to define a polyhedron PJ which contains the

Voronoi polyhedron of pi:

( )jiJjJ p,pHP
∈
∩= (3.4)

where { } { }i,2,1J −⊆ �� . ( )ji p,pH  is the closed half-space bounded by the

perpendicular bisector of points pi and pj that contains pi.

[3] Eliminate the redundancy of ( )ji p,pH  with respect to PJ by solving the linear

program:

x)ppmax(z ij
* −=

  subject to ( ) ( )[ ]( )ikikik pp2ppxpp ++≤−

(3.5)

where Jk ∈ .
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The application studied herein is only related to a very small GPS network with an area

of less than 20×20 km2. If the height difference of the platforms is much less than the

horizontal separation, this 3D Delaunay triangulation problem can degenerate to the 2D

Delaunay triangulation. Correspondingly, the search algorithm can become more efficient

and the upper bound of the baseline number can also be reduced. For 2D Delaunay

triangulation, the maxium number of baselines is 3�-6 (� is the number of the stations),

whereas, for 3D triangulation it can be up to 2C
�

. However, in both cases, the number of

baselines is usually much less than the upper bound and the computational burden of the

triangulation can be reduced. Herein, the 2D Delaunay triangulation is actually applied in

the simulation tests presented in Chapter 6.

3.2.4 Special Considerations for Implementation

It is also worth noting that in this application all the platforms are mobile, so the baseline

lengths change over time. This geometry change can eventually cause the triangulation to

change, if the three criteria defined in section 3.2.1 are continuously applied. For

instance, in Figure 3.4, Platforms 1 and 3 are static, while Platforms 2 and 4 are moving

south and north, respectively. The initial best triangulation is shown in A. After some

time, with the distance increasing between 2 and 4, the best triangulation changes to B. If

the triangulation can be performed in real-time, the shortest baselines will always be

selected, but at the expense of increased complexity. When the dynamics of the platform

are not very high, frequent re-triangulation is not necessary. Therefore, a simplified

approach can be used for triangulation.

1

2

3

4

4

2

1 3

A B

Figure 3.4  Triangulation change in a kinematic network
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In the simplified approach, two preconditions are necessary to keep the optimality of

triangulation:

[1] GPS platforms have low velocity.

[2] Differential GPS errors decorrelate slowly as a function of receiver separations.

Based on these two assumptions, it can be derived that the low update rate of re-

triangulation does not cause an obvious increase of differential errors for a baseline.

Consequently, the efficiency, reliability and accuracy of fixing a moving baseline will not

be degraded.  A re-triangulation period of five minutes is suggested, based on the

assumption of 40 km/h velocity (maximum) of vehicles.

3.2.5 Performance of Delaunay Triangulation

Figure 3.5 shows an example of two-dimensional Delaunay triangulation. According to

the properties mentioned in section 3.2.2, Delaunay triangulation minimizes the largest

circumcircle, and maximizes the minimum angle of all triangles. However, it cannot

guarantee that the shortest baselines are always selected. Figure 3.6 shows an example

where Delaunay triangulation fails to select the shortest baseline.

In this case, three of the nodes are almost collinear and another node is far away from

these three nodes. The criterion of selecting the shortest baseline (Scheme B) leads to a

very sharp angle in the triangle, while using Delaunay triangulation  (Scheme A), a

longer baseline is selected to maximize the minimum angle. This geometry is called the

least preferable geometry for MultiKin in the following discussion. Although Delaunay

triangulation cannot select the shortest baseline under the least preferable geometry, it

does not degrade the efficiency of ambiguity constraints. Monte Carlo tests prove that if

all the nodes are averagely distributed in the testing area, the probability of generating

this least preferable geometry is small enough to be ignored (less than 1%). In addition,

the three baselines that are determined by the criterion of selecting the shortest baselines

are almost linearly correlated, which reduces the effectiveness of the ambiguity

constraints. Therefore, Delaunay triangulation can still be treated as the optimal method

to construct constraints.



38

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normial distance in X direction

N
or

m
ia

l d
is

ta
nc

e 
in

 Y
 d

ire
ct

io
n

Platform
Delaunay Edge

Figure 3.5 Example of 2D Delaunay Triangulation (30 nodes)

A: Delaunay Triangulation B: shortest baselines

Figure 3.6 Comparison of Delaunay triangulation and shortest-baseline

triangulation in the case of the least preferable geometry

Table 3.1 shows the results of Delaunay triangulation of random distributed platforms.

Each scenario contains 10000 triangulations. When Delaunay triangulation is used, the
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number of baselines to be solved increases very slowly with the increased number of

platforms. However, the use of full selection can lead to the numbers of baselines and

triangles growing with ( )2nO  and ( )3nO , which is unacceptable for real-time processing

when a configuration consists of more than 50 platforms.

Table 3.1 Computational burden of triangulation (Delaunay Triangulation vs. Full

selection)

Number of Platforms 5 10 25 50 100

Mean Number of Baselines (Delaunay

Triangulation)

7.75 21.03 63.70 136.85 285.10

Mean Number of Triangles (Delaunay

Triangulation)

3.75 12.03 39.70 87.85 186.10

Number of Baselines (full selection) 10 45 300 1225 4950

Number of Triangles (full selection) 10 120 2300 19600 161700

A simulation test was also conducted to compare the effectiveness of the full selection

method and the Delaunay triangulation. Six platforms are configured at the vertices and

the centre of an equilateral pentagon with the edge length of 1.5 km, see Figure 3.7. The

tests were performed assuming a full GPS constellation and average differential errors

(see Chapter 4). When using Delaunay triangulation (Scheme A), 10 baselines and five

triangular constraints are selected. For the full selection method (Scheme B), 15 baselines

and 20 triangular constraints are selected. The mean time to correctly fix ambiguities

using Delaunay triangulation is 23.7 s. When using the full selection method, it is 23.4 s.

The efficiency improvement brought by the full selection method is 1.3%. Since the full

selection method can only introduce a very small improvement in ambiguity resolution

while largely increasing the computational burden, the full selection method is not an

optimal solution for constraints construction.
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A B

Figure 3.7 Baseline selection by Delaunay triangulation and full selection

3.3 OTF AMBIGUITY RESOLUTION FOR A SINGLE BASELINE

3.3.1 Introduction of Processing Software FLYKIN

The ambiguity set and the position vector for each baseline are solved using FLYKIN ,

a GPS software suite developed by the Department of Geomatics Engineering at the

University of Calgary (FLYKIN web). It can process double differenced pseudorange and

carrier phase data in either static or kinematic relative positioning mode. It employs

Kalman filtering to reduce the observation noise and initially calculate precise float

solutions of the carrier phase ambiguities. Successful integer resolution depends on the

magnitude of the differential errors and applied observables. The use of dual frequency

data in widelaning mode has resulted in successful ambiguity resolution over distances in

excess of tens of kilometres under good satellite geometry and quiet ionosphere activity.

Single frequency data can result in better accuracy in positioning, but the time to

resolution is substantially longer and the effective distance is much shorter (less than 10

to 15 km).

As most positioning software using GPS carrier phase, the heart of FLYKIN  is its OTF

ambiguity resolution algorithm. This consists of three main steps:

[1] ambiguity initialization (float solution)
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[2] ambiguity search

[3] distinguishing test

In the first step, a 6+N-state Kalman filter is employed, where N is the number of double

differenced ambiguities. This filter can estimate the three-dimensional position, velocity

and N float ambiguities. It applies a first-order dynamic model to predict the position of a

rover station, as follows:
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It also includes two observation equations to update the parameters. One consists of the

pseudorange measurements from C/A code; the other consists of the carrier phase

measurements. This approach is advantageous to many other approaches using only GPS

carrier phase to update the Kalman filter. Although pseudoranges are much noisier than

carrier phase measurements, proper design of the observation variances can lead to a

faster convergence of the float ambiguities. It has been shown by experiment that

updating a Kalman filter with both pseudorange and carrier phase measurements can

reduce the ambiguity fixing time by 10%~20% as opposed to pure carrier phase updating.

Float ambiguities together with the corresponding covariances output by the Kalman

filter are applied to initialize the ambiguity search space. To improve the efficiency of the

search, the least squares ambiguity decorrelation adjustment, LAMBDA (Teunissen,

1994) and the fast ambiguity search filter, FASF (Chen and Lachapelle, 1995) are used to

optimize the structure of the search space.

Because only three double differenced ambiguities are independent (Lachapelle 1992),

whereas in practice the number of observations is often more than three, strong

correlations exist between ambiguities, which can lead to an extremely elongated

ambiguity search space. In the LAMBDA method, a matrix transform is used to

diagonalize the covariance matrix of ambiguities and to reduce the variances of

transformed ambiguities:
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ZNz =

T
Nz ZZCC =

(3.7)

where z is the transformed ambiguity vector,

N is the original ambiguity vector,

Z is the transform matrix,

NC  is the original covariance matrix of the ambiguity vector N,

zC  is the covariance matrix of the transformed ambiguity vector.

However, there are three conditions which the Z-transformation must conform to

(Teunissen, 1994). The first is to keep the integer property of the transformed

ambiguities. The second condition is that the transformation must preserve the volume of

the multi-dimensional confidence ellipsoid. Third, the product of all ambiguity variances

must be reduced, otherwise the number of possible ambiguity combinations will not be

reduced. The Gauss transformation can satisfy the latter two requirements; however, it is

not an integer transformation. To retain the integer values of the ambiguities, the float

numbers in the Gauss transformation matrix are rounded to the nearest integer values.

Thus, the transformation can only generate a diagonal-dominant instead of a purely

diagonal covariance matrix. To maximize decorrelation, rearranging the order of the

ambiguities may be necessary.

The remaining correlations in zC  imply that the variances of the transformed ambiguities

cannot be minimized. Fortunately, FASF is a method which can make use of the

remaining correlation between ambiguities. It applies the conditional least squares

principle to further reduce the variance of ambiguities, i.e., if an ambiguity is assumed

correctly fixed, the variances of other ambiguities can be reduced due to their correlations

with the fixed ambiguity. Equation (3.7) shows the relationship between the conditional

and non-conditional variances of parameters.
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n,nx̂
T

nnx̂x~ )C/(ccCC −= (3.8)

where x~  are the estimated parameters assuming the nth parameter (ambiguity) has been

fixed,

x̂  are the original parameters,

nc  is the nth column of the covariance matrix x̂C ,

n,nx̂ )C(  is the variance of nth parameter (ambiguity).

It has been proved by the theorem in conditional least squares that the variances of x~ are

less than the variances of x̂ . Thus, the search space for other ambiguities can be reduced.

The distinguishing test is performed to isolate the correct integer ambiguity set from the

other candidates.  A ratio test defined below is used in FLYKIN  for this purpose:

T1

2

F
)N~(
)N~(

F >=
Ω
Ω (3.9)

where 1~N is the best integer ambiguity candidate,

2~N  is the second best integer ambiguity candidate,

( ) ( ) ( )float
1

N~|float

T
float NN~CNN~N~ −−= −Ω  , and

N~|floatC   is the conditional covariance matrix for the float ambiguities.

This ratio test has the same form as a Fisher test, however, the necessary assumptions of

Gaussian distribution and independent variables made for the Fisher test are not satisfied

in most GPS applications. Thus, the relationship between the probability of wrong fixing

and threshold FT is not yet clear. Current threshold is set to 4.0 according to empirical

results.
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3.3.2 Modification of FLYKIN

3.3.2.1 Addition of Stand-alone Positioning Module

To accurately solve the relative position vector between two platforms, the approximate

position of one platform should be known. This can be explained from the observation

equation of double differenced carrier phase measurements, where the coordinates of the

reference station (or approximate coordinates of the rover station) are used to compute

the linearized design matrix and misclosure of the observation equation.

In a configuration which only contains multiple moving platforms, the precise

coordinates of the moving reference station cannot be known a priori.  Therefore, a

stand-alone positioning module is added to FLYKIN  to supply the approximate

coordinates of the moving reference station, see Figure 3.8.

Stand-alone Positioning of
Reference

FLYKIN  (original)

Ephemeris and Observations
of Reference Station

Observation of
Remote Station

Position,
Velocity,
Ambiguities

Figure 3.8 Relative positioning of a moving baseline by FLYKIN

The iteration algorithm used for stand-alone positioning is as follows.

[1] Linearize observation equation

XAP 0

�

�

�

+= ρ (3.10)

where P
�

 is the pseudorange measurement vector from C/A code,

[ ]TTzyxX ∆∆∆∆=
�

is the correction vector for position and receiver clock,
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0ρ
�

 is the distance vector from satellites to an approximate reference point

[ ]000 zyx , 0ρ
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 can be written as:
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where ( )i
s

i
s

i
s zyx  is the position of the ith satellite.

[2] Calculate the correction using least squares

[ ] ( )0
1

P
T11

P
T PCAACAX ρ�

��

−= −−− (3.12)

Generally, the covariance matrix is a unit matrix because errors of each measurement are

assumed to have the same variance and be independent of each other.

[3] Update the position of the reference station
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The updated position is used to construct a new linear observation in Equation (3.10).

The iteration will not stop until the position correction is less than a certain value, e.g.,

1.0 millimetre.

The accuracy of stand-alone positioning with C/A code was very poor due to the presence

of SA until May 2000. The horizontal position error of the reference station could be up

to 100 m (95%), while the vertical could be up to 150 m (95%). Even if SA has been

turned off, the second largest error, ionospheric delay can still result in a large positioning

error when the solar activity is very strong. This error can also cause serious accuracy

degradation in relative positioning.
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3.3.2.2 Accuracy Degradation of Relative Position

When converting the relative position from an Earth-fixed frame to a local-level frame,

the transformation can produce an extra error in relative positioning. In Figure 3.9, O1 is

the true reference station’s position and O2 is the computed position of O1 computed by

the stand-alone positioning module. They define two local-level frames with different

orientations, so the projection of the relative positioning vector (the Earth frame) on a

different local level frame is different.

S

U

S

U

O2

O1

True position of
the reference

Computed position
of the reference

Er�

Er�

Figure 3.9 Error in defining the local level frame caused by a reference error

The following equation is applied to convert the relative position vector from the Earth-

fixed frame to a local level frame.

EL
E

L rRr �� = (3.14)

where Lr�  is the relative position vector in local level frame,

Er�  is the relative position vector in Earth frame, and
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L
ER  is the rotational matrix to convert coordinates from Earth frame to local level

frame:

�
�
�

�

�

�
�
�

�

�

−−
−

=
φλφλφ
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λλ

sinsincoscoscos
cossinsincossin

0cossin
R L

E

(3.15)

where φ and λ are the latitude and longitude of the reference station respectively.

The error of the relative position vector in the local level frame can be described as:

EL
E

EL
E

L rRrRr ��� ∆+∆=∆ (3.16)

Er�∆ is the relative position error in the Earth frame, which is caused by the double

differenced errors and the reference error. It can be referred to Tang (1996) that a 10 m

reference error can approximately cause 1 ppm baseline error in relative positioning.

The second term in Equation (3.16) results from the error in the rotational matrix, which

is actually caused by the reference error. Ignoring the second-order error terms, the extra

relative positioning error EL
E rR �∆  caused by a reference position error can be

approximated as:

( ) E
21

EL
E

L
extra rRRrRr ��� λ∆φ∆∆∆ +≈= (3.17)
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where ∆φ and ∆λ are the latitude and longitude errors of the reference.
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From Equation (3.17), it can be seen that the extra relative position error L
extrar�∆  is

proportional to the baseline length and the magnitude of the reference error. In the worst

case, a 100 m horizontal positioning error of the reference can cause the 3D relative

position accuracy (RMS) to degrade at a rate of 20 mm/km (20 ppm). It should be noted

that in the following discussion, the accuracy degradation in relative positioning is

always referred to as L
extrar�∆ , not Er�∆ .

Figure 3.10 shows the relationship between the degradation of the relative positioning

accuracy and the absolute position error of the reference station for a 1.5 km baseline.

Figure 3.10 Degradation of relative positioning accuracy due to the reference error

– 1.5 km baseline

The error degradation rate is calculated at a mid-latitude (φ ≈ 51°) point.  When

calculating at a higher latitude point, the degradation worsens. Figure 3.11 shows the

degradation rate of relative positioning accuracy with respect to the latitude. At high

latitude (80°), the degradation rate can be as large as 60 ppm. For a 10 km baseline, a 100
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m reference error can result in a 60 cm extra error in relative positioning, which is

unacceptable for precise positioning. Therefore, the reference error should be reduced as

much as possible to mitigate accuracy degradation. One way to reduce the reference error

is to use DGPS to obtain range corrections from a static reference station, which can keep

the accuracy of a moving reference at the metre level.
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Figure 3.11 Degradation of relative positioning accuracy over latitude

3.3.2.3 Modification of the Residual Test in FLYKIN

In FLYKIN , a residual test is performed after the ambiguities are fixed. This test is

used to monitor whether the integer ambiguities are fixed correctly. Because large errors,

especially errors with a bias nature, can cause wrong fixes, the positioning accuracy can

seriously be degraded. The previous tests show clearly that only the correct integer

solution can provide centimetre level accuracy. Therefore, the correctness of the

ambiguity set is crucial to high accuracy positioning. One of the commonly used methods
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to check the correctness of the solution is the residual test. Figure 3.12 shows the

functional diagram of the residual test implemented in FLYKIN .

Get Residuals [ ]n21 r,,r,rr �

� =

Get the number of small errors of current epoch
{ }nirrrrcardN TiTiks ...2,1,21, =<<=  and

Number of blunders { }nirrrcardN Tiib ...2,1,2 =≥=

Accumulate the total number of small errors
ksksS NNN ,1, += −

Reset Ns,k , Nb to Zero,
Test Passed

Blunders Detected : Nb≠0?

Small Errors Detected : Ns,k≠0?

Small Errors Too Many?
NS > 10

Test Failed!
Integer Ambiguities
Rejected

Test Suspended
NS�Ns,k

Y

Y

N

N

N

Y

Card{A} is the number of elements

in set A

Figure 3.12 Diagram of residual test in FLYKIN

It should be noted that the setup of two parameters is very important to the effectiveness

of the residual test, namely, the two residual thresholds rT1 and rT2. They are used to

identify the small errors and blunders in estimation. In FLYKIN , the empirical values

are given as (3.5 cm, 5.0 cm) for a “short” baseline (<1000 m) and (5.0 cm, 7.0 cm) for a

“long” baseline (>1000 m). However, results of simulation tests indicated that this

residual test is not effective enough for detecting wrong fixes.

A simulation test of 4320 five km baselines was performed to evaluate the residual test in

FLYKIN . The simulated baselines were conducted assuming a full constellation and
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differential errors considered average except for the ionosphere when a RMS differential

error of about 5 ppm was assumed (The differential error models are described in Chapter

4). L1-only observables were used in data processing. In total, 267 wrong fixes occurred

in those tests. Figure 3.13 shows the histogram of the time to detect wrong fixes using the

residual test. The mean time to detect wrong fixes was 427.6 s. The last bar in Figure

3.13 corresponds to the frequency of those wrong fixes which could not be detected

within 20 minutes. The undetectable rate is more than 8%.
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Figure 3.13 Time to detect wrong fixes using residual test (5000 m baseline)

Figure 3.14 shows the resulting histogram from a group of analogous simulation tests

with a baseline length of 10 km. In total, 463 wrong fixes occur. In these tests, the mean

time to detect wrong fixes decreases and only 6% of the wrong fixes are undetectable.

This is because the residual error becomes large when the differential error is increased.

However, the improved performance of detecting wrong fixes is obtained at the expense

of increasing the probability of false alarm, i.e., correct fixes are detected as wrong fixes

and float ambiguities are used instead. False alarms result in the instability of the fix

solution and degrade the positioning accuracy.
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Figure 3.14 Time to detect wrong fixes using residual test (10 km baseline)

To fully evaluate the residual test, another simulation test was designed to check the false

alarm probability. In total, 360 baselines were tested. Each baseline was tested for one

hour and the ambiguities were initialized to the correct integers. When the baseline length

is five kilometres, no false alarm is generated, while for the 10 km baseline, fifteen false

alarms (4.2%) occur due to the failure of the residual test.

Good performance of the residual test depends on the compatibility of the residual

threshold and the magnitude of the measurement errors. Only when these two values are

matched can the best compromise be obtained between the probability of missing

detection and the probability of false alarms. Therefore, an optimal residual test must

have adaptive thresholds. However, it is very difficult to get a priori information about

the magnitudes of errors. Although this information can be approximately represented by

the variance-covariance matrix from a Kalman filter, the estimation is only valid when

the errors are Gaussian in nature and zero-mean, which is rarely true for GPS. When

adaptive thresholds cannot be applied, the residual test cannot work well.



53

To get a better compromise between detecting wrong fixes and minimizing false alarms,

a ratio test is conducted instead of the residual test. This ratio test uses the same concept

as the one used in the distinguishing test. The following condition is used to detect wrong

fixes:

Threshold
best

int >
Ω
Ω (3.18)

where ( ) ( ) { }int,bestXNNCNN XXfloat
1

Xfloat
T

XXfloatX ∈−−= −Ω ,

XfloatN  is the conditional float solution of ambiguities,

XfloatC is the covariance matrix of conditional float ambiguities,

bestN  is the current best candidate of integer ambiguities,

intN  is the current fixed integer ambiguities, and

Threshold=4.0

When the current fixed integer solution is distinctly poorer than the current best integer

candidate, i.e., the condition in Equation (3.18) is satisfied, then the current integer

ambiguities are treated as incorrect. The ratio test has an obvious advantage over the

residual test. It does not need any information about the absolute magnitude of the

measurement error because the threshold of ratio reflects the relative difference between

the two integer solutions.

The experimental results (Figure 3.15 and Figure 3.16) show that the ratio test is much

more effective than the residual test. In the five km baseline case, the ratio test can detect

wrong fixes much faster than the residual test (118.4 s vs. 427.6 s) and all wrong fixes

can be detected within 15 minutes. In the 10 km baseline case, the ratio test takes a

slightly longer time to detect wrong fixes (371.4 s vs. 345.8 s), but only 0.43% wrong

fixes cannot be detected within 20 minutes. In addition, the result of the false alarm test
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indicates that no false alarm is generated by the ratio test. Therefore, the correct integer

ambiguity can be reliably fixed.
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Figure 3.15 Time to detect wrong fixes (5 km baseline, ratio test)
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Figure 3.16 Time to detect wrong fixes (10 km baseline, ratio test)

It is worth mentioning that the value of the threshold in the ratio test is the same as that in

the distinguishing test, which implies that the new integer ambiguities are fixed at the
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moment when the wrong fixes are detected. However, for the residual test, it can still take

a long time to fix ambiguities after detecting wrong fixes.

Figure 3.17 shows the time comparison of the ratio test and residual test to acquire the

correct integer ambiguity when initial ambiguities are incorrectly fixed. The ratio test can

save three minutes to correct the wrong fixes on average. In addition, the percentage of

unfixed ambiguities within 20 minutes decreases from 8.64% to 0.43% after using the

ratio test. Thus, in MultiKin, the residual test for single-baseline ambiguity monitoring is

replaced by the ratio test.
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Figure 3.17 Comparison of time to correct wrong fixes (ratio test vs. residual test) in

case of the 10 km baselines

To use the ratio test, bestN , the current best candidate of the integer ambiguities is

indispensable. This requires another modification to the original version of FLYKIN .

When using the ratio test, the ambiguity searching procedure is always necessary, while
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in the original version of FLYKIN , the ambiguity searching is only performed when

ambiguities are not fixed or after wrong fixes are detected. Figure 3.18 compares the

functional diagrams of FLYKIN  before and after using the ratio test.

