
 

 

 
 

  

 
 
 

UCGE Reports 
Number 20148 

 
 
 
 

Department of Geomatics Engineering 
 
 
 
 

Development of a Distributed   
Geoprocessing Service Model  

(URL: http://www.geomatics.ucalgary.ca/GradTheses.html) 
 
 

by 
 
 

Shuxin Yuan 
 
 
 

December 2000 
 
 
 
 
 
 

 



 

 

 
 

  

 
 
 

UCGE Reports 
Number 20148 

 
 
 

Department of Geomatics Engineering 
 
 
 
 
 

Development of a Distributed   
Geoprocessing Service Model  

(URL: http://www.geomatics.ucalgary.ca/GradTheses.html) 
 
 

by 
 
 

Shuxin Yuan 
 
 
 

December 2000 
 
 
 
 
 

 



THE UNIVERSITY OF CALGARY 

 

 

DEVELOPMENT OF A DISTRIBUTED GEOPROCESSING SERVICE MODEL 

 

 

by 

SHUXIN YUAN 

 

 

A THESIS  

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE 

DEGREE OF MASTER OF SCIENCE 

 

DEPARTMENT OF GEOMATICS ENGINEERING 

 

CALGARY, ALBERTA 

 

DECEMBER, 2000 

 

  Shuxin Yuan 2000 



 

 iii

ABSTRACT 

 
 
GIS services can be classified into geodata services and geoprocessing services. Most 

existing GIS service systems focus more on providing geodata services than 

geoprocessing services, and offer very limited geoprocessing functions. It has been 

realized that, in GIS services, distributed geoprocessing is very critical to help users in 

geodata manipulation, such as format and reference system conversions, editing, and 

analysis. In this research, a new GIS service model is developed to support distributed 

geoprocessing. It is expected that this model will contribute to the development of 

making GIS functions accessible to network users on a per request basis. 

 

The new model is designed to allow geoprocessing components to be distributed 

anywhere in the Internet and be accessible at client sites whenever they are requested. 

Some new concepts such as component registration and component meta-information are 

introduced. A prototype implementation based on Java technologies has been developed 

to demonstrate and test the model.  



 

 iv

ACKNOWLEDGEMENTS 

 

I wish to express my deep gratitude to my supervisor, Dr. C. Vincent Tao, for his advice, 

guidance, encouragement, and support throughout my graduate studies. I am also grateful 

to Dr. J. A. R. Blais for his early critiques during my thesis research work. My 

appreciation also goes to my fellow graduate students, Mr. Chuangyun Fei for his 

cooperation, discussions and suggestions in the GeoEye  related software 

improvements, and Mr. Ronald Ramsaran for his proofreading of the draft of this thesis. I 

am also grateful to the secretaries, technicians and computer specialists and graduate 

students in the Remote Sensing and GIS Lab of the Department of Geomatics 

Engineering, who, in one way or other, helped me during my graduate studies. Finally my 

appreciation and thanks go to my family, my dearest wife, Guiping Wang, and my lovely 

son, Hao, for their endless love, devotion and support, which make this thesis possible. 

 

 

 

 



 

 v

TABLE OF CONTENTS 

 

APPROVAL PAGE...........................................................................................................ii 

ABSTRACT ......................................................................................................................iii 

ACKNOWLEDGEMENTS............................................................................................. iv 

TABLE OF CONTENTS.................................................................................................. v 

LIST OF FIGURES .......................................................................................................viii 

LIST OF TABLES ...........................................................................................................xi 

TERMS AND ACRONYMS ..........................................................................................xii 

CHAPTER 1      INTRODUCTION................................................................................. 1 

1.1 Research Background............................................................................................ 1 

1.2 Objectives and Limitations.................................................................................... 6 

1.3 Outline................................................................................................................... 8 

CHAPTER 2      DISTRIBUTED GIS SERVICES...................................................... 10 

2.1 GIS Software Development ................................................................................ 10 

2.1.1 Historic Stages in GIS Development.............................................................. 12 

2.1.2 GIS Trends...................................................................................................... 17 

2.2 Network-centric GIS ........................................................................................... 19 

2.2.1 Network-centric GIS architectures ................................................................. 19 

2.2.2 Web GIS Technologies................................................................................... 23 

2.2.3 Existing Problems........................................................................................... 31 

2.3 Distributed GIS ................................................................................................... 33 



 

 vi

2.3.1 Distributed Object Technologies .................................................................... 34 

2.3.2 Open GIS Framework and Specifications ...................................................... 37 

2.3.3 Technical Issues for Distributed Geoprocessing Services.............................. 40 

CHAPTER 3  DISTRIBUTED GEOPROCESSING SERVICE MODEL DESIGN 43 

3.1 General Design.................................................................................................... 43 

3.1.1 An Ideal Conceptual Model for Distributed Geoprocessing .......................... 43 

3.1.2 General Analysis and Solutions...................................................................... 45 

3.1.3 Architecture .................................................................................................... 55 

3.2 Geospatial Data Model........................................................................................ 57 

3.2.1 Abstract Geospatial Data Model..................................................................... 58 

3.2.2 Data Structure Objects.................................................................................... 60 

3.2.3 Geometry Objects ........................................................................................... 62 

3.2.4 Geospatial Reference System Objects............................................................ 66 

3.3 Distributed Geoprocessing Component Registration Model .............................. 68 

3.3.1 Distributed Geoprocessing Scenarios............................................................. 68 

3.3.2 Distributed Geoprocessing Registration Model ............................................. 72 

3.3.3 Geoprocessing Component Meta-information ............................................... 75 

CHAPTER 4      MODEL PROTOTYPE IMPLEMENTATION .............................. 80 

4.1 GeoEye  − Implementation of Foundation Classes and Client Interfaces ........ 80 

4.1.1 Foundation Classes ......................................................................................... 80 

4.1.2 The Applet and Client Interfaces.................................................................... 83 

4.2 GeoServnet − Implementation of Servers ........................................................... 85 



 

 vii

4.2.1 Web Server Program ...................................................................................... 85 

4.2.2 Component Registration Server ..................................................................... 87 

4.2.3 Component Wrapper....................................................................................... 90 

4.2.4 Component User Interfaces ............................................................................ 94 

4.3 Examples −The Implementation of Distributed Geoprocessing Components .... 96 

4.3.1 Distributed Geoprocessing Component Examples ......................................... 96 

4.3.2 Potential Use of the Distributed Geoprocessing Service Model .................. 101 

CHAPTER 5      CONCLUSIONS AND RECOMMENDATIONS.......................... 107 

5.1 Conclusions ....................................................................................................... 107 

5.2 Recommendations ............................................................................................. 111 

REFERENCES.............................................................................................................. 115 

Appendix A Data Model Notation.............................................................................. 122 

Appendix B UTM Projection Formulas .................................................................... 124 

 



 

 viii

LIST OF FIGURES 

 

No. Page

Figure 1: Different Structures of Tradictional Client-Server GIS and Distributed GIS ..... 3 

Figure 2: GIS Movement Towards Component GIS ........................................................ 11 

Figure 3: Desktop, Traditional Client/Server GIS and Distributed GIS ........................... 11 

Figure 4: Different Levels of GIS Users in the Progress of GIS toward Open................. 17 

Figure 5: Typical Multi-Tiers System Architecture.......................................................... 21 

Figure 6: CGI approach in Web GIS................................................................................. 24 

Figure 7: Plug-ins and Intelligent Graphics ...................................................................... 26 

Figure 8: Internet Program Downloading ......................................................................... 31 

Figure 9: OpenGIS Interfaces in a GIS (Partial: Buehler 1998) ....................................... 39 

Figure 10: Technologies for Distributed GIS Services (Sources: Müller 1999)............... 41 

Figure 11: Conceptual Model of Distributed Geoprocessing............................................ 44 

Figure 12: Typical 3-tier Object Distribution ................................................................... 48 

Figure 13: 3-Tier Objects Distribution in Distributed GIS Model.................................... 48 

Figure 14: Java RMI object passing procedure................................................................. 50 

Figure 15: Java Solutions for Client and Server in Distributed Geoprocessing................ 51 

Figure 16: Componentization of DGIS Service System ................................................... 54 

Figure 17: A Distributed Geoprocessing Model Using Java Applet and Java RMI ......... 55 

Figure 18: Abstract Geospatial Data Model for the Prototype Distributed GIS ............... 59 

Figure 19: Structure of the Geospatial Data Model .......................................................... 61 



 

 ix

Figure 20: Geometry Hierarchy in OpenGIS Specification (Source: OpenGIS 1999b) ... 64 

Figure 21: Geometry Objects in the Prototype System..................................................... 65 

Figure 22: Spatial Reference System Object Model (Source: OpenGIS 1999b) .............. 67 

Figure 23: Scenario: A Distributed Geoprocessing Service User ..................................... 71 

Figure 24: Relationships of Client and Servers in Geoprocessing Registration Model.... 73 

Figure 25: Java Object Communication Solutions in Geoprocessing Model ................... 74 

Figure 26: The Integration of Geospatial Data and Their Attributes ................................ 82 

Figure 27: GeoEye  Applet User Interfaces with Image and Shape Layer..................... 84 

Figure 28: GeoEye  Applet User Interfaces with Object Identifying ............................. 84 

Figure 29: Servlet Object Communication between Client and Web Server.................... 86 

Figure 30: Remote Shape Data Access Interface .............................................................. 87 

Figure 31: Geoprocessing Component Registration Process ............................................ 88 

Figure 32: Component Registration Form in a Web Browser .......................................... 89 

Figure 33: Component Wrapper........................................................................................ 90 

Figure 34: The Difference of Two Types of Components ................................................ 93 

Figure 35: Component Selection User Interface ............................................................... 94 

Figure 36: Extended Applet Interface ............................................................................... 95 

Figure 37: Remote Geodata Access Component Interface ............................................... 96 

Figure 38: Application Examples Implemented in the Prototype System ........................ 97 

Figure 39: Geo-reference System Transformation User Interface .................................. 100 

Figure 40: Potential Uses of the Distributed Geoprocessing Model............................... 101 

Figure 41: Integration of Geodata Services and Geoprocessing Services ...................... 102 



 

 x

Figure 42: Geospatial Domain Services (Source: OpenGIS 1999a) ............................... 103 

Figure 43: Geoprocessing Services in Their Categories (Source: OpenGIS 1999a) ...... 104 

 

 



 

 xi

LIST OF TABLES 

 

No. Page

Table 1: A Comparison of CORBA, DCOM, and Java RMI Characteristics................... 36 

Table 2: Possibility of Geodata and Geoprocessing Distribution ..................................... 46 

Table 3: GeoEye  Functions ........................................................................................... 83 

Table 4: Example of Component Meta-Information in the Database ............................... 90 

 

 



 

 xii

TERMS AND ACRONYMS 

 

The following lists some terms and acronyms frequently used in this thesis. 

ActiveX A component technology developed by Microsoft. It is developed 

upon the Object Linking and Embedding (OLE) technology and 

used in Microsoft Component Object Model (COM) and Distributed 

Component Object Model (DCOM) architecture. 

API Application Program Interface. 

Applet A type of java program running in the client web browser. 

Bean A type of java component that is inter-operable with other java 

components. 

Client/Server Refers to a traditional network computing model, in which a server 

has many clients. Resources are centralized in the server, and the 

server does most computing. The client provides user interfaces to 

the user. 

CGM Computer Graphics Metafile. A standard used to represent vector 

graphics.  

COM/DCOM Component Object Model (COM) and Distributed Component 

Object Model (DCOM) architecture developed by Microsoft. 

CORBA The Common Object Request Broker Architecture developed by 

Object Management Group 



 

 xiii

DGIS Distributed Geographic Information System 

DLL Dynamic Link Library 

Geodata Geographically related data 

Geoprocessing Processing of geographically related data 

GIS Geographic Information System / Geographic Information Services 

GUI Graphic User Interface 

HTML HyperText Makeup Language. A standard used for transferring text 

and images in the Internet 

IT Information Technology 

IIOP Internet Inter-ORB Protocol used in CORBA. ORB stands for 

Object Request Brokers. 

JDBC/ODBC Java Database Connectivity / Open Database Connectivity. A 

technology used in Java to access database information. 

LAN Local Area Network 

PC Personal Computer 

RMI Remote Method Invocation. Architecture used in Java technology 

for distributed computing. 

Servlet A Java program running in a web server machine, act as middleware 

between application server and web server. 

SVG Scaleable Vector Graphics. A standard developed to embed in XML 

for vector graphics. 



 

 xiv

Thick Client Refers to a client/server computing model, in which the client 

perform most computing tasks. 

Thin Client Refers to a client/server computing model in which the server 

perform most computing tasks. 

WAN Wide Area Network. 

Wrapper An interface that is used to connect a component to other 

components or programs. 

WWW World Wide Web. Usually refers to the Internet. 

XML Extensible Markup Language. A new standard used for Internet 

communication. More advanced than HTML. 

 

 

 



 

 

1

CHAPTER 1      INTRODUCTION 

 

1.1 Research Background 

 

Geographic information services, or GIS (Geographic Information System) services, are 

referred to the providing of geographic information to users. In a network environment, 

especially the Internet, such services can be provided much easier and faster with the 

adoption of web-enabled GIS. As described in The OpenGIS Guide (Buehler and McKee, 

1998), GIS services contain two basic types:  

1) access and process the geographic types defined in the Geodata Model, and  

2) provide capabilities to share geodata within communities of users who use a common 

set of geographic feature definitions and translate between different communities of users 

that use different sets of geographic feature definitions. 

 

The first type of services is referred to as the geoprocessing services, which focuses on 

providing geoprocessing functionality to users. The second type of services is referred to 

as the geodata services, which addresses the issues for distributing georeferenced data to 

consumers.  

 

In the past several years, following the rapid development of Information Technologies 

(IT), especially with the introducing of the Internet/Intranet, distributed object computing 

and object database technologies, GIS software development has evolved many phases. 



 

 

2

The biggest evolution, in the author's opinion, is that it shifted its paradigm from desktop-

centric GIS to network-centric GIS so as to provide the increasing network users with 

geo-referenced information and geoprocessing tools. Due to the wide accessibility of the 

Internet, GIS software vendors, information providers and users became more and more 

interested in Internet GIS services. Great efforts had been given to the geodata services. 

Now on-line Internet GIS services are no longer a novel idea, but a reality in terms of 

publishing centralized geodata over the Internet. Many on-line geodata catalog and query 

services are now available over the Internet. These services are based on different 

geodata publishing systems produced by different vendors with different technologies. 

These systems usually use the client-server model, in which clients submit requests and 

the server processes the requests and returns the results. GIS data can be transmitted and 

displayed on web browsers.  

 

On the other hand, geoprocessing services have not gained enough attentions. Fewer 

efforts have been made in this field. In the existing GIS service systems, GIS 

functionality provided to the clients is limited to a very narrow range, typically data 

query and data display. However, on-line geoprocessing services are also of very 

significant value to the users. It plays an important role in many applications. A typical 

application scenario is that the client has his own geodata sets and only wants to “rent” 

some GIS processing tools to process them, such as data format conversion, reference 

system transformation, data editing, data analysis and modeling. Expanding this use case 

to a more complicated scenario, the client may combine geodata from several different 



 

 

3

places and process them by using geoprocessing tools available in the network and save 

the results in the local site. A typical geodata publishing system cannot solve this 

problem. To tackle this problem, different technologies should be applied such as 

distributed object technologies. A distributed GIS model is required. The difference 

between a distributed GIS and a traditional client-server GIS is shown in Figure 1. 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1: Different Structures of Traditional Client-Server GIS and Distributed GIS 

 
Distributed GIS has become the trend of GIS software development. Unlike the 

traditional client-server architecture used in most geodata service systems, distributed 

GIS allows GIS components to be distributed in different locations of the entire network, 

not only data components, but also GIS functional objects. GIS software is no longer a 

large single integrated system. It can be decomposed into many interoperable functional 

components using componentware technology. In a typical client/server system, both 

Result 

GIS 
Interface 

GIS 
System

Client 

Server
Request 

(a) Traditional Client-Server GIS 

 

GIS 
Interface 

GIS 
Components

GIS 
Components

Servers 

Client 

(b) Distributed GIS 

GIS 
Components

 

GIS 
Components



 

 

4

geodata sets and geoprocessing tools are located at the server site. The client only sends 

requests to the server. The server receives the request, conducts the corresponding 

computation and sends the result to the client. In this architecture, every GIS 

computation, including the basic ZOOM and PAN functions, is performed on the server. 