Kalman Filtering with
Float Ambiguities

Integer Solution Already?

Kalman Filtering with
integer ambiguities intN

Residual Test

 Passed?

Fixed Solution: Position,
Velocity and Ambiguities

 Find the Best Integer
Candidate  Nbest

Ambiguities Fixed?

Float Solution: Position, Velocity
and Ambiguities

 Distinguish Test of
bestN

N

N

N

Y

Y

Y

Kalman Filtering with
Float Ambiguities

Integer Solution Already?

Kalman Filtering with integer
ambiguities intN

Ratio Test  Ωbest /Ωintt

 Passed?

Fixed Solution: Position,
Velocity and Ambiguities

 Find the Best Integer
Candidate Nbest

Ambiguities Fixed?

Float Solution: Position, Velocity
and Ambiguities

 Distinguish Test
of bestN

N

N

N

Y

Y

Y

a b

Figure 3.18 Modification of FLYKIN  from residual test to ratio test

3.4 AMBIGUITY DETERMINATION/MONITORING USING

CONSTRAINTS

The application of ambiguity constraints of integer ambiguities was first suggested by

Lachapelle et al (1993). Luo and Lachapelle (1999) have studied its application in the

case of three moving platforms. Herein, the approach is generalized to a configuration of

more than three platforms. Figure 3.19 shows the procedure of ambiguity determination

and monitoring using multiple triangular constraints in MultiKin. The detailed discussion

of this procedure is presented in the following section.
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Figure 3.19 Procedure of ambiguity determination and monitoring using multiple

triangular constraints

3.4.1 Synchronization of Observations

In order to use the ambiguity constraints, all the moving platforms must have common

observations and the same selection of base satellite. In MultiKin, this is called
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synchronization of observations. Generally, the visibility of satellites in a small area (20

km × 20 km) is constant; however, in practice, due to the complexity of the observation

environment, the blockage of satellite signal varies at each station. Thus, the number of

common satellites also varies from baseline to baseline.

Figure 3.20 shows an example. The bold number is the visible satellite number for a

moving platform, the italic number is the visible satellite number for both platforms of a

baseline, and the number of the regular font is the satellite number common to a triangle.

Although the total number of visible satellites is nine, there are only five common

satellites applicable for constraints. The number of common satellites in a triangle affects

the effectiveness of the constraint. Generally, the greater the number of commonly

observed satellites, the higher the efficiency and reliability in resolving ambiguities. The

impact of satellite visibility and geometry on ambiguity resolution will be further

discussed in Chapter 6.

 1, 2, 4, 5, 7, 9, 10

1, 2, 4, 5, 7, 8,9

1, 2, 4, 5, 8, 9, 10

1, 2, 4, 5, 9, 10
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 1, 2, 4, 5, 9

Figure 3.20 Synchronization of constrained observations
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3.4.2 Sufficiency Test

In the module for multi-platform ambiguity determination/monitoring, two tests are

conducted to control the effectiveness of fixing ambiguity and detecting wrong fixes. The

first is the necessity test, namely, the closure of the triangular ambiguities. The second is

the sufficiency test, which is used to assure the reliability of the solutions. In the second

test, two criteria are used to define the sufficiency of a triangular constraint:

�
�

�
�

�

>
>
>

1T3

1T2

1T1

FF
FF
FF (3.19)

2T321 FFFF >++ (3.20)

where Fi is the ratio defined in Equation (3.9). The threshold FT1 is set up to 2.0

according to empirical results. It is much lower than that used originally in FLYKIN

(FT1=4.0) because more information is integrated for ambiguity determination.

The first criterion is used for individual sufficiency check. The most likely integer

ambiguity i,bestN  solved for each baseline is good enough to be a candidate for multi-

platform ambiguity determination if the first condition is satisfied. The second criterion is

to check whether the combination of all i,bestN  has a high confidence level. It should be

noted that these two criteria are not equivalent.

There are several ways to define criteria of sufficiency. For example, the product of ratios

was used by Luo and Lachapelle (1999) to evaluate the sufficiency of integer ambiguity

sets in a triangle. However, a large number of simulation tests show that the sum of ratios

is more effective for ambiguities fixing and monitoring, because its threshold setup is less

sensitive to the changes of scenarios (Luo, 2000).

To further improve effectiveness, a criterion for adaptive threshold adjustment is added in

this algorithm. According to the theory of probability and statistics (Kendall and Stuart,

1968), conditional probability is less than non-conditional probability, i.e.,
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( ) ( )HXPXP > . Provided that all the triangular constraints are closed, the conditional

probability of wrong fixes can be largely reduced when compared to the original

probability of error. In this case, if the threshold can be properly lowered, more rapid

ambiguity resolution can be obtained without increasing the error probability (see Figure

3.21). However, this is extremely difficult to realize since the analytical expression of the

multi-dimensional conditional pdf (probability density function) of ratio ( )HFf i  is

unknown.

FTFLT

  f(Fi)

  f(Fi|H)

 P(Fi > FLT|H)  P(Fi > FT)

  H: constraints closed

 P(Fi > FT)= P(Fi > FLT|H)

FLT< FT

Figure 3.21 Comparison of conditional and non-conditional probability

The setup of the adaptive threshold completely depends on empirical results. Based on

several simulation tests, the following equation is used to define the conditional threshold

for the case when all closed triangular constraints exist:

T
B

S
LT F

N
N

F =
(3.21)
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where Ns is the number of the total moving platforms, and

NB is the number of the total selected baselines (Delaunay edges).

A simulation test is designed to verify the method of threshold adjustment, where 4320

five km baselines are fixed under normal atmospheric and multipath conditions. Figure

3.22 shows the effect of adjusting the threshold, where a 2.3% improvement in the fixing

speed can be observed. Meanwhile, the adjustment also causes the probability of wrong

fixes to slightly increase from 0.1028 to 0.1035. Since the degradation of reliability is

relatively small (0.7%) with respect to the improvement in efficiency, Equation (3.21)

can be treated as an effective adjustment of the threshold.
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Figure 3.22 Difference of Time to fix ambiguity (fixed threshold vs. adaptive

threshold)
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3.4.3 Integrated Ambiguity Determination

If the sufficiency test fails, the current combination of the best integer ambiguity sets is

not reliable enough to be used for constraints, and more observations are needed.

Consequently, the ambiguity determination module of MultiKin will keep the original

ambiguity solution from FLYKIN . If both of the above two criteria are satisfied, i.e.,

the sufficiency test is passed, ambiguity constraints will be used to verify the correctness

of the combination of the integer ambiguity sets. If all the triangle constraints are

satisfied, then the combination will be treated as the true integer ambiguity solution, i.e.,

ambiguity sets for all baselines are assumed correct. Otherwise, the ambiguity set of each

baseline will be determined by the ambiguity identification module as described below.

When multiple triangular constraints are used, one selected baseline (Delaunay edge) can

be shared by two Delaunay triangles. Thus, it is possible that the integer ambiguity set of

a baseline is rejected by one triangular constraint but accepted by the other. Whether to

reject or accept the integer solution is determined by the ambiguity identification module.

According to the properties of Delaunay triangulation, i.e., no overlap triangles, one

baseline can belong to at most two triangles. The algorithm defined below is then used to

decide the state of the final solution.

[1] Get the determination flags (dj) of the ambiguities at each baseline in each triangle.

1...2,1
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(3.22)

where m is the number of common visible satellites, and m-1 is the number of

common double differenced observations in a triangle.

[2] Get the total determination flag (Tdj) of the ambiguities of each baseline.

�
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=
K

k
kjj dTd

1
,

(3.23)

where K is the total number of triangles that a baseline belongs to. K=1 or 2.
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[3] Calculate the final determination flags (Fdj) of ambiguities of a baseline.
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where Fdj shows whether the jth ambiguity of a baseline is accepted(1),

undetermined(0) or rejected (-1) by the triangular constraint(s).

[4] Calculate the ambiguity determination flags of a baseline (Bd).
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(3.25)

[5] Determine whether ambiguities of a baseline are fixed.
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If at least three double differenced ambiguities are accepted after applying constraints,

the best integer ambiguity candidate of this baseline is selected as the fixed solution. If at

least three ambiguities are rejected by constraints, the float ambiguities will be used in

positioning. If the ambiguities are undetermined by using constraints, the solution of

FLYKIN , which can be either fixed or float, will be kept.

The threshold of Bd, which determines the effectiveness of the constraints, must be

properly set up. If the threshold is too high, constraints will not help to speed up the

ambiguity fixing. That is because the number of common visible satellites is usually not

large, due to the difference of masking of satellites at each platform. However, the

threshold cannot be too low either, because it will then reduce the reliability of the fixed

solution. Herein, the threshold is configured as three, which is the least requirement of

satellite availability to realize positioning. More detailed results will be presented in

Chapter 6.
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The above method is also used for ambiguity monitoring. Even with constraints, the

ambiguities can still be incorrectly fixed; thus, it is necessary to detect the wrong fixes as

soon as possible. Tests of sufficiency and closure of constraints are continuously

performed during positioning. If Nbest passes all the tests but it is not equal to the integer

solution, then a wrong fix is detected. It is found that the constrained method is much

more effective in detecting wrongly fixed ambiguities than is the single-baseline method.

This is because the constrained method integrates all the observations from the � moving

platforms. Once a wrong fix is detected, it will affect error detection of other baselines

via the ambiguity constraints, while the single-baseline method only uses the information

collected at each baseline.

3.4.4 Summary of MultiKin Procedure

The overall procedure used in MultiKin is summarized in Figure 3.23. First, m baselines

connecting � moving platforms are selected by Delaunay triangulation to construct n

triangles for applying ambiguity constraints. Second, those m ambiguity search modules

try to fix ambiguity sets for each baseline individually. Each module outputs the float

ambiguity set iN̂ , the best integer ambiguity set iN~ , and its corresponding ratio iF . iF  is

defined by Equation (3.9). If the integer ambiguity set is successfully fixed to iN , it will

be also output. In the third step, the algorithm for multiple-platform ambiguity

determination described in section 3.4.3 is used to check whether the combination of the

best integer candidates iN~  can be the integer solution or whether iN  is wrongly fixed.
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Figure 3.23 Procedure of MultiKin
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3.4.5  Representation of Position

Due to the lack of reference stations with precisely known coordinates, the absolute

positioning accuracy of a moving platform is poor. However, the relative positioning

accuracy is of the major concern in this research. Even using a moving reference with

approximate coordinates, the relative positioning accuracy can still be at the centimetre or

sub-decimetre level. Herein, a data structure is defined to describe the relative positions

between platforms in the configuration. It contains n data records where n is the number

of moving baselines. Figure 3.24 shows the format of a data record.

Start point

of a baseline

End point of

a baseline

Latitude

increment

∆φ

Longitude

increment

∆λ

Height

increment

∆h

distance

Figure 3.24 Data record of relative position

Since Delaunay triangulation is used, only some of the baselines in the configuration are

selected. There may not be a direct baseline link between any two moving platforms. For

instance, in Figure 3.25, the relative position between Platforms 3 and 4 cannot be

directly found from the data record, whereas, it can be indirectly obtained by adding the

position vectors 42R
�

 and 23R
�

. Herein, the vector sum 43R
�

 is defined as the relative

position vector of the “virtual baseline” between Platforms 4 and 3. This solution

however causes another problem. As shown in Figure 3.25, either the vector sum of 42R
�

and 23R
�

 or 41R
�

 and 13R
�

 can be used to represent the relative position vector 43R
�

. Which

option is optimal?

Generally, the longer baselines induce larger errors because, on the one hand, longer

baselines contain larger spatially correlated errors, and on the other hand, the extra error

in the relative positions caused by the reference errors is proportional to the baseline

length, see Equation (3.17). Consequently, it is expected that the best relative position is

the vector sum of the shortest baselines. Now the question of selecting a group of short

baselines can be equivalent to the “Shortest Path Problem” for a non-directional graph. In

graph theory, the solution to this problem leads to the shortest path from one designated
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point to another. The most commonly used algorithm is Dijkstra's algorithm (Dijkstra,

1959). The structure of the graph, i.e., the connectivity and the path lengths, must be

known before applying this algorithm, which can be obtained from the data records as

defined in Figure 3.24.

1

3

4

2

42R
�

23R
�

41R
�

13R
�

43R
�

Figure 3.25 Representing of relative position

Before introducing the procedure of Dijkstra's algorithm, a definition of terms is given

below:

Length(i) is the length of current path from the start node to the current node i.

Prev(i) is the previous node along the current shortest path from start node to the current

node i.

N is the set of all nodes.

l(i,j) is the length of the baseline (Delaunay edge).

The algorithm contains two parts: initialization and the search loop.

Initialization:

[1] Set ( ) 0node_startLength = , and ( ) +∞=iLength for all other nodes i in N.

[2] Set j=0.
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[3] Let Prev(i) be undefined for each node i in N; all nodes are unmarked.

Main Loop:

Until the end node is marked with a * do the following:

[1] Set j=j+1.

[2] Among all unmarked nodes, select a node i for which length(i) is minimum.

[3] Mark node i with a *, which means the shortest path from the start node to current

node i has been found.

[4] For each baseline leaving from node i, compare Length(j) with ( ) ( )j,iliLength +

when a Delaunay edge exists between i and j. If the latter length is shorter, then set

( ) ( )j,iliLength)j(Length += , and set Prev(j):=i.

Figure 3.26 shows the results of a simulation test to find the shortest path between Nodes

1 and 10, where 25 nodes are randomly generated with a 2D average distribution. Each

line is a Delaunay edge, namely the selected baselines. The bold line is the shortest path

from Node 1 to Node 10.
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Figure 3.26 The shortest path selected by Dijkstra algorithm
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When the shortest path is found, the vector sum of the relative position along the path can

be treated as the relative position between two designated points. Using the shortest path

algorithm, a moving reference platform can know the relative positions of all other

platforms. However, these positions are represented by the increment of the latitude,

longitude and altitude. If relative position in local level frame (East-North-Up) is

preferred, the approximate absolute coordinates of the moving reference must be used for

coordinate transformation.
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4 GPS CARRIER PHASE ERROR MODELING FOR

SOFTWARE SIMULATIONS

To test the impact of various system parameters and the effectiveness of the algorithms

developed in Chapter 3, a full-scale test should be performed. Field tests often have

difficulties in providing wide range, controllable and repeatable test conditions; therefore,

the use of simulated scenarios is preferable.

To avoid using an expensive and complicated hardware simulator, a software GPS

simulator has been built for simulation tests. A fully developed GPS simulator must

simulate the GPS constellation and GPS error sources, as well as the trajectory and

dynamic of a user platform. Since GPS errors have a major impact on the performance of

the tested system, detailed methods for simulating five major GPS errors are discussed.

These errors are ionospheric, tropospheric, orbital error, multipath, and SA.

The validity of GPS error models is crucial to the confidence of simulation tests. Clearly,

a simulator must generate GPS errors with similar statistical properties to real GPS errors.

Various GPS error models are in existence but most of them are designed for single point

positioning. The focus of this chapter is the design of sophisticated DGPS error models.

Therefore, the simulation of temporal and spatial correlation of various GPS errors is

emphasized.

The stochastic characteristics of these errors are studied through theoretical analysis and

statistical tests with data collected under various conditions.  All models include

adaptable parameters in order to represent a full range of testing conditions.  Parameters

such as meteorological data, time, ionospheric activity, and user’s location have been

taken into account to ensure the full range of possibilities. Each error model is validated

through statistical testing of the reproduced GPS errors.

4.1 SIMULATION OF IONOSPHERIC ERROR

There are many methods for ionosphere delay modeling. In this research, the objective is

to develop an ionospheric model which is valid for DGPS simulation tests. This involves
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not only simulating the absolute ionosphere delay along the observation line of sight, but

also modeling the residual ionosphere delay after differencing. Herein, a combined

spherical harmonics and grid model is developed, which has proven to be effective in

simulation.

4.1.1 Description of Ionosphere Model

The modeling of ionospheric delay involves three steps:

[1] Generate a global profile of Total Electron Content (TEC) distribution.

[2] Generate a global grid-network with additional random TEC.

[3] Compute the vertical TEC at any pierce point.

4.1.1.1 Generate a Global Profile of TEC

The main objective of this research is to study the characteristics of ionospheric delay in

differential mode. This corresponds to the difference in TEC distribution. However, it is

better to model the absolute value of TEC to a certain level of accuracy. Therefore, the

developed model can also be used for testing stand-alone positioning systems or the

DGPS systems with long baselines. Among the global ionosphere models in existence,

the spherical harmonics (SPHA) model is considered one of the best. In this model, the

TEC is developed into a series of spherical harmonics in a Sun-fixed reference frame:

( )( )��
= =

+=
max

0 0

sincossin~),(
n

n

n

m
nmnmnm msbmsaPSFsE ββ

 (4.1)

where E  is the vertical TEC value,

β  is the geocentric latitude of the pierce point of the ionosphere,

s is the Sun-fixed longitude of the ionospheric pierce point   or sub-ionospheric

point, see Figure 4.1. It is also the difference between the Earth-fixed longitude of

the pierce point and the longitude of the Sun,

nmax is the maximum degree of the spherical harmonics expansion,
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nmnmnm PP~ Λ=  are the normalized associated Legendre functions of degree n and

order m based on the normalization factor nmΛ  and the classical Legendre

functions nmP ,

anm bnm are the coefficients of the spherical harmonics, and

SF is the scale factor to control the level of TEC value in simulation.

Single layer of ionosphere

Receiver
H

R

Pierce point

SV

Z

Z`

R0

Earth mean surface

Earth center

Sub-ionospheric point

Figure 4.1 Description of the single-layer ionosphere model

The SPHA model is based on the assumption that the ionosphere is a thin single layer.

This means that all free electrons are distributed in a spherical shell of infinitesimal

thickness. Figure 4.1 shows the outline of this model. The conversion from vertical TEC

value E into the slant TEC value Es is realized by multiplying E with a mapping function:

E
'zcos

1E)z(mEs == with zsin
HR

R'zsin
0 +

=
(4.2)
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where
'zcos

1)z(m =  is the single-layer mapping function,

z,  z’ are the geocentric zenith distances of a satellite at the height of the GPS

receiver and the single layer of the ionosphere, respectively,

R is the radius with respect to the receiver considered,

R0 is the mean radius of the Earth, approximated as 6371 km, and

H is the height of the single-layer of ionosphere above the Earth mean surface,

which is set to 450 km.

To use the SPHA model, the coefficients anm bnm must be known. In this model, Global

Ionosphere Maps (GIMs) files are used. These files contain the coefficients of spherical

harmonics and other ionospheric parameters (Schaer, 1997). These GIMs can be obtained

from the Centre for Orbit Determination in Europe (CODE), one of the Analysis Centres

of International GPS Service (IGS). Since January 1, 1996, GIMs are routinely presented

as an additional product at CODE. Every day a set of TEC coefficients are determined.

These coefficients give approximate estimation of the distribution of the vertical TEC on

a global scale by analyzing the so-called geometry-free linear combination of GPS carrier

phase data collected at 84 globally distributed stations.

GIMs are now available on a daily basis. Each contains 12 two-hour sections, where each

section contains 149 coefficients. To get the coefficients for our model, 100 GIMs are

used. These GIMs are sampled from January 1996 to February 2000, with two samples

each month. The coefficients used in our model are the average of these samples. The

output vertical TEC computed by Equation (4.1) can be scaled to a different magnitude

according to the strength of solar activity required by the scenarios.

4.1.1.2 Generate Globally Distributed Grids Based on SPHA Model

Presently, the GIMs can give a spherical harmonics expansion with a maximum degree of

twelve and a maximum order of eight. Such resolution is good enough for describing the
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profile of the global TEC distribution but not sufficient for error simulation of DGPS in a

small region.

To meet the requirement of DGPS simulation in a small area, the resolution of the TEC

distribution of the ionosphere should be greatly increased. An approach to achieve this

objective is to add a high-resolution TEC increment grid-network to the profile of the

global TEC distribution. The TEC increment can be treated as an unmodeled part of the

ionospheric delay by the SPHA model. The following procedure is to generate a global

TEC distribution with an enhanced resolution.

[1] Partition the ionosphere single-layer into a network with averagely distributed n×m

grids in the sun-fixed frame.

The vertical TEC at certain grid point ( )ii s,β , ( )jiSPHA s,VTEC β , can be calculated

using Equation  (4.1). It should be noticed that although the density of the grids in the

network can be very high by increasing m and n, the actual resolution of the TEC

distribution has not yet been increased, since the maximum degree and order of the

model are not changed.

[2] Generate the TEC increment j,iv  for each grid point.

j,iv  is a random variable representing the unmodeled part of the ionospheric delay.

The statistical characteristics of j,iv  will be discussed later.

[3] Build the high-resolution grid network by adding the profile of TEC distribution and

the TEC increment. The vertical TEC at a grid point can be computed as follows:

( ) ( ) j,ijiSPHAji vs,VTECs,VTEC += ββ (4.3)

By introducing the TEC increment, the grid-network can represent the TEC distribution

of the ionosphere with an enhanced resolution of n180m360 �� × . Considering the

necessary requirements of DGPS simulations, the resolution of the grid network is

1.5°×1.5°.
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In this approach, the TEC increment j,iv  is a very important component because its

statistical properties are coherent with the ionosphere spatial decorrelation, which can

affect the performance of DGPS to a large extent. According to the experimental results

derived by Stanford University (Christie et al, 1999), the exponential distribution is

preferable. This is described by the distribution given below:

( ) ( ) ( )σσ mx2exp21xf −−= (4.4)

The exponential distribution is a heavy-tailed distribution, that is, the exponential random

generator has a larger probability to generate the variable with very large value than the

commonly used normal random generator, see Figure 4.2. Therefore, j,iv  produced by the

exponential random generator can cause very large spatial decorrelation in some area.
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Figure 4.2 Comparison of normal distribution and exponential distribution

In general, j,iv  should be zero-mean. The global average of TEC is not affected by the

inducing of j,iv . The selection of the variance of j,iv  is dependent upon the required

spatial decorrelation (equivalent to the TEC gradient) in the scenarios of the simulation.

For example, assuming j,iv  to be position independent, then the additional south-north
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TEC gradient ∆g and its variance caused by j,iv  within a grid can be expressed as

follows:

φ∆
∆ j,1ij,i vv

g +−
= (4.5)

2

2
v2

g
2
φ∆
σσ∆ = (4.6)

where j,iv , j,1iv + are the TEC increment at two adjacent grid points on the same meridian,

∆φ is the latitude resolution of the grid.

According to the required spatial decorrelation rate g∆σ , the variance of j,iv  can be

computed by Equation (4.6).

4.1.1.3 Compute the Vertical TEC at the Pierce Point

After building the grid network of the ionosphere with enhanced spatial resolution, the

vertical TEC value at the pierce point can be computed in two ways. First, the SPHA

model can be expanded to the higher degree and order. Since the TEC values at the gird

points are known, the higher order coefficients anm and bnm (n>12, m>8) can be derived

using the orthogonality of the spherical harmonics:

( ) ( ) ( )� �=
π π

ββββ
2

0 0 nmnm dsdmscoscossinP~s,E
SF
1a

( ) ( ) ( )� �=
π π

ββββ
2

0 0 nmnm dsdmssincossinP~s,E
SF
1b

(4.7)

However, this method can cause severe computational difficulty when the degree and the

order of the model are high. For example, a SPHA model with resolution of 1.5°×1.5° has

more than 20,000 coefficients. This means that to compute the vertical TEC value at a

pierce point, 10,000 associated Legendre polynomials should be calculated. Furthermore,

the SPHA model has a tendency to underestimate or overestimate TEC values in regions
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neighboring steep localized gradients (Mannucci et al, 1997). Therefore, the method of

planar interpolation is adopted instead.

In the first two steps, a high-density grid network of TEC distribution has been

established. The TEC value at any point within the network can be computed using

interpolation. Figure 4.3 gives the conception of the four-point grid-based algorithm to

estimate the vertical TEC at the pierce point where P is the pierce point and Gi is the

surrounding grid point.

G1(β1 ,s1)

G2(β2 ,s2) G3(β3 ,s3)

G4(β4 ,s4)

P(β,s)

u

t

41 ββ =       32 ββ = 21 ss =       43 ss =

Figure 4.3 Compute TEC in a grid network

The vertical TEC at P can be computed using following equation:

�
=

=
4

1i
iiP VTECwVTEC

(4.8)

where )u,t(ww1 = )u1,t(ww2 −=

)u1,t1(ww3 −−= )u,t1(ww4 −=

)u1)(t1()u,t(w −−=
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( ) ( )121u ββββ −−= ( ) ( )141 sssst −−=

To get the geomagnetic latitude β and longitude s, the geographical latitude and longitude

of the pierce point and the Sun must be calculated first, and then they can be converted to

the geomagnetic frame using a rotational transformation. The rotation angles are relevant

to the position of the north geomagnetic pole, which is set to (79.45° N, 71.71° W). The

choice of the spatial weighting function W(• ) is arbitrary. The algorithms are based on

inverse distance weighted averaging, bilinear interpolation, or multi-quadratic weighting

functions. In the chosen model, the bilinear interpolation weighting function is adopted

according to the recent specifications for users of WAAS (FAA, 1997, RTCA, 1998).

From the above modeling procedures, it can be seen that the characteristics of both the

spherical harmonic model and the grid model are combined. Thus, the above model is

referred to as the combined model in the following discussion.

4.1.2 Modeling of Scintillation

The simulation of ionosphere scintillation is also included in the software simulator; thus,

some extreme ionospheric conditions can be generated according to the testing

requirement, but the scintillation is not applied in the simulation tests of MultiKin.

Irregularities in the Earth’s ionosphere produce both diffraction and refraction, which can

cause short-term signal strength fading and rapid variation of signal phase. These effects

are called scintillation, which can result in difficulties in signal detection and tracking.

Scintillation is often correlated with location and time. Generally, equatorial regions

experience stronger scintillation, but over shorter periods than polar caps. In addition, the

frequency and the strength of the scintillation vary with season and time (Klobuchar,

1996). For simplification and the convenience of users to design interested scenarios,

these variations are not simulated in our model. Therefore, scintillation can occur at any

place and any time. Unlike other scintillation models (Kumar and Munjal, 1998) built in

signal domain, the combined ionosphere model is built in range domain. Therefore,

amplitude scintillation cannot be simulated, only simulation of phase scintillation is

implemented in the GPS software simulator.
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4.1.2.1 Methodology for Modeling Phase Scintillaion

Phase scintillation is caused by a fast and irregular change of the TEC distribution. In a

normal situation, the Doppler change, i.e., the ionosphere acceleration caused by the

temporal variation of the TEC distribution, is very small. For example, the maximum

value of the vertical ionosphere acceleration generated by the combined model in a solar

maximum is about 0.0057 Hz/s (L1). For a common GPS receiver with a bandwidth

(carrier phase tracking loop) of 15 Hz (L1), this small change in Doppler will not cause

any problem in phase tracking. However, during times of severe phase scintillation, the

phase will not change in a consistent and rapid manner to yield greater ionospheric

Doppler shift. The phase of the incoming signal will have a large random fluctuation

superimposed upon the changes associated with normal rate of change in TEC

(Klobuchar, 1996). The irregular change of TEC, denoted as ∆VTEC, is simulated by

white noise with a Gaussian distribution. The vertical TEC at the pierce point under a

condition of scintillation can be treated as the sum of the normal TEC and the irregular

change:

( ) ( ) ( )tVTECtVTECtVTEC CombinedillationintSc ∆+= (4.9)

where VTECcombined(t) is the vetical TEC at the pierce point calculated by the combined

model under normal conditions, and

VTECScintillation(t) is the total vertical TEC under scintillation conditions.

Generally, the mean value of ∆VTEC is set to zero. Therefore, the following discussion

will focus on the selection of the variance of ∆VTEC(t). This selection depends highly

upon the probability of a loss of lock in the phase tracking loop, as well as the

magnitudes of additional errors in the measurements of range and Doppler.

Assume that ∆VTEC(t1), ∆VTEC(t2) and ∆VTEC(t3) exhibit the fast irregular change in

TEC observed at three adjacent epochs, where ttttt 2312 ∆=−=− . A second order

polynomial can be used to fit this change:
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( ) ( ) ( ) 021
2

22 attattatVTEC +−+−=∆ (4.10)

Denote ∆VTEC(ti) as ∆VTi. The coefficients of the fitting polynomial can be represented

as follows:
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Ignoring the very small Doppler caused by the normal variation of the ionosphere, the

vertical ionosphere velocity VIV(t) only results from the fast change components of the

TEC, i.e., ∆VTEC. The change in Doppler measurement caused by the ionosphere can be

computed by scaling VIV(t) with the mapping function:

( )Hz
dt

VTECd
f

1034.1)t(VIV
2tt

9

2
=
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( )13
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(4.12)

( )Zm)t(VIVDIono =∆ (4.13)

where ∆VTEC has the unit of TECU (1 TEC Unit = 1016 el/m2) . The vertical ionosphere

acceleration, VIA(t), can be described as the second order derivative of the vertical TEC.

Multiplying it by the mapping function will give the slant ionosphere acceleration IA(t):

sHza
fdt
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∆

×=

(4.14)

( ) ( )Zm)t(VIAtIA = (4.15)
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Assuming that ∆VTi is white noise with zero mean and has a Gaussian distribution, the

relationship between the variance of ionosphere acceleration and the variance of ∆VT can

be written as:

VT2

9

VIA t
6

f
1034.1

∆σ∆
σ ×=

(4.16)

The above Equation (4.16) clearly shows the relationship between the variance of random

TEC and the variance of vertical ionosphere acceleration. The remaining problem is how

to decide the value of VIAσ . The ionospheric acceleration can cause the phase loop to lose

lock, thus, in the next section, the relationship between the probability of losing lock and

VIAσ  will be discussed.

4.1.2.2 Selection of Variance of VIA

Assume that the tracking loop bandwidth of a common GPS receiver is B Hz. Subtracting

the phase acceleration caused by the relative motion between a satellite and a receiver,

which is less than DCmax Hz/s, the phase tracking loop can at least tolerate ( maxDCB − )

Hz/s phase acceleration caused by ionosphere phase scintillation. The tolerence threshold

is denoted as IAT as follows. Define the probability of a loss of phase lock as α:

( ) ( ) ( ) sv
BDCIA

svsv dIAdDCDCfIAfsBHzDCIAP
sv

��
>+

=>+=α (4.17)

where DCsv is the Doppler change caused by the relative motion between the receiver

and the satellite,

f(IA) is the pdf of ionospheric acceleration,

f(DCsv) is the pdf of the DCsv, and

B is the bandwidth of the carrier phase tracking loop.

The difficulty in computing this probability α is obvious, because the pdfs of IA and DCsv

are very complicated. They are all functions of the satellite’s elevation. Moreover,
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f(DCsv) contains also the dynamics of the user. So for simplification, we just redefine α as

the probability when IA is larger than the tolerance threshold:

( ) ( ) ( ) ( )���
∞∞−

∞−
=+=−<>=

TT

T

IAIA

IA

TT dIAIAf2dIAIAfdIAIAfIAIA,or,IAIAPα (4.18)

Compared wtih the real probability of loss of lock, the new definition will actually result

in a smaller probability of losing lock. This is shown in Figure 4.4 by comparing the

range of the integral in Equations (4.17) and (4.18).
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Figure 4.4 Comparison of integral ranges in case of different definitions of αααα

Since IA is obtained by scaling VIA with the mapping function m(Z), α can be described

as the double integral of the pdf of the zenith distance Z of a satellite and the vertical

ionosphere acceleration VIA at a pierce point:
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Define ( ) ( )�
∞

=
x

dfx ββΦ , where ( )βf  is the pdf of the normalized Gaussian distribution

with zero mean and variance of one. α can be expressed as
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(4.20)

Because the mapping function is not linear (see Figure 4.5)  and Φ(x) does not have an

analytic expression, it is very difficult to give an explicit expression for the relationship

between α and IAT/σVIA. To solve this problem, the numerical computation method is

applied.
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Figure 4.5 Mapping function of ionospheric delay model

Figure 4.6 shows the result of the computation. In the simulation software, several tables

are used to look up the proper VIATIA σ for a preset α. It should be noticed that when the

cutoff angle of the observation changes, the selection of VIATIA σ also changes. The

reason is that most of the large ionosphere accelerations occur at the low elevation angle

due to the amplification by the mapping function. However, when the satellite elevation
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is lower than the cutoff angle, observations of the satellite will not be generated; thus, the

large ionosphere acceleration will actually have no impact on simulation.
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Figure 4.6 Selection of VIATIA σ in case of different cutoff angles

Figure 4.7 gives the procedure of scintillation simulation.

As a summary, this example shows how to select the variance of ∆VT for a required

scenario:

Scenario: ∆t=0.25s, α=0.1,  f=1575.42MHz , cutoff angle= 10°, VIAT=14Hz.

Solution: TECU188.0VT =∆σ

TEC change rate = t/VT ∆σ ∆ = 0.75TECU/s

This solution means that if the scintillation generates a fast change of TEC with an

average rate of 0.75 TECU/s, it can cause the phase tracking loop to lose lock (IA larger

than the threshold) with 10% probability. In the model, the loss of the lock in the tracking
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loop is simulated by preventing the observation of the specified satellite from being

output.

Figure 4.7 Summary of the procedure to generate ionosphere error under the

scintillation scenarios
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4.1.3 Evaluation of the Combined Ionosphere Model

4.1.3.1 TEC Distribution on the Ionosphere Shell

Figure 4.8 shows the comparison of the TEC distribution generated by the standard

SPHA model and the combined model.

a b

c d

Figure 4.8 Comparison of the global and regional distribution of TEC (SPHA vs.

Combined). Time:12:00h(UT), TECU1v =σ

Figure 4.8a and b exhibit the global TEC distribution on the ionosphere shell. The higher

TEC is distributed at the equatorial area. The maximum value of TEC is 85.1 TECU.

While in the polar area, TEC is smaller. The minimum value is 0.35 TECU. For a

detailed comparison of the standard SPHA model and the combined model, Figure 4.8c

and d show the TEC distribution in a regional area. Based on the fact that the combined
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model shows more irregularities in the distribution of TEC than the standard SPHA

model, it can be derived that the combined model has higher frequency components in

TEC distribution. This is because the irregularities correspond to the high-frequency

components in the spatial distribution of TEC. These components imply that the

combined model has a higher spatial resolution than the standard SPHA model.

The comparison in Figure 4.8 also shows that although the global average of TEC is not

affected by the introduction of vi,j, the regional TEC value varies more largely in the

combined model (16.8 TECU~24.4 TECU) than in the standard model (17.7 TECU~23.3

TECU). This larger variation implies that larger spatial decorrelations can be generated

by the combined model than by the standard SPHA model.

4.1.3.2 Ionosphere Gradient

Ionosphere gradient is used to describe the spatial decorrelation rate of ionosphere delay.

Generally, large ionosphere gradient means ionosphere delay decorrelates very quickly

with the increase of the spatial separation. This is a nuisance in DGPS applications. The

absolute value of the ionosphere gradient at any pierce point can be expressed as the

norm of the East and North gradients:
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(4.21)

where eR is the average radius of the earth,

φ∆  and λ∆ are the resolutions of the grids,

E and N denote the direction of east and north respectively,
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Vi is the vertical TEC values at the four grid points around the pierce point, and

t and u are the normalized distances from the pierce point to a reference grid point

(see Figure 4.3).

Figure 4.9 shows the global and regional distributions of the TEC gradient produced by

the standard SPHA model and the combined model. It is worth mentioning that in Figure

4.9, the distribution of TEC gradient is not shown in the polar area because of the

computational singularity near the geomagnetic poles, see Equation (4.21). However, this

problem does not affect the reliability of the combined model since the gradient of TEC

is not used in the simulation process.

a b

c d

Figure 4.9 Comparison of the global and regional distribution of TEC gradient

(SPHA vs. Combined). Time:12:00h(UT), TECU1v =σ
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From the results, it can be seen that a relatively larger spatial decorrelation rate can be

observed in the combined model. In Figure 4.9b, some areas show the gradient to be as

large as 12 mm/km. This can result in very large residual ionosphere errors in DGPS even

for short baselines. However, for the standard SPHA model, the largest TEC gradient is

only 2.7 mm/km because of the lower spatial resolution.

Figure 4.10 shows the statistical pdf of the global TEC gradient. It can be found that the

combined model can generate large differential ionospheric errors (gradient) with a

higher probability than the standard SPHA model can. Figure 4.11 shows the relationship

between the variance of vi,j and the increased global ionosphere gradient. This

relationship can help users to reasonably select the variance of vi,j to obtain the required

spatial decorrelation for DGPS simulations.

From the testing results, it is also found that when using the standard SPHA model to

simulate large differential ionospheric errors, the global TEC average has to be increased

correspondingly. However, when using the combined model, the magnitude of

differential errors can be separately controlled by only adjusting the variance of the

random TEC, which will not change the global TEC average. Therefore, the combined

model presents more flexibility in error simulations.
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Figure 4.11 Relationship between the vertical ionospheric gradient and selection of

the variance of the TEC increment vi,j

4.1.3.3 Ionosphere Velocity

Ionosphere velocity represents the change of TEC distribution with time. The TEC at

each grid point in the sun-fixed frame is actually constant in the combined model.

However, due to the Earth rotation, the grid point is apparently moving with respect to

the observer on the Earth. This causes the user-observed TEC to change. Figure 4.12

shows the diurnal change of observed TEC at mid-latitude. It can be seen than the

combined model presents a much faster temporal variation of TEC than the standard

SPHA model.

The time variation of the observed TEC can also result in a Doppler shift in the GPS

measurements. In the standard SPHA model, the shift is very small and its change is very

slow, while the combined model can generate a much larger Doppler shift than the

standard SPHA mode, see Figure 4.13, Figure 4.14, and Figure 4.15. However, the

Doppler shift is still small enough (<1.0 mm/s = 0.0053Hz) to be ignored when

scintillation is not applied. It should be noticed that the ionosphere velocity has an

equivalent unit of Hz. One Hz Doppler shift in the L1carrier phase is equal to the

ionospheric velocity of 190.34 mm/s.
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Figure 4.13 Comparison of Doppler shift caused by TEC variation, observed at 45°°°°N,

0°°°°E, SPHA vs. the combined model
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Figure 4.14 Global distribution of vertical ionospheric velocity, UT=12:00pm
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Figure 4.15 Comparison of pdf of the vertical ionospheric velocity, SPHA vs. the

combined model
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4.1.3.4 Ionospheric Properties under Scintillation

In case of ionosphere scintillation, the statistical properties of ionosphere can change

dramatically. The comparison of scenarios with and without scintillation are shown from

Figure 4.16 to Figure 4.19. First, it can be observed that the magnitude of the TEC does

not change much (the variance is 0.188TECU) but has a high-frequency variation, see

Figure 4.16. This fast changing rate results in a relatively large Doppler shift (the

variance is 0.45 Hz) and a Doppler change (the variance is 6.26 Hz/s). The large Doppler

shift increases the error in the estimation of the user’s velocity, and the large Doppler

change can cause the phase tracking loop to lose lock, especially for a low elevation

satellite. In Figure 4.19, Doppler changes of about 60 Hz can be observed for low

elevation satellites. This has largely exceeds the bandwidth of the carrier-phase tracking

loop in most GPS receivers.
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Figure 4.16 Temporal variation of vertical TEC (with/without scintillation)
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Figure 4.17 Temporal variation of vertical TEC velocity (with/without scintillation)
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Figure 4.18 Temporal variation of vertical TEC acceleration (with/without

scintillation)
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Figure 4.19 Relationship between the ionospheric acceleration and satellite elevation

4.1.3.5 Summary of the Ionospheric Error Modeling

The ionosphere model in this GPS software simulator is the combination of the SPHA

model and the grid model, which combines the advantages of both. First, it can simulate

the global profile of the TEC distribution well, hence it is globally optimized. Second, the

grid algorithm is used, which not only simplifies the computation in simulation, but also

improves the spatial resolution of the model to a higher level (1.5°×1.5°). Therefore, this

model is valid for the simulation of DGPS applications in a small area.

The ionosphere phase scintillation model is also built to meet the requirement of

simulating some extreme conditions of the ionosphere. The strategy of stopping output

when ionosphere acceleration exceeds the carrier tracking bandwidth of a receiver can

simulate the loss of lock in the phase-lock-loop.

The model parameters can easily be preset according to the requirement of users.

Therefore, ionosphere conditions under different levels of solar activity can be simulated.

In addition, for this DGPS simulator, the spatial decorrelation rate of the ionosphere can
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be independently adjusted by changing the variance of TEC increment without changing

the global average of the TEC.

Figure 4.20 shows an example of double differenced ionospheric errors generated by the

combined model. When the ionosphere is quiet, the RMS of the differential errors is

about 1 ppm. While in the case of strong ionospheric activity, large differential errors

with RMS of 10 ppm can be observed.
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Figure 4.20 Example of double differenced (Sv 2 and Sv 12) ionospheric errors for a

10 km baseline (generated by the combined ionospheric model)

4.2 SIMULATION OF ORBITAL ERROR

Orbital (broadcast) error is one of the major error sources in GPS. DGPS greatly reduces

the orbital error, however, the residual orbital errors are directly correlated with the

separation of the GPS receivers. The residual DGPS orbital error depends highly on the
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geometry between the reference and remote stations. The following equation is used to

estimate the residual orbital error:

R

rR
E

u,r
T ∆∆

∆
⋅−

≤
(4.22)

where ∆E is the range correction error,

∆rr,u is the baseline vector between two receivers,

∆R is the orbital error vector, and

R is the distance from a satellite to a user.

As a rule of thumb, 20 m orbital error induces 1.0 ppm baseline error (Lachapelle, 1997).

4.2.1 Data Source and Extraction of Orbital Error

To analyze the statistical characteristics of the orbital error, we must first separate it from

the other GPS errors. The orbital error can be computed by subtracting the satellite’s

position, computed using the broadcast ephemeris, from an accurate reference orbit. In

this research, the precise orbit derived by JPL, one of the data analysis centres of IGS, is

selected as the reference. According to the estimation of JPL, its precise orbit (final) has

an accuracy of 5.0 cm, namely, 2.5 mm differential error over a 1000 km baseline. Thus,

it is good enough to be the reference.

To obtain the accurate statistic of the orbital error, a large amount of both broadcast and

precise ephemeris data are required. The broadcast ephemeris used in our modeling are

downloaded from the National Oceanic and Atmospheric Administration,

(NOAA,http://www.ngs.noaa.gov/). The precise orbit files are downloaded from the JPL

(http://igscb.jpl.nasa.gov/). These files are free for public use. The data used for this

research contains ephemerides from March 1 to March 31, 2000 and 6820 ephemeris

records were tested. Figure 4.21 gives an example of the three-dimensional orbital errors

of a satellite for approximately two days. Some properties of the orbital error can be

directly observed from this figure:

http://www.ngs.noaa.gov/
http://igscb.jpl.nasa.gov/
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[1] It is not continuous because it is reset every two hours by the newly downloaded

ephemeris.

[2] It changes very slowly.

[3] Long-term correlation exists in errors.

Figure 4.21 Samples of GPS orbital error

4.2.2 Parametrization of Orbital Error

After extracting the orbital error, several statistical tests can be conducted to obtain the

properties of the error. To fully describe a random process, both the probability

distribution and the spectrum (or the correlation function) are necessary. In the following

sections, the detailed method and results of statistical tests of orbital error are presented.
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4.2.2.1 Probability Distribution of Orbital Error

Generally, Gaussian distribution is the most preferable in error simulations, because it

can be easily represented by its mean and variance. In addition, Gaussian random

variables are easily generated in simulation. Therefore, the first test is designed to obtain

the probability distribution of orbital error.

The statistical distribution of orbital error is compared with the Gaussian distribution

which has the same mean and variance. The overlap area of these two distributions can be

treated as an indicator of the consistency of the two distributions. Of 800,000 3D orbital

error vectors tested, Figure 4.22 shows the statistical results. It can be seen that the cross-

track error has the best fit distribution to a real Gaussian distribution (97.5% overlap),

while the distribution of radial error deviates relatively largely (only 91.74% overlap).

For the purpose of simulation, this extent of consistency is satisfactory; thus, the

assumption of Gaussian distribution of orbital error can be accepted.

Figure 4.22 Distributions of 3D orbital errors
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4.2.2.2 Analysis of Spectrum and Correlation Functions

Correlation functions are very important in describing random processes because they

characterize the temporal variations of random processes. Correlation functions can be

derived from either spectral or correlation analysis. Usually, due to difficulty in

computation, the correlation function is rarely estimated from the time domain when the

tested random sequence is very long. Instead, spectral analysis is the commonly used

method. Herein, the power spectral density of the orbital error is estimated using Welch's

averaged periodogram method (Welch, 1967) as shown in Figure 4.23.

Figure 4.23 Concept of Welch's averaged periodogram method

The following procedure is used for spectrum estimation:

[1] The input signal is divided into overlapping segments, each of which is detrended,

and then weighted by a Hanning window function, see Figure 4.24.

[2] The Fourier transform is performed for each segment of weighted signal to get its

power spectrum Si(ω).

( ) ( ) ( )�
+ −−=

Tt

t

tj
iii

i

i

dtettwtfF ωω (4.23)

( ) ( ) ( )ωωω *
iii FF

T
1S =

(4.24)

where ( )tfi is one segment of signal,
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w(t) is the Hanning window function.

Hanning Window Function

Figure 4.24 Normalized Hanning window for spectrum analysis

[3] The segmental spectrums are averaged to get the estimation of the signal spectrum

S(ω):

( ) ( )�
=

=
K

1i
iS

KU
1S ωω

(4.25)

where ( )�=
T

0

2 dttw
T
1U  is the normalized coefficient

K is the number of segments

[4] The correlation function ( )τr can be derived by performing the inverse Fourier

Transform of S(ω):

( ) ( )�=
π ωτ ωω

π
τ

2

02
1 deSr j (4.26)
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The sampling rate is 1/180 Hz (sample/3min). In total, 818,400 samples of orbital error

are used for testing. Figure 4.25 and Figure 4.26 show the estimated power spectrum and

the correlation functions of the orbital errors. The RMSs of the 3D orbital errors are 3.97

m, 2.50 m and 0.73 m in along-track, cross-track and radial channels, respectively.

Figure 4.25 Power spectrums of 3D orbital errors

Figure 4.26 Correlation functions of 3D orbital errors
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4.2.3 Error Generator

Once the statistical properties of a random process are fully estimated, a simulated

process with the same properties can be generated by passing a white noise sequence

through a shaping filter. The relationship between the frequency response ( )ωH  of the

shaping filter and the spectrum of the interested signal ( )ωS  can be described as follows:

( ) ( ) ( )ωωω *HHS = (4.27)

The problem of building the shaping filter in the frequency domain is that without the

analytic expression of ( )ωS , it is impossible to derive ( )ωH . However, since the

correlation function is known, an autoregressive (AR) model can be used to construct the

shaping filter in the time domain.