In this case, the server is referred to as thick-server and the client is referred to as thin-

client. Since the result have to be transmitted back to the client every time when the 

server finishes the computation, the network traffic is very heavy, especially when the 

result is transmitted in the form of raster images.  The client-server model may be 

efficient in terms of providing centralized geodata services, but it does not have the 

ability to process the data on other sites. A distributed GIS model may change this 

situation. In a distributed model, a client may use GIS resources distributed anywhere in 

the network, not just from the server in the client-server model.  The role of a client is not 

only sending the requests to the server, but also performing some basic GIS operations, 

such as display operations (PAN, ZOOM), etc. 

 

Distributed geoprocessing service model study is an important part of distributed GIS 

research. To provide GIS functionality over a heterogeneous network environment, 

distributed object technologies will be involved in the development. The object 

distribution architecture and the GIS data model are the key parts of the model study that 

affect the structure and the performance of the service model. A distributed 

geoprocessing model should be flexible for taking advantages of both geodata and GIS 

functional resources distributed on the network. It may also balance the computation 



 

 

5

burden between the client and servers. Neither a thin-client structure (in which a server 

do everything) nor a thick-client structure (in which the client do everything) meets this 

requirement.  

 

Among the several alternative solutions of the distributed object model, the Java 

technology is the fastest and easiest way for distributed system implementation. Due to 

the Windows platform limitation of Microsoft’s Distributed Component Object Model 

(DCOM), and the implementation complication of Object Management Group’s (OMG) 

the Common Object Request Broker Architecture (CORBA) (Alberson 1998), Java 

technology are more widely used in the Internet GIS applications. The Java family 

provides a series of ease-of-use solutions for platform independent distributed systems. 

Java Applet provides the clients with user interfaces and shared classes through the Java 

enabled web browsers. Java Servlet provides an efficient way of communication between 

application server and web server. Java Bean provides an interoperable way to produce 

interoperable components. Java Database Connectivity (JDBC) or JDBC-ODBC (Open 

Database Connectivity) provides a universal means of connection between the internal 

objects and the external database. Java RMI enables the remote object method invocation, 

which is the basis of Java distributed computing.  

 

In this research, a distributed geoprocessing service model is proposed. This new model 

is designed and implemented based upon pure Java technologies, which allows the 

geoprocessing components to be distributed anywhere and transferred to the client 



 

 

6

whenever the geoprocessing service is request. Geodata at either client or server site can 

be processed via a Java enabled Internet browser and the processed result can be saved in 

the client machine. The model proposed is intended to improve the performance of client-

server communication and to make the entire geoprocessing functions accessible over the 

Internet.  

 

1.2 Objectives and Limitations 

 

The major objective of this research is to develop an efficient distributed object model for 

providing geoprocessing services to GIS clients over the Internet. The focus of the 

research is on the system architecture design, implementation and testing, methodology 

study for geoprocessing component distribution and registration, and client interfaces 

implementation for remote object invocation. The following lists the objectives of the 

thesis research: 

 

• = Study the distributed object technology. Propose a novel distributed geoprocessing 

model that can distribute geoprocessing components on different sites of the Internet 

and use both geodata and geoprocessing resources available in the entire Internet. 

• = Use Java technologies in design and implementation of the model. 

• = Design and implement a simplified geodata model and shared classes in pure Java. 

Since there are no existing GIS componentware or classes available in Java, every 

class and method have to be implemented from the ground up. 



 

 

7

• = Use the OpenGIS specifications in the model design and implementation. 

• = Implement a prototype geoprocessing service system to test the model design and 

demonstrate the performance of the model. 

• = Develop geoprocessing service application examples to demonstrate and test the 

model.  

 

Distributed GIS is a large topic that has many issues to be considered. However, due to 

the time limitation of the research, many of these issues are not included into this 

research scope. The followings are some of the limitations considered towards the 

research. 

 

• = This research does not intend to develop a complete GIS system although a simplified 

geodata model is developed in the prototype system. A complete GIS is a complicated 

software system that comprises many components and functions. 

• = This research focuses on the geoprocessing services instead of geodata services. 

Many issues in geodata services, such as metadata, geodata catalog and publishing, 

etc. are not discussed in the thesis. 

• = This research focuses on the Internet on-line geoprocessing service model design and 

prototype implementations. Specific issues and functions, such as distributed data 

transaction, security issues, etc. are not included in the current research. 

 



 

 

8

1.3 Outline    

 

The thesis consists of five chapters, including this introductory chapter. 

  

Chapter Two is a review of current GIS development status and trends, in both industrial 

and academic aspect, and focuses on the technologies used in web-enabled GIS. 

Distributed object technologies, its use in GIS, as well as Open GIS Specifications are 

introduced and discussed. Current Internet on-line GIS service applications, architectures, 

technologies and problems are analyzed in this chapter.  

 

Chapter Three introduces the design of the geoprocessing service model. This model 

design includes a conceptual model design, geodata model design, and system 

architecture design. Geodata model covers GIS geometry, geodata structure and reference 

system. The system architecture contains client-server communication, geoprocessing 

component distribution and registration. 

 

Chapter Four introduces the implementation of the model designed shown in Chapter 

three. In this chapter, Java implementation strategy of client and server side programs, 

component registration system, user interfaces, and the results achieved are introduced. 

Some component examples that test and demonstrate how the model works are also 

introduced.  The potential uses of the model are discussed at the end of this chapter. 

 



 

 

9

Chapter Five concludes the research. Some conclusions are drawn according to the 

implementation and test of the prototype system. Also recommendations for the 

continuing research are given. 



 

 

10

CHAPTER 2      DISTRIBUTED GIS SERVICES 

 

2.1 GIS Software Development  

 

A GIS is an organized collection of computer hardware, software, geographic data, and 

personnel designed to efficiently capture, store, update, manipulate, analyze, and display 

all forms of geographically referenced information (ESRI 1990). From a software 

engineering point of view, GIS is a computer system designed to allow users to collect, 

manage, and analyze large volumes of geographically referenced spatial data and 

associated attribute data. The major components of a GIS are the geographically 

referenced data and the geoprocessing functionality. The major software components of a 

GIS include user interfaces (UI), spatial data manipulation, spatial analysis, database 

creation, data-entry and database management capability, and data visualization 

functions. 

 

Initiated in 1960's (Coppock and Rhind, 1995), GIS software experienced several 

development phases and gradually evolved into the mainstream of Information 

Technology. With the rapid development of computer network technology and the fact 

that more and more individuals and organizations adopted GIS as their solutions, the 

demands for an open, network-centric distributed GIS became the common concern of 

GIS software vendors, geographic information providers and GIS users. As more and 

more people tend to use geographically referenced information and GIS software, GIS 



 

 

11

services that provide geographical information to broader users became a hot issue in the 

recent years, especially GIS services over the Internet. Driven by both technology 

development and GIS market, GIS software has changed its paradigm several times: 

From the initial GIS functional packages to the integrated huge system and from modular 

GIS to component GIS, as shown in Figure 2. From desktop GIS to network-centric GIS, 

and now from traditional client/server GIS to Distributed GIS (DGIS), as shown in Figure 

3. Each of these changes marked a big progress in the history of GIS development.  

 
 
 
 
 
 
 
 
 

Figure 2: GIS Movement Towards Component GIS 

 

 
 
 
 
 
 
 
 
  
 
 

Figure 3: Desktop, Traditional Client/Server GIS and Distributed GIS 

 

 
GIS 
Interface

 
GIS 
System 

(a) Desktop GIS 

 
GIS 
Interface 

 
GIS 
System 
 

(b) Traditional Client/Server GIS

PC Clients Server 

GIS 
Components

(c) Distributed GIS 

GIS 
Components

Clients Servers 

 
GIS 
Interface

 
GIS 
Interface 

(a) GIS Packages (b) Integrated GIS  (c) Component GIS 



 

 

12

2.1.1 Historic Stages in GIS Development  

 

In the history of GIS software development, GIS software experienced the following 

development stages: GIS functional packages, Integrated GIS, Modular GIS, Core GIS, 

and Component GIS. The general trend of GIS is towards the Open GIS in a 

heterogeneous network environment.   

 

In the early development stage of GIS software, constrained by technology limitations, 

GIS software actually is only some geoprocessing functional packages. These individual 

packages could not efficiently cooperate and an integrated system had not been formed. 

Later, with the maturity of the computer technologies, GIS packages naturally integrated 

into large systems. The advantage of an integrated GIS was that it integrated various GIS 

functions into an independent system, making it easier to operate and conduct more 

complicated GIS tasks. The disadvantage of it is that the system tends to be too large, so 

it is costly, hard to maintain and difficult to integrate with other systems. The integrated 

GIS is an important benchmark in GIS history, since it made GIS a real system instead of 

some software packages. A good representative of the integrated GIS would be ESRI's 

Arc/Info (ESRI 1995). 

 

Another development of GIS software that emerged later is the Modular GIS, represented 

by Intergraph's MGE (Intergraph 1995). The basic idea of the Modular GIS is to divide 

GIS into a series of functional modules executed on a fundamental environment (such as 



 

 

13

MicroStation). Different from an Integrated GIS, which also may be considered as 

formed by several modules, Modular GIS planed its modules in a more detailed style. 

This is very useful for the development of a complicated GIS and makes the software 

maintenance easier. Modular GIS overcame some disadvantages from integrated GIS, 

however, it is still hard to integrate with other applications. 

 

To overcome these disadvantages of GIS, the Core GIS concept was proposed (Zhang 

1995). The core GIS was designed as an extension to the operation system. In Windows 

platform, it is a collection of Dynamic Linking Library (DLL). In a specific GIS 

application, developers access the GIS function library through Application Program 

Interface (API). The GIS functions in DLL can be reuse in different applications, which 

provides great flexibility for the system integration. However, the core GIS requires 

developers to be knowledgeable of DLL functionality. The application development is 

somehow difficult and does not fit the visual programming requirements.  

 

Component technology is an important innovation in software development, which 

changed the trace of GIS development.  Component GIS has become a strong trend in 

GIS software development. In component GIS, GIS is again partitioned into many 

lightweight standalone software pieces. However, these software pieces are not the 

traditional software packages or modules, but vivid, inter-operable software components 

that can be freely "plug and play" in GIS applications. Based on a certain component 

technology and standard such as ActiveX in COM/DCOM architecture and Java Bean, a 



 

 

14

component can communicate with other components through its visual interface to the 

outside. This feature makes the regrouping of GIS components flexible enough in system 

integration. Currently, most GIS software venders realized the importance of the 

component GIS and its implications. Developing component GIS software became an 

important strategy of GIS products. Some examples of component GIS products are 

Intergraph's GeoMedia, Esri's MapObjects, etc., which are adopted in many GIS 

applications, ranged from simple desktop-centric GIS applications to network-centric GIS 

application over the Internet (Engen 1997 and Intergraph 1999).  

 

As clear as the trace of GIS software development from the initial GIS functional 

packages to Integrated GIS and to GIS components, GIS software made another deep 

trace in its general architecture developments. That is from host-centric systems to 

desktop-centric applications and further to the network-centric GIS. 

 

In its initial days when the integrated GIS came out, GIS turned out to be very 

complicated system that had very high performance requirements to the computer that 

loaded it. Only can high performance mainframe computers afford these requirements 

due to the status of computer development at that time. Host-centric architecture was 

characterized by centrally located host or mainframe computers that performed all the 

computations, data storage and management, and screen interfaces generation and 

interaction. End user interacted with and shared the resources of the host via terminals, 



 

 

15

which had no capability to save information locally, perform local processing, or directly 

control the user interfaces.  

   

Subsequently, with the rapid improvement in computer processor speed and the increase 

in computer memory, Personal Computer (PC) was introduced and broadly accepted in 

early 1980's. GIS application architectures shifted to desktop-centric, with a large number 

of applications residing on the end user’s desktop machine, which may be connected to a 

local-area network for file and peripheral device sharing. Compare to the host-centric 

GIS architecture, desktop-centric GIS replicate all application processing, data 

management, and user interfaces and interaction functions on each desktop computer. 

While the adoption of local-area networks provides a way to share data and peripherals 

devices, application architectures remain very desktop heavy (Autodesk 1997). 

 

As a result of the broad adoption and acceptance of network and application standards 

introduced and supported by the Internet, the world of information systems is entering 

into a third era of computing, an era based on network-centric application architectures. 

Network-centric architecture has dramatically impacted GIS industry.  For the first time, 

cost-effective, enterprise-wide mapping and geographically enabled applications can be 

deployed to large numbers of end users. For the development and deployment of GIS 

applications to multiple users, network-centric GIS show significant, measurable benefits 

combined with high returns on investment. Network-centric GIS applications exhibit 

dramatically lower initial implementation and ongoing support costs, more efficient use 



 

 

16

of network computing resources, and enhanced access to corporate data resources. 

Applications that are network-centric also display higher levels of application 

performances, feature new distributed-processing features, and justify the extension of 

specific technologies such as GIS to a broader audience of end users (Autodesk 1997). 

 

Client/Server architecture was adopted as the typical model of network-centric 

applications. In this model, many clients linked to a centric application server that 

contains application logic and have the connectivity to the centralized database. The 

concepts of "thin client" and "thick client" came out in this period in terms of the 

distribution of computing burdens between the client and the server. If the server does 

most of the processing, then it is a thin-client architecture. Conversely, if the client does 

most of the job, it is a thick-client application. Either thin-client or thick client 

architecture has many drawbacks in terms of taking advantage of network computing 

resources, such as data and processing tools. 

 

With the expanding of networks, especially the widely adopted Internet, the computing 

resources are distributed world wide in the network. How to take good advantage of these 

resources becomes more and more important. The typical client/server architecture 

cannot solve this problem. Only recently, distributed computing technologies with open 

infrastructures made it possible. In the GIS community, Distributed GIS became a hot 

issue, open GIS architecture became the focus in both academic research and GIS 

industry. 



 

 

17

 

2.1.2 GIS Trends 

 

As component GIS became the standard in the GIS industry, network-centric GIS became 

a common concern of GIS software vendors, information providers and GIS users. GIS 

applications shows a very strong trend from proprietary systems to open systems. As 

shown in Figure 4, as GIS becomes more open, GIS user range expands from the GIS 

specialist to GIS professionals and further to the general public.  

 

Figure 4: Different Levels of GIS Users in the Progress of GIS toward Open 

 

In the early stage of GIS development, GIS applications were often niche systems for 

certain GIS applications, and they were GIS specialist-oriented. The user group was very 

narrow and knowledgeable of GIS concepts. Since the main purpose of the application 

was to establish a certain application system, usually digitize paper maps, organize the 

Doer GIS Specialists

GIS
Professionals

General
Public

User 

Viewer 

System Building and Cartography 

Analysis and Modeling

Information Dissemination 

Traditional 
Proprietary 
GIS 

Network-
centric and 
Internet GIS

Desktop or 
Component 
GIS 



 

 

18

data and output map results in the cartography style, this group of users were referred to 

as GIS Doers (Intergraph 1997). GIS functionality was focused on the data input, data 

processing, data management, and data presentation and output, such as digitizing, 

editing, topology building, map plotting, etc. Later when GIS system became more 

general to fit more applications, the request of GIS knowledge for the doers became even 

heavier if a good outcome was expected.  

 

When GIS shifted its paradigm from mainframe computers to desktop computers, GIS 

users expanded to a larger group, the GIS professionals, which used GIS to solve their 

specific problems, such as data analysis and modeling. This group of users is often 

referred to as GIS user. System functions also expanded from system building to spatial 

analysis and modeling. As component GIS was widely adopted, GIS became much easier 

for the user to integrate GIS with other systems.  

 

Today, the network-centric GIS, especially the Internet GIS, brings large group of users 

to GIS technology. These users are the general public that is usually referred to as the 

GIS Viewers. They have little or no knowledge about GIS technology, but can use GIS. 

For the viewers, the interests are in getting geo-referenced information and doing some 

analysis. As shown in Figure 4, this group of users forms the largest percentage of GIS 

users, so it is located at the bottom of the user pyramid.  

 



 

 

19

The expansion of GIS end user not only brought a great market prospect but also 

triggered many technical challenges to the GIS industry. Many important issues are 

involved in the progress of becoming open. The top challenge is the interoperability of 

both geodata and geoprocessing software components (Buehler and McKee, 1998). The 

network-centric GIS architecture and distributed GIS services model are among the most 

important research topics (Smith 1996).  