Definition of AR process: The time series u(n),u(n-1),…,u(n-M) represents the

realization of an AR process of order M if it satisfies the difference equation:

( ) ( ) ( )nvMnua1nua)n(u M1 =−++−+ � (4.28)

where v(n) is a white noise sequence driving the model. Since the distribution of orbital

error has been shown to be approximately Gaussian, the distribution of this white noise is

also Gaussian, because the Gaussian process will keep its nature after passing a linear

system. The Yule-Walker equations (Haykin, 1996) can then be used to solve the

coefficient ia :

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )

0

Mr

2r
1r

a

a
a

0r2Mr1Mr

2Mr0r1r
1Mr1r0r

M

2

1

�

��

�

����

�

�

=

�
�
�
�

�

�

�
�
�
�

�

�

−

−
−

+

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

�
�
�
�

�

�

+−+−

−−
−

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )
( )

( )�
�
�
�

�

�

�
�
�
�

�

�

−

−
−

�
�
�
�

�

�

�
�
�
�

�

�

+−+−

−−
−

−=

�
�
�
�

�

�

�
�
�
�

�

�
−

Mr

2r
1r

0r2Mr1Mr

2Mr0r1r
1Mr1r0r

a

a
a 1

M

2

1

�

�

����

�

�

�

(4.29)



104

where r(k)  is the discrete correlation function.

The variance of v(n) is derived as:

( )�
=

=
M

0k
k

2
v kraσ

(4.30)

As can be seen from Figure 4.26, the orbital error has a strong long-term correlation. This

implies that the order of the AR model must be very high if the sampling frequency is

high. For instance, if the sampling frequency is 1/180 Hz, the order of the AR model

should be larger than 2000 to represent the long-term correlation up to 100 hours. Such a

high order can cause difficulty in simulation because large memory and high processing

speed are required to save the coefficients and complete the filtering process. To reduce

the memory requirement and to simplify the computation, a much lower sampling

frequency should be used.

After analyzing the spectrum of the orbital error, it is found that more than 98% signal

energy is distributed within the bandwidth of 0.05 (normalized). Ignoring the small

distortion of spectral caused by an aliasing effect, the minimum sampling frequency can

be set as low as 0.1, according to the Nyquist Sampling Theorem (Lathi, 1992). This

corresponds to a sampling interval of one hour. As a sequence, the order of AR model

can be reduced to 100. However, this solution caused another problem because the low

sampling frequency of a digital filter implies a low data rate of the output data. That is,

the model can only output data every hour; whereas, in simulations, the data rate can be

as high as a few Hz. To densify the output, Lagrange Interpolation is used.

Definition of Lagrange Interpolation: Given a set of N+1 known samples (tk ,yk),

k=0,1,2,…,N, the sample value at any point (t,y) can be interpolated by an Nth order

polynomial:

( ) ( )�
=

=
N

0k
kk ytlty

(4.31)
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In simulation, a ninth-order Lagrange interpolator is applied. Figure 4.27 gives an

example of the simulated orbital errors.
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Figure 4.27 Sample of simulated orbital errors

Lowering the sampling frequency and implementing a Lagrange Interpolator can cause

distortions of the spectrums or correlation functions. Only when the distortions are small

enough can these two methods be used in simulation. Figure 4.28 compares the

correlation functions of the real orbital errors with those of the simulated orbital errors. It

shows that the correlation functions of cross-track and radial orbital error are nearly

perfectly matched, while very small distortion happens at the long-term correlation of

along-track error. However, this will not affect kinematic positioning at all, because long-

term averaging is not applied for kinematic data processing.
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Figure 4.28 Comparison of correlation functions (statistical vs. simulated)

In summary of the orbital error modeling, Figure 4.29 shows the functional diagram of a

scalar error generator (one dimension). Three scalar generators construct a vector

generator which can simulate the 3D orbital errors of one satellite. Coefficients of three

scalar generators are determined by correlation functions of along-track, cross-track and

radial error respectively. Twenty-four vector generators are used to simulate all orbital

errors of 24 GPS satellites. It should be noted that the driving noise sequences of all 72

scalar generators are independent.

In each scalar generator, the random error can be scaled to any level, which can help to

study the impact of different level of orbital errors. However, in simulation tests of

MultiKin, the scale factor is always set up as 1.0. A bias generator is also included in the

scalar generator which is used to simulate the large orbit bias caused by the blunder in

orbit predication. The magnitude of the bias can be separately controlled from channel to

channel because the bias generally happens on only a few satellites.
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The 3D errors output from a vector generator are transformed from the satellite-centre

frame to WGS-84 to distort the real satellite position. The satellite-centre frame is defined

by the motion of a satellite in an inertial frame. The orientations of its three axes point to

along-track, cross-track (perpendicular to the satellite orbit plane) and Earth centre

(circular orbit).
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Figure 4.29 Error generator of one-dimensional orbital error

4.3 SIMULATION OF TROPOSPHERIC ERROR

There are two major delay effects of the troposphere. The first and larger effect is the dry

atmosphere excess delay, typically on the order of 2.3 m. The dry effect varies slowly

with local temperature and atmospheric pressure in a reasonably predictable manner. The

second effect caused by the water vapor is generally smaller, 1-80 cm at zenith. Although

approximately one tenth the size of the dry effect, the wet delay varies markedly, 10-20%

in a few hours, and is less predictable even with surface humidity measurements (Spilker

Jr., 1996).

The tropospheric error has significant effects on DGPS applications, and therefore much

effort has been put into this topic and many empirical models have been developed.
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Generally, the tropospheric error model consists of two parts. One is the model of the

vertical tropospheric delay, such as the Saastamoinen model (Saastamoinen, 1972, 1973)

and Hopfield model (Hopfield, 1969). The other part is the mapping function, such as

B&E (Black and Eisner, 1984), Davis (Davis, et al, 1985), Chao (Chao, 1974), Marini

(Marini, 1972) and Niell (Niell, 1993) mapping functions. Herein, a new model based on

the modified Hopfield model is developed and tested.

4.3.1 Model Description

4.3.1.1 Vertical Delay Model and Mapping Function

Hopfield has developed a two-quartic zenith model of the refraction index, with different

quartics for the dry and wet atmospheric profiles (Hopfield, 1969). Black has extended

this zenith model to add the elevation angle mapping function (Black and Eisner, 1984).

The tropospheric delay is caused by the larger refractive index n (n>1) of atmospheric

gases than that of free space (n=1), which causes the speed of light (group velocity) in the

medium to decrease below its free space value c. The increase of propagation time caused

by troposphere can be expressed as

( )[ ] wdonPathTransmissi
ttds1snt ∆∆∆ +=−= � (4.32)

where n represents both the wet and dry terms.

The refractivity is defined as N=106(n-1). The basic two-quartic model for the refractivity

versus altitude h can be expressed as:

( )4ddd hh1NN
0

−=    km43hh d =≤

( )4www hh1NN
0

−=    km12hh w =≤

(4.33)

where
0dN and

0wN  are the dry and wet refractivities at the surface of the Earth

respectively,

hd is the height of the top shell of the “dry gas”, and
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hw is the maximum height of the wet atmosphere.

The total zenith delay is then the sum of the intergrated dry and wet delays along the

vertical path:
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where usrh  is the altitude of the user antenna.

0dN and
0wN can be expressed by the suface meteorologic data, namely, temperature, air

pressure and humidity (Spilker Jr., 1996).

( ) 1
ddd ZTP604.77N

0

−=

( )( )T37760079.64ZTeN ww0
+=

(4.36)

where cT  is temperature in °Celsius,

T is temperature in Kelvin,

dP  is the dry air pressure in millibars,

 e is the partial pressure of the water vapour in millibars, and

hR  is the relative humidity, which can vary from 0.0 to 1.0.
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Zd, Zw and e can be computed as follows:
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Black and Eisner built a mapping function which can describe the slant troposphere delay

as a function of both the local elevation angle of a satellite and the surface temperature:

( ) ( )[ ]2
ddw Re/hX1Ecos11T,EM +−= (4.38)

For elevation angles in the range 7°<E<90° and surface temperatures in the region

C40TC30 oo <<− , the value of Xdwhd/Re is in the range 0.00088<Xdwhd/Re<0.01.

Because the temperature dependence is small enough to be ignored, the B&E mapping

function can be simplified as follows:

( ) ( ) ( ) Esin002.0001.001.1EMT,EM 22 ++=≈ (4.39)

Finally, the total slant delay of troposphere can be denoted as:

( )EMs ⋅= ∆∆ (4.40)

4.3.1.2 Temporal Variation of the Model

The temporal variation of the tropospheric delay is simulated in the model developed

herein. This variation is realized by adjusting the meteorological data with time. The

diurnal variations of the temperature and relative humidity are simulated with functions

shown below:

( ) ( )�
�

�
�
�

� −+= maxT
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TTtT π (4.41)
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where 0T  is the average temperature of a day,

vT  is the daily change of temperature,

maxTt  corresponds to the epoch with the highest temperature,

0RH  is the average relative humidity,

vRH  is the daily change of the relative humidity, and

maxRHt  represents the epoch when relative humidity is maxium.

The time used in Equations (4.41) and (4.42) is local time with units of hours. These two

functions are designed according to experimental results (Lachapelle, 1997). Figure 4.30

gives an  example of these two functions.
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Figure 4.30 Example: Temperature and relative humidity variation with time
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4.3.1.3 Spatial Variation of the Model

For DGPS simulation, the spatial correlation of the tropospheric delay must be

considered. The vertical tropospheric delay is the function of temperature, relative

humidity and air pressure. Regardless of the spatial correlation, these parameters are

assumed constant everywhere, which can result in the constant vertical tropospheric delay

in the testing area. This is far from the real situation when the testing area is large. On the

other hand, if meteorological parameters at each GPS station are assumed to be random,

it will also cause problem in simulation, especially in the kinematic case. For instance,

two stations which are very close to each other can have very different vertical

tropospheric delays due to the different setup of the meteorological parameters. This

situation is obviously unrealistic. Therefore, the spatial correlation must be well designed

in the model.

Both Raquet (1998) and Zhang (1999) used the least squares collocation method to

describe the spatial correlation of the tropospheric delay based on the data in a regional

GPS network. Their methodologies have proven very effective in predicting the spatial

distribution of the tropospheric delay, but their methods can only estimate the double

differenced (relative) delay, not the absolute one. To better reflect the spatial correlation

of the absolute tropospheric delay in the model, the spatial distribution of temperature,

relative humidity, and air pressure should be known first.

Although the global meteorological data is available, it is extremely complicated to give a

full description of the spatial distribution of those data with enough density and accuracy.

Therefore, the methodology is only used in some regional tropospheric error modeling,

such as the UNB3 model (Collins and Langley, 1999), which uses only North American

data. These data cannot represent the characteristics of meteorological data on a global

scale. Thus, a stochastic model needs to be built to simulate the distribution of the

required meteorological data instead of using the real one. Although the stochastic model

deviates from the real situation to some degree, it provides flexibility in simulating

various tropospheric effects. The following procedure is applied to produce the spatially

correlated tropospheric delay.
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[1] Establish the simulation area of interest. This is a rectangle consisting of trajectories

of all the simulated stations. This rectangle is partitioned into n×m squares. The edge

length of a square is adjustable according to the spatial decorrelation rate required in

simulation. The grid size used in simulation tests of MultiKin is 100 km×100 km. See

Figure 4.31.

Grid points

Trajectory of moving station
100km

Figure 4.31 Regional tropospheric grid network

[2] Independently assign to each grid point the values of mean temperature T0,i,

temperature diurnal variation Tv,i, mean relative humidity RH0,i, diurnal change of

relative humidity RHv,i, and air pressure Pdi. All of these parameters are random

variables satisfying the following distributions

( )
0T0Ti,0 ,mNT σ∈

( )TvTvi,v ,mNT σ∈

( )
0RH0RHi,0 ,mNRH σ∈
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( )RHvRHvi,v ,mNRH σ∈

( )PdPdi ,mNPd σ∈

where  N(a,b) is the normal distribution, a is the mean value and b is the standard

deviation.

[3] Compute the meteorological data of each grid point, namely, Ti(t) and RHi (t) at the

given epoch t using Equations (4.41) and (4.42). ( )tPdi  is assumed to be time-

invariant.

[4] Interpolate the meteorological data at the GPS antenna using a four-point bilinear

interpolation, which is similar to that used in ionospheric error simulation (see section

4.1.1.3). The only difference is that the unit of distance used here is kilometres, while

in ionospheric error simulation, it is arc degrees.

[5] Compute the total slant delay of the troposphere using the meteorological data and the

elevation of a satellite.

Although the meteorological data at each grid point is independent, the interpolation will

generate the spatial correlation within the network. Thus, the resulting tropospheric delay

is also spatially correlated.

4.3.2 Test of the Troposphere Model

Figure 4.32 shows the change of tropospheric delay with the meteorological data and the

altitude of a user. It can be observed that the wet delay and dry delay change in opposite

directions with temperature. The total vertical delay is not sensitive to temperature

variation. Besides, the air pressure is often treated as constant; thus, the major element

affecting the tropospheric delay is the relative humidity.

Figure 4.33 exhibits the diurnal variation of the meteorological data and related

tropospheric parameters at the centre of a four-point grid network (100 km×100 km). It

further shows that the relative humidity has the greatest effect on the tropospheric delay

because the total vertical tropospheric delay changes in the same way as the relative



115

humidity. This can be seen by comparing Figure 4.33a and c. Figure 4.34 displays an

example of the spatial distribution of the meteorological data and the corresponding

tropospheric parameters in a four-point grid network (100 km×100 km). Simulation

results show the typical values of the vertical tropospheric delay (2.4 m) and its gradient

(0.5 ppm).
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Figure 4.32 Tropospheric delay variation with meteorological data and user height
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Figure 4.34 Distributions of meteorological data and vertical tropospheric delay in a

100 km××××100 km regional network
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4.4 SIMULATION OF MULTIPATH

Multipath is one of the dominant errors in GPS positioning. It is caused by the mixture of

the direct signal and indirect signals from various reflectors around the antenna. The

magnitude of multipath depends on the properties of the reflector, the distance between

the reflector and the antenna, the gain pattern of the antenna, and the type of the tracking

loop used in a receiver.

The simulation of multipath is very important to test DGPS systems. Multipath is not

spatially correlated beyond a few centimetres (Ray 2000); thus, it cannot be reduced by

differencing observations between receivers. Meanwhile, multipath is highly environment

dependent, so it is less predictable than other major GPS error sources. It can have a

major impact on differential carrier phase positioning systems when baselines are

relatively short (<10 km).

4.4.1 The Multipath Model Built by the University of Calgary

A sophisticated model of multipath has been developed by the Department of Geomatics

Engineering at the University of Calgary (Ray 2000, Ryan 2000). This model (called the

UofC model below) is built based on the mechanism of the multipath generation. It

contains three major parts: simulation of reflecting environment, simulation of antenna

gain pattern, and simulation of tracking loop (both code and carrier).

In the first part of the model, a group of reflectors are configured to establish a specific

reflecting environment. Users can set up the position, size, and shape of each reflector, as

well as its reflecting coefficient (i.e., the strength of reflection). Once the reflecting

environment is built, the number, strength and direction of the reflected signals can be

determined, together with the path delays with respect to the direct signal.

In the second part of the model, users can simulate the gain patterns of different antennas,

such as an omni-directional antenna, or a choke-ring antenna, which has a low gain at

low elevations. Scaled by the antenna gain the strength of the received multipath signal

can be decided. The impact of multipath on the range measurement still depends on the

type of the tracking loop used in a GPS receiver. If a narrow-correlator is adopted, the
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impact of multipath on observations can be largely reduced. Therefore, in the third part of

the model, users may choose different types of tracking loops to simulate the applied

receivers.

Here is an example of the option file used for multipath simulation in the UofC model.

The “internal” gain pattern means the gain pattern for the Sensor System’s GPS patch

antenna model S67-1575-Series (Sensor Web) is employed. A wide-correlator receiver

with a non-coherent delay lock loop (DLL) is simulated for testing. The “reflector input

file” defines the environment over which multipath simulations will be conducted.

Several records are defined in this file and each record includes the coordinates (local

level frame) of vertices of a reflecting polygon (or point). The polygons defined within

this file are to determine whether there are any valid multipath reflection points for every

visible satellite. The current simulation program can handle 50 separate polygons, each

with a maximum of 10 vertices. An example of the description of a rectangular reflector

is given as follows.

Reflector Mode: The reflecting surface can be either a fixed reflection, meaning that a

reflection is forced from this point regardless of the geometry, or the reflector is a plane

reflector defined by a polygon.
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Reflector Magnitude: This specifies the magnitude of the reflection coefficient for the

given reflector. This is used to scale the magnitude of the reflected signal, the valid value

is from 0.0 to 1.0.

Figure 4.35 shows the procedure of multipath simulation. The detailed explanation can be

obtained from Ryan (2000).

Figure 4.35 Multipath simulation program flowchart of UofC model

4.4.2 Simplification of the UofC Model

The UofC model is simplified in this research. In the simplified model, the simplest

reflecting environment is defined. It is an infinite ground plane which has different

reflecting coefficients (strength) at different reflecting points. According to this

configuration, the user antenna can always get one and only one reflected signal from the

ground. Thus, the complicated computation of detecting valid reflected signals, which
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includes searching for reflecting points and possible blockage by the reflectors, can be

omitted. Furthermore, it is much easier to compute the path delay of a reflected signal.

Since the satellite is far away from the user, the signal arriving at a reflecting point can be

treated as parallel to the signal arriving at an antenna. Thus, the path delay of the

reflected signal can be determined without using information of a satellite position, See

Figure 4.36.

( )E2cos1
Esin

h
delay −=�

Esinh2delay =�

(4.43)

where h is the height of an antenna with respect to the ground plane,

E is the elevation angle of a satellite.
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Figure 4.36 Computation of the path delay in the simplified UofC model

Figure 4.37 gives an example of multipath (both code and carrier) generated by the

simplified model for a static platform. The height of the antenna is 1.5 m. The reflecting
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coefficient is a random variable with average distribution from 0.8 to 1.0, which results in

the high frequency component of the multipath.
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Figure 4.37 Simulated static multipath by the simplified UofC model

4.4.3 Kinematic Multipath Model

The advantage of the UofC model is that it can give a very accurate estimation of

multipath if the reflecting scenario can be very well reproduced. The geometry of

satellites and the dynamics of an observer can cause the multipath to change in a way

analogous to a real situation. However, the high accuracy of the modeling is obtained at

the expense of the increased complexity of the model.

The UofC model is suitable for simulations of static applications because it has a

relatively stable environment of reflection which may be re-established in simulation. For

kinematic simulation, however, the environment can change dramatically with time; thus,

it is impossible to re-construct the reflection scenario along the trajectory of a moving

platform. To simulate multipath for kinematic applications, the statistical method is used

instead. The kinematic multipath error can be treated as a Gauss-Markov random process
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(SATNAV, 1998), with the time constant dependent on the dynamics of the moving

platform. Generally, the higher the dynamic, the shorter the time constant.

In kinematic multipath modeling, the multipath of the code, L1 carrier phase and L2

carrier phase are assumed independent, which seems to contradict our experience. The L1

and L2 carrier phase multipath are always considered to have the same multipath phase

delay but different frequencies due to the difference of their wavelengths (Braasch,

1996). These experiences are generally based on the assumption of a single reflected

signal, while in practice the multipath is usually a mixture of multiple reflected signals

with different strengths and phase delays. The strength and phase delay of each reflected

signal is also a function of time. Therefore, the multipath phase delay actually behaves

randomly. From a statistical perspective, the multipath on L1 appears to be independent

of the multipath on L2. As a result, the important issue in simulations is to make sure that

the multipath error generated for L1 is statistically independent of the multipath error for

L2. In the simulator, this is accomplished simply by using different 'seeds’ for the

random number generator.

Here is the method to generate a first-order Gauss-Markov process for kinematic

multipath simulations:

( )
kk

tt
1k wXeX k1k += −−
+

+β (4.44)

where Xk is the multipath error,

 wk is a Gaussian white noise to drive the model.

The variance of wk is as follows:

( )[ ]k1k tt22
k e1q −− +−= βσ (4.45)

where σ2 is the variance of the multipath required in simulations,

1/β is the time constant of the random process.
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In kinematic applications of car positioning, the time constant can be set to several

seconds (Nayak, 2000).

To check the independence of the simulated multipath, a statistical test is conducted. The

cross-correlation of two simulated multipath sequences is computed using the following

equation:

�
=

=
N

1k
k,jk,i

ji
ij xx

N
1c
σσ

(4.46)

where N is the length of the simulated sequence,

iσ  and jσ  are the standard deviations of the ith and  jth sequences, respectively,

xi and xj are the simulated multipath sequences.

The test conditions are listed in Table 4.1.

Table 4.1 Test conditions of correlation of simulated multipath sequences

Number of sequence 20

The time constant of multipath 10 s

The length of each sequence 10000 s

The data rate One sample/s

Figure 4.38 gives results of the cross-correlation test. There are 190 cross-correlations

calculated between any two of the 20 simulated sequences. The mean cross-correlation

between simulated sequences is only 0.024. In some extreme cases, the cross-correlation

can be up to 0.1 but it is still acceptable for simulations.

Figure 4.39 shows an example of the simulated kinematic multipath with a time constant

of 10 s, which is quite different from the static multipath generated by the simplified
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UofC model. Because of the difference of error properties, both the UofC model and this

kinematic model are employed in the software simulator.
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Figure 4.38 Cross-correlations between the simulated multipath sequences
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Figure 4.39 Example of simulated multipath for kinematic applications
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4.5 SIMULATION OF SA

SA used to be the largest error source for stand-alone positioning which could degrade

the horizontal positioning accuracy to 100 m (95%) and vertical accuracy to 150 m

(95%). However, it did not affect differential GPS because SA (clock dithering) could be

eliminated by differencing between two receivers if the measurement latency could be

ignored. As discussed in Chapter 3, the relative positioning accuracy is degraded by the

position error in the moving reference; therefore, SA is only simulated to test the

degradation of relative positioning in case of large reference errors.

In this section, the discussion is focused on the simulation of satellite clock dithering (δ-

error). Much effort has been put into modeling the effect of SA. Generally, models in

existence can be categorized into the three following types (Van Graas and Braasch,

1996):

Second-Order Gauss-Markov Model: It can generate both range and range rate errors,

but the error is noisier than the actual value (Studenny, 1993).

Autoregressive Model: It can only generate range error, but matches well to the

measured SA data (Braasch et al, 1993).

Analytic Model: This model integrates both advantages of above models, but there is no

direct relation between the choice of the model parameters and the output data. Noise

levels must be set empirically (Lear et al, 1992).

Since the high accuracy of modeling is not a major concern for this research, an 11th

order AR model is chosen according to the result derived by Braasch et al (1993). The

corresponding AR coefficients and the variance of the driving noise input for an output

data rate of one-second are given below.
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An example of the simulated SA in the range measurement is shown in Figure 4.40.
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Figure 4.40 Example of the simulated SA (clock dithering)
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5 DESIGN OF SCENARIOS FOR SIMULATION

5.1 CONSTELLATION SIMULATOR

5.1.1 Description of Constellation Simulator

In a GPS software simulator, the constellation generator is necessary to simulate the

position of GPS satellites which are used to generate range measurements and some

satellite-elevation dependent errors.

To describe a satellite orbit, six Keplerian elements are required, including:

a: semi-major axis

e: eccentricity

i: inclination angle of orbit with respect to the equatorial plane

ω: argument of perigee

Ω: right ascension of ascending node

E: eccentric anomaly (true or mean anomaly used alternatively)

In this simulator, for simplification, a circular orbit is used instead of an elliptical orbit.

This is a good approximation because the eccentricity of the real GPS orbit is very small

(about 0.01). For a circular orbit, only four parameters are necessary, because the

eccentricity and argument of perigee can always be treated as 0. Consequently, the

computation of position and the velocity of satellite become easier.

The position of a satellite on the orbit plane is:
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where r is the radius of a circular orbit,
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E is equivalent to the mean anomaly and can be computed using the following

equation.

( )00 ttnEE −+= (5.2)

where E0 is the eccentric anomaly at a reference epoch t0,

n is the angular velocity of a satellite, which is a constant for circular orbit. It can

be written as:

3
E

r
GMn =

                                                              (5.3)

where G is the universal gravitational constant,

ME is the mass of the Earth.

Observations of satellites are usually performed on the Earth. The coordinates of stations

are conveniently referred to an Earth-fixed frame (e.g., WGS84). Therefore, a coordinate

transformation is necessary to convert the satellite position from an orbit plane to

WGS84.

0e Rrr =                                                               (5.4)

where re is the position vector of a satellite in WGS84,

R is the rotational matrix for coordinate conversion.

Because zo is always 0, the rotational matrix can be simplified as:
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where )tt(' 0e −−= ΩΩΩ �
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eΩ�  is the Earth rotational rate.

The R matrix is also used to get the satellite velocity in WGS84.

0e rRr �� =                                                               (5.6)

In order to compute the position and velocity of a satellite, four parameters must be

initialized, namely (r, i, Ω, E0). The inclination angle and period of GPS satellites are

always treated as constants: thus, they are actually known to us. In simulation, i is set up

to 55° and the radius r can be derived from the period of a GPS satellite using the

following equation:
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π

                                                             ( 5.7)

where T=11 h 58 m is the period of a GPS satellite. As a result, r=26560.623 km.

The selection of right ascension and mean anomaly is referred to a standard 24-satellite

constellation (Massatt and Zeitzew, 1998 and Massatt, 1991), which is listed in Table 5.1.

The relative positions of GPS satellites at a reference epoch are shown in Figure 5.1.
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Table 5.1 Parameters of a GPS 24-satellite constellation

Slot Mean
Anomaly
(degree)

Right
Ascension
(degree)

Slot Mean
Anomaly
(degree)

Right
Ascension
(degree)

A3 11.68 272.85 D1 135.27 92.85

A4 41.81 272.85 D4 167.36 92.85

A2 161.79 272.85 D2 265.45 92.85

A1 268.13 272.85 D3 35.16 92.85

B1 80.96 332.85 E1 197.05 152.85

B2 173.34 332.85 E2 302.6 152.85

B4 204.38 332.85 E4 333.69 152.85

B3 309.98 332.85 E3 66.07 152.85

C1 111.88 32.85 F1 238.89 212.85

C4 241.57 32.85 F2 345.23 212.85

C3 339.67 32.85 F3 105.21 212.85

C2 11.8 32.85 F4 135.35 212.85
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Figure 5.1 Six-plane 24-satellite constellation
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5.1.2 Test of the Constellation Simulator

To check whether the constellation is properly built several tests are performed to show

the satellite coverage and geometry.

[1] The Ground Track

From Figure 5.2, it can be seen that after one sidereal day (23 h 56 m), the satellite returns

to the local zenith of an observer. Thus, the radius and period of the simulated GPS orbit

are correctly configured.

[2] GPS Satellite Geometry and Visibility

All simulation tests of MultiKin were conducted in a region centred at (51°04’ N,

114°07’ W), which is close to the University of Calgary. The field tests were performed

in the same area. Figure 5.3 and Figure 5.4 show the satellite geometry and visibility in

the testing area.
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Figure 5.2 Ground track of a GPS satellite in one sidereal day
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Figure 5.3 Number and DOP of satellites (GPS-24) observed at 51°°°°04’ N, 114°°°°07’ W

(cutoff angle: 0º vs. 10º)
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Figure 5.4 Visibility of satellites (GPS-24) observed at 51°°°°04’ N, 114°°°°07’ W (cutoff

angle: 0º vs. 10º)

5.1.3 Enhanced GPS Constellation

Presently, there are 28 operational GPS satellites in space. Therefore, the real coverage of

GPS is better than the 24-satellite constellation. According to some suggestions of GPS

modernization, a six-plane 30-satellite constellation with the same semi-major axis and

inclination as the current GPS constellation is suggested, which requires the smallest

modification of current GPS constellation when compared to other schemes (Massatt and

Zeitzew, 1998). Herein, this scheme is also simulated in our research to investigate the

impact of satellite geometry and visibility on the performance of MultiKin. The selection
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of right ascension and mean anomaly is listed in Table 5.2 (Massatt and Zeitzew, 1998),

The relative position of GPS satellites at the reference epoch is shown in Figure 5.5.

Table 5.2 Parameters of a six-plane GPS 30-satellite constellation

Slot Mean Anomaly
(degree)

Right Ascension
(degree)

Slot Mean Anomaly
(degree)

Right Ascension
(degree)

A3 20.15 272.85 D1 138.63 92.85

A4 44.88 272.85 D4 167.88 92.85

A2 161.88 272.85 D2 255.93 92.85

A1 270.63 272.85 D3 37.33 92.85

A5 134.35 272.85 D5 283.68 92.85

B1 71.93 332.85 E1 193.93 152.85

B2 182.53 332.85 E2 307.43 152.85

B4 214.38 332.85 E4 331.81 152.85

B3 318.43 332.85 E3 51.48 152.85

B5 294.05 332.85 E5 83.33 152.85

C1 97.98 32.85 F1 245.71 212.85

C4 228.53 32.85 F2 355.23 212.85

C3 342.18 32.85 F3 103.98 212.85

C2 9.93 32.85 F4 131.41 212.85

C5 127.23 32.85 F5 220.98 212.85

-180 -120 -60 0 60 120 180
-180

-120

-60

0

60

120

180

Right Ascension of Ascending node (degree)

A
rg

um
en

t o
f L

at
itu

de
(d

eg
re

e)

Figure 5.5 Six-plane 30-satellite constellation
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Figure 5.6 Geometry and visibility of satellites (GPS-30) observed at 51°°°° 04’ N, 114°°°°

07’ W (cutoff angle=10º)

Compared with the GPS-24 constellation (Figure 5.3, Figure 5.4) the satellite geometry

and visibility have largely been improved in the GPS-30 constellation, see Figure 5.6.

Table 5.3 gives a summary of the comparison.

Table 5.3 Comparison of GPS-24 and GPS-30, observed at 51°°°° 04’ N, 114°°°° 07’ W,

cutoff angle=10º, observation time period: one GPS day

GPS-24 GPS-30

HDOP 1.2 1.0

VDOP 1.8 1.6

DOP (mean)

PDOP 2.2 1.9

Mean 6.9 8.6Number of Visible
Satellites Minimum 5 6

5.2 TRAJECTORY SIMULATOR

Figure 5.7 shows the trajectory of a moving platform. The vehicle moves clockwise along

the track and the velocity of each platform is a random walk process with the mean value

of 5.0 m/s.
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Figure 5.7 Trajectory of a moving platform

Since the trajectory is closed and the inter-platform distance (1.5 km~35 km) is much

larger than the radius of the trajectory (150 m), the inter-platform distance can be

approximated as unchanged. With this configuration, the impact of baseline lengths on

MultiKin can be separately studied. Furthermore, the processing procedure is also

simplified because Delaunay triangulation does not need to be refreshed during testing.

To test the impact of the number of moving platforms on the effectiveness of MultiKin,

up to 10 platforms are configured in simulation. Figure 5.8 gives the position of those 10

moving platforms. The position of the central platform is (51° 04’ N, 114° 07’ W, 1100

m). The baseline lengths vary in different scenarios, which allows users to study the

effect of spatially correlated differential errors.
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Figure 5.8 Position of moving platforms

5.3 OBSERVATION SIMULATION USING GPS SOFTWARE

SIMULATOR

To generate necessary observations for a moving platform, the GPS simulator must be

properly initialized. This task is accomplished by setting up the following parameters:

[1] Trajectory Generator: type of trajectory, vehicle dynamic, simulation area, etc.

[2] Constellation Generator: parameters of constellation, rejected satellites, cutoff

elevation angle, etc.

[3] Error Simulator:

Ionospheric error: GIMs, variance of TEC increment, etc.

Tropospheric error: simulation area, meteorological data

Orbital error: coefficients of AR model, magnitude of SA (ε-error), channel with SA

SA: coefficients of AR model, on/off switch

Multipath: magnitude and model type (kinematic or static)

Receiver noise: magnitude
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After initialization, the GPS simulator outputs observations using procedures as follows:

[1] Generate position and velocity of a GPS platform.

[2] Generate position (wrong) of visible satellites using constellation generator and user

position.

[3] Generate true satellite position using orbital error generator.

[4] Generate other GPS errors.

[5] Generate pseudorange measurements for both code and carrier phase, and then add

ambiguity terms to carrier phase measurements

The GPS software simulator also has the function of performing some statistical tests of

generated GPS errors. This function is used to verify whether the parameters of the GPS

software simulator are properly set up in the initialization step. The statistical mean and

variance of absolute and double difference GPS error are compared with the setup values.

If they do not match, the simulating procedure has to be restarted and some parameters

may need adjustment.

It is worth noting that the software simulator does not refresh the ephemeris every two

hours because the simulated orbital parameters are time-invariant. The constellation

parameters defined in Table 5.2 are put in an ephemeris file. GPS data processing

software, such as FLYKIN , obtains the orbital parameters from this file and computes

the apparent position of satellites, using the method described in section 5.1.1.

5.4 DESIGN OF SCENARIOS FOR SIMULATION

The following parameters are set up during the initialization of the GPS simulator for

testing MultiKin.

Testing Period: For all scenarios, the testing period is from 50930 s to 55730 s (GPS

seconds in week), which is Calgary local time from 7:10 am to 8:30 am. The GPS data

rate is one Hz. The reason for choosing this testing period is that the satellite visibility
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and geometry are very good and stable in this period. This allows us to study the effect of

satellite geometry and visibility separately, because setting up poorer satellite geometry

can be performed by simply rejecting some satellite observations without changing the

testing period. A change of testing period could also result in changes of satellite

visibility and geometry; however, atmospheric errors could change accordingly.

Baseline length: To separately study the effect of baseline length (i.e., magnitude of

differential errors), all baseline lengths in one scenario are almost the same. However,

they may differ from one scenario to another. There are five different baseline lengths

configured in the simulation: 1.5 km, 5 km, 10 km, 20 km, and 35 km.

Satellite Geometry: There are three types of satellite geometry configured in the testing

scenarios. They differ from each other by the constellation and rejection of observations.

The cutoff elevation angle for all configurations is 10°. Table 5.4 gives the parameters of

these configurations.

Table 5.4 Configuration of satellite geometry in simulation tests

Constellation Rejected satellites

Reduced Geometry 24-satellite [2 15 16 19]

Full Geometry 24-satellite None

Enhanced Geometry 30-satellite None

Comparisons of satellite visibility and geometry of different scenarios are presented in

Figure 5.9 and Figure 5.10. Three low-elevation and one mid-elevation satellites are

rejected in the reduced geometry, which causes the mean PDOP to increase from 2.0 to

2.9. Meanwhile, the number of visible satellites is also reduced from eight to five. For the

enhanced geometry, two new satellites are introduced, which improves both the satellite

geometry and visibility. It should be noticed that the VDOP of the enhanced geometry is

poorer than that of the full geometry from 52500 s to 54000 s (GPS time). This is because
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the orbital parameters of the first 24 satellites in the enhanced constellation are slightly

different from those in the standard 24-satellite constellation. However, statistically, the

enhanced geometry is still better than the full geometry during the testing period,

especially for the HDOP and visibility. The impact of these geometry changes is

investigated in Chapter 6.

GPS Time (s) : LT(h:min)

…
Used SVs in
Reduced Geometry

xxx
Rejected SVs in
Reduced Geometry

+++
New SVs in
Enhanced Geometry

Figure 5.9 Satellite elevation and visibility in different scenarios



141

5 5.2 5.4 5.6

x 104

0

1

2

3

4

5

6

H
D

O
P

Enhanced Geometry
Full Geometry
Reduced Geometry

5 5.2 5.4 5.6

x 104

1

1.5

2

2.5

V
D

O
P

5 5.2 5.4 5.6

x 104

1.5

2

2.5

3

3.5

P
D

O
P

GPS time in second
5 5.2 5.4 5.6

x 104

4

6

8

10

N
um

be
r o

f V
is

ib
le

 S
V

s

GPS time in second

Figure 5.10 Visibility and geometry of different satellite configurations

The Error Magnitude: The error magnitude is one of the most important parameters

affecting the performance of a GPS system. To fully test MultiKin, several levels of

errors are set up. All the errors given below are in terms of RMS. The magnitudes of

receiver noise, multipath and SA are given for single range measurements, while the

atmospheric and orbital errors are double differenced quantities.

Receiver Noise: In the simulation tests, the receiver noise for C/A code is one metre. The

carrier phase noise in L1 and L2 are set up to 0.01 cycle. These are typical values for

commonly used GPS receivers.

Multipath: Multipath is the dominant error in differential GPS systems, when the

baseline is short, or when other differential errors are reduced by modeling or by phase

combination. Three levels of multipath are tested: small (1.0 mm), medium (3.8 mm), and

large (1.0 cm). These are values for the L1 carrier phase. The magnitudes of the L2

carrier multipath and the C/A code multipath are accordingly set up by multipath models.
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Generally, the L2 carrier phase multipath has the same magnitude (in cycle) as the L1

carrier phase multipath, while the C/A code multipath is 100 times larger than the L1

carrier phase multipath (in length).

Ionospheric Error: Three different levels of ionospheric conditions are tested, according

to what is shown in Table 5.5.

Table 5.5 Setup of ionospheric error

Strength of ionosphere activity Relative double differenced error

Quiet 1.5~2.5 ppm

Active 3.5~5.5 ppm

Strong > 8.0 ppm

The absolute double difference range errors vary with baseline lengths.

Tropospheric Error: Two different scenarios are designed to simulate the typical and

strong tropospheric errors. In the typical scenario, the relative tropospheric error is about

2.3 ppm, while for the strong scenario, it is 4.8 ppm, which assumes that the local

temperature is very high (45 °C) and the relative humidity varies largely both in space

and time.

Orbital Error: The magnitudes of along-track, cross-track and radial errors are set up to

3.97 m, 2.50 m, and 0.73 m respectively, which are derived from the statistical results of

the actual orbital errors. The impact of large orbital biases is also considered in the

simulation tests. In some scenarios, a 50 m bias is added in the along-track error for some

satellites to simulate blunders in ephemeris parameters (mean anomaly).

SA: In most of the scenarios, the clock dithering (δ-error) is switched on for all the

satellites and it is independent from one channel to another. The variance of clock

dithering is 25.6 m. In some accuracy tests, SA is switched off to reduce the positioning

error of the moving reference.
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6 RESULTS AND ANALYSIS OF MULTIKIN

6.1 PARAMETERS OF PERFORMANCE

To evaluate MutiKin under different scenarios, several parameters are defined for

evaluating the test performance.

TTAF (Time to True Ambiguities Fixed): Due to large measurement errors or poor

satellite visibility, ambiguities can be fixed to incorrect values. Although FLYKIN  and

MultiKin can detect and correct such wrong fixes using a ratio test and ambiguity

constraints, these wrong fixes will lengthen the time of correct resolution. Furthermore,

the wrong fixes seriously degrade positioning accuracy. Unless ambiguities are correctly

fixed, centimetre-level accuracy cannot be obtained. Therefore, TTAF is used as a

parameter to show how long it takes to correctly fix ambiguities and to assure the

positioning accuracy at the centimetre level.

TAF (Time to Ambiguities Fixed): In field tests, the correctness of ambiguities cannot be

guaranteed, even when baselines are very short. Therefore, only the time to fix

ambiguities can be measured. However, in the field tests, some reference stations with

precisely known coordinates are set up to provide more redundancy and more constraints

to check the correctness of the ambiguity resolution of a moving baseline. Therefore,

TAF can be approximated as TTAF.

TSR (Time Saving Rate): This parameter represents the improvement of time to fix

integer ambiguities induced by MultiKin.  TSR is defined as

)nedUnconstrai(TTAF
)MultiKin(TTAF)nedUnconstrai(TTAFTSR

i

i −
=

(6.1)

The unconstrained method is also called the single baseline method. The higher the TSR,

the more efficient MultiKin is. In the field tests, TSR is computed using TAF.

TDW (Time to Detect Wrong fixes): When the noise level becomes higher, the

probability of incorrectly fixed ambiguities increases. Generally, wrong fixes will
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generate a large bias in the position domain; thus, positioning accuracy is degraded. The

ambiguity monitoring module (ratio test and constraint) is designed to detect wrong fixes.

It is always expected that wrong fixes can be detected as soon as possible. The parameter

used to evaluate the capability of the ambiguity monitoring module to detect wrong fixes

is defined as TDW. It is actually a reliability indicator of the ambiguity resolution

process.

NUB (Number of Unfixed Baselines): With the increase of baseline lengths, the

differential errors increase. When the errors are larger than a certain level, it is difficult or

even impossible to fix the integer ambiguities. Furthermore, in practice, due to the

requirement of high positioning accuracy in real-time kinematic applications, only when

the ambiguities can be fixed within a certain period, does the integer solution benefit the

positioning accuracy. Therefore, in the simulation tests, a time limitation of ambiguity

resolution is set up as 1200 s. If ambiguities cannot be fixed within this period, the

baseline is an unfixed baseline. The total number of the unfixed baselines during a

simulation test is called NUB.

LSB (Longest Solvable Baseline): Generally, the longer the baseline, the more difficult it

is to fix ambiguities. When baselines are long enough to cause the NUB to reach a certain

threshold, the baseline is defined as the LSB. It indicates the limitation of the functional

distance for the applied ambiguity resolution method. Herein, the NUB threshold is

defined as 10% of the total number of the tested baselines.

6.2 SIMULATION TESTS: DESIGN, RESULTS AND ANALYSIS

The simulation tests of MultiKin can be categorized into three different types: efficiency

tests, reliability tests, and accuracy tests. In the last section of this chapter, some field

tests will also be presented to show the performance of MultiKin in the case of real GPS

scenarios.

6.2.1 Efficiency Tests

The efficiency and reliability tests consist of multiple trials. The first trial starts at 50930

s (GPS time). The following trials start at 15 s after the beginning of the previous trial.
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Each trial lasts for at most 1200 s. If the true ambiguity can be fixed within 1200 s, the

trial is treated as a successful trial, the TTAF is recorded and a new trial is started.

Meanwhile, if any wrong fixes occur during this period, the TDW is also recorded. If the

true ambiguity cannot be fixed within 1200 s, the trial of ambiguity fixing fails and no

TTAF and TDW is recorded. The whole testing period is 4800 s; 1200 s are reserved for

the final trial. Thus, the effective testing period is 3600 s, which can contain 240

overlapping simulation trials.

6.2.1.1 Test 1: Impact of Number of Platforms

Objective: This test is to evaluate the effect of the number of platforms on the

effectiveness of MultiKin, i.e., whether increasing the number of moving platforms can

further improve the efficiency of MultiKin.

Design of scenarios: The testing scenarios are listed in Table 6.1. The baseline lengths

vary with scenarios. Each scenario was tested using three, four and 10 platforms. The

three-platform constraint contains three baselines and one triangle. The four-platform

constraint contains five baselines and two triangles. The 10-platform constraint contains

18 baseline and nine triangles. The positions of the selected moving platforms are shown

in Figure 6.1.

Table 6.1 Simulated scenarios for Test 1

Scenario Rx
(single)

Mp
(single)

DD Ion DD
Trop

DD
Orbit

SA
δ-error

Geometry Observable Total
DD

error

Length
of

Baseline
1 0.014

cycle/
1.8 ppm

0.018
cycle/

2.3 ppm

0.00046
cycle

L1 0.047
cycle/

8.9 mm

1.5 km

2 0.06
cycle/

2.3 ppm

0.061
cycle/

2.3 ppm

0.0012
cycle

L1 0.078
cycle/
1.5 cm

5 km

3

0.01
cycle/

1.9 mm

0.02
cycle/

3.8 mm

0.094
cycle/

1.8 ppm

0.12
cycle/

2.3 ppm

0.0036
cycle

On
25 m

PDOP=
2.0
Full

geometry

WL 0.08
cycle/
6.9 cm

10 km
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51°04’N 114°07’W

Reference point of a
trajectory

3-platform
constraint

4-platform
constraint

10-platform
constraint

Baselines length varies with
scenarios

Figure 6.1 Selection of moving platforms in Test 1

Testing results in Figure 6.2 show that with the number of constrained platforms

increased, the average time to fix ambiguities keeps decreasing. Therefore, increasing the

number of platforms can further improve the efficiency of MultiKin. Moreover, by

adding more platforms into the configuration, the time to fix ambiguities for a specific

baseline is usually reduced, see Figure 6.3. Only a few exceptions (three out of 240) can

be observed where the 10-platform constraint has a longer time to fix ambiguities than

the four-platform constraint does. This is because the wrong fixes of the neighboring

triangles result in the fixed solution of baseline 1 being reset by constraints. However,

statistically, the 10-platform constraint is still slightly better than the four or three-

platform constraint.

Testing results also show that although the efficiency increases by increasing the number

of constrained platforms, the improvement rate diminishes (See Figure 6.4). The four-

platform constraint almost has the same TSR as the 10-platform constraint in all

scenarios. This effect can be explained by Figure 6.5.
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Figure 6.3 Increased improvement of TTAF for baseline 1 in Test 1
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Figure 6.4  Efficiency comparison of multi-platform constraints

Figure 6.5 Interrelation of baselines on ambiguity resolution

The solution of a baseline is directly related to those baselines within the same triangles,

while the baseline which is not in the same triangle can only have an indirect effect. The

farther the baseline, the less it can help. In Figure 6.5, the baseline with the darkest color

has the strongest effect on the ambiguity resolution of the bold baseline (in the centre).
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From Figure 6.4, it can be concluded that the major efficiency improvement is generated

by the direct triangular constraint, while those indirect constraints can only result in a

minor improvement. Based on this conclusion, for all the following tests, a six-platform

constraint was used, which is chosen as the best compromise between the four-platform

and 10-platform constraint. This small configuration can simplify the data processing and

give a good estimation of the maximum efficiency improvement generated by MultiKin.

The six-platform constraints are configured as shown in Figure 6.6, where nine baselines

and four triangles are included.

51°04’N 114°07’W
Reference point of a
trajectory

Figure 6.6 Configuration of six-platform constraint

GPS errors in the double differenced measurements have the largest impact on ambiguity

resolution. The following tests (Test 2 to 7) were conducted to test the impact of different

errors on the efficiency of MultiKin.

6.2.1.2 Test 2: Impact of Multipath

Objective: To test the effect of multipath on the efficiency of MultiKin.