  

2.2 Network-centric GIS  

 

The network-centric GIS introduced a new paradigm that enabled a broader variety of 

GIS applications and expanded GIS users. The new and innovative architecture delivered 

GIS for wide distribution across enterprises and organizations and made GIS accessible 

over the ubiquitous Internet. 

 

2.2.1 Network-centric GIS architectures 

 

The development of network technology facilitated the applications of network-centric 

GIS in two network levels: the Enterprise level and the Internet level. An enterprise 

network might be either the Local Area Network (LAN) or the Wide Area Network 

(WAN) and the Internet is also referred to as the World Wide Web (WWW). More 

specifically, GIS software exists in the following forms of network: 



 

 

20

−= Host-Terminal network: This is the old model of networking in which a mainframe 

computer acts as the host and many terminals are used to access the data and GIS 

functions. Since every computation is calculated in the host and the terminals are only 

used for display and interactions, this model has very high performance requirements 

to the host. The major problem of this model is its slow response speed, high cost, 

and difficulty of development. Current networked GIS discarded this model.  

−= Client-Server network: This model of network is widely exist within enterprises, in 

which some computers act as servers as well as others act as clients. The server 

computers usually have more power than the client and manage the centralized 

resources.  Different from the old host-terminal model, the client machines in this 

model also have some resources and computational power that might be used to 

relieve the load of servers. This characteristic of client-server network made it faster, 

more flexible and less costly than the host-terminal network. Actually, the client-

server network is the major form of network in the enterprises currently. 

−= The Internet: It is the largest network over the world that links many smaller networks 

together. The major characteristic of it is its wide adoption and good connectivity and 

accessibility. The Internet is the ideal network for information dissemination.   

 

In GIS systems, like in other information systems, the major architecture adopted is the 

typical three-tier architecture in which a GIS application are partitioned into three tiers 

and distributed in different locations (Larman 1998 and Charles, et al, 1999), as shown in 

Figure 5:  



 

 

21

 

  

 

 

 

 

 

 

 

 

 

 

Figure 5: Typical Multi-Tiers System Architecture 

 

−= The Presentation Tier: contains the system User Interfaces for system operations. 

According to model-view separation principle in object oriented analysis and design 

(Larman 1998), the presentation objects should be invisible to application domain 

objects. In a network-centric GIS, the presentation tier should be located in the client 

side. 

−= The Application Logic Tier: contains the GIS domain components that model and 

process GIS data. This tier is the central part of a GIS system that links the 

presentation and the storage tier and performs the geoprocessing. It may be further 

GUIClient GUI Presentation Tier 

Network 

GIS Server 
Components 

Database Database 

Communication 
Interface 

Database 
Adaptor 

Communication 
Interface 

Application 
Logic Tier 

Storage Tier 

Middleware 

Server 

GIS Server 
Components 

Database 
Adaptor 

GUI



 

 

22

divided into many sub-tiers that form a multi-tier system. These sub-tiers might be 

network communication middleware, database interface, domain objects, and so on. 

In a network-centric GIS, the application logic tier is located in the application server 

in the server side. 

−= The Storage Tier: contains the databases that store the GIS data in data servers. This 

tier is linked to the application logic tier via the database connection objects in the 

application tier. 

 

In a networked environment, a middleware that is responsible for the information 

communication between clients and servers is usually used in the network-centric GIS 

(see Figure 5). The client-middleware-server architecture is good to increase the 

interoperability of the proprietary systems, especially when the system is designed to use 

in a heterogeneous network environment (Wiederhold 1999), such as the Internet. 

 

Some network-centric GIS systems are extended from traditional proprietary systems, 

which simply have the proprietary GIS running at the server site, and add a client 

interface at the client side and a middleware at the server side to communicate between 

the client and the proprietary GIS software. The thin client architecture is used in this 

case. In a thin client system, the clients only have user interfaces to communicate with 

the server and display the results. All the processing is done on the server.  

 



 

 

23

Recent development in object oriented programming make it possible to produce 

software components and send them to the client before the running in the client 

machine, such as Java classes, ActiveX components and plug-ins. This comes out the 

thick client GIS. Java applet, Netscape plug-ins and Microsoft ActiveX component 

technology were involved in the structure. In the thick client architecture, the client 

machine does most processing work locally. 

 

Both thin and thick client systems have some advantages and drawbacks, but they are not 

the best solution in terms of taking advantage of network resources. An ideal architecture 

should be a distributed architecture which can distributed both data and processing 

components anywhere within the entire network. We will discuss this in session 2.3 about 

Distributed GIS. 

 

2.2.2 Web GIS Technologies 

 

The rapid expansion of the Internet provides GIS communities with a new technology for 

disseminating Geographical Information (GI) to the general public. Web GIS or the 

Internet GIS is a new phenomenon in the recent years and become more and more 

popular (Jaakko, et al, 1999). A lot of approaches were introduced into GIS mainly to 

provide geographical information (geodata) in the Internet. The following depicts some 

of these techniques: 

 



 

 

24

I. Common Gateway Interface (CGI) 

 CGI is the first generation technique applied to the Internet GIS. It was the standard way 

that connected the GIS application and the HyperText Mackup Language (HTML) in the 

web server to provide GIS information to the clients (Xia and Chao, 1995). HTML is a 

static text file, and it is designed for displaying text and image data in web browsers 

instead of processing the data, so it cannot produce dynamic information, such as GIS 

data processing.   

 

As shown in Figure 6, CGI actually acts as the middleware between the web server and 

the GIS server. It accepts user's requests from HTML and then passes them to the GIS 

application. When the application finish the processing, the result is passed back to CGI. 

CGI dynamically generates HTML file that attaches the map on it and sends it to the web 

server. The web server then sends the HTML to the clients. 

Figure 6: CGI approach in Web GIS 

Web GIS 
Client 1 

Web GIS 
Client 2 

Web GIS 
Client n 

 

Internet
Request 

Image maps 
HTML 
documents 

 
 

CGI GIS  
Server

 
 

Web 
Server



 

 

25

Since HTML only supports text information and static images, maps can only be 

transferred to the clients in image form.  

 

The biggest advantage of CGI approach is its browser independence due to the standard 

HTML. Also the exist proprietary GIS systems can be easily extended to be GIS servers. 

However, the use of static maps in raster form, displayed in a web browser not providing 

any analysis functions, severely limits the facilities available to the end users (Jaakko, et 

al, 1999). The inability of CGI approach at providing vector data and GIS functionality 

directly to the clients makes it hardly meet the requirement of Web GIS development. 

New generation approaches that may achieve the same goal but has more flexibility were 

introduced in terms of providing functionality and variant data types to the clients, such 

as Java Servlet.  

 

II. Plug-ins  

Internet GIS based on the plug-ins method is the second generation web GIS (Xia and 

Chao, 1999). CGI based systems only provide clients with very limited GIS functionality, 

basically map navigation and viewing but lacks geodata processing capability. All of GIS 

processing including the simple ZOOM and PAN functions have to be done at the server 

side and the information provided to the clients is only static images. To solve this 

problem, some GIS functions should be moved to the client side and the basic vector data 

format should be supported. This functionality location change from the server to the 

client will greatly improve the response speed of the system and decrease the network 



 

 

26

traffic. One of the methods called "plug-ins" implements the principle by installing GIS 

software extensions to the web browser and exchanging information with the browser 

during user's operations. Plug-ins is a kind of Application Program Interface (API) 

provided by Netscape Communications Corporation to extend the browser's functions. 

GIS functionality plugged into a browser lets the browser has the ability of recognizing 

vector GIS data, and make it possible to process the geodata locally. Figure 7 illustrates 

the general process of plug-ins based web GIS systems. 

 

Figure 7: Plug-ins and Intelligent Graphics 

 

GIF 
HTML Intelligent 

Document 

Client (Web Browser) 

 
GIS Plug-In 

Internet 

 
Web  

Server 

 
GIS  

Server 
GeoData

HTML 
GIF 

Intelligent 
Document



 

 

27

Different from CGI approach, plug-ins needs to be installed locally. The compatibility in 

different platforms and version changes make it a problem, and this causes the 

inconvenience in system update.  

 

III. Intelligent document 

To date, most Internet GIS systems are focused on geodata catalog and geodata providing 

services. The main purpose of these systems is to let the user browse and use their 

georeferenced data, including both spatial and non-spatial. The large volume of spatial 

data and the lack of GIS functionality support of web browser were considered as the 

bottleneck in the Internet GIS services. Lots of efforts have been made to overcome the 

bottleneck problem and at last a compressed, vector data formatted, and self-contained 

intelligent document became the solution (Autodesk 1997, Intergraph 2000). These 

intelligent document is designed to be efficient for network transportation and it may 

comprise all necessary information, including general map properties, security 

information, map layer properties, raw map data, and user interface specifications. By 

expanding standard browser's functionality, map document can be intelligent in terms of 

containing self-processing tools and relevant information.  

 

Maintaining all the necessary information in one file − an intelligent document − makes it 

much easier to support multiple users, since a single file update or refresh can update 

both a complete application and its associated data. This intelligent document would 

contain application-specific "meta-infomation" in addition to application data, including 



 

 

28

information on how the client application that loads the document behaves during the 

presentation of the document (Autodesk 1997). 

 

WebCGM is an intelligent graphics profile of the Computer Graphics Metafile (CGM) 

standard, tailored to the requirements for scalable 2D vector graphics in electronic 

documents on the World Wide Web (Gebharlt and Henderson, 1999). It can be used to 

represent GIS information within Web documents. WebCGM is an "intelligent graphics" 

profile, which means that in addition to spatial content, the profile includes non-spatial 

contents. The non-spatial content allows the definition of hierarchies of application 

objects, as well as the association of metadata, such as link specifications and layer 

definitions, with the objects.  

 

So far plug-ins is needed to let the standard browsers understand the intelligent file and 

provide GIS functionality support, see Figure 7. Many web GIS vendors have their own 

WebCGM based formats and plug-ins solutions, such as Autodesk MapGuide has MWF 

(Map Window File) and MapGuide plug-ins (Autodesk 1997), Intergraph GeoMedia 

Web Map has the Map Definition File (MDF) and ActiveCGM  (Intergraph 2000), etc.  

 

The adoption of another standard intelligent graphics document, the Scalable Vector 

Graphics (SVG) in the next generation browser file, the Extensible Markup Language 

(XML), will make the plug-ins that interprets the document unnecessary, since the next 



 

 

29

generation browser will understand the SVG file. Similar to WebCGM, SVG graphics 

can be dynamic and interactive. 

 

Intelligent document can be efficient in terms of geodata publishing, but the GIS 

functionality supported is still limited. The most frequently used functions could be 

supported by browsers, however, we cannot count on browsers to support all 

geoprocessing functions. In this case, other approaches will be needed. 

 

IV. Internet Programming Languages 

Plug-ins can extend browser's functionality to process spatial data efficiently, however, 

this method have many drawbacks. Firstly, it will greatly increase the burden of the client 

and let the client become very fat (fat client), because most software vendors will have 

their own plug-ins to make Internet-enabled products. This is not compatible with the 

principle in the design of the standard browser, which is intended to be a thin client. 

Secondly, the management of too many plug-ins will become a big issue, as everyone can 

install the new version of plug-ins through the Internet. Internet programming language 

can be used to solve these problems. 

 

The most popular Internet programming language is the Java language developed by Sun 

Corporation. Java is a new generation object-oriented (OO) language. It inherited the 

advantages of other object-oriented language such as C++ and Smalltalk but discarded 

the weak points of them, such as complexity, security problems, etc. Instead of producing 



 

 

30

binary codes for a specific platform, Java compiler produce byte codes that can run on 

any Java Virtual Machine (JVM). This makes Java platform independent, which is one of 

the most important issues in the heterogeneous Internet. Another important issue is the 

network security management, which Java controlled very well compare with other 

languages.  

 

Java provides a series of solutions to replace old technologies: At the client side, it has 

Java Applet that can be downloaded to the client machine at run time. At the Server side, 

it has Servlet that can be used to replace CGI interface. In the client-server 

communication, it provides Java Remote Methods Invocation (RMI), which can be used 

to implement distributed computing tasks. 

 

Another Internet programming technique is Microsoft's ActiveX, which is developed 

upon the OLE control (OCX). ActiveX can extend standard browser's functionality by 

loading the ActiveX components at run time. For example, GIS tools can be implemented 

in ActiveX components and embedded in the HTML file. The GIS tools can be loaded in 

the client machine when the client visits the web page. The functionality-expanded 

browser then can display and process the spatial geodata. 

 

Figure 8 shows the major difference between Internet programming language method and 

other approaches described above is that, it allows the executable program to be 

transferred and run in the client machine at run time. The traditional software installation 



 

 

31

 
Web 

Browser 

 
 

Web  
Server 

I 
n 
t 
e 
r 
n 
e 
t

HTML

GIF 

GIS 
Program

at the client side is ignored. This big change has a lot of advantages. It makes the 

deployment and version management of the software easier. Since the program is running 

on the client machine, the large volume spatial data is transferred only when the client 

needs new data from the server. This not only improved the response time greatly but 

also decreased the network traffic, which would be very heavy in other cases. Another 

important advantage of the Internet Programming Language method is that the whole 

structure of the program can be very flexible and scalable, this is very useful for 

developing distributed GIS models. 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 8: Internet Program Downloading 

 

2.2.3 Existing Problems 

 

By 1996, on-line web mapping tools were becoming available from virtually all of major 

GIS vendors, and they were a hot item (Thoen 1999). Unfortunately, almost all of current 

web GIS products are still only for geodata publishing purposes. Geoprocessing tools 



 

 

32

keeps as a weak point. It is expected that during the next decades, the market place will 

expand, bring many new tools to more users, and extend to the edge of corporate 

environments. All enterprise users will have access to geospatial data via web-enabled 

GIS tools (Asbury 1999). 

 

The two types of GIS services, geodata services and geoprocessing services, should not 

be separated. The weakness in geoprocessing services will definitely have negative 

impact upon the geodata services. The geoprocessing services are of the equal importance 

with the geodata services. Currently, most Internet GIS products and applications are 

focused on geodata services: geodata catalog and geodata publishing. The approaches 

depicted above may be efficient in terms of providing centralized geodata services, 

however, they are not good enough for providing geoprocessing services.  Even with 

hybrid method that combines CGI, plug-ins, intelligent graphics documents, and Internet 

Programming Languages, without a new distributed object model, only very limited GIS 

functionality can be provided to clients. The current client/server model, either a thin 

client or a thick client model, cannot meet the requirements of geoprocessing services, in 

which the interoperability of GIS components is the key issue. An open and distributed 

Internet GIS model needs to be developed. 

 

Distributed object technologies can help in building an open architecture for GIS, in 

which a proprietary large GIS system will be split into many small interoperable GIS 

components. These components can be distributed in arbitrary sites within the network 



 

 

33

and will be able to process geodata distributed in the entire network. A "geodata 

anywhere, geoprocessing anywhere" model will be ideal for the providing GIS services, 

in which third party geoprocessing software components and geodata can be easily added 

into the GIS services (Tao and Yuan 2000a and 2000b).  

 

2.3 Distributed GIS  

 

Recent developments in information technology have resulted in a number of distributed 

object computing architectures that provide the framework required for building 

distributed applications that use distributed objects. The framework also supports a large 

number of servers and applications running concurrently. Many of such frameworks 

provide natural mechanism for interoperability (Kafatos, et al, 1999). For example, 

COM/DCOM architecture in windows platform, CORBA in a completely open 

environment and Java RMI in Java Virtual Machine (JVM) are the most popular 

protocols that are used in different cases. These architectures can be applied to GIS to 

improve the traditional client/server GIS model and develop a scalable distributed GIS 

model. Some attempts have been made in the academic area (Zhang 1998, Evans 1999, 

Charles, et al, 1999). The following sections will discuss these architectures in more 

detail. 

 



 

 

34

2.3.1 Distributed Object Technologies 

 

Distributed object computing extends an object-oriented programming system by 

allowing objects to be distributed across a heterogeneous network. Each of these 

distributed object components inter-operates as a unified whole. Currently, the three most 

popular industry standards for fulfilling distributed computing tasks are Microsoft's 

Distributed Component Object Model (DCOM), Object Management Group's (OMG's) 

Common Object Request Broker Architecture (CORBA) and Sun's Java Remote Method 

Invocation (Java RMI). 