Design of scenarios: The testing conditions of Test 2 are listed in Table 6.2. To

separately study the effect of multipath, baseline lengths are the same in all simulated

scenarios, i.e., the spatially correlated errors have the same magnitudes. Thus, the

possible efficiency change of MultiKin under different scenarios should be only caused
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by the change of multipath. Since multipath is the dominant error for short-baseline

resolution, the baseline length is set up to 1.5 km. In addition, multipath behaves quite

differently between the static and kinematic applications. Both multipath models

discussed in Chapter 4 are tested.

Table 6.2 Simulated scenarios for Test 2

Scenario Rx
(single)

MP
(single)

DD Ion DD
Trop

DD
Orbit

SA
δ-error

Geometry Observable Total
DD error

Length
of

Baseline
1 0.005

cycle/
1mm[1]

0.027
cycle/

5.13 mm
2 0.02

cycle/
3.8mm[1]

0.047
cycle/

8.93 mm
3 0.02

cycle/
3.8mm[2]

0.047
cycle/

8.93 mm
4

0.01
cycle/
1.9mm

0.05
cycle/
1cm[1]

0.014
cycle/

1.8 ppm

0.018
cycle/

2.3 ppm

0.00036
cycle /
0.05
ppm

On
25 m

PDOP=
2.0

Full
geometry

L1

0.1
cycle/
1.9 cm

1.5 km

[1] Kinematic model, [2] Static model

Figure 6.7 and Figure 6.8 show the results of Test 2. It is obvious that the TTAF increases

with increasing multipath. However, Test 2 also shows two interesting results:

[1] The efficiency of MultiKin decreases with increasing multipath,

[2] The static multipath results in a longer TTAF and a lower efficiency of MultiKin than

the kinematic multipath of the same magnitude.

For the first point, the ambiguity resolution in MultiKin still depends on the single

baseline resolution. The ambiguity constraints can only speed up ambiguity resolution

when the sufficiency test in MultiKin is passed (see section 3.4.2). When the error

magnitude is increased, the output ratio from the distinguishing test will become smaller;

thus, it will take a relatively longer time to pass the sufficiency test. An example of fixing

ambiguities in the case of extremely large errors can help to understand the testing

results. When the GPS errors are very large, the correct ambiguities cannot be fixed even

using constraints. Therefore, no improvement can be obtained by MultiKin. More tests
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were conducted for other GPS errors to check whether the improvement of MultiKin is

reduced by increasing GPS errors.
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The second point can be explained by the difference of the statistical properties between

the kinematic multipath and the static multipath. The kinematic multipath is simulated by

a Gauss-Markov process with a time constant of a few seconds. The static multipath

changes with the satellite geometry slowly and regularly. Since the kinematic multipath is

less self-correlated than the static multipath, the Kalman filter can work more effectively

in the case of the kinematic multipath. It is worth mentioning that for the fourth scenario,

there are eight trials failing to fix ambiguities within 1200 s when no constraint is

applied. However, after using the six-platform constraint, all ambiguities can be fixed

within 755 s. Therefore the decreased NUB also shows the efficiency improvement of

MultiKin.

6.2.1.3 Test 3: Impact of Ionospheric Error

Objective: To test the effect of the ionospheric error on the efficiency of MultiKin.

Design of scenarios: Ionospheric error is one of the largest error sources in relative

positioning. When the baseline is long or the solar activity is strong, the residual

ionospheric error can be large enough to cause difficulty in ambiguity resolution. The

following scenarios (see Table 6.3) have the same baseline length; other spatially

correlated errors are kept at the same level in different scenarios. Thus, the effect of the

ionospheric error can be separately studied. Three scenarios are generated to simulate

quiet, active and strong ionospheric activities. Because the L1 ambiguities cannot be

fixed in the case of strong ionospheric activity, the widelane observables are used for all

the tests.

Table 6.3 Simulated scenarios for Test 3

Scenario Rx
(single)

MP
(single)

DD Ion
(L1)

DD Trop
(L1)

DD
Orbit
(L1)

SA
δ-error

Geometry Observable Total DD
error
(WL)

Length of
Baseline

1 0.094
cycle/

1.8ppm

0.078
cycle/
6.7cm

2 0.23
cycle/

4.4ppm

0.1 cycle/
8.6cm

3

0.01
cycle/
1.9mm

0.02
cycle/
3.8mm

0.45
cycle/

8.6ppm

0.12
cycle/

2.3ppm

0.0036
cycle/
0.07
ppm

On
25m

PDOP=
2.0
Full

geometry

WL

0.13
cycle/

11.2cm

10km
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The result of Test 3 is analogous to Test 2. As shown in Figure 6.9 and Figure 6.10, the

TTAF increases and TSR decreases with increasing the ionospheric errors. When the

ionosphere is quiet, a very large improvement of efficiency (66.9%) can be achieved by

using MultiKin. While the ionospheric activity is strong, the TSR decreases to 46.8%.
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6.2.1.4 Test 4: Impact of Tropospheric Error

Objective: To test the effect of tropospheric errors on the efficiency of MultiKin.

Design of scenarios: Generally, tropospheric errors have less effect on relative

positioning than ionospheric errors. However, in some extreme situations, the

tropospheric errors can be very large. In the following tests, see Table 6.4, a scenario

with very large tropospheric effect (4.8 ppm) is generated where the temperature is very

high (45 °C) and relative humidity is largely varied. The baseline length is constant to

keep other errors relatively unchanged.

Table 6.4 Simulated scenarios for Test 4

Scenario Rx
(single)

MP
(single)

DD Ion
(L1)

DD
Trop
(L1)

DD
Orbit
(L1)

SA
δ-error

Geometry Observable Total
DD error

(L1)

Length
of

Baseline
1 0.12

cycle/
2.3 ppm

0.12
cycle/
2.3 cm

2

0.01
cycle/
1.9mm

0.02
cycle/
3.8mm

0.11
cycle/

2.1 ppm
0.25

cycle/
4.8 ppm

0.0036
cycle/
0.07
ppm

On
25m

PDOP=
2.0
Full

geometry

L1

0.24
cycle/
4.6 cm

10 km

The testing results (see Figure 6.11 and Figure 6.12) repeat the same conclusion reached

in Tests 2 and 3. The TSR of MultiKin decreases from 44.4% to 34.2%, with tropospheric

errors increased from 2.3 ppm to 4.8 ppm. For the unconstrained method, 287 baselines

were not fixed within 20 minutes. These represent 13.3% of all 2160 tested baselines. For

MultiKin, however, only 27 baselines were not fixed, which is ten times less than the

result using the unconstrained method.

It should be noted that all the tested platforms have the similar height in simulations. If

the height difference of the applied platforms is large, such as for the aeronautic

applications, the impact of tropopsheric errors can be larger; thus, the efficiency

improvement of MultiKin can be further reduced.
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6.2.1.5 Test 5: Impact of Orbital Error (Large orbital bias)

Objective: To test the effect of large orbital biases on the efficiency of MultiKin.

Design of scenarios: Normal orbital errors have the least effect on relative positioning of

short baselines when compared to other GPS errors. Since the RMS of the simulated

orbital errors (normal) is less than 5.0 m, the maximum differential orbital error is less

than 0.25 ppm. This has only a minor effect on ambiguity resolution when the baseline

length is relatively short (10 km). However, if a large orbital bias (a few tens of metres)

occurs, the effect of orbital error cannot be neglected. Although the orbital bias occurs at

a very low frequency, it is still necessary to understand its effect of on the efficiency of

MultiKin. This is because the large orbital bias can seriously degrade the effectiveness of

positioning.

The following scenarios (see Table 6.5) are designed to investigate the effect of large

orbital biases on MultiKin. The magnitudes of other GPS errors are kept constant in

different scenarios. Since the large orbital biases seldom occur to all the GPS satellites, a

50 m bias was only added to several satellites in the along-track channel, which is

equivalent to a 0.37 arcsecond bias of mean anomaly in ephemeris.

Table 6.5 Simulated scenarios for Test 5

Scenario Rx
(single)

MP
(single)

DD Ion
(L1)

DD
Trop
(L1)

DD
Orbit
(L1)

SA
δ-error

Geometry Observable Total
DD

error
(L1)

Length
of

Baseline

1 0.0036
cycle[1]

0.12
cycle/
2.3 cm

2 0.085
cycle[2]

0.12
cycle/
2.3 cm

3 0.03
cycle[3]

0.13
cycle/
2.5 cm

4

0.01
cycle/

1.9 mm

0.02
cycle/

3.8 mm

0.098
cycle/

1.8 ppm

0.12
cycle/

2.3 ppm

0.092
cycle[4]

On
25 m

PDOP=
2.0
Full

geometry

L1

0.15
cycle/
3.0 cm

10 km

[1]: Normal orbital error; [2]: Large bias on the base satellite; [3]: Large bias on a non-base

satellite; [4]: Large bias on the base and one non-base satellite
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Figure 6.13 and Figure 6.14 show the results of the simulation tests, which are similar to

the above tests. The efficiency improvement rate decreases as errors increase. Both the

unconstrained method and MultiKin show better performance when the large orbital

biases are applied to a non-base satellite than to the base satellite. This is because when

the large orbital biases are applied to a non-base satellite, they only affect the double

difference measurements related to that satellite; whereas when the large orbital biases

are applied to the base satellite, they affect all the double difference measurements.

However, the difference between Scenarios 2 and 3 is not large. This is because

FLYKIN  adopts the strategy of “all fixed or all float” in ambiguity fixing. In other

words, all the ambiguities must be fixed at the same time, since FLYKIN  cannot fix

some of the ambiguities to integers while keep others as float numbers. Therefore, even if

only one double difference measurement is ruined by the large orbital errors, it still

delays the fixing time of other ambiguities. The performance attenuation of Scenario 4

compared to Scenario 3 is larger than the performance attenuation of Scenario 3

compared to Scenario 2. That is because the orbital error is doubled in Scenario 4 when

compared to Scenario 3.
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Figure 6.13 Time to true ambiguity fixed for Test 5
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The comparisons of TTAF and TSR only show part of the efficiency improvement

generated by MultiKin. Table 6.6 gives the comparison of NUB for the different

scenarios. The improvement induced by MultiKin in the case of Scenario 4 is very

significant. When large orbital biases are applied to two visible satellites, the 10 km

baseline is actually unsolvable if just using FLYKIN . However, MultiKin can easily

deal with this situation and give fast and correct integer ambiguity solutions.

Table 6.6 Comparison of NUB in Test 5

Method

NUB

Scenario
Scenario 1 Scenario 2 Scenario 3 Scenario 4

Unconstrained 0 / 0% 10 / 0.46% 12 / 0.56% 256 / 11.85%

six-platform

constrained MultiKin

0 0 0 0
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6.2.1.6 Test 6 : Impact of Baseline Length

Objective: To test the general effect of the error magnitude on the effectiveness of

MultiKin.

Design of scenarios: Usually, errors in double difference measurements increase with the

baseline length. In this test, the relative magnitude of spatially correlated error is constant

in all scenarios (ionospheric error: 4.4 ppm, tropospheric error: 2.3 ppm, orbital error:

0.06 ppm). Increasing baseline length increases the absolute magnitudes of all correlated

errors. The widelane observables were used to keep all the baselines solvable. It can be

seen from Table 6.7 that the double differenced widelane errors increase from 0.1 cycle

to 0.30 cycle when the baseline lengths increase from 10 km to 35 km.

Table 6.7 Simulated scenarios for Test 5

Scenario Rx
(single)

MP
(single)

DD Ion
(L1)

DD
Trop
(L1)

DD
Orbit
(L1)

SA
δ-error

Geometry Observable Total DD
error
(WL)

Length
of

Baseline
1 0.10

cycle/
8.6 cm

10 km

2 0.17
cycle/

14.2 cm

20 km

3

0.01
cycle/

1.9 mm

0.02
cycle/

3.8 mm

4.4ppm 2.3ppm 0.06
ppm

On
25m

PDOP=
2.0
Full

geometry

WL

0.30
cycle/

25.9 cm

35 km

Figure 6.15 and Figure 6.16 show the results of Test 5. It once again supports the

conclusions of the previous efficiency tests. The improvement of MultiKin decreases

with increasing errors. In Scenario 3, the NUB is 61 for the unconstrained method, while

for MultiKin, all the baselines are solvable.
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Figure 6.15 Time to true ambiguity fixed for Test 6
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6.2.1.7 Test 7: Impact of Observables

Objective: To test the effect of using different observables on MultiKin.

Design of scenarios: In this test (see Table 6.8) only one scenario is generated by the

software GPS simulator, but in the processing software, the L1 and widelane observables

are used respectively to compare the efficiency improvement generated by MultiKin.

Table 6.8 Simulated scenarios for Test 7

Scenario Rx
(single)

MP
(single)

DD Ion
(L1)

DD Trop
(L1)

DD
Orbit
(L1)

SA
δ-error

Geometry Observable Total
DD error

Length
of

Baseline
1 WL 0.078

cycle/
6.7cm

2

0.01
cycle/
1.9mm

0.02
cycle/
3.8mm

0.094
cycle/

1.8ppm

0.12
cycle/

2.3ppm

0.0036
cycle

On
25m

PDOP=
2.0
Full

geometry L1 0.12
cycle/
2.3cm

10km

The results of simulation tests show that the use of the widelane observables leads to not

only faster (see Figure 6.17) but also more efficient (see Figure 6.18) ambiguity

resolution than the use of the L1 observables. This can be explained by comparing the

total double differenced errors in the widelane and L1 observables, where the relative

errors in widelane (0.078 cycle) are smaller than the relative errors in L1 (0.12 cycle).

This is because the use of the widelane observables reduces the differenced ionospheric

errors (in cycles) by 71.7%, and the differenced tropospheric and orbital errors (in cycles)

by 77.9%. A detailed derivation can be found in Chapter 2.

Since the higher efficiency of the widelane observables results from the reduced errors

(in cycles) of observations, Test 7 supports the results of all the previous efficiency tests.
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Figure 6.17 Time to true ambiguity fixed for Test 7
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6.2.1.8 Test 8: Impact of Satellite Geometry and Visibility

Objective: To test the effect of satellite geometry and visibility on the effectiveness of

MultiKin.

Design of scenarios: Table 6.9 lists all the scenarios in this test. Various simulated errors

are kept at the same level. The lengths of baselines are constant and the resulting total

double differenced errors are almost at the same level. The only difference is the number

and geometry of visible satellites. A detailed description of “Full geometry”, “Reduced

geometry” and “Enhanced geometry” can be found in Chapter 5.

Testing results in Figure 6.19 and Figure 6.20 show that the number of visible satellites

has a very large impact on the efficiency of ambiguity resolution. It is well known that

only three double differenced ambiguities are independent. If more than four satellites are

observed, redundancy can be obtained in data processing. The greater the number of

visible satellites, the more redundancies there are for ambiguity resolution. The

redundancies of the above three scenarios are n, 4n, and 5n respectively, where n is the

the number of the observation epochs. When the redundancy increases, both the

ambiguity fixing time and the efficiency of MultiKin can be improved. Therefore, it can

be expected that MultiKin will show better performance in an open-sky testing area,

where the number of commonly visible satellites is large.

Table 6.9 Simulated scenarios for Test 8

Scenario Rx
(single)

MP
(single)

DD Ion
(L1)

DD Trop
(L1)

DD
Orbit
(L1)

SA
δ-error

Geometry Observable Total
DD

error

Length
of

Baseline
1 PDOP

=1.7
Enhanced
geometry

0.064
cycle/
1.2 cm

2 PDOP=
2.0
Full

geometry

0.064
cycle/
1.2 cm

3

0.01
cycle/

1.9 mm

0.02
cycle/
3.8 cm

0.052
cycle/

2.0 ppm

0.06
cycle/

2.3 ppm

0.001
cycle

On
25 m

PDOP=
2.9

Reduced
geometry

L1

0.065
cycle/
1.2 cm

5 km
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Figure 6.19 Time to true ambiguity fixed for Test 8
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6.2.1.9 Longest Solvable Baseline for L1 Observables

Objective: To test the efficiency of MultiKin in the case of very large differential errors.

Design of scenarios: In this test, two scenarios are set up with baseline lengths of 10 km

and 15 km. The ionospheric activity is active (4.0 ppm). Other GPS errors are at normal

levels. To test the efficiency of MultiKin when used for high-accuracy (centimetre level)

positioning, the L1 observable is used. The detailed parameters are listed in Table 6.10.

Table 6.10 Simulated scenarios for Test 9

Scenario Rx
(single)

MP
(single)

DD Ion
(L1)

DD
Trop
(L1)

DD Orbit
(L1)

SA
δ-

error

Geometry Observable Total
DD error

(L1)

Length
of

Baseline
1 0.23

cycle/
4.0 ppm

0.12
cycle/

2.3 ppm

0.0027
cycle/

0.05 ppm

0.22
cycle/
4.4 cm

10 km

2

0.01
cycle/

1.9 mm

0.02
cycle/

3.8 mm
0.35

cycle/
4.0 ppm

0.18
cycle /

2.3 ppm

0.004
cycle/

0.05 ppm

On
25m

PDOP=
2.0
Full

geometry

L1

0.26
cycle/
5.1 cm

15 km

Testing results (Figure 6.21 and Figure 6.22) show that the performance of both the

unconstrained method and MultiKin degrades very fast over this range of distance. Table

6.11 gives the results of NUB for the two scenarios. According to the definition of LSB

given in section 6.1, i.e., the unfixed rate is less than 10%, the LSB for the unconstrained

method is about 11 km, while for MultiKin, it is about 13 km. These distances are

estimated by linear interpolation. It can be concluded that MultiKin can increase the

functional distance of ambiguity resolution; however, the increased distance depends on

the error magnitudes. Large differential errors can seriously degrade the improvement by

MultiKin.

Table 6.11 NUB for Test 9

Method

NUB
Scenario 1 2

Unconstrained 43 753

MultiKin 0 378
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6.2.2 Accuracy Test

Objective: The constrained method used in MultiKin only affects the ambiguity fixing

time because it does not adjust the Kalman filter in FLYKIN . The accuracy of

positioning a single-baseline is not affected by using ambiguity constraints. Herein, the

accuracy test is designed to understand the following four points:

[1] Derived accuracy of “virtual baselines”,

[2] Extra relative positioning error caused by the “moving reference” error,

[3] Impact of using different observables on positioning accuracy,

[4] Impact of using different solutions on positioning accuracy.

As discussed in Chapter 3, a virtual baseline means a virtual linkage between two moving

platforms. The relative position vector of a virtual baseline is not directly computed from

the double differenced observations of the two platforms, but derived from the sum of the

position vectors along the shortest path between the two moving platforms.

In the accuracy test, a 10-platform configuration is tested. Platform 1 is the reference

platform. The red arrow is the position vector (Delaunay edge) directly computed by

MultiKin. Therefore, only the relative positions of platform 4 and 7 are directly derived

by FLYKIN . All others are derived by the shortest path algorithm. The relative

positioning errors are computed as follows:

[1] Compute the sum of relative position vectors ( i,fRer� ) between the reference platform

and a rover platform i in the Earth frame (WGS84). Figure 6.23 shows the baselines

used for computing relative positions for all rover platforms, e.g.,

0840418,Re rrrr f
���� ++−= , where Ref=1.

[2] Obtain the absolute position of the reference platform fRer�  using the stand-alone-

positioning module in the modified version of FLYKIN .
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[3] Compute the coordinate of the ith rover platform in the local-level frame centred at the

computed position ( fRer� ) of the reference platform: LL
i,fRer� .

[4] Compute the true coordinate of the ith rover platform in the local-level frame centred

at the true position of reference platform (included in the trajectory files): LL
i,fReR

�

.

[5] Compute the relative positioning errors (the difference between LL
i,fReR

�

 and LL
i,fRer� ).

51°04’N 114°07’W

Rover platform in
accuracy tests

1 7 5 2

4 0 8

9 6

3 Directly solved
baseline

Reference platform
in accuracy tests

Figure 6.23 The shortest paths from the reference platform to all rover platforms

Design of scenarios: Table 6.12 and Table 6.13 list five scenarios which are designed to

test the positioning accuracy in the case of different error magnitudes, baseline lengths,

satellite geometries and observable types. The testing period is from 50930 s to 55730 s

(GPS time). The magnitude of GPS errors is set at a normal level. The five scenarios

described in Table 6.12 were run twice, namely, once in fixed ambiguity mode, and once

in float ambiguity mode. In the case of the float mode, a filter convergence period of

1,000 s is used. Although float solutions have poorer positioning accuracy than fixed

solutions, they are much more robust than fixed solutions. This is because integer

solutions can be incorrectly fixed and the wrong fixes can seriously degrade the relative

positioning accuracy. Therefore, in some applications, if float solutions can meet the

accuracy requirement, they may be preferred to integer solutions.
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Table 6.12 Simulated scenarios for Test 10

Scenario Rx
(single)

MP
(single)

DD Ion
(L1)

DD
Trop
(L1)

DD
Orbit
(L1)

SA
δ-error

Geometry Observable Total
DD error

Length
of

Baseline
1 0.014

cycle/
1.8 ppm

0.018
cycle/

2.3 ppm

0.00055
cycle/

0.07ppm

0.047
cycle/

0.89 cm

1. 5km

2 0.047
cycle/

1.8 ppm

0.06
cycle/

2.3 ppm

0.0018
cycle/

0.07ppm

PDOP= 2.0
Full

geometry
0.064
cycle/
1.5 cm

3 0.47
cycle/

1.8 ppm

0.06
cycle/

2.3 ppm

0.0018
cycle/

0.07ppm

PDOP =2.8
Reduced
geometry

0.063
cycle/
1.2 cm

5 km

4

L1

0.12
cycle/
2.3 cm

5

0.01
cycle/
1.9mm

0.02
cycle/
3.8mm

0.094
cycle/

1.8 ppm

0.12
cycle/

2.3 ppm

0.0036
cycle/

0.07ppm

On
25 m /

and then
off for all

five
scenarios

PDOP= 2.0
Full

geometry
WL 0.078

cycle/
6.7 cm

10 km

Table 6.13 Length of tested baselines and virtual baselines

Platform #

Length of
baseline

Scenario 1 2 3 4 5

1 Reference platform

4 1.5 km 5.0 km 10.0 km

7 1.5 km 5.0 km 10.0 km

5[1] 3.0 km 10.0 km 20.0 km

0[1] 2.6 km 8.7 km 17.3 km

9[1] 3.0 km 10.0 km 20.0 km

2[1] 4.5 km 15.0 km 30.0 km

8[1] 4.0 km 13.2 km 26.4 km

6[1] 4.0 km 13.2 km 26.4 km

3[1] 4.5 km 15.0 km 30.0 km

[1] Virtual baseline
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In the first group of tests, the integer ambiguities are set to the correct values. They are

treated as constant and not updated by the Kalman filter in FLYKIN . In the second

group of tests, the ambiguities are updated by Kalman filtering but the ambiguity search

module is switched off during the tests. Thus, the positioning accuracy is always related

to the float solutions.

These tests are first conducted with SA switched on. The resulting range error is 25.6m

(RMS). Then the tests are repeated with SA switched off. The comparison of these tests

can help to understand the accuracy degradation of relative positioning caused by a

moving reference error.

From test results shown from Table 6.14 to Table 6.17, the following conclusions can be

drawn:

[1] The accuracy of the “virtual baseline” derived by the shortest path algorithm is close

to the accuracy of the real baseline with the same length. For instance, referring to

Table 6.14, the accuracy of a 10 km virtual baseline between platform 1 and 5 in

Scenario 2 is 5.57 cm, while the accuracy of a 10 km real baseline between platform 1

and 7 in Scenario 4 is 5.81 cm.