 

DCOM is an extension of the Component Object Model (COM) to the networked 

environments. It supports remote objects by running on a protocol called the Object 

Remote Procedure Call (ORPC). This ORPC layer is built on top of RPC and interacts 

with COM's run-time services (Gopalan HTML). The key features engineered into the 

COM/DCOM architecture comprise language independent and static/dynamic invocation 

of objects (Albertson 1998). Since the COM specification is at the binary level, it allows 

DCOM server components to be written in diverse programming languages like C++, 

Java, Visual Basic and so on. As long as a platform supports COM services, DCOM can 

be used on that platform. DCOM is now heavily used on the Windows platform (Gopalan 

HTML) and many practical enterprise level systems are based on this architecture. 

Unfortunately, it is still limited within the Windows platform currently and hardly used in 

the heterogeneous Internet.  



 

 

35

 

CORBA, based on the Object Oriented (OO) technology from its very beginning, may be 

the most effective tool, to-date, for developing a large-scale, open-architecture, 

heterogeneous distributed systems. A CORBA implementation employs Object Request 

Brokers (ORBs), located on both the client and the server, to create and manage client-

server communications between objects (Albertson 1998). CORBA replies on Internet 

Inter-ORB Protocol (IIOP) to inter-operate with objects. The ORB acts as a central 

Object Bus over which each CORBA object interacts transparently with other objects 

(Remote or Local). A CORBA object has an interface and supports implement language, 

operation system as well as platform independence. The problem with this architecture is 

that it is relatively new and probably too complicated to implement. Fewer practical 

systems have come out. 

 

On the other hand, Java technology provides an easy way of platform independent. Java 

RMI may be the simplest and fastest way to implement a distributed object architecture, 

due to its easy-to-use native Java model. Therefore, it is a good choice for Rapid 

Application Development (RAD) and small-size prototype application (Albertson 1998). 

Java RMI relies on Java Remote Method Protocol (JRMP) and Java Object Serialization, 

which allows objects to be marshaled as a stream. Since Java Object Serialization is 

specific to Java, both the Java RMI server objects and the client objects have to be 

written in Java. This language limitation of Java RMI applications makes it difficult to 

communicate with existing legacy applications. Efforts are still being made to build 



 

 

36

bridges to solve the problem and there are some good results coming out. For instance, 

the Java RMI components can shift to CORBA components through certain bridges. 

 

The three distributed object architectures that use different methods implement the same 

idea: Distributing objects are inter-operable across the network.  Table 1 gives a brief 

comparison among the characteristics of the three architectures: 

  

Table 1: A Comparison of CORBA, DCOM, and Java RMI Characteristics 

 DCOM CORBA Java RMI 

Protocol ORPC IIOP JRMP 

Language independent independent Java 

Platform Windows independent independent 

Tech. basis COM ORB Object Serialization 

Popularity Windows Applications 

 

Enterprise Applications 

Large Scale Applications 

Rapid Applications 

Small Applications 

Performance High Low Medium 

 

 
In choosing the "right" architecture for the distributed GIS model development, the 

performance of these architectures is another important factor to support the decision-

making. An experiment to examine the network communication efficiencies among the 

two platform independent architectures, CORBA and Java RMI, as well as light-weight, 

but more primitive communication solutions such as socket and ftp, had been made by 



 

 

37

the Center for Earth Observing and Space Research. The experiment result shows that 

CORBA seems to be four times slower than RMI, 10 times slower than sockets, and 40 

times than ftp in a LAN environment. Due to the large overhead over the Internet, the 

performance gap between these technologies becomes smaller. However, as understood 

from the LAN experiment, The performance of CORBA is much slower than RMI. It is 

possible to infer that CORBA's performance is perhaps three to four times worse than 

RMI (Kafatos 1999). 

 

2.3.2 Open GIS Framework and Specifications 

 

As network-centric GIS booms, many Internet GIS service systems, primarily geodata 

service systems, became available (Limp 1999). When clients need to get GIS resources 

from different sites distributed all over the world, the interoperability of geodata and 

geoprocessing then becomes an important issue. The objective of interoperation is to 

increase the value of information when information from multiple sources is accessed, 

related, and combined (Wielderhold 1999). From geodata point of view, the 

interoperation of information solves the integration of geodata from multiple sources, 

which overlaps with the topic of data warehousing or geodata services. From 

geoprocessing point of view, the interoperability involves the integration of software 

components that come from different sites, which is the key issue of distributed 

geoprocessing services in the network.  

 



 

 

38

The Open GIS Consortium, OGC, was founded in August 1994 when the component 

technology was the major innovation. Since that time, the world has been exposed to 

another paradigm shifting technology: the Internet. From the perspective of end-users, 

this is far more profound a development than the ability of components that make the task 

of building software easier (Cuthbert 1999). The major objective of OGC is to develop a 

series of specifications to increase the interoperability of geospatial data and 

geoprocessing software components. The OGC provides an open process for defining 

specifications designed to help promote interoperability between geospatial data and 

geoprocessing and allow the development of multi-tier solutions. The concept of open 

refers to the fact that these tiers need not all be implemented by the same 

vendor/developer. The GIS Service was proposed in the Open GIS Guide (Buehler and 

McKee, 1998) as an important concept for the open GIS architecture in an open network 

environment, such as the Internet. GIS services become so popular in both GIS industry 

and academic research that some scholars even consider that GIS has come into a brand 

new era: From the Geographic Information Systems (GISystems) to the Geographic 

Information Services (GIServices) (Müller 1999, Tao and Yuan 2000a).  This 

consideration is reasonable since GIS is undergoing a series of evolutions in this Internet 

era: large GIS systems are spitting up into smaller components, Internet GIS, Distributed 

GIS Service systems are booming.  

 

Open GIS means open and interoperable geoprocessing, or the ability to share 

heterogeneous geodata and geoprocessing resources transparently in a network 



 

 

39

environment (Schell 1999). The OpenGIS specifications will cover all of important 

aspects of GIS towards open. From abstract specifications to implementation 

specification, from semantics to software components, from common geodata model to 

common service model, it defines a series of interfaces in different levels. From software 

engineering perspective, these interfaces define the middlewares between data sources, 

GIS application components, and user interface. Figure 9 illustrates the role OpenGIS 

interfaces will play in an open GIS system. GIS services systems should follow the 

OpenGIS concepts and interfaces to increase the interoperability of geodata and 

geoprocessing components. 

 

 

 

 

 

 

 

 

 

 

Figure 9: OpenGIS Interfaces in a GIS (Partial: Buehler 1998) 

 

  Paint Display     Zoom      Pan      Overview  User Interface 

 
    
 

GIS 
Application 
Components 

Geocoding GeoRefSys

TIN Imaging Buffering

 
    
 

Geodata 
Source Shape ArcInfo MGE Map 

Info

OGIS display interfaces to be defined 

OGIS interfaces defined in Simple Features 



 

 

40

2.3.3 Technical Issues for Distributed Geoprocessing Services 

 

The technologies underlying Distributed GIS Services can be grouped into four 

categories: user interface, communication, connectivity, and service infrastructure. 

Combination of these four categories defines a GIS service model. For example, if one 

takes a web browser as user interface, HTTP as communication protocol, CGI for 

connectivity, and geodata catalog as service infrastructure, then one obtains the typical 

geodata service model.   

 

User interfaces for Internet services include simple web browser, program interfaces 

embedded in a web browser, or stand-alone programs that embedded communication 

protocols for remote services. Among the most important technologies for browser-

embedded GUIs are makeup document languages (HTML, HTML forms, and XML), 

JavaScript, plug-ins, ActiveX components, and Java Applets.  

 

Communication refers to the protocol or method used in client-server communication. 

Examples of communication include stream socket protocols, Internet application 

protocols (HTTP, FTP, SMTP), remote function calls (RPC, DCE) and distributed object 

environment (RMI, CORBA, COM/DCOM).  

 

The term connectivity refers to the different ways of wrapping existing software in order 

to make it accessible via one of the communication protocols, such as CGI script which 



 

 

41

connects GIS and web server, callable libraries which invoke via a daemon, object 

wrappers that give the software an OO interface. The service infrastructure refers to 

service framework such as repositories, catalog, service registration and execution 

planning (Müller 1999).  

 

Figure 10 summarizes the different levels of solutions for user interfaces, communication 

and connectivity conbinations. Increasing distance from origin represents higher level 

complexity and functionality. As shown in the figure, solutions formed from the same 

level are more feasible and efficient than those formed from different levels. 

 

 

 

 

 

 

 

Figure 10: Technologies for Distributed GIS Services (Sources: Müller 1999) 

 

For the development of a distributed geoprocessing service model, important issues 

include: 

��The choice of distributed object technologies that will be applied to the model; 

��The method used for user interface; 

User Interface 

Communication

Connectivity 
CGI Callable 

Libraries
Distributed 

Objects 

Sockets 

HTTP, FTP, SMTP 

RMI, CORBA, COM/DCOM 

ActiveX controls 
Java Applets

Java Scripts

HTML forms



 

 

42

��The way of defining geospatial components; 

��The service infrastructure that will be used to support the open access of both geodata 

and geoprocessing components.   

 

In the next chapter, the solutions for these issues will be given and a distributed 

geoprocessing service model will be established as the result.  



 

 

43

CHAPTER 3  DISTRIBUTED GEOPROCESSING SERVICE  

 MODEL DESIGN 

 

3.1 General Design 

 

This section depicts the general considerations of the systems design: an ideal conceptual 

model, possibility analysis and solutions, and general architecture. 

 

 3.1.1 An Ideal Conceptual Model for Distributed Geoprocessing 

 

The general idea of the distributed GIS service model is that a client program, either in an 

Internet browser or an independent application, should be able to access the resources 

distributed in the entire network. The resources here refer to both geodata and 

geoprocessing components available in the network. The client and the server in this 

context do not refer to a specific machine. Any machine, when it requests the remote 

resources during the processing, is a client, and any machine that provides such resources 

is a server. In a specific program, a client may connect to several servers if needed and a 

specific machine may be the client at one time and the server at another time.  

 

An ideal distributed GIS service model should be a "geodata anywhere, geoprocessing 

anywhere" model, which means the geodata and geoprocessing tools could be distributed 

with the largest flexibility − virtually anywhere in the network. The geodata and 



 

 

44

geoprocessing components do not have to be in the same site, but they should be able to 

cooperate or integrate whenever they are needed to finish a specific task. Figure 11 

illustrates this conceptual model. 

 
 
 
 
 
 
 
 
 
                                                     
 
 
 
 
 
 
 
 
 
 

Figure 11: Conceptual Model of Distributed Geoprocessing 

 

In Figure 11, GIS components are transferred across the network, which may be geodata 

components, geoprocessing components, or both. According to the actual needs in a task, 

these components could be as simple as basic data primitives such as integers or doubles, 

or be as complicated as a whole map, be as small as a single class, or be as large as a 

whole package or system. In this conceptual model, there is no GIS System concept, but 

instead GIS Service concept. A GIS system is splitted up into many interoperable 

components and may be distributed in different sites. Distributed geodata sets can be 

Application 
Data

Client 

GIS 
Server 

Machine 
Data 

Network 

GIS Components GIS Components 

GIS Components 

Browser

GIS Components 

GIS 
Server 

Machine
 Data

GIS Components 

Web Server 
Machine 

GIS Components 



 

 

45

accessed by geoprocessing components that contain behaviors to manipulate the geodata 

sets depending on the actual data model. This is a complete distributed model in which 

any physical machine can communicate with other machines in the network.  

 

3.1.2 General Analysis and Solutions 

 

The design of the distributed geoprocessing service model is based on the following 

fundamental considerations: 

 

I. Possibilities of Geodata and Geoprocessing Distribution 

According to the ideal conceptual model that support "geodata anywhere, geoprocessing 

anywhere", the geodata and geoprocessing functions could be distributed in different sites 

(Tao and Yuan, 2000b). The following gives the possibilities of distribution (P) of the 

geodata and geoprocessing tools in one location, no matter it is at a client site or at a 

server site. Let D represent geodata, and F indicate geoprocessing tools (Functions). 

Using the following notations:  

aD : all of geodata, 

pD : part of geodata,  

aF : all of geoprocessing tools, 

pF : part of geoprocessing tools, and 

null: none of geodata or geoprocessing tools.  

Then, we have: 

D = { aD , pD ,  null }   and    F = { aF , pF ,  null } 



 

 

46

P  =  D  × F   =   {  ( aD , aF ) ( pD , aF ) (null, aF ) 

( aD , pF )  ( pD , pF )  ( null, pF ) 

( aD , null ) ( pD , null ) ( null, null ) }    ( 3-1 ) 

Table 2 gives a detailed description of these possibilities: 

 

Table 2: Possibility of Geodata and Geoprocessing Distribution 

( null , null ) Only exist at the client side, which means that neither geodata nor 

geoprocessing tools exist at the client side. The client in the typical 

client/server GIS model fit this case. In this case, the client is a thin client. 

( aD , aF ) Typically exist at the server side in an typical client/server GIS 

architecture, which means that all geodata and geoprocessing functions 

are provided by the server. Since the server has everything, its clients 

should be thin clients (see the (null, null) case). Standalone GIS systems 

also fit this case.  

( pD , aF ) A site has partial geodata but all geoprocessing components. It could be a 

GIS server that does everything for its clients or could be a GIS client that 

is very thick. 

( aD , pF ) The site has part of geoprocessing components but all of the geodata. It 

could be a client or a server in a distributed system. 

( pD , pF ) The site has partial geodata and partial geoprocessing components. This 

could be a typical case for both client and server in a distributed system. 



 

 

47

(null, aF ) The site has all geoprocessing components but none of geodata. The 

geodata are separated from the geoprocessing and distributed in other 

places. Similar to the case ( pD , aF ) and ( aD , aF ), since the functional 

components are centralized only at one site (client or server), the client 

will be either a thin client or a thick client. 

(null, pF ) Typical case in a distributed GIS system. The site does not have any 

geodata, but has some of geoprocessing components.  

( aD , null) This may probably exist as a data center. Geoprocessing may be provided 

by other sites. 

( pD , null) Partial geodata but no geoprocessing tools.  

 

As in case (null, aF ), (null, pF ), ( aD , null), and ( pD , null), it is quite clear that the 

geodata and the geoprocessing tools are not always located in the same location. Both 

geodata and geoprocessing components could be distributed. A distributed GIS service 

model should be able to deal with distributed geodata and geoprocessing components. 

 

II. Three-tier Location Adjustment 

In the typical three-tier architecture (see Figure 12), the application logic objects only 

exist in the middle tier. The presentation tier and storage tier do not have application 

domain objects. In a typical client/server system, the presentation tier is located on the 

client machine and the application logic and storage tiers are located at the server side.  

 



 

 

48

 

 
Figure 12: Typical 3-tier Object Distribution  

 

In a distributed GIS system, locations of geodata and the geoprocessing components need 

to be flexible: the geodata storage and application tiers will be split up and distributed at 

different sites. For the client, the presentation tier is always located there, but it may also 

contain some application domain objects and data access objects. It is possible for a client 

to have all the three tiers. Figure 13 illustrate the redistribution of the three-tier objects in 

the distributed GIS: 

Figure 13: 3-Tier Objects Distribution in Distributed GIS Model 

Application logic 
(GIS Domain Objects)

Client

Middleware

Database

Presentation layer 
(User Interface Objects)

Storage layer 
(Geodata Access Objects)

S
e
r
v
e
r 

Network

GUI Objects 
GIS Domain Objects 

Geodata Access Objects

GUI Objects 

GIS Domain Objects 
(Client 1) (Client 2)

GIS Domain Objects 

Geodata Access Objects
Geodata Access Objects GIS Domain Objects 

(Server 1) (Server 2) (Server 3) 



 

 

49

III. Distributed Object Technologies 

Distributed geoprocessing model depends largely upon distributed object technologies. 

As depicted in section 2.3.1, since Java RMI provides an ease-of-use and relatively 

efficient way for distributed object computing (compare with CORBA), Java RMI is a 

good option for the solution of remote object communication. In fact, as a new generation 

object oriented programming language, Java is widely known as the Internet language 

due to its platform independent and good network security features (Gopalan HTML). In 

this development of distributed geoprocessing model, we chose Java technologies to 

provide the fundamental support to the model. 

 

The Java family provides a series of ease-of-use solutions for distributed computing. Java 

Applet can provide user interface and application classes to the client through the Java-

enabled browsers. Java Bean provides a way of producing interoperable components. 

Java RMI enables the remote object invocation. JDBC or JDBC-ODBC provides a 

universal means of connection between the internal objects and the external databases 

(see Figure 15).  

 

Java RMI is a pure Java distributed computing solution. In its architecture, code on a 

client computer invokes a method of an object on a server. The client-server terminology 

applies to a single method call only. The machine that calls the remote method is the 

client and the computer that hosts the objects and processes the call is the server (Cornell 

and Horstmann, 1997). The client and server are not fixed in roles and it is entirely 



 

 

50

possible to change their roles in one application. In the Java RMI model, the 

geoprocessing functions may be distributed in any machine of the network and the 

resources of the network can be fully utilized. 

 

As shown in Figure 14, Java objects are passed between the client and server in the form 

of marshaled Stub or Skeleton objects. A typical scenario of remote object passing is as 

the following: when the client code needs to invoke a remote method in a remote object, 

the parameter objects are encapsulated into a stub object. This object is then marshaled 

and passed to the server. On the server side, a skeleton object that makes sense out of the 

parameters in the marshaled stub object, and passes the parameters to the actual object to 

execute the remote method. After finishing the calculation, the returned object is then 

passed to the client in the same way. 

Figure 14: Java RMI object passing procedure 

 

By applying Java technologies to the distributed geoprocessing service model, we can 

end up with a computing architecture. As shown in Figure 15, Java technologies provide 

solutions for both client and server sides. 

Server 
Object

Return Stream

Parameter Stream  

Server Network Client

Stub 
Object 

Skeleton 
Object

Application Remote Objects 



 

 

51

 

 

 

Figure 15: Java Solutions for Client and Server in Distributed Geoprocessing 

 

For the Internet, Java applet is a good choice and used by many service providers to 

provide user interfaces as well as associated classes to the clients. When a user visits a 

web page with embedded applets, the user interfaces and the support classes are 

downloaded into the client machine and run locally. Once the basic application logic and 

data access objects are transferred to the client machine, the client will have all the 3 tiers 

and can do many works locally. A client can also access the remote geoprocessing 

components or data sets that are available in the Internet if he wants to perform a task that 

the local components do not support. The Java RMI provides a flexible and efficient 

solution to the remote communication and object transfer. An alternative method of Java 

RMI for remote data accessing is Java Servlet, in the case that the geodata server and the 

web server physically locate in the same machine. Java Servlet is a very similar to the 

CGI method in principle, but it is a more advanced technology in which objects can be 

transferred directly between the applet and servlet. 

 

IV. DGIS Componentization Issues 

Java RMI

Java RMI

Components: 
Beans/Classes 

GUI: 
Applet 

Components: 
Beans/Classes Geodata Geodata

(A Client) (A Server) 

JDBC/ODBC

JDBC/ODBC 

or Servlet



 

 

52

   

GIS Componentization becomes one of the major GIS trends and keeps a hot topic in GIS 

community in recent years. A lot of articles discussed the importance, implementation 

methods of designing and building reusable, interoperable GIS components (Kuhns 1998, 

Tang 1998, and Engen 1997) and different GIS software vendor have their own solutions 

(ESRI 1999, Intergraph 1999, and MapInfo 1999). For the developing of a distributed 

GIS service model, the componentization of GIS is a more critical issue than that in 

building a desktop GIS application. The reusability and interoperability of component 

must be extended to the entire network.  

 

The OpenGIS abstract specifications have a topic on OpenGIS Service Archetecture, in 

which GIS functionality is split up to many services (OpenGIS consortium 1999a). These 

services are: 

��Geospatial Domain Access Services 

��Feature Generalization Services 

��Geospatial Information Extraction 

Services 

��Geospatial Coordinate 

Transformation Services 

��Geospatial Annotation Services 

��Image Manipulation Services 

��Feature Manipulation Services 

��Geospatial Analysis Services 

��Image Geometry Model Services 

��Geospatial Symbol Management 

��Image Map Generation Services 

��Image Synthesis Services 

��Image Understanding Services 

��Geospatial Display Services

 



 

 

53

This classification is somehow in a general sense and is from the potential application 

perspective. From a software engineering perspective, GIS components may be grouped 

into two classes: the common objects and service specific objects. The common objects 

provide a fundamental support for GIS services, as listed above. The service specific 

objects support specific services only. 

 

The common objects should include basic GIS geometry objects (Point, Polyline, 

Polygon, etc.), basic GIS data structure objects (such as Map, Abstract Layer, Recordset, 

etc.) and GIS service interface objects. The abstract layer should be the super class of all 

concrete layers such as ShapeLayer, ImageLayer, TINLayer, etc. The concrete layer 

definition should be grouped into the service specific objects that provide the specific 

service. If the system choose to support a certain type of geodata, the corresponding layer 

definition and the specific data access objects can also be included into the common 

objects. For Instance, if the service system choose to support shape file as in its basic 

part, the ShapeLayer definition and shape file access objects should be included into the 

common objects of the system. 

 

Some services such as Geospatial Display Services are the most basic service that should 

be always available to the clients. They are "most basic" because without them, the 

clients could not do anything. Objects support these services should also be a part of the 

Common Objects. 

 



 

 

54

Service specific objects should be based upon the common objects, but separated from 

them. It could be the extension of the system when a client requests the specific service. 

Different services should be independent but interoperable. The communication between 

different services should be based on the common objects. For instance, if a client 

chooses the Geospatial Coordinate Transformation Services, the Geospatial Reference 

Objects should be accessible to the client by either extending the client objects locally or 

using objects remotely.  

 

Figure 16 summarizes the above discussions.  

 

 

 

 

Figure 16: Componentization of DGIS Service System 

Distributed GIS Service Componentization 

Structure 
Objects 

Geometry 
Objects 

Geodata Display 
Support 

Shape Data 
Access Objects Common Objects 

   
Data Access 

Service Objects 
Geospatial Analysis 

Objects  
Symbolization 

Objects  

GeoReference 
Objects 

GeoCoding Service 
Support Objects  

GeoCoding Service 
Support Objects  

Service Specific Objects 



 

 

55

3.1.3 Architecture 

 

From those considerations described in the last section, A Java applet and RMI based 

distributed geoprocessing model is developed. As illustrated in Figure 17, Java applet is 

used for providing clients with the presentation layer as well as the common GIS domain 

objects. 

 

 

 

 

 

 

 

Figure 17: A Distributed Geoprocessing Model Using Java Applet and Java RMI 

 

In Figure 17, the relationships among the web server, the component registration server, a 

collection of geoprocessing servers, and a web client are given. Possible geodata 

Result 

 

Geodata Sets 

Extension 
Upload 

Geoprocessing 
Servers 
 
GIS Components 
Skeletons (Stubs) 
Applet Extensions 
 

Geoprocessing 
Registration 

Download

Web Server 
 

HTML 
Applet 
Stubs 

Extensions 

Client 
 
HTML 
Applet 
Stubs 

Component 
Registration 
Server 
 
Registration 
Servlet 
 

Remote call 

Remote Method 
Invocation (RMI) 

Comp-Meta 

Geodata

RMI / Servlet 

 

Geodata Sets 



 

 

56

locations are also shown in the figure. Arrows in this figure represent the directions of 

data or component flows. 

 

Since an applet must be embedded in a web page, a web server is used in the model. User 

interfaces, the common GIS classes, applet extensions, and remote object interfaces 

(stubs) are downloaded to the client machine when the client visits the web page. 

Multiple geoprocessing servers may be involved to offer the client with different 

geoprocessing tools via Java Remote Method Invocation (RMI) or the Java Applet 

Extensions. These tools shall be registered in a geoprocessing component registration 

server before they can be accessed. Component Meta-Information stored in the 

component mata-infomation database will be provided to clients either using RMI or Java 

Servlet.  The applet extensions or component interfaces should be uploaded to the web 

server so that the clients can download them at run time. A geoprocessing server may 

also make remote calls to other geoprocessing servers for support, so even a single 

geoprocessing function can be distributed over the network.  

 

In this model, geodata and geoprocessing components are accessible by a client via Java 

RMI and Java applet. This model is a dynamic model in terms of providing clients with 

scalable geodata and geoprocessing component accessibility. The applet contains user 

interfaces and most frequently used geoprocessing tools (provided by the GIS common 

objects) at the beginning, and it makes the local data access possible and common GIS 



 

 

57

operations much faster. This is not a thick client because the common objects could be 

light-weighted and extendable by RMI remote computing.  

 

This model is compatible with the ideal conceptual model in Figure 11. "Geodata 

anywhere and geoprocessing anywhere" can be implemented by allowing any other 

server components to be registered into the model. The component registration is the key 

part of the model and it will be depicted later in more details in section 3.3.  

 

3.2 Geospatial Data Model 

 

A geospatial data model is a computerized representation or abstraction of real-world 

entities and phenomena. It defines basic GIS data types and their structure, which forms 

the foundation of a GIS system. Since many users of geographic information view the 

world in two dimensions, 2D geospatial data models are adopted in most GIS systems. 

Three major approaches are usually used to model the geospatial data in different 

systems: feature-based, georelational and object-oriented approach (Gardels HTML). 

Among them, the georelational approach is mostly used which combines features, maps, 

images and databases. Essentially, georelational systems manage spatial and non-spatial 

data separately and every spatial entity is linked to a database record using a unique ID.  

The object-oriented data model is an emerging alternative for the current georelational 

model, in which both spatial and non-spatial information elements are considered as 

attributes of geographic objects. Some researches (Abel 1998) and commercial systems 



 

 

58

(ESRI 2000) adopt this approach as their common data model. This thesis is not intent to 

develop a novel geospatial data model, but practices the existing approaches − the 

georelational and object-oriented approach − to support the distributed geoprocessing 

model.  

 

The following sections depict the geospatial data model designed for a prototype system 

of the above proposed distributed geoprocessing service model, from the abstract data 

model to the geospatial data organization, from basic geospatial geometry to reference 

system. Unified Modeling Language (UML) notation, which is described in Appendix A, 

is used the figures that represent the data models.  

 

3.2.1 Abstract Geospatial Data Model 

 

Basically, the prototype system to be built for this geoprocessing service model follows 

the typical Map-Layer-Geometry structure. Noticed that most current geodata are 

organized in georelational formats and the fact that object-oriented data model will be the 

next generation geospatial data model, in the prototype system, geometry objects are 

designed to be either separated with their attribute records or integrated into geo-objects 

according to the specific applications. In a distributed environment, the geodata objects 

will provide clients and servers with the basic understanding of the geodata during the 

communication, as the geo-objects are passed in the network as parameters. The 



 

 

59

following conceptual data model defines the basic geospatial types and their relationships 

in the prototype system, as illustrated in Figure 18.  

 

 

 

 

Figure 18: Abstract Geospatial Data Model for the Prototype Distributed GIS 

(See Appendix A for data Model Notation) 
 

In this model, basic geodata types are defined, such as geospatial geometry objects 

(Point, Polyline, Polygon, etc.), geospatial reference system objects (Datum, Ellipsoid, 

Projection, etc.), Metadata entities (Accuracy, etc.), and so on. A Geo-Object type is 

defined to integrate the geometry and the corresponding attribute records into single 

geospatial objects, such as a river which contains many sub-rivers or a city that may 

contain a lot of sub-objects. The geospatial reference system is applied to Map only since 

layers in one map usually have a unified reference system. Both Map and Layer objects 

contains 
�

1

links-to 

describes �

has 
1

1

1

1

1..*

* 

1..* 

1..* 

forms 

matches 

Attribute 
Record 

Id 

Geometry 

Id 

Georeference 
System 

MetaData 
Entity 

Map 

 

Layer 

Type 

Geo-Object 

Name 

1 

1

has 
�

� 

attaches-to 

*

1

1

1

1..*

contains  

Remote 
Object 

url 

Remote 
Methods 

links-to 1
*



 

 

60

may have Metadata entities to describe the data quality and other meta information of the 

map or layers. 

 

Unlike a desktop GIS data model, remote objects are included in the data model in order 

to support remote communications. Remote objects that link to the internal objects (such 

as Map or Layer) provide remote methods to clients. The dotted lines that link to the 

remote object in Figure 18 are only examples of the relationships between remote objects 

and internal objects. In fact, any internal object may connect to the remote objects if the 

remote methods are required.  

 

3.2.2 Data Structure Objects 

 

The above abstract model is controlled by the Map-Layer-Object structure, in which the 

Map is the top-level type that connects to the user interface objects. A map may contain 

multiple Layers, which may be in different layer types. A layer may contain many Geo-

objects or geometry elements that connected to the attribute records. The Layer should be 

an abstract class of all concrete layers and defines the common features of them. Each 

concrete layer has its interface to the data access objects. Figure 19 shows this structure. 



 

 

61

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Structure of the Geospatial Data Model 

(See Appendix A for data Model Notation) 
 
 
As shown in Figure 19: Each concrete layer has its own data access objects which 

connect spatial data files or database with geometry elements and attribute records of the 

GUIs 
Applet, Frame, Dialogs: 

Display-Controls, Layer-Controls, 
 Attribute-Query, ect. 

Layer  
(Abstract) 

Map 
(Component) 

ImageLayer 

Image  
Object 

Image  
File 

OtherLayers 

DBMS 

Other 
Objects 

ShapeLayer 

DBF 

Geometry 
Elements 

Shape Access 
Objects 

Geo-
Objects 

Attribute 
Records 

Shape Files: 
Geospatial Data 

GeoSpatial 
Reference System 

Geospatial 
Metadata 



 

 

62

layer, or geo-objects that integrate geometry elements and attribute records of the layer. 

Take the ShapeLayer for example: ShapeLayer is a concrete layer type for manipulating 

ESRI Shape data. The shape data are composed of two parts: The spatial data stored in 

plain files and their corresponding attributes are stored separately in dBase database. So 

the data access objects of ShapeLayer contain two parts: Attribute Records for the 

attributes from DBF database and Shape Access Objects for the spatial data from shape 

spatial data files. The spatial data form the geometry objects and the attribute data form 

the Attribute Records Object. These two kinds of objects can be related via the unique ID 

and attach to the ShapeLayer directly or integrate into more complicated geo-objects as 

needed and attach the geo-objects to the ShapeLayer. One ShapeLayer may contains 

many geometry objects and many attribute records, or many geo-objects, and one geo-

object may contain many geometry objects and many attribute records. 

 

In Figure 19, the shaded boxes are the abstract data types. They will be implemented as 

abstract classes in the implementation. The boxes and the association lines in dashed lines 

are for the extension of the geospatial data model. They will not be implemented in the 

prototype system for this thesis. Refer to Appendix A for the data model notations used in 

this thesis. 

 

3.2.3 Geometry Objects 

 



 

 

63

As the most basic part of a GIS system, geographical geometry had experienced several 

decades' development and came to mature. Different GIS systems currently apply similar 

geometry model in their geodata model, despite there are minor differences between 

them. The typical geometry model uses Point, Polyline and Polygon as the primitive data 

types of two-dimension geometry, and defines 2D spatial relationships among them as 

operations (methods). The OpenGIS specifications also followed this typical model, but 

defined many interfaces to standardize the operations. There are two implementation 

specifications in OpenGIS specifications: OpenGIS Simple Features Specification for 

OLE/COM (OpenGIS Consortium 1999b) and OpenGIS Simple Features Specification 

for CORBA (OpenGIS Consortium 1998). However, there is no current implementation 

specification available for Java. 

  

The geometry objects for this prototype system are defined at the beginning of the 

research, and at that time the OpenGIS Simple Features Implementation Specifications 

were not available. However, the basic structure of the geometry model is similar to the 

specifications as a result, despite the differences in names, function parameters and 

locations. It is much better to completely adopt an OpenGIS specification. However, due 

to the time limitation and the fact that there is no specification for Java currently, it is 

kept as a future work. 

 

Figure 20 gives the geometry structure defined in OpenGIS specifications. In this 

structure, all geospatial elements are derived from an abstract root type: Geometry. The 



 

 

64

type Curve, Surface, GeometryCollection, MultiSurface, and MlitCurve are also abstract 

type only for the purpose of structure extension. The concrete types are Point, LineString 

(multi-point line), LinearRing (closed multi-point line), Line (two-point line), Polygon, 

MultiPoint, MultiLineString, and MultiPolygon. The type SpatialReferenceSystem is 

attached to the geometry so that each geometry objects may have different spatial 

reference systems. 