[2] Poor satellite geometry lowers the accuracy of stand-alone positioning and

corresponds to increased errors in the relative positions. For instance, in Scenario 2

(Table 6.14), the stand-alone positioning accuracy is 25.1 m, and the relative

positioning accuracy of baseline 1-4 is 2.98 cm. In Scenario 3 (Table 6.14), the poor

satellite geometry degrades the stand-alone positioning accuracy to 55.2 m and hence

degrades the relative positioning accuracy of baseline 1-4 to 5.75 cm.

[3] The use of the widelane observable (integer solution) can support a 10 cm level

relative positioning accuracy for a 10 km baseline whether SA is on or off, see Table

6.14 and Table 6.16.

[4] The L1 (integer solution) observable can support 10 cm level positioning accuracy for

a 20 km baseline (virtual) when SA is on (see Table 6.14, Scenario 4, baseline 1-5
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and baseline 1-9), and a 30 km baseline (virtual) when SA is off (see Table 6.16,

Scenario 4, baseline 1-2, 1-3).

[5] The L1 (float solution) observable can support centimetre level positioning accuracy

over distances between 10 km and 20 km (see results of scenario 2 and 4 in Table

6.15 and Table 6.17) when GPS errors are at the normal level.

[6] Switching off SA is beneficial to increasing relative positioning accuracy. For

instance, the relative positioning error of the five-km baseline 1-4 is decreased from

2.98 cm to 1.97 cm after SA was switched off in the software simulator.
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Table 6.14 Positioning accuracy (3D RMS) of fixed solution (SA on)

Platform #

Positioning
Accuracy

Scenario 1 2 3 4 5

1
(stand-alone,
horizontal)

29.2 m 25.1 m 55.2 m 27.6 m 27.6 m

4 1.57cm 2.98 cm 5.75 cm 5.27 cm 10.1 cm
7 1.59 cm 2.94 cm 5.34 cm 5.81 cm 9.90 cm
5 2.24 cm 5.57 cm 9.40 cm 11.3 cm 14.3 cm
0 2.02 cm 5.11 cm 8.28 cm 9.30 cm 12.8 cm
9 2.23 cm 5.66 cm 10.1 cm 10.0 cm 14.5 cm
2 2.99 cm 8.82 cm 14.2 cm 14.5 cm 19.16 cm
8 2.71 cm 7.35 cm 12.1 cm 13.4 cm 17.6 cm
6 2.74 cm 7.41 cm 11.9 cm 14.3 cm 17.8 cm
3 3.03 cm 8.11 cm 13.7 cm 16.7 cm 19.9 cm

Table 6.15 Positioning accuracy (3D RMS) of float solution (SA on)

Platform #

Positioning
Accuracy

Scenario 1 2 3 4 5

1
(stand-alone,
horizontal)

29.2 m 25.1 m 55.2 m 27.6 m 27.6 m

4 4.99cm 5.06 cm 8.73 cm 6.31 cm 11.0 cm
7 2.91 cm 5.00 cm 6.64 cm 6.04 cm 11.4 cm
5 4.13 cm 7.87 cm 11.0 cm 13.2 cm 17.4 cm
0 3.75 cm 8.95 cm 8.43 cm 12.4 cm 15.3 cm
9 4.24 cm 8.13 cm 10.1 cm 15.3 cm 21.3 cm
2 5.76 cm 10.7 cm 16.8 cm 16.1 cm 21.8 cm
8 5.30 cm 11.1 cm 14.9 cm 13.6 cm 18.7 cm
6 5.78 cm 10.1 cm 14.5 cm 16.2 cm 21.6 cm
3 4.60 cm 9.81 cm 18.5 cm 17.2 cm 21.3 cm
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Table 6.16 Positioning accuracy (3D RMS) of fixed solution (SA off)

Platform #

Positioning
Accuracy

Scenario 1 2 3 4 5

1
(stand-alone,
horizontal)

2.60 m 2.10 m 4.05 m 2.46 m 2.47 m

4 1.37cm 1.97 cm 2.13 cm 4.62 cm 10.4 cm
7 1.40 cm 2.03 cm 2.25 cm 4.06 cm 9.56 cm
5 1.59 cm 3.78 cm 3.81 cm 7.52 cm 13.1 cm
0 1.57 cm 3.61 cm 3.72 cm 7.72 cm 13.2 cm
9 1.60 cm 4.01 cm 4.31 cm 8.11 cm 14.6 cm
2 1.91 cm 5.47 cm 5.75 cm 10.1 cm 19.4 cm
8 1.88 cm 5.11 cm 5.22 cm 9.88 cm 17.4 cm
6 1.82 cm 4.95 cm 4.98 cm 10.4 cm 16.8 cm
3 1.93 cm 5.32 cm 5.58 cm 10.4 cm 16.7 cm

Table 6.17 Positioning accuracy of (3D RMS) float solution (SA off)

Platform #

Positioning
Accuracy

Scenario 1 2 3 4 5

1
(stand-alone,
horizontal)

2.60 m 2.10 m 4.05 m 2.46 m 2.47 m

4 3.51 cm 4.03 cm 6.76 cm 7.98 cm 11.6 cm
7 3.03 cm 4.62 cm 8.81 cm 7.94 cm 11.6 cm
5 3.67 cm 6.65 cm 10.4 cm 16.1 cm 14.8 cm
0 5.04 cm 6.77 cm 9.31 cm 14.2 cm 15.4 cm
9 4.08 cm 6.98 cm 13.5 cm 13.2 cm 15.4 cm
2 5.29 cm 8.12 cm 15.1 cm 18.2 cm 21.4 cm
8 3.79 cm 7.67 cm 10.6 cm 21.0 cm 21.4 cm
6 5.51 cm 7.98 cm 9.64 cm 17.2 cm 18.7 cm
3 7.88 cm 8.03 cm 10.2 cm 15.2 cm 19.0 cm
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6.2.3 Reliability Test

Objective: To test the reliability improvement of MultiKin to detect incorrectly fixed

ambiguities.

Design of scenarios: Three scenarios used in the efficiency test are re-tested here to get

statistical data concerning TDW, see Table 6.18. These three scenarios have different

error magnitudes, baseline lengths, satellite geometry, and observable types.

Table 6.18 Simulated scenarios for Test 10

Scenario Rx
(single)

MP
(single)

DD Ion
(L1)

DD
Trop
(L1)

DD
Orbit
(L1)

SA
δ-error

Geometry Observable Length
of

Baseline
1 4.4 ppm Full

geometry
L1 10 km

2 2.0 ppm Reduced
geometry

L1 5 km

3

0.01
cycle

0.02
cycle

4.7 ppm

2.3 ppm Normal On
25m

Full
geometry

WL 35 km

Figure 6.24 shows the distribution of resulting TDWs of the tested scenarios. MultiKin

can detect the wrong fixes faster than the unconstrained method. In addition, MultiKin

can always detect the wrong fixes within 1200 s for the tested scenarios (see Table 6.19).

For the unconstrained method, though the number of undetectable wrong fixes can be as

large as 11.6%, even when the optimal ratio test is applied in FLYKIN  for error

detection.

MultiKin performs well in detecting wrong fixes. This is beneficial to the reliability and

accuracy of positioning. Therefore, it can be concluded that MultiKin can achieve high

accuracy faster than the unconstrained method.
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Figure 6.24 TDW for Test 10

Table 6.19 Performance of detecting wrong fixes: the unconstrained method vs.

MultiKin

Mean TDW (s) Undetected wrong fixesScenario Total Number of

wrong fixes
Unconstrained MultiKin Unconstrained MultiKin

1 58 302.3 215.6 0 0

2 1615 293.2 223.2 22 / 1.4% 0

3 216 413.5 311.2 25 / 11.6% 0
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6.3 FIELD TESTS: DESIGN, RESULTS AND ANALYSIS

Although MultiKin has been fully tested by simulation tests, it is still necessary to

perform some field tests, because the scenarios generated by the software simulator

deviate from real situations to some extent. If the conclusions drawn from simulation

tests can be confirmed by field tests, they will be more convincing. In the following

sections, two field tests with different testing conditions are discussed.

6.3.1 Field Test 1

The first field test is a short baseline test. In this test, the baseline lengths are limited

within a few hundred metres; thus, the resulting double differenced errors are very small.

This field test is designed to understand the performance of MultiKin in some benign

cases.

6.3.1.1 Design of Field Test 1

Moving Platforms: Four cars

GPS Equipment: Four NovAtel Millennium receivers, each mounted on a car (three

receivers have choke-ring antenna)

 Two Ashtech Z-12 receivers on two reference stations

Data Collector: Five Compaq Pentium 166 notebook PCs and one desktop PC

GPS Data Description: One Hz data rate, C/A code, Doppler, L1 and L2 carrier phase

Testing Period: 1998-Nov-09, 9:30 am -11:30 am

Location: Main Parking lot at Market Mall, Calgary

Vehicle Dynamic: Low speed driving (<30 km/h)

Test Area: <1 km×1 km , Flat and open sky

Configurations of GPS platforms: See Figure 6.25.
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R2
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R1: Reference 1
R2: Reference 2
Car

 1 km

<1.5km

Testing area

Figure 6.25 Scenario for field test

Two reference stations were set up. One was on the roof of the Engineering building at

the University of Calgary (Precisely known coordinate (WGS84): 51 ° 04 ′ 45.80932 ″ N,

114 ° 07 ′ 57.99118 ″ W, 1116.776 m), the other was at the main parking lot of Market

Mall. The reference stations are not necessary for the application of MultiKin. In this

field test, they were used to estimate the positioning accuracy and check the correctness

of the integer ambiguities.

6.3.1.2 Real Test Conditions

In the test, the data of Car 4 was paused for about 15 minutes due to a cable connection

problem; therefore, the data from only three cars were used in data processing.

Although the field test was conducted in an open sky area, lamps at the parking lot and

mall buildings sometimes obstructed GPS signals. Figure 6.26 shows the visibility of

common satellites by the three cars. It can be seen that the number of visible satellites

varies considerably. Sometimes, only one common satellite is observed. However, the

average number of visible satellites is more than seven during the test period. Thus, the

overall observation redundancy is still very good.
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Figure 6.27 shows the trajectories of the tested cars. They moved within the designed

range of the testing area. The largest inter-platform distance is 610 m. The average inter-

platform distance is less than 150 m. Thus, in this test, the effect of spatially correlated

errors can be ignored. All these cars were equipped with choke-ring antennas so the

multipath effect was largely reduced. According to the statistical results, the RMS of the

observation residuals is 0.35 cm.

Figure 6.26 Satellite visibility in the testing area
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Figure 6.27 Trajectories of moving platforms
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6.3.1.3 Estimation of Positioning Accuracy and Verification of Integer Ambiguities

Procedure 1: Estimation of Positioning Precision

[1] Use the modified version of FLYKIN  (with stand-alone positioning module) to

compute the relative position vector between Car 1 and Car 2. LL
12r�  is in the local level

frame centred at 1r
� .  1r

�  is the approximated position of Car 1 estimated by the stand-

alone positioning module.

[2] Use the data from the reference station and the original version of FLYKIN  to

compute the precise position of Car 1: 1R
�

.

[3] Use the original version of FLYKIN  and 1R
�

 to compute the relative position vector

between Car 1 and Car 2, i.e., LL
12R
�

, in the local level frame centred at 1R
�

.

[4] The residual of LL
12R
�

 and LL
12r�  can be approximated as the relative positioning error.

The difference between LL
12R
�

 and LL
12r�  can be treated as the extra positioning error

caused by reference error.

Procedure 2: Ambiguity Checking

[1] Fix the integer ambiguities of a moving baseline between Car 1 and Car 2 ( 12N )

using the modified version of FLYKIN .

[2] Fix the integer ambiguities of baselines R1 and Car 1 ( 1,1RN ) using the original

version of FLYKIN .

[3] Fix the integer ambiguities of baselines R1 and Car 2 ( 2,1RN ) using the original

version of FLYKIN .

[4] Use triangular ambiguity constraint to check the closure of ambiguities 1,1RN , 2,1RN

and 12N .
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[5] Repeat steps [2] to [4], but using reference station R2.

If 12N  meets the closure of both constraints in [4] and [5], it will be treated as the correct

integer solution. The above procedures were used to check all the moving baselines.

6.3.1.4 Results of Field Test 1

The field tests consist of multiple tests. The first test started at 63000 s (GPS time) which

was Calgary local time 10:30 am. The following tests started at 15 s after the beginning

of the previous test. Each test lasted for at most 300 s. If the true ambiguity can be fixed

within 300 s, the test is treated as a successful test, the TAF is recorded and a new test is

started. Meanwhile, if any wrong fix happens during this period, the TDW is also

recorded. If the true ambiguity cannot be fixed within 300 s, the trial of ambiguity fixing

fails and no TAF and TDW is recorded. The whole testing period is 3300 s; 300 s are

reserved for the final test. Thus, the effective testing period is 3000 s, which contains 200

overlapping tests. It should be noted that the maximum testing period is 300 s which is

much less than that of the simulation tests. This is because the baselines were very short

in these field tests, i.e., the differential errors were small and multipath was also reduced

by using choke-ring antenna, ambiguities could be fixed very quickly.

Table 6.20 shows the efficiency improvement of MultiKin for the field test. The fixed

integer ambiguities are verified by the ambiguity checking procedure. No wrong fixes

were detected. The efficiency improvement induced by MultiKin is relatively high

(TSR=61.3%). This is because the short inter-platform distances and the application of

chokering antennas limited the observation error at a very low level. Therefore, it can be

concluded that MultiKin can work well in real GPS scenarios (benign case).

The RMSs of stand-alone and relative positioning error are given in Table 6.21. When

using the stand-alone module to position a car, the RMS of the horizontal positioning

error is about 30 m because SA was still on at that time. The RMS of relative positioning

is about 0.71 cm, which is very good, because of slight measurement errors. The

degradation of relative positioning precision is only about 0.07 cm, which is small
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enough to be ignored. This is because the extra relative positioning error is proportional

to the inter-platform distance, which was quite short in the field test.

Table 6.20 Comparison of TAF between the unconstrained method and MultiKin

(L1 observables)

Unconstrained MultiKin TSR

Car1-Car2 23.9 s 10.2 s

Car2-Car3 38.8 s 12.6 s

Car3-Car1 24.1 s 10.8 s

61.3%

Table 6.21 Relative positioning precision in the field test (L1 observables)

Baseline Horizontal stand-alone

positioning accuracy of

Car i  (2D RMS)

Residual of LL
ijr�

( 3D RMS)

Residual of LL
ijR
�

(3D RMS)

LL
ijr� - LL

ijR
�

(3D RMS)

Car1-Car2 31.3 m 0.71 cm 0.71 cm 0.05 cm

Car2-Car3 32.2 m 0.72 cm 0.71 cm 0.07 cm

Car3-Car1 30.6 m 0.71 m 0.70 cm 0.07 cm

6.3.2 Field Test 2

The second field test is a longer baseline test.  In this test, the baseline lengths vary

between three and seven kilometers. Furthermore, the ionosphere is currently active

(solar maximum: mid 2000). Thus, the resulting double differenced errors are larger than

those in Field Test 1. Test 2 is designed to understand the performance of MultiKin for

the case of larger differential errors and configurations.
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6.3.2.1 Field Test Design

Moving Platforms: Five cars

GPS Receivers: Three NovAtel OEM3 L1/L2 receivers (one was used at the reference

station), three NovAtel OEM4 L1/L2 receivers

Antennas: Five NovAtel Pinwheel antennas, one choke-ring antenna (at the reference

station)

Data Collector: Four Panasonic Pentium III notebook PCs, one Acer Pentium III

notebook PC, and one desktop PC (at reference station)

GPS Data Description: 1.0 Hz data rate, C/A code, Doppler, L1 and L2 carrier phase

Testing Period: 2000-Dec-21, 10:05 am -12:45 am

Vehicle Dynamic: Low speed driving (<50 km/h)

Test Area: 4 km × 6 km, Flat and open sky, (See Figure 6.28)

Temperature: -15ºC

A reference station was set up on the roof of the Engineering building at the University of

Calgary (Precisely known coordinate (WGS84): 51 ° 04 ′ 45.94126 ″ N, 114 ° 07 ′

58.29947 ″ W, 1116.877 m). This reference station was also used to independently

estimate the positioning accuracy and to check the correctness of the integer ambiguities.

In this test, five cars moved in five separate areas around the reference station. The

distances between the reference station and cars vary between two and three kilometres.

The distances between cars vary between three and seven kilometres.



183

Figure 6.28 Map of Field Test 2

6.3.2.2 Analysis of Testing Conditions

The test started at 10:05 am, December 21, 2000. After arriving at the testing sites, each

car stopped for about 10 minutes to perform a static initialization. This procedure is not

necessary for MultiKin, but was performed for independent integer ambiguity

verification and position estimation. The static initialization was from 10:30 am to 10:40

am (GPS time: 408600 s to 409200 s). The kinematic test started at 10:40 am and ended

at 12:20 pm (GPS time: 409200 s to 415200 s).

Figure 6.29 shows the longitude variations of each moving platform as a function of time.

The static initialization can be observed from the unchanged longitudes of the cars.

Periodic oscillations in longitude can be observed during the kinematic test, which means

that these cars (except Car 5) were circling at the testing sites. This also implies that the
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inter-platform distances did not change much during the testing period. Although the

position changes of Car 5 were relatively larger than others, these changes did not cause

an obvious variation of the overall testing geometry. Therefore, the dynamic Delaunay

triangulation is not necessary for the test.
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Figure 6.29 Longitudes of moving platforms in Field Test 2

Seven baselines were selected using the Delaunay triangulation. Figure 6.30 shows the

selected baselines and the real trajectory of each car during the kinematic portion of the

test. Figure 6.31 shows the temporal variations and distribution of baseline lengths. It can

be observed that baseline lengths vary from 3000 m to 7000 m; thus, the effect of

spatially correlated errors is expected to be significant and to result in noticeable

performance degradation. The RMS of double differenced L1 residuals is 0.65 cm, which

is larger than that of Field Test 1 (0.31 cm).
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Figure 6.30 Selected baselines and trajectory of each moving platform
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Figure 6.31 Temporal variations and distributions of baseline lengths
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There were few obstructions at elevation higher than 25° to mask signals.   The average

satellite visibility is good for each baseline. Figure 6.32 shows the temporal variations

and distributions of satellite visibility observed for each baseline. In most cases, eight to

nine satellites could be commonly seen from any two cars. This provides a good

redundancy for ambiguity resolution. However, the satellite visibility varies considerably,

due to signal masking at elevations lower than 25° due to trees and residences.
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6.3.2.3 Results Analysis

[1] Stand-alone Positioning Accuracy

Stand-alone positioning accuracy depends on both DOP and measurement errors. Table

6.22 lists the resulting DOP and positioning error (L1) for each car. To estimate errors in

stand-alone positioning, the precise trajectory of each car must be known first with

respect to the WGS84 reference station coordinates. These were computed using the

original version of FLYKIN   and the double differenced measurements between each

moving platform and the static reference station, whose coordinates in WGS84 were

known. Since the HDOP is very good (<1.5) and SA has been turned off, the horizontal

positioning accuracy is high. This implies that the accuracy degradation in relative

positioning can be greatly reduced, because an error of one metre induces only a 0.2 ppm

baseline error.

Figure 6.33 and Figure 6.34 show the temporal DOP variations and the absolute

positioning errors observed at Car 1. The periodic DOP variations are caused by signal

masking of low satellites. During most periods of the kinematic test, Car 1 circled around

a school zone; thus, the masking sequences repeated every few minutes.

Table 6.22 DOP and stand-alone positioning errors (L1) in Field Test 2

Car 1 Car 2 Car 3 Car 4 Car 5

Mean HDOP 1.14 1.12 1.18 1.33 1.28

Mean VDOP 1.63 1.64 1.68 1.94 1.61

Horizontal Error(m): RMS 1.88 2.25 2.14 2.16 2.51

Vertical Error(m): RMS 9.36 9.40 9.76 8.99 9.01
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[2] Efficiency Improvement of MultiKin

The efficiency tests are also based on multiple trials. The first trial starts at 409200 s

(GPS time). The following trials start at 15 s after the beginning of the previous trial.

Each trial lasts for at most 1200 s. If the ambiguities can be fixed within 1200 s, the trial

is treated as a successful one, the TAF is recorded and a new trial is started. If the

ambiguities cannot be fixed within 1200 s, the trial of ambiguity fixing fails and no data

is recorded. The entire data sequence spans 6000 s; 1200 s are reserved for the final trial.

Thus, the effective testing period is 4800 s, which contains 320 overlapping trials.

The first group of efficiency tests was conducted to check the impact of platform

numbers on MultiKin. Results with three, four, and five-platform constraints were

compared with those from the unconstrained method. In the three-platform configuration,

Cars 1, 2 and 5 were used. In the four-platform configuration, Car 4 was added to the

three-platform configuration. The five-platform configuration consists of all the moving

vehicles. The TAFs of Baselines Car 1-Car 2, Car 2-Car 5, and Car 5-Car 1 are used to

estimate the efficiency improvement induced by ambiguity constraints. The procedure

defined in Section 6.3.1.3 was used to check the correctness of the fixed ambiguities. No

wrong fix was detected by the ambiguity checking procedure.

Table 6.23 shows the results of the efficiency tests using L1 observables. TSR(3) is

computed using the TAFs of only three baselines. TSR is computed using the TAFs of all

the baselines in the configuration. These results validate the results of the simulation

tests. First, the ambiguity constraints can speed up the ambiguity resolution. By using

ambiguity constraints, the time-to-fix can be reduced by 29% and the number of unfixed

baselines is significantly reduced (unconstrained NUB 12.8% vs. MultiKin NUB 0).

Second, increasing the number of constrained platforms can further improve the

efficiency of ambiguity resolution, but the improvement rate diminishes. For instance,

when the four-platform constraints are used, the TSR(3) increases from 22.4% to 28.0%.

the five-platform constraints can only incrementally improve TSR(3) by another 1%. The

results also show that the increased errors can degrade the performance of MultiKin in

the L1 mode. This can be seen by comparing the TSR of this test with that of Test 1.  In
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the first field test, the TSR (three-platform constraints) reaches 61.3%, with double

difference measurement residuals of 0.35 cm (L1). In the current test, the TSR(3) is

22.4% due to the larger L1 measurement errors (0.65 cm).

Table 6.23 Efficiency improvement of MultiKin in Field Test 2 (L1 observable)

Constraints

TAF/
NUB

Baseline # Car1-2 Car2-5 Car5-1 TSR(3) TSR

Unconstrained 555.9 s /

12.8%

458.8 s /

4.1%

414.8 s /

2.8%   
Three-platform

constrained

457.3 s /

0

332.1 s /

0

319.5 s /

0

22.4 % 22.4 %

Four-platform

constrained

418.5 s /

0

310.6 s /

0

300.5 s /

0

28.0 % 28.6 %

Five-platform

constrained

412.6 s /

0

305.7 s /

0

296.2 s /

0

29.0 % 28.9 %

The TAFs of this field test are much larger than those of Field Test 1. This results not

only from the increased measurement errors but also from the rapidly changing satellite

visibility. The rapid variation in the satellite visibility means low satellite tracking is

frequently interrupted. When a satellite is re-acquired, its new ambiguity has to be

determined just like it was tracked for the first time; the Kalman filter in FLYKIN� has

to be reset to estimate the float ambiguity and its variance. Thus, the rapid change in

satellite visibility results in frequent Kalman filter resets and causes difficulty in the

filter’s convergence. Thus, the time-to-fix increases significantly.