 

 

 

 

Figure 20: Geometry Hierarchy in OpenGIS Specification (Source: OpenGIS 1999b) 

(See Appendix A for data Model Notation) 
 

Figure 21 is the geometry structure designed for the prototype system of the distributed 

geoprocessing service model. In this structure, abstract types only for further system 

extension are not defined, such as Curve, Surface in OpenGIS simple feature 

1+ 

Geometry SpatialReferenceSystem 

Point Curve Surface GeometryCollection

LineString Polygon MultiSurfac MultiCurve MultiPoint

MultiLineStringMultiPolygonLine LinearRing

1+ 2+ 

1+ 

1+ 



 

 

65

specification. However, the concrete types such as Polygon, Polyline and Point are 

defined in the same manner with the specification. Spatial reference system is not applied 

to each individual geometry object, but applied to the Map that contain them. Most types 

defined in the structure have their correspondences in the OpenGIS simple feature 

specification, except two of them: GeoPolyParts and GeoRectangle. The GeoRectangle 

object is designed to model the bounding box of geometry objects and that of Map and 

Layers. The GeoPolyparts object is used to model the sub-element of a GeoPolygon or 

GeoPolyline. The role it plays is similar to the LinearRing in Polygon in the OpenGIS 

implementation specification.  

 

 

 

 

 

 

 

Figure 21: Geometry Objects in the Prototype System 

(See Appendix A for data Model Notation) 
 

1+

GeoObject

GeoPoint-
List 

GeoPolyline-
List 

GeoPolygon-
List Geo-

Polyline 

1+ 

GeoPoint GeoCollection 

Geo- 
PolyParts

Geo- 
Polygon 

Geo-
Rectangle 

2 2+ 1+ 

1+



 

 

66

3.2.4 Geospatial Reference System Objects  

 

An important feature of GIS is that the data in GIS should be spatially referenced in a 

spatial coordinate system. A GIS object is the abstraction of a real world feature or 

phenomenon, which contains the location information and the corresponding attributes.  

The location information, technically the spatial data, is defined in coordinate pairs in a 

spatial coordinate system, in which the object is associated with a location on the Earth. 

Using the concept of reference systems, spatial object primitives such as geographically 

registered geometry are tied to the real world. Spatial objects are then decorated in a 

controlled manner with attributes. 

 

Defining spatial reference system objects involves many geographical concepts that 

describe a data set. These concepts include coordinate system, datum, unit, projection, 

etc. Fortunately, the spatial reference system model for the prototype system was later 

developed after the development of geometry model described above, and by that time 

the OpenGIS simple feature implementation specification for OLE/COM had come out. It 

is good idea to adopt the spatial reference system model defined in the specification. 

Figure 22 illustrates the spatial reference objects and their relationships.  

 

 

 

 



 

 

67

 

 

 

 

 

 

 

 

Figure 22: Spatial Reference System Object Model (Source: OpenGIS 1999b) 

(See Appendix A for data Model Notation) 
 

In this model, only two-dimension horizontal reference systems are defined. The 

SpatialReference is an abstract type of any spatial reference system at the top level. From 

GeodeticSpatialRefence type, it is the reference systems we used in GIS systems. All 

geodetic reference systems have Unit and datum properties, and it can be classified into 

two types: the projected coordinate system (ProjectedCS) and the geographical 

coordinate system (GeographicCS). The ProjectedCS object models the coordinate 

systems that have been projected to the plane, such as UTM coordinate system. The 

GeographicCS object models the global coordinate systems such as latitude and 

longitude. According to the data sets that come from different sources, different 

coordinate systems can be applied to different data sets and the transformation among 

Unit 

LinearUnit AngularUnit 

Projection 

SpatialReference

GeodeticSpatialReference

ProjectedCS GeographicCS

Datum 

HorizontalDatum

Ellipsoid 



 

 

68

different coordinate systems can be performed using the objects defined in the reference 

system object model. 

 

3.3 Distributed Geoprocessing Component Registration Model 

 

In the distributed geoprocessing model architecture illustrated in section 3.1.3, Figure 17, 

the distributed component registration model is the key part for supporting distributed 

object computing. In the following sections, the distributed component registration model 

will be discussed in more detail. 

 

3.3.1 Distributed Geoprocessing Scenarios 

  

To clearly describe the model, three typical scenarios are used to illustrate how the 

distributed geoprocessing components serve for clients. 

 

I. Virtual Geoprocessing Library 

A geospatial information provider has a geodata catalog service over the Internet that 

provides geospatial information to users with diverse geodata distributed all over the 

world. The service worked successfully for years until recently a lot of clients 

complained that they did not have geoprocessing tools to process the geodata to meet 

their specific requirements. They cannot afford the full license of heavy-weighted large 

GIS systems. The inability to offer geoprocessing tools affects the use of the geodata, 



 

 

69

which in turn affects the catalog service. In this situation, the geospatial information 

provider decides to enhance the system by building a virtual geoprocessing library, which 

got strong support from his technical committee.  

 

A few months later, the virtual geoprocessing library project finished. Similar to the 

geodata catalog service in principle, virtual geoprocessing library manages the meta-

information of geoprocessing components that distributed in the Internet. The meta-

information is registered into the library by the component provider through the web 

pages. The library is virtual because it does not have to contain the components 

physically, but instead a catalog of these components.  

 

A convenient user interface displaying geodata and geoprocessing components catalog is 

provided to the users through the Internet. Program common classes and interfaces are 

developed and available to any third party component developers. At first stage, the 

library builder developed some frequently used components to serve the users, and 

received very good responses. Later many third party developers joined the library to 

develop the distributed geoprocessing components, with more and more geospatial users 

joining the library to "rent" both geodata and geoprocessing tools. The library then 

becomes another successful story of that geospatial information provider.  

 

II. Non-regular Geospatial Information User 



 

 

70

A small consulting company recently was awarded a contract that involves the use of 

some geodata sets. However, the data sets are in different coordinate systems, so they 

must have these data sets transformed to the required coordinate system before the data 

sets become useful for their project. Unfortunately, the company does not have the tools 

to do this simple processing. There are two options for this company: purchase a full GIS 

system but in which only one command will be useful to them, or contract out to a GIS 

professional company to do this job for them. Both options are not economical which is 

not acceptable to this small company.  

 

Occasionally, a technical person found that there is a Virtual Geoprocessing Library that 

"lends" geoprocessing tools through the Internet. He accessed the library web site, a list 

of available geoprocessing tools were listed in categories for his choice. He searched in 

the Spatial Reference category, read the meta-information about the tools, and finally 

found that a reference transformation component right meets their requirements. After 

choosing this tool, a GIS interface with a reference system transformation button popped 

up and asked them to load the his data set. After loaded the data, he pushed the transform 

button. The data set was transformed and saved to the local disk. The project manager 

was pleased because they found a way to get the job done economically (See Figure 23).  



 

 

71

Figure 23: Scenario: A Distributed Geoprocessing Service User 

 

III. Geoprocessing Component Developer 

Mr. XYZ has been a successful GIS consultant for many years. In these years, he 

developed many geoprocessing tools. Knowing that there is a virtual geoprocessing 

library that allows third party developer to "rend" geoprocessing components to users, 

Mr. XYZ decided to take the chance.  

 

He first downloaded the program interfaces and common classes from the library, using 

them developed a wrapper for his existing geoprocessing components. Then he run these 

tools on his own machine that had an Internet connection, and registered these 

components into the library through the web page by providing the information about the 

connection and the components. After that he noticed that a lot of people used his 

software and he kept receiving money from his renting. Mr. XYZ is very happy for 

helping people and making money from his existing software. He decides to develop 

more convenient geoprocessing tools to serve people in the Internet. 

 

Virtual Geoprocessing 
Library 

 Why should I pay for a   
       full  GIS license? 



 

 

72

3.3.2 Distributed Geoprocessing Registration Model 

 

The distributed geoprocessing component registration model is the core of the whole 

service architecture illustrated in Figure 17, section 3.1.3 that makes "Geoprocessing 

anywhere" possible. A geoprocessing component registration server is introduced to 

manage the meta-information of each component. Together with an arbitrary client, a 

geoprocessing server, and the web server, a pyramid relationship between client and 

servers is formed, shown in Figure 24.  

 

In this model, taking the Virtual Geoprocessing Library as an example, the web server 

and the geoprocessing registration server are located in the "library" and bounded 

together. External geoprocessing components can be connected to the library by 

registering the meta-information of the components into the library categories − the 

component meta-information database − before the components are accessed. Any client 

can look up the component meta-information database, read component descriptions, 

choose, connect and use specific components. 

 

The client and the geoprocessing server can be many in the component registration 

model. Each individual client and a geoprocessing server can form a pyramid with the 

web server and the registration server, as illustrated in Figure 24. 

 

 



 

 

73

Figure 24: Relationships of Client and Servers in Geoprocessing Registration Model 

 

In the Java solution of the model, the client program is an extendable applet, which may 

bind components to the user interfaces of the applet. Different object communication 

methods may be used between the applet, geoprocessing components, and registration 

server, as shown in Figure 25. 

 

 

 

 

 

Geoprocessing 
Registration Server 

Geoprocessing 
Servers 

 
Client 

(Applet)

Remote Connection
and Method Invocation

Registered 
Geoprocessing 
Component Meta-Info 

Look up 

Web Server 

Remote Call
Results

Components Meta-Info
Interfaces download 

Components Registration 



 

 

74

Figure 25: Java Object Communication Solutions in Geoprocessing Model 

 

The web server is not demonstrated in Figure 25 because it is not critical in the 

component registration model. However, many processes will involve the web server, 

such as class downloading to the client, HTML registration form for the application 

server, etc. Components can be registered into component meta-information database by 

Servlet methods, which can accept and process the inputs from HTML forms and place 

the information into the database. The client applet may get the meta-information records 

from the registration server by Java Servlet. The meta-information should contain 

component connection information so the component can be connected to the applet via 

RMI to extend its functionality. Component interface objects should be uploaded to the 

web server in the process of component registration so that they can be downloaded as a 

kind of applet extension to the client and used in the remote methods looking-up process.  

 

Having the above solutions for the component registration model, the next step is to 

decide the contents of the component meta-information. 

Register 

Registration Server Application Server 

Applet 

Geoprocessing
Components 

Component 
Meta-Info DB 

Client

Servlet 

RMI/Servlet RMI Applet 
Extension 



 

 

75

 

3.3.3 Geoprocessing Component Meta-information 

 

Geoprocessing component meta-information is a new concept that deserves a lot of 

research efforts. Similar to geodata catalog services, in which geospatial metadata plays a 

core role, geoprocessing component meta-information will play a key role in 

geoprocessing services. Geospatial metadata contains much information about the 

geodata, including identification information, data quality information, spatial data 

organization information, spatial reference information, entity and attribute information, 

distribution information, metadata reference information, contact information, etc. In 

other words, it provides users with information to share the geodata. There are several 

geospatial metadata standards that are in use, such as the Content Standard for Digital 

Geospatial Metadata (FGDC 1998). One could say that it was geospatial metadata that 

made the sharing of geodata possible. Similarly, the geoprocessing component meta-

information will be inevitable in a geoprocessing service model. The following study on 

this topic is very preliminary and the author hope that this preliminary study can provide 

a starting point for the further research and bring the distributed geoprocessing service to 

a higher lever. 

 

Meta-information of a geoprocessing component should contain information about: 

1. how to identify the software component, 

2. how to find and connect to the software component, 



 

 

76

3. what the component can do, 

4. how the component works in principle, 

5. how to use the component, 

6. what is the quality of the component, and 

7. whether other components are referenced by the component, etc. 

 

The first item is inevitable from software engineering perspective, and the others are 

necessary to help people recognize and use the component.  

 

According to the above principles, we can define the following component meta-

information items, which not all of them are used in the prototype system. 

 

Note: The following definition is very preliminary and maybe partial. 

 

 Symbol meanings: Items included in "( )" are optional in some cases. 

Elements included in "[ ]" are data types for the items.  

"m{item }n" means that "item" iterates from "m" to "n". 

Type "Complex" means it consists of more items. 

 

Componen_meta-information  = Identification_Info [Complex] +  

Software_connection_Info [Complex] +  

Fuctionality_Info [Complex] + 



 

 

77

Principle_Info [Complex] + 

Instruction_Info [Complex] + 

Quality_Info [Complex] + 

0{Component_Reference_Info [Complex] }n + 

(Contact_ Info [Complex]) 

In which: 

Identification_Info = Component_Name [String] + 

Component_Version [String]+ 

Author_Info [Complex] 

Author_Info = Author_Name [String] + (Password [String]) 

 

Software_connection_Info  = Component_URL [String]+ 

Port_Number [Interger]+ 

Component_Type *  [String] + 

Interface_Class_Name **  [String] +  

(Database_Info [Complex])  

Database_Info = Database_URL [String] +  

Database_UserId [String] +  

Database_PassWord [String] 

Component_Type * : Type of the component in software engineering point of 

view, such as Applet_Extension, RMI_Component, etc. 



 

 

78

Interface_Class_Name ** : Name of component wrapper class or interface at 

top level to link to the Applet. 

 

Fuctionality_Info = Component_Functionality_Category*  [String] + 

Component_Functionality_Description [String] 

Component_Functionality_Category * : Component classification from 

application point of view. Such as Data Format 

Conversion, Geospatial Reference Conformation, Spatial 

Analysis, Modelling, etc. 

 

Principle_Info = Algorithms_Description [String] + 

Component_Geographic_Location [String] + 

Communication_Approach *  [String]  

Communication_Approach * : Socket, Servlet, RMI, etc. 

 

Instruction_Info = Requirement_Description [String] +  

Input_Description [String] + 

Output_Description [String] + 

Operation_Description [String] 

 

Quality_Info  = Performance_Description [String] + 

Processing_Accuracy_Description [String] +  



 

 

79

Component_Stability [String] 

 

Component_Reference_Info = Identification_Info [Complex] +  

Quality_Info [Complex] 

 

Contact_Info = Contact_Person_Name [String] + 

Address [String] +  

Post_Code [String] + 

Phone [String] + 

Email_Address [String]. 

 



 

 

80

CHAPTER 4      MODEL PROTOTYPE IMPLEMENTATION  

 

4.1 GeoEye  −−−− Implementation of Foundation Classes and Client Interfaces 

 

A prototype service system, which was implemented to test and demonstrate the model 

designed in Chapter Three, was started from the foundation classes and the applet − an 

client-side user interface that can run in an Internet browser.  A client side program, 

which was trademarked by the University of Calgary in the name of GeoEye , was 

developed at this stage (GeoEye  has been licensed by the University Technologies 

International Inc.). Since the application in Java technologies is still a new phenomenon 

in GIS software development, the whole system was entirely developed from ground up. 

The implementation of GeoEye  is described in the following sections. 

 

4.1.1 Foundation Classes 

 

Foundation classes define system common objects described in section 3.1.2 (part d, 

Figure 16) and section 3.2 (Figure 19). The system common objects include basic GIS 

geometry, data structure objects and basic data access objects, which define an internal 

data model that provides clients and servers with a basic understanding of geodata in the 

system. In the process of client/server communication, common objects can be used as 

parameters and results from remote geoprocessing. 

 



 

 

81

Foundation classes implemented include gismodel package that contains classes such as 

MapBean (a Java Bean Component that models the concept of Map), Layer, etc., 

gismodel.base package that contains geometry definitions, gidmodel.layers.shape 

package that defines classes to access ESRI Shape File, etc.  

 

Manipulation Methods and Events that define the behaviors of the common objects are 

defined in these foundation classes, such as map Display Controls (Paint, Zoom, Pan, 

Overview, Etc.), Layer Controls (Add, Remove, Rename, ChangeProperties, Etc.), Object 

Operations (Select, Identify, AttributeTable, Etc.), and Spatial Relationship Functions 

(PointInPolygon, PointOnLine, LineInPolygon, etc.).    

 

In the implementation of GeoEye , ESRI Shape file was chosen to be the first geodata 

format to support. Like most other geodata formats, it use the geometry-centric geo-

relational data model to organize the data, in which spatial objects − the geometry − are 

stored in file based system while their associate attribute data are maintained in a 

relational database. Data integrity had been the major concern of the data model 

implementation due to the separated management and organization of spatial data 

elements and attribute data elements in geodata sets.  