The above efficiency tests were repeated using the widelane observables (WL).  Table

6.24 shows the results. Surprisingly, the use of widelane observables does not improve

the efficiency of MultiKin. Furthermore, the use of WL observables does not speed up

ambiguity resolution of a single baseline. For instance, in the case of the unconstrained

method, the average TAF of Baseline Car 1-2 using WL observables (621.4 s) is longer
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than that using the L1 observables (555.9 s), which contradicts previous experience.

However the reason for this is a relatively higher percentage of L2 carrier phase cycle

slips on lower satellites due to signal masking.

Table 6.24 Efficiency improvement of MultiKin in Field Test 2 (WL observables)

Constraints

TAF/
NUB

Baseline # Car1-2 Car2-5 Car5-1 TSR(3) TSR

Unconstrained 621.4 s /

12.8%

483.7 s /

4.1%

327.1 s /

2.5%   
Three-platform

constrained

523.1 s /

0

379.6 s /

0

266.4 s /

0

18.4 % 18.4 %

Four-platform

constrained

500.3 s /

0

362.5 s /

0

251.7 s /

0

22.2 % 21.5 %

Five-platform

constrained

493.2 s /

0

358.5 s /

0

246.1 s /

0

23.3 % 22.4 %

Table 6.25 shows the number of cycle slips in the L1 and widelane observables. It can be

seen that there are much more cycle slips in the widelane observables. The difference is

caused by a higher number of cycle slips in the L2 observables. The reason why there are

many cycle slips in the L2 observations is that the signal strength of L2 is weaker than

that of L1. Moreover, the semi-codeless tracking technique of the L2 carrier phase has at

least 14 dB loss in signal to noise ratio with respect to the direct P code correlation.

Therefore, the L2 phase lock loop has more difficulty maintaining lock under signal

masking conditions.

Since there are more cycle slips in the WL observables, the Kalman filter will be reset

more frequently than in the case of L1 observables. Thus, the time-to-fix will increase

due to the frequent filter reset.
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Table 6.25 Number of cycle slips in the L1 and WL observables

Car1-2 Car2-5 Car5-1

Number of Epochs
with cycle slip (L1)

22 59 54

Number of Epochs
with cycle slip (WL)

333 227 223

[3] Relative Positioning Accuracy

The Procedure 1 defined in Section 6.3.1.3 was used to estimate the relative positioning

accuracy in Field Test 2. It can be seen from Table 6.26 that sub-decimetre accuracy was

achieved in this configuration, which has an average baseline length of 5 km. From Table

6.26, it can also be concluded that the accuracy degradation in relative positions caused

by the reference error is very small, because the baselines are relatively short (< 7 km)

and the stand-alone positioning accuracy (< 3 m) is greatly improved, now that SA is off.

6.3.3 Field Test Summary

From the above two field tests, it can be found that the conclusions drawn from the

simulation tests are validated by the field tests. For instance, the improvement rate of

ambiguity resolution efficiency diminishes with an increasing number of platforms.

Performance decreases with an increasing magnitude of the differential errors. Since

these two field tests were conducted under quite different conditions, such as the

configuration, baseline lengths, error magnitudes, etc., it can be concluded that the

simulation tests are valid for evaluating the performance of MultiKin, which also implies

that the design of error models in the software GPS simulator is valid.
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Table 6.26 Relative positioning accuracy in Field Test 2 (L1 fixed solution)

Baseline Horizontal stand-alone

positioning accuracy of

Car i  (RMS)

Residual of LL
ijr�

( 3D RMS)

Residual of LL
ijR
�

(3D RMS)

LL
ijr� - LL

ijR
�

(3D RMS)

Car1-Car2 1.88 m 6.42 cm 6.29 cm 0.20 cm

Car2-Car3 2.25m 5.67 cm 5.55 cm 0.21cm

Car3-Car4 2.14m 4.96 cm 4.87 cm 0.14 cm

Car4-Car5 2.16m 6.59 cm 6.44 cm 0.30 cm

Car1-Car5 1.88 m 4.73 cm 4.69 cm 0.12 cm

Car2-Car5 2.25m 6.58 cm 6.45 cm 0.29 cm

Car3-Car5 2.14m 6.39 cm 6.30 cm 0.17 cm
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7 OPERATIONAL CONSIDERATIONS

To use the MultiKin method operationally in real-time, three issues must be considered,

namely:

[1] The data processing capability for GPS data from multiple platforms,

[2] The data processing structure,

[3] The type of data link.

The requirements and options are discussed in the following sections.

7.1 DATA PROCESSING CAPABILITY

MultiKin was tested on a desktop PC with an Intel Pentium  II 400 MHz CPU and 64

MB memory. It was programmed to process GPS data from up to 10 moving platforms,

which corresponds to 18 baselines and nine triangular constraints. However, these

numbers can easily be increased to any level as long as the processor can handle it in

real-time. According to the results of a test conducted to analyze processing speed, it is

estimated that the above processor can actually process up to 50 moving platforms, i.e.,

about 140 moving baselines (by Delaunay triangulation) in real-time with a GPS data rate

of one Hz. Increasing the GPS rate decreases the maximum number of platforms that can

be processed.

The above data processing capability is derived assuming that all the CPU time is used

for data processing. In practice, some of the CPU time is taken to download data from the

communication link interface, decode the received data, identify the source of the data,

convert the data to recognizable format for MultiKin, pre-process the data, and output the

results. When the data increases, the data processing time also increases. Therefore, to

design a practical system, the extra processing time must be considered when estimating

the capability of data processing.
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7.2 DATA PROCESSING STRUCTURE

To operationally implement MultiKin, the transmission of the measured data is

indispensable. However, the adopted communication link depends on the data processing

structure.

Two kinds of structures are usually adopted for data processing, as shown in Figure 7.1.

In the first structure, the data of multiple platforms is processed at a data processing

centre. This centre does not have to be a GPS station, but it must be equipped with a

wireless data link for receiving observation data from the moving GPS platforms. In this

structure, only the central station runs MultiKin to compute the relative position of the

surrounding moving platforms. This structure is called the central processing structure

(system) in the following discussion.

Central
station

The Central Processing Structure

The Distributed Processing Structure

Figure 7.1 Comparison of two data processing structures
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In the second structure, every moving platform is equipped with a data processor to run

MultiKin. It broadcasts its own measurement, receives other measurements and processes

data on a local computer. For simplification, this system is called the distributed

processing structure (system) in the sequel. However, this is different from the usual

distributed processing system in a computer network, because the processing procedure

on each platform is independent and does not need to cooperate with the computation

procedure performed on other platforms.

A central station can be equipped with a high-quality data processor, which allows

MultiKin to process a large number of moving platforms. Thus, the average cost of data

processing can be lowered. However, if a moving platform needs to know the relative

position of others, it has to acquire the processing results from the central station via a

wireless data link.

Another problem for a central processing system is its reliability. If the central station

crashes, the entire system ceases operation because the surrounding platforms cannot

obtain the position data. A common solution to this problem is to have a backup system.

When the main processor is out of service, the backup system can at once take over its

job to keep the system running.

For a distributed processing structure, each platform must have a data processing

capability. If the platform is equipped with a high-performance processor, the

implementation costs will increase considerably. However, if the platform is equipped

with a low-cost processor, the limited data processing capability can cause difficulty in

processing all the data from surrounding platforms. In addition, the data processed on

each platform is the same, and the processing procedure is just repeated from one

platform to another. The major advantage of the distributed processing structure is that no

processed results need to be transmitted.

The reliability problem also exists in the distributed processing structure. Although the

breakdown of the data processor on a moving platform does not affect other data

processing units, the faulty platform does not know the relative position of the others. In

some applications, this can be very dangerous. A possible solution to this problem is to
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allow a faulty platform to acquire position data from the other platforms via the wireless

data link. Because the surrounding platforms all process the same data, they work like a

multiple-backup system for each other. The difficulty in this solution is an increase in

complexity of the system, especially the communication system. A very complicated

communication protocol must be designed to let the faulty platform know the number of

nearby platforms and their status, and then to select a nearby platform to acquire

processing results.

The realization of both data processing structures depends on the data link. In the

following section, a detailed discussion about the requirement and options of the data link

is presented.

7.3 DATA LINK

A data link is necessary for data exchange between platforms. Because of the high

mobility of the platforms, a wireless data link must be used. Before the discussion of the

selection of a data link, the requirement of MultiKin for a data link is first studied.

7.3.1 Capability Requirement of a Data Link

For the sake of discussion, a 12-channel GPS receiver is assumed as the raw data

collector. It usually outputs measurement from at most 11 channels and the other channel

is used for satellite searching. Each channel outputs C/A code pseudorange, Doppler, L1

and L2 carrier phase, satellite number and GPS time. For time and measurements, a

double-precision (64 bits) float number is usually required. For the satellite number, eight

bits are enough. Therefore, the maximum number of bits required for representing one

epoch of data is as follows:

)bits(296864)8464(11Nu =++××=

Number of
channels

C/A code, Doppler,
L1, L2 carrier phase

Satellite
Number

GPS Time
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Considering the extra bandwidth for error control, signal synchronization and signaling

control, the real number of transmitted bits can be doubled. If the GPS data rate is one

Hz, the required speed for real-time transmitting data of one moving platform should

reach 6.0 kbps (kilobits per second), denoted by rupload.

If the data processing results is broadcast by a central station or transmitted to a

breakdown platform, this will take up additional channel resources. Assume that the

broadcast data contains the GPS time, 3D relative user position and identification number

of the corresponding moving platform. A double-precision float number is used to

represent time and position, and eight bits are used for the platform identification

number. Then the total number of bits for representing one-platform results is

)bits(2648464Nd =+×=

Time and 3D
relative position

ID Number

Considering the extra bandwidth for error control, signal synchronization and signaling

control, the practical capability requirement for transmitting the results of one platform

reaches 600 bps, denoted by rdownload.

Now the total required capability of an upload and a download data link can be estimated

using the following equations:

)kbps(N6NrR uploadupload ==

)kbps(N6.0NrR downloaddownload ==

(7.1)

where N is the number of moving platforms.

7.3.2 Type of Data Link

Usually, there are two types of wireless channels: broadcast channels (contention

channels) and contention-free channels.
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In the broadcast channel, when a station is transmitting data, all other stations can "hear"

the data. The transmitting station places the destination address into the transmitted

message to designate the recipient. The major problem of using this channel is the

effectiveness of the protocol of channel accessing. Because the transmitting channel is

unique, when several stations try to transmit data at the same time, the transmitted

messages will collide with each other. This will result in a transmission failure. Since the

1970s when the first convention protocol for broadcast channel, ALOHA, was adopted on

the campus network at the University of Hawaii, many multiple access protocols have

been developed (Tanenbaum, 1996), such as slot-ALOHA (S-ALOHA), Carrier Sensing

Multiple Access (CSMA), and CSMA with Collision Detection (CSMA/CD). Now the

data throughput has been much improved.

Another problem of a broadcast channel is its bandwidth. To guarantee real-time data

processing, all the moving platforms must transmit their GPS data within one processing

epoch (usually, it is the inverse of the GPS data rate). If the number of moving platforms

is very large, e.g., N=50, according to the Equation (7.1), the upload broadcast channel

must have a bandwidth of 300 kbps. In other words, each moving platform must be

equipped with a wireless modem with a speed of 300 kbps. This is not a realistic

requirement for a wireless data link over the distances required by the current application.

For a contention-free channel, Frequency Division Multiple Access (FDMA), Time

Division Multiple Access (TDMA) or Code Division Multiple Access (CDMA)

technique are usually used to partition a wide-band channel into several sub-channels.

One sub-channel is only used for communication between two end-users. Others cannot

interfere with or even listen to their communication. When using this type of data link for

uploading data, the capability of a sub-channel only needs to meet the requirement of

rupload, and will not be affected by the number of moving platforms. Table 7.1 lists the

capability requirements of a data link for case of different processing structures.
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Table 7.1 Comparison of data links for different data processing structures

Broadcast Channel

Upload Download

Number of

channel required

Capability of

each channel

Number of

channel required

Capability of

each channel

Central 1 N*6kbps 1 N*0.6kbps

Distributed 1 N*6 kbps 0[1]

Contention-free Channel

Central N 6kbps N N*0.6kbps

Distributed N(N-1)/2 6kbps 0[2]

[1] If the result transmission function to the faulty platform is required, it is the same as

the central processing structure.

[2] If the result transmission function to the faulty platform is required, the number of

channel depends on the number of breakdown platforms. The capability of a

single channel is the same as the central processing structure.

7.4 SUGGESTED IMPLEMENTATION OF MULTIKIN SYSTEM

The distributed processing structure is not recommended herein. Although it saves the

procedure of transmitting data results, it largely increases the costs of data processing. In

addition, it cannot use the contention-free channel to transmit data to other platforms

because too many sub-channels must be taken, see Table 7.1. However, if a broadcast

channel for data transmission is used, when the number of platforms increases, the

bandwidth and communication equipment requirements become critical. Therefore, a

central processing system is suggested herein for implementation of MultiKin.

The unit cost of procuring a high-quality data processor decreases as the number of

moving platforms increases. Therefore, in a central processing system, the major problem

is how to optimally select the wireless data link. From the comparison in Table 7.1, it can
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conclude that the best solution maybe to use the contention-free channel for data

uploading and the broadcast channel for data downloading.

Firstly, when a platform uploads data to the central platform, it only needs a low-speed

wireless modem (about 6.0 kbps) to transmit the data. The speed of the modem has

nothing to do with the number of platforms in the configuration. Admittedly, the receiver

in the central station must have the capability to receive data from all of the moving

platforms, because the total input data rate is N*6.0 kbps. However, this requirement is

relatively easier to meet than equipping all of the moving platforms with high speed

transceivers.

Secondly, the broadcast channel should be used instead of a contention-free channel

because when the contention-free channel is used, all of the channels are transmitting the

same data results. This is not cost-effective when the number of moving platforms is

large. Since only the central station uses the broadcast channel to transmit data results, no

collision control needs to be considered in the communication protocol. Thus, the

communication system can be substantially simplified.

A very important consideration for implementation is the number of moving platforms,

i.e., the scale of the configuration. This is affected by the following elements:

[1] Effectiveness of MultiKin

[2] Processing capability of MultiKin

[3] Capability of data processor

[4] Capability of data link

As shown in Chapter 6, the improvement rate diminishes with the increase in the number

of platforms. A 10-platform constraint has almost the same performance as a four-

platform constraint. Thus, enlarging the scale of configuration does not generate a

corresponding increase in effectiveness.
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The current MultiKin software can easily be upgraded to support processing of any

number of moving platforms. It is only limited by the capability of the data processor.

Since the computer used herein can process data from 50 platforms in one second, it is

believed that it is possible to process GPS data from 100 platforms in real time using a

computer with a higher speed CPU and a larger memory. Thus, the only remaining

limitation of configuration scale is the capability of the data link.

This limitation does not exist in the upload data link because a moving platform only

needs a 6.0 kbps wireless modem for data transmission. This requirement can be easily

satisfied because many applied wireless modems can support this data rate. For instance,

the GSM modem can support 9.6kbps data transmission and the CDPD modem (Cellular

Digital Packet Data) can support 19.2 kbps. Therefore, the real limitation can only come

from the download data link.

For broadcasting data over distances of 10 km with a high speed, the proper frequency

bands are VHF and UHF.  However, most of the VHF and UHF modems can only

support a transmission rate of up to 9600 bps, i.e., it can only broadcast positions from 16

platforms in one second.

There are several ways to increase the configuration scale without increasing the capacity

of the data link. First, if the position transmission rate can be lowered, then more time can

be used to broadcast additional position data. For instance, if GPS data is 0.5 Hz, the data

from 32 platforms can be broadcast in real-time with a 9600 bps modem. Second, a data

compression technique can be used to reduce the transmitted bit number. If the functional

distance is limited to 10 km, then a 25-bit number is accurate enough to represent a

distance at the millimetre level. Assuming the required time accuracy is at the level of

tenths of seconds, a 20-bit number is accurate enough to describe the GPS time.

Therefore, the total required number of bits for one-platform data can be compressed to
'
dN :

)bits(103820325N '
d =++×=

 3D relative
position

User ID
 GPS time
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Considering the extra bits for communication, the practical number of transmitted bits

can be doubled to about 240. In this case, a modem with a speed of 9600 bps can transmit

position data from 40 platforms in one second. According to the above analysis, 20 to 30

moving platforms can be included simultaneously.

In some applications, it is not necessary for a moving platform to know the relative

position of the other platforms. The relative position data is only used for the central

station to monitor and control the moving platforms. In this situation, the download data

link is completely unnecessary. Without this limitation, the number of moving platforms

that can be used simultaneously increases very significantly.

The final consideration for implementing MultiKin is the functional distance, which is

limited by the functional distance of the broadcast radio and the required positioning

precision. To increase the distance of the download link, the power of the transmitter at

the central station must be increased. However, it is not necessary to increase the

transmitting power of the moving platforms when the distance from a moving platform to

a central station is increased, because some ground stations can be set up to relay the

signal from a moving platform to the central station. From the test results described in

Chapter 6, it can be seen that centimetre level positioning accuracy can be achieved for

baselines with lengths of 20 to 30 km when the ionospheric activity is average. If the

ionosphere is active, the longest solvable baseline for L1 is less than 10 km. Therefore, if

high accuracy is emphasized, then the maximum functional distance suggested is 10 km

for L1 and up to a few tens of kilometers for WL observables.
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8 CONCLUSIONS AND RECOMMENDATIONS

8.1 GPS SOFTWARE SIMULATOR

The GPS software simulator developed herein was found to be very effective to fully

evaluate the performance of MultiKin. The following six major GPS errors were

simulated: ionospheric error, tropospheric error, orbital error, SA, multipath and receiver

noise. Variation of the error model parameters allowed the generation of a wide-range of

testing scenarios. For atmospheric error simulation, high spatial resolutions and temporal

variations were emphasized. Given that multipath is an important error source for short

baseline applications, two simulation models were proposed for the static and kinematic

case, respectively. This proved necessary and effective due to the different multipath

behavior for each case and the resulting impact on ambiguity resolution. The validity of

the error models was verified by a satisfactory degree of consistency between the

simulation and field test results.

8.2 MULTIKIN PERFORMANCE

From the simulation and field test results, the following conclusions can be made:

[1] Delaunay triangulation is very effective in constructing ambiguity constraints. It is the

first time that a detailed discussion about optimally selecting constraints in a multi-

platform configuration was presented. The resulting constraints can reduce the

ambiguity resolution time by up to 66.9%. Furthermore, compared with the full

constraint selection method, MultiKin only has a very small efficiency degradation

(<1.3%), but is much more efficient from a computational aspect because the

numbers of selected baselines and triangles only grow linearly with the number of

platforms.

[2] The ratio test is much more effective in detecting wrong fixes than the residual test.

When the error is relatively small, the ratio test can detect wrong fixes much faster

than the residual test (118.4 s vs. 427.6 s). When the double difference error becomes

larger, the ratio test not only maintains good performance in detecting wrong fixes but
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also generates fewer false alarms than the residual test (0 vs. 4.2%). This is because a

priori information about the absolute GPS errors is not necessary in the ratio test;

thus, it can adapt better to a wide-range of testing conditions than the residual test.

[3] MultiKin is very effective in improving the efficiency and reliability of OTF

ambiguity resolution. Compared with the single baseline method, MultiKin can

•  fix ambiguities faster (TSR is from 13.1% to 66.9),

•  fix more ambiguities in cases of large differential errors,

•  fix ambiguities over longer distances, and

•  detect wrong fixes much faster.

The degree of improvement depends on three elements, namely the number of

constrained platforms, the magnitude of double difference errors, and satellite

visibility.

Increasing the number of constrained platforms can further increase efficiency;

however, the improvement rate diminishes with an increasing number of platforms.

The 10-platform constraint has almost the same improvement as the four-platform

constraint. This is because the baselines that are not in the same Delaunay triangle

can only provide indirect benefits, and the benefits degrade rapidly with the

separation of the baselines.

The magnitude of differential errors has a major impact on the efficiency of MultiKin.

As the error magnitude increases, the efficiency improvement decreases. This effect

has been repeatedly observed for all other GPS errors, such as the ionospheric error,

the orbital error and the tropospheric error.

Satellite visibility is also very important for the efficiency improvement introduced

by MultiKin. Poor satellite visibility decreases the observation redundancy and hence

degrades the efficiency of MultiKin. The improvement in the case of a reduced

geometry is only half of the improvement in the case of a full geometry (23.3% vs.

45.7%).
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[4] Accuracy degradation in relative positions is proportional to the baseline length and

the reference errors. Switching off SA greatly improves GPS stand-alone positioning

accuracy (<10 m, horizontal) and therefore reduces the accuracy degradation. When

baseline lengths are limited to within 10 km, the accuracy degradation can now be

neglected.

[5] The use of the widelane observables or the float ambiguity solutions results in

relatively poorer positioning accuracy. These can still provide a 10-cm level accuracy

for 10-km baselines.

8.3 RECOMMENDATIONS

8.3.1 Additional Field Tests

Although MultiKin has been tested using many simulated scenarios, it is still necessary to

conduct additional field tests to fully understand the performance and limitation of the

method. This is mainly because the simulated errors often behave differently from real

GPS errors and the real testing scenarios can be too complicated to be re-created in

simulation. In addition, some parameters in MultiKin, such as the thresholds in the

sufficiency test are set up according to the results of the simulation tests. When using the

method with real data, these parameters may not be optimal. Thus, additional field tests

would be helpful for adjusting these parameters for practical applications.

8.3.2 Development of More Sophisticated Error Models

Some problems remain in the models developed for the GPS software simulator. First,

the ionospheric model is a static model, i.e., the TEC value of a grid point in the Sun-

fixed frame is time-invariant. This assumption will not cause problems in kinematic

applications, because the long-term properties of the ionosphere are not used in the

simulations. However, for static applications, if a long-term test is conducted, e.g.,

simulation for deformation monitoring, the daily repeatability of ionospheric errors can

be observed, which is not entirely true for real observations. Therefore, more work can be

performed to induce short-term and long-term variations of the ionosphere into the

combined model. The same problem exists for the tropospheric error simulation, because
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only diurnal changes of temperature and relative humidity are simulated. In addition, to

better simulate tropospheric errors, statistical tests of global and regional meteorological

data should be performed to obtain more information on time and spatial variations of

tropospheric errors.

Currently, the simulated GPS constellation is based on a 24-satellite scheme, whereas the

real GPS constellation now contains more satellites, and their positions are different from

the original design. It is suggested that the real ephemeris or almanac be used in the

constellation generator to give a more realistic reproduction of the satellite geometry.

8.3.3 Optimization of MultiKin

8.3.3.1 Integrated Data Processing

Currently, the improvement of OTF ambiguity resolution in MultiKin results from the

use of multiple triangular constraints. The observation data of each baseline is still

processed independently. For future work, the integrated multiple platform data

processing is recommended as the correlation between baselines could be taken into

account. This may further improve the efficiency and reliability of ambiguity resolution.

Correspondingly, the complexity of the data processing will be largely increased with an

increasing number of platforms.

8.3.3.2 Dynamic Processing of MultiKin

MultiKin is tested based on a quasi-static configuration so the Delaunay triangulation is

actually time-invariant in simulation tests. However, in real applications, the

configuration can vary dramatically, through changes in baseline length, introduction of

new platforms, or removal of some platforms. The reliable and smooth transition from

one configuration to the next will significantly increase the data processing complexity.

However, algorithms for processing dynamic configurations must be included in the

MultiKin software.
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