 

A clear trend in GIS software development is to develop an object-based data model, in 

which a geographic object is defined by geometry features, attributes as well as its 

behaviors. Figure 26 shows an integration of geometry objects and their corresponding 



 

 

82

attribute records, which had been implemented in the prototype system (Yuan and Tao, 

2000). In the integration, the attributes of a spatial object that are stored in an external 

relational database are bounded to a GeoRecord object that aggregates into a collection 

object, GeoRecordSet, and is attached to the Layer object directly.  

 

Figure 26: The Integration of Geospatial Data and Their Attributes 

(See Appendix A for data Model Notation) 
 

The attributes in a database are accessed by JDBC/ODBC provided by Java language, the 

query result forms a ResultSet in which attribute records are extracted from database. A 

DataRow object stores one record of attributes that is matched to a geometry object by 

the unique Id. A Field object is used to model both attribute Column of a DataRow and 

the geometry object. That is, a Field object may be a geometry object, or one of its 

attributes. The GeoRecord integrates the geometry Field and many attribute Fields into 

one object that is ready for manipulations.  

 

Geometry Object Field  Column 

Jdbc-
odbc GeoRecordSet 

GeoRecord TableDesc DataRow 

ResultSet 

Map 

 

LayerAttributes 



 

 

83

4.1.2 The Applet and Client Interfaces 

 

The client program is sent to users via the GeoEye  applet, which includes client user 

interfaces and the foundation classes. Functions implemented in it are listed in Table 3:  

 

Table 3: GeoEye  Functions 

Geodata Access −= Local and Remote (Web Server) Shape File access 

−= Access both spatial and non-spatial data 

Image layer support −= Support GIF and JPEG images  

−= Georeference image as map background 

Map display control −= Repaint, Zoom (In/Out/Window/Extent), and Pan. 

Map overview window  −= Overview window On/Off, Resize, and Relocate 

−= Layer On/Off in overview window 

−= Display and Drag current map display position, etc. 

Layer control −= Layer On/Off, Add/Remove Layers 

−= Layer Reorder, Rename, Change Layer Color, etc. 

Attributes manipulation −= Identify, Select by Point/Box, Attribute Table, etc. 

Drawings −= Draw and Save Point, Polyline, and Polygon object. 

Project Management −= Save and Reload project file. 

 

Figure 27 and 28 are the screen shots of GeoEye  Applet.  
 



 

 

84

Figure 27: GeoEye  Applet User Interfaces with Image and Shape Layer 

Figure 28: GeoEye  Applet User Interfaces with Object Identifying 

� 

� 

� 

��

�

�

�

�

�

�



 

 

85

In Figure 27 and 28:  

�: Map display area  �: Layer control area �: Map overview window 

�: Map Operation Buttons �: Attribute display window for Identify  

�: Status bar that displays mouse coordinates, scale, and the current layer. 

 

4.2 GeoServnet −−−− Implementation of Servers 

 

GeoServnet, as its name implied, will be the server implementation of the proposed 

distributed geoprocessing model. Servers in GeoServnet include a GIS web server, a 

component registration server and distributed geoprocessing servers. In this section, the 

implementation of web server program and the component registration server will be 

depicted. The implementation of distributed geoprocessing servers will be discussed in 

next section. 

 

4.2.1 Web Server Program 

 

The GIS web server is in the center of the model. It contains basic applet classes, remote 

component interfaces and applet extensions of geoprocessing servers. It physically exists 

in the same machine with the component registration server. Geodata resources in the 

web server should be accessible to the GeoEye  clients. A geodata access service 

example − the access of ESRI Shape data − was developed in the web server. Java 



 

 

86

Servlet are used in the object communication between the GeoEye  Applet and the 

Servlet. Objects are passed through the Internet.  

 

Figure 29 illustrates the object communication processes when the client requests remote 

data from the web server. RequestObjects is used to pass the request commands to the 

web server, and different results can return to the client according to the different 

requests. The first two requests happen when users looking for and access the data in the 

remote data access interface (see Figure 30) and the third request happens when the user 

operates the attributes of a layer, such as identify or display attribute table. 

 

Figure 29: Servlet Object Communication between Client and Web Server 

 
 
 

 
 

Web 
Server 
Servlet 

DBF 

Jdbc/Odbc

 
 
 
 
Client 
Applet 

RequestObject(command = "ShapeList") 
	




�

Return: String[] layerList 

RequestObject(command = "map") 

RequestObject(command ="Attribute:layerName")

Return: Vector(Layers) 

Return: QueryTable object 



 

 

87
 

 

Figure 30: Remote Shape Data Access Interface 

 

The Servlet program running on the web server is responsible for the shape data 

cataloging, shape data access and Jdbc-Odbc database connection. It responses to user's 

requests by communicating with applet directly. 

 

Other responsibilities of web server in the model include providing web pages to 

component developers for downloading Foundation Classes and uploading component 

interface classes, which will not be addressed in this thesis.  

 

4.2.2 Component Registration Server 

 



 

 

88

Geoprocessing component registration is implemented through a FORM embedded in a 

standard HTML file that links with a Java Servlet running in the web server. The FORM 

collects and sends component information to the web server. The servlet in the server 

puts the information into the component meta-information database. Figure 31 illustrates 

this principle. Figure 32 illustrates the component registration FORM.  

 

Figure 31: Geoprocessing Component Registration Process 

 

Web Browser 
 

HTML 
Registration 

FORM 

Web Server 
 

Component 
Registration 

Servlet 
Component 
Meta-Info 
Database

Jdbc/Odbc 
 

Net-
work



 

 

89

 

Figure 32: Component Registration Form in a Web Browser 

 

The component meta-information in the above registration FORM can be extended to 

contain more information to help users use the component. The current FORM is only an 

example and focuses on software engineering aspect.  

 

When a component is registered successfully, its meta-information is saved to a meta-

information database. Microsoft Access database is used for this purpose in the 

implementation.  Table 4 is a part of the main table in the meta-information database. 



 

 

90

Table 4: Example of Component Meta-Information in the Database 

 
 

4.2.3 Component Wrapper 

 

With all the meta information about the component, the next step to make the component 

accessible to clients is to connect the component with the client user interface − the 

GeoEye  Applet. Since components may be developed independently without informing 

the client program, the GeoEye  Applet may not have the detail information of the 

components, such as class names, function names, parameters, return types, etc. 

However, the concept of component wrapper with specific software interfaces to the 

outside may be used to solve this problem. These software interfaces, which can make an 

agreement between two parties, 

the component and the client 

program, should be the only way 

that makes the communication 

possible between the component 

and client program. Figure 33 

Figure 33: Component Wrapper 

 
 

Component 
Classes 

GeoEye
Applet 
User 
Interfaces

demonstrates this idea. 



 

 

91

 

The component wrapper actually is a kind of class interface between the client and the 

server. The implementation of the component wrapper should comply with certain 

predefined rules. In the current model implementation, the component wrapper interfaces 

predefined an abstract class AbstractComponent that only has an abstract function void 

play(void) in it. A concrete component wrapper implementation just need to implement a 

class that derives from AbstractComponent (AbstractComponent class should not be 

changed) and implement the specific function void play(void) to start the component. For 

example, in the implementation of Geo-reference component wrapper, the following 

codes can be used to connect to the component: 

 

public class GeoReference extends AbstractComponent {  // component wrapper class 

  public GeoReference() { }  // A public null class construction 

  public void play(){  //each component wrapper class should implement this method 

 ReferenceControl refDlg = new ReferenceControl ( getFrame(), getMap(),  

 "Spatial Reference System");  // connection to component user interface 

  if(!refDlg.isShowing()) refDlg.show(); 

     else refDlg.hide();  

   }  // end of play() method 

} // end of class definition 

 



 

 

92

This specific wrapper class connects the wrapper with the existing component user 

interface class − the ReferenceControl class, which in turn makes the component visible 

to the clients since the client applet knows that each component have an interface 

function named play(void). Also the wrapper class name must be registered into the 

component meta-information database so that it can be available in the client program.  

 

In the client applet, the wrapper is used to access the component. As an example, the 

following codes in the applet can be used to activate the component: 

 

 ... ...   // get the wrapper name from the meta-information database 

Class theClass = Calss.forName(wrapperClassName); // get the wrapper class 

Object theObject = theClass.newInstance();                  // get the wrapper object 

if(theObject instanceof AbstractComponent) {                

            // use the AbstractComponent instead of concrete component 

            AbstractComponent ext = (AbstractComponent)theObject; 

            ext.setFrame(this);    // this is predefined in AbstractComponent 

            ext.setMap(map);   // this is predefined in AbstractComponent 

            ext.play();          // The function that activates the component 

} 

... ...   // other processes 

 

Two types of geoprocessing components can be implemented in the current model − 



 

 

93

Applet extensions and RMI remote components. For the applet extensions, all of 

component classes including the component wrapper classes should be uploaded to the 

web server during the component registration process and downloaded to clients as a part 

of the applet at run time, when a client requested the specific component. For the RMI 

remote components, an applet extension also need to be uploaded to the web server, 

however, the extension may only include the component wrapper classes and remote 

invocation interfaces, such as remote object stubs. The component itself is still located in 

the geoprocessing server. The client can connect to the remote component via the remote 

interfaces in the wrapper and communicate with it by using Remote Method Invocation 

(RMI). Figure 34 illustrates the difference between these two types of components: 

Figure 34: The Difference of Two Types of Components 

 

Applet 
User 

Interfaces 

 
      Extension 
    Component 

Applet 
User 

Interfaces

 
Extension 
Remote 

Interfaces 

 
Component

RMI 

Client 
Site 

Client 
Site 

Geoprocessing 
Server 

a: Applet extension b: RMI extension 



 

 

94

4.2.4 Component User Interfaces 

 

An important responsibility of the client program is to get the component meta-

information from the database in the component registration server, and provide user with 

convenient operation interface to select components that right meet their needs. Figure 35 

is an example implementation of the interface for user's choice. 

Figure 35: Component Selection User Interface 

 



 

 

95

In the interface, available components are classified into several groups according to their 

functionality. Component meta-information is transformed into component descriptions 

to help the users make their decisions. 

 

After users have made their choice, the components are connected to the GeoEye  

Applet interface by adding additional buttons for the extension, see Figure 36. When the 

user push the extension buttons, the extension classes (wrapper only or the component 

itself) will be downloaded to the client and running on the client machine as an extended 

part of the original applet. As shown in Figure 37, a component interface for remote data 

access displayed. 

Figure 36: Extended Applet Interface 



 

 

96
 

 
Figure 37: Remote Geodata Access Component Interface 

 

4.3 Examples −−−−The Implementation of Distributed Geoprocessing Components  

 

The geoprocessing components to be implemented under this model can be very diverse, 

however, only some simple examples are implemented to demonstrate and test the model. 

 

4.3.1 Distributed Geoprocessing Component Examples 

 

The purpose of the development of geoprocessing component examples is to demonstrate 

the application of the model and test the model performance. Simple examples used in 



 

 

97

the implementation are the remote ESRI Shape File access and Geo-Reference System 

Transformation components. Different types of applet extensions have been tested in 

different servers. As shown in Figure 38, simple approaches such as Java Servlet and 

applet extension are applied in the web server. In the geoprocessing server, the same 

example components are used in different component wrappers and communication 

method, the Java RMI, which demonstrate the distributed computing ability of the model. 

Figure 38: Application Examples Implemented in the Prototype System 

 

The shape data access component is a very simple example to demonstrate the capability 

of "data anywhere" of the model. Each geoprocessing server, if it has geodata that wants 

to be provided to the clients, should have its own geodata providing components. These 

components could be as simple as a certain type of geodata access component as in the 

sample implementation, or as complex as a geodata catalog service component that can 

provide diverse distributed geodata to the clients.  

Remote  
Component 
Examples 

Web Server 

Geoprocessing 
Component  
Server 

Geo-reference 
Transformation 

Geodata Access 

Geo-reference 
Transformation 

Geodata Access 

Applet Extension 

Java Servlet 

Applet Extension + RMI

Applet Extension + RMI



 

 

98

 

Generally two types of applet extensions can be adopted to develop the components. For 

the components that have simple functionality and short code length, such as data format 

conversion, geo-reference system transformation, etc. direct applet extension should be 

the best choice, since they can avoid large remote geodata transportation. However, if the 

geodata exist on a remote server and geodata transportation cannot be avoided therefore, 

a RMI component may be the best choice. Especially, on the web server, Java servlet is a 

convenient choice for providing these services. 

 

In the model design, data access objects and the geo-reference system are designed 

relatively independent from the internal data model. During the implementation, they are 

developed in components which can be separated from other common objects such as 

geometry objects, Layer, Map, etc. This is the reason why they are used as component 

examples. 

 

The user interface and client/server communication sequence of shape data access 

component in a geoprocessing server is the same as the one used in shape data access 

servlet in the web server, as shown in Figure 29, 30, section 4.2.1. The difference is that 

Java RMI is used in communications instead of applet-servlet communications. 

 

Geo-reference system transformation component has been implemented and tested in 

both applet extension and Java RMI component. The user interface and component 



 

 

99

classes are the same in these two types of extensions. The efficiency of the applet 

extension is much better since it is running locally in the client machine and there is no 

need to transfer the large geodata. However, geodata transportation is inevitable if RMI 

extension method is used. The followings list the sequence of the client/server 

communication during the RMI process: 

(1) the user fills in the geo-reference system information in the given interface and press 

the Transform button (see Figure 39); 

(2) the client program sends the current map and the new geo-reference object to the 

geoprocessing server (the existing geo-reference information is stored in the Map); 

(3) the server receives the map and the new geo-reference object; 

(4) the server performs the transformation and return the result map to the client; and 

(5) the client replaces the old map with the new one and displays it. 

 

The current geo-reference component supports horizontal geospatial coordinate 

transformation, including transformation between geographical coordinated system 

(Latitude-longitude) and projected coordinate system such as UTM, change of datum 

(NAD27, NAD83), unit (linear and angular) and projections.  



 

 

100

 

Figure 39: Geo-reference System Transformation User Interface 

 

Formulas used in UTM projection in the geo-reference component is the most practical 

form of equations, in which a set of series approximations converge rapidly to the correct 

centimeter or less at full scale in a zone extending 3° to 4° of longitude from the central 

meridian. Beyond this, the forward series as given is accurate to about a centimeter at 7° 

longitude, but the inverse series does not have sufficient terms for this accuracy (Snyder 

1987). The formulas are given in Appendix B. 

 

The above component examples demonstrated that the proposed distributed 

geoprocessing service model is "data anywhere and geoprocessing anywhere model". The 

geodata accessibility and the functionality of the geoprocessing component depend on 



 

 

101

how the components are developed. The extendibility of the model by distributed 

geoprocessing components is the key feature of the service model. 

 

4.3.2 Potential Use of the Distributed Geoprocessing Service Model 

 

Although only simple component examples are developed so far for this model 

implementation, there are many potential uses of the model in both GIS industry and 

research. Figure 40 illustrates the classification of these potential applications. 

 

 

 

 

 

Figure 40: Potential Uses of the Distributed Geoprocessing Model 

 

In Industry 

For geodata providers, they can apply the model to extend their old geodata catalog 

service by adding some geoprocessing components to let users operate the data. The old 

geodata catalog service may become a sub-system or a component of the model. If a 

provider has street maps and the corresponding address database of a city, in addition to 

the old services that only allows users to search and view the maps, they can add 

Model 
Applications 

Industry 

Research

Intranet Applications

Method Comparison

Continuing Research

Internet GIS Services
Geodata Provider 

GIS Software Vendor 

Team work 

Distributed Applications

Algorithms Research 

Long-term Project 



 

 

102

geoprocessing services such as geocoding, best route analysis to help users use their data 

to make decisions. Figure 41 demonstrates the integration of geodata catalog service and 

other geoprocessing services.  

Figure 41: Integration of Geodata Services and Geoprocessing Services 

 

The integration of distributed geodata access and distributed geoprocessing is very 

important in GIS service providing systems. Further research in this area will be of great 

value to GIS industry.  

 

For GIS software vendors, no matter GIS software companies or individual developers, 

under the proposed geoprocessing service model, the development of GIS software will 

be component oriented instead of large system oriented. The components may be "rent" 

to users instead of being sold. The components will be maintained at the vendor's site, so 

updating and upgrading of the component become easier.  

Geodata

Geodata Access 
Components: 

Geodata Catalog 
 

Distributed 
GIS Services 

Catalog 
Geoprocessing 
Components 

Geocoding 

Spatial Analysis 
Components: 

Best Route 

 
Client 

 
Client 

 
Client 

Server Side



 

 

103

 

The components that can be developed under the proposed model may cover a very wide 

area. Many geospatial domain services can be developed using this model. In OpenGIS 

Service Architecture (OpenGIS 1999a), 15 categories of GIS services are defined, as 

shown in Figure 42: 

Figure 42: Geospatial Domain Services (Source: OpenGIS 1999a) 

 

Some of the above services are divided into more specific services, such as Geospatial 

Domain Access Services (GDAS), Geospatial Feature Manipulation Services (GFMS), 

Feature Analysis Services (FAS), and so forth. Figure 43 gives the extensions of these 

categories. These services can be further divided into smaller services according to needs. 



 

 

104

Figure 43: Geoprocessing Services in Their Categories (Source: OpenGIS 1999a) 



 

 

105

In addition to the Internet services providing, The proposed model also may apply to an 

Intranet environment. For software development, the model will establish a basic 

working environment for the development team in which each team member can work 

relatively independent in specific component development. For distributed applications in 

an Intranet, distributed enterprise resources can be accessed efficiently in the same way 

as they are in the Internet in principle. The user interfaces and security management can 

be even more flexible. For the user interfaces, not only Applet, but also Application for 

the client become acceptable.  

 

In Research 

The proposed distributed model may also be used in research, in which different methods 

need to be compared. In GIS discipline, a lot of geoprocessing algorithms need to be 

developed and improved. This model can provide a basic test platform for different 

methods or algorithms. Different methods or algorithms can be developed in different 

components and added to the model so that the performances and efficiencies of the 

components can be compared. Since the model is a distributed model, distributed 

geoprocessing algorithms can be tested in this model. 

 

At universities, research projects are usually conducted by students. Therefore, for long-

term projects the continuity of the research remains a problem when students graduate 

and leave. Under the proposed model, after the establishment of the basic framework, 

student's work could be relatively independent. All the students have to do is extend the 



 

 

106

model by adding new components into the model. Students can concentrate on different 

components of a project, so that the cooperation among the students become looser and 

easier. The negative impact of student's graduation to the project will be minimized and 

new students can easily join the project. 

 

 



 

 

107

CHAPTER 5      CONCLUSIONS AND RECOMMENDATIONS  

 

5.1 Conclusions 

 

The topic presented in this research is one of the most important issues in the migration 

of GISystems towards GIServices. As geodata become available over the Internet, people 

enjoy the convenience of new geodata services. On the other hand, when people want to 

use these on-line geodata to do some geoprocessing or analysis, they feel disappointed 

because of the limitation in geoprocessing tools. The GIService providers realize the 

shortcomings of the tools but nothing can be done, since it is the problem of current 

GIService model. The existing GIService model, no matter the thin-client CGI model, the 

plug-in plus intelligent document model, or the thick-client Java applet / ActiveX model, 

may be good in terms of geodata and some fundamental data query and display 

functionality providing. However, they are not good enough in terms of providing 

distributed geoprocessing tools to the users. A new GIService model that support 

distributed geoprocessing tools in the Internet is therefore developed. 

 

The proposed model is a "geodata anywhere, geoprocessing anywhere" model. Solutions 

provided are concentrated on "geoprocessing anywhere" problem, since we think 

"geodata anywhere" can be solved by geodata access services in which a lot of researches 

have been done and the technology is relatively mature, such as geodata catalog services. 



 

 

108

The geodata access services can be a component of the proposed model to achieve 

"geodata anywhere". 

 

The distributed component registration sub-model plays a key part in the GIService 

model. The idea of component registration is new and it turns out to be practical in 

support of distributed component interoperability. Some new concepts are therefore 

introduced to the model study, such as component meta-information and component 

wrapper that make the component interoperable. With these new ideas or concepts, third-

party software components could be added into the service model to extend the 

geoprocessing capability. These components could be distributed at any sites in the 

network and accessible to the client at run time. So in terms of both geoprocessing 

functionality and related geoprocessing servers, the proposed GIService model is a 

scalable model.  

 

The proposed model is a Java technology based model in which a lot of Java features are 

included in the model design and implementation. Also the model could be implemented 

with other technologies such as DCOM and CORBA by carrying out slight modification. 

Either DCOM or CORBA has the correspondences or interfaces to Java technologies. 

Java technologies have a lot of advantages in Internet programming comparing to other 

technologies. It is the platform independent feature, simple implementation requirements 

and acceptable network communication efficiency that made Java our first choice. 

 



 

 

109

In this research, a sample implementation of the model has been conducted to 

demonstrate and test the design of the model. A client user interface program − the 

GeoEye , a server side implementation that support distributed component − the 

GeoServnet, and some component examples have been developed from ground up. A 

relational object data model, Open GIS geo-reference object model, and component 

registration model are therefor established. The implementation of these models itself is a 

good practice in Open GIS development.  

 

The geoprocessing components and functionality that are provided in the proposed model 

could be very diverse. It could be used in two ways: 

(1) Combine geodata services with geoprocessing services: provide geodata services with 

distributed geoprocessing tools available.  

(2) Provide geoprocessing services: "rent" software components to users for the 

processing of local and distributed data. 

 

The following gives some possible components that are useful to users: 

��GIS data access services: Discover, Catalog, Store, and Access different geodata from 

different locations. 

��Data transformation services: Projection transformation, Coordinate transformation, 

Data format transformation, etc. 

��Geospatial information extraction services: Extract specific features from images or 

maps. 



 

 

110

��Feature generalization services: Generalize features from large-scale maps to small- 

scale maps. 

��Feature manipulation services: Map editing, Feature cleaning, Feature digitizing, 

Topology building, Geocoding, etc. 

��Geospatial analysis services: Network analysis, buffering, etc. 

��Geospatial modeling services: TIN modeling, 3D visualization, etc. 

��Geospatial annotation and symbolization services: Map making, etc. 

��Image processing services, etc. 

 

Studies and applications of distributed geoprocessing service model could finally 

promote the evolution of GISystems towards GIServices and distributed or ubiquitous 

geodata and geoprocessing will come to reality. Firstly, this evolution will change the 

way GIS software vendors develop and deploy GIS software. Instead of developing and 

selling large powerful GIS systems, GIS components will become more popular and rent 

to users through the Internet. Secondly, this evolution will change the way GIS 

information providers provide GIS information. Geodata and geoprocessing tools will be 

integrated and available ubiquitously in the network. Thirdly, this evolution will change 

the way GIS users use GIS software. Users do not have to pay the full license fee for the 

GIS system in which most of functions they never or seldom use. They can pay right 

according to their needs.  

 

The following concludes the author's contributions in the thesis research: 



 

 

111

 

��Developed a distributed geoprocessing model, which may produce a positive impact to 

the existing GIS service model. 

��Introduced some new concepts for distributed geoprocessing researches, such as 

component registration, component meta-information, and component wrapper, which 

made component interoperable in the distributed model. It is expected that these new 

concepts will produce good affects to the relevant researches. 

��Implemented a prototype GIService system in pure Java technologies, which involved 

the design and development of data model, geospatial reference model, component 

registration model, etc. The implementation of these models itself is a good practice in 

Open GIS development. 

��The developed programs are from ground up and turned out to be very solid. Some of 

the implementation of industry or research value, such as GeoEye , which has been 

using in the industry, and GeoServnet, which provides a solid foundation for the 

continuing studies in Distributed GIS.  

 

5.2 Recommendations 

 

Distributed geoprocessing service model is a new research topic that is expected to have a 

brilliant prospect. The research conducted is a preliminary start to enable distributed 

geoprocessing services. A lot of issues under this topic are of further research value to 

improve the proposed model and bring the model to practice uses.  



 

 

112

 

(1) Open GIS data model  

Open GIS Consortium published a series of abstract and implementation specifications to 

promote the interoperability of GIS. They are very good references in the model design 

and implementation. For geodata model, they defined OpenGIS Simple Features 

Specification for OLE/COM and CORBA implementation in which basic 2D GIS 

geometric objects, relationships of these objects, operational interfaces of these objects 

are defined. Unfortunately there are no Java implementation specification available so 

far. The current data model used in the proposed service model is slightly different from 

the above Open GIS implementation specifications, and many spatial operations have not 

defined in it due to the tight time limitation. Definitely if use an Open GIS data model, it 

will be more standard and easier to extend. It is recommended to rebuild the data model 

completely according to one of the above specifications.   

 

(2) Component meta-information 

The component registration model is the core of the proposed service model to support 

distributed geoprocessing. The component meta-information is the key concept of this 

core. In this research, some important items have been defined. However, this is only a 

preliminary start. The concept of component meta-information is very similar to that of 

metadata that describes geodata. In metadata, people have systematically defined many 

metadata items, from both practical and theoretical perspectives, and metadata standards 

become available as the result. From metadata concept to standards, it experienced 



 

 

113

several decades. Similarly for component meta-information, there should be a long way 

to go to become mature.    

 

(3) Security and metering management 

The proposed geoprocessing service model did not discuss the issue of network security 

management. However, security management should be an important part of the model if 

one wants to use the model in practice, especially in the Internet environment. A security 

management sub-model needs to be developed therefor, although it is more business than 

GIS research. Fortunately, Java technologies have very good reputation in network 

security management and many successful secure systems are developed, such as on-line 

banking. There is no reason to doubt Java security capability.  

 

Another sub-model to bring the geoprocessing services to the market is the metering 

management. Without metering to support component renting, the service model can only 

provide free services. However, software metering is not a new concept and many 

successful models can be references.  

 

(4) Open computing interfaces (CORBA) 

The current model is a pure Java model and only Java components can be added to the 

model. This limitation can be changed by develop open interfaces to CORBA, a platform 

and language independent open distributed computing architecture.  

 



 

 

114

(5) Distributed geoprocessing algorithms 

In a distributed environment, many geoprocessing algorithms need to be redesigned and 

need to be optimized to minimize the response time of remote object invocation. Parallel 

computing methods and compressed object transportation can be used to improve the 

efficiency of algorithms. Therefore, in the development of geoprocessing components, 

researches on distributed spatial handling algorithms need to be emphasized. 

 

(6) Transaction control 

The current model does not address the transaction control of geodata operation. 

However, in certain applications, when multiple clients are working on the same geodata 

set in a collaborative manner, to maintain the data consistency, transaction control will 

become significantly important (Tao and Yuan, 2000b). Therefore, when developing 

remote geodata collaboration components, transaction control techniques need to be 

studied and applied.  



 

 

115

REFERENCES 

 
Abel, D. J., 1998, Towards integrated geographical information processing, International 

Journal of Geographical Information Science, 1998, Vol. 12. No.4, pp353-371 

Albertson, T., 1998, Best Practices in Distributed Object Application Development: RMI, 

CORBA and DCOM, Developer.Com Journal, February 1998 

Asbury, S. GIS Industry Outlook 2000: The Birth of a New Millennium, GeoWorld, 

December 1999, Vol. 12, No. 12 

Autodesk, 1997, Autodesk MapGuide: State-of-the-art network-centric GIS application 

architecture for publishing and accessing geodata, A White Paper Series of 

Autodesk Inc., Web Document, http://www.autodesk.com/solution/gis/whtpaper/ 

index.htm, last visited in December 1999 

Buehler, Kurt, 1998, OpenGIS Technology Development Overview, OpenGIS 

Consortium Presentations, web document, http://www.opengis.org/techno/ 

presentations/overview/index.htm, last visited in December, 1999 

Buehler, Kurt and McKee, Lance, 1998, The OpenGIS Guide, Introduction to 

Interoperable Geoprocessing and the OpenGIS Specification, third edition, Open 

GIS Consortium Technical Committee 

Charles, B., et al, 1999, Adding an Interoperable Server Interface to a Spatial Database: 

Implementation Experiences with OpenMap, in Interoperating Geographic 



 

 

116

Information Systems, Proceedings of Second International Conferernce: 

INTEROP'99, Zurich, Switzerland, 1999 

Coppock, J. and Rhind, D., 1995, The History of GIS in Geographical Information 

Systems - Principles and Applications, edited by David Maguire, Micheal 

Goodchild and David Rind, New York, pp21-43 

Cornell, G. and Horstmann, C. S., 1997, Chapter 15: Remote Objects, in book: Core Java, 

second edition, SunSoft Press, 1997 

Cuthbert, A, 1999, OpenGIS: Tales from a Small Market Town, in Interoperating 

Geographic Information Systems, Proceedings of Second International 

Conferernce: INTEROP'99, Zurich, Switzerland, 1999 

Engen, David, 1997, Using MapObjects With Java to Internet Enable GIS applications, 

1997 ESRI International User Conference Proceeding, Paper 207 

ESRI, 1990, Understanding GIS: The ARC/INFO Method, Redlands, CA: Environmental 

System Research Institute, pp1.2 

ESRI, 1995, ARC/INFO: The World's GIS, ESRI White Paper Series, March 1995, 

Environment Systems Research Institute, Inc. 

ESRI, 1999, MapObjects 2 Object Diagram, Web Document last visited on March 18, 

2000, http://www.esri.com/library/whitepapers/mo_lit.html 



 

 

117

ESRI, 2000, ArcInfo 8: A New GIS for the New Millennium, an ESRI whitepaper, 

January 2000, http://www.esri.com/library/whitepapers/pdfs/ai8_newmill.pdf 

Evans, J. D., 1999, Interoperable Web-based Services for Digital Orthophoto Imagery, 

Photogrammetric Engineering & Remote Sensing, May 1999, Vol. 65, No. 5, 

pp567-571 

FGDC, 1998, Content Standard for Digital Geospatial Metadata, FGDC-STD-001-1998, 

http://fgdc.er.usgs.gov/standards/documents/standards/metadata/v2_0698.pdf 

Gardels, K., Html, A Comprehensive Data Model for Distributed Heterogeneous 

Geographic Information, http://www.regis.berkeley.edu/gardels/geomodel_def. 

html, last visited on March 20, 2000  

Gebharlt, J. C. and Henderson, L., 1999, WebCGM − Industrial strength vector graphics 

for the Web, CGM Open Consortium, Inc. web document: http://www.cgmopen. 

org, last visited on March 12, 2000. 

Gopalan, Suresh Raj, HTML, A detailed Comparison of CORBA, DCOM and Java RMI, 

http://www.execpc.com/~gopalan/misc/compare.html 

Intergraph, 1995, GIS ... The MGE Way: Take the Open Road with Intergraph, An 

Intergraph Technical Paper, Intergraph Corporation, Web Document last visited 

in December 1999, http://www.intergraph.com/mge/mgegis.htm 



 

 

118

Intergraph, 1997, “Trends in GIS”, A White Paper on Geographic Information System 

(GIS) based on Jupiter Technology, Intergraph Corporation.   

Intergraph, 1999, GeoMedia Web Applications - GIS For The Web, Intergraph 

Corporation White Paper Series, July 1999, Web Document last visited in 

December 1999, http://www.intergraph.com/software/geoengineering/press/gwe_ 

white.asp 

Intergraph, 2000, Internet/Intranet Online Publishing, GeoMedia Web Map White Paper, 

web document, http://www.intergraph.com/software/gwmregister/white_paper. 

asp#5.1.2, last visited on March 12, 2000. 

Kafatos, E, et al, 1999, Earth Observing Data Systems in the Internet Era, Photo-

grammetric Engineering & Remote Sensing, May 1999, Vol. 65, No. 5, pp540-

548 

Kuhns, R. D., 1998, Strategies for designing and Building Reusable GIS Application 

Components, 1998 ESRI International User Conference Proceeding, Paper 557 

Larman, Craig, 1998, Applying UML and Patterns - An introduction to Object-Oriented 

Analysis and Design, Prentice Hall PTR, pp273-291 

Limp, W.F., 1999, Don't Hit Warp Speed with the Wrong Equipment!, GEOWorld, 

Vol.12, No.11, November 1999 



 

 

119

MapInfo Corp., 1999, MapX v4.0 User's Guide, web document last visted on March 18, 

2000, http://www.mapinfo.com/mapx/html/mapx_docs.html 

Müller, R., 1999, From GISystems to GIServices: Spatial Computing on the Internet 

Marketplace, in Intermediaries for Information Services, Humbolt-Universität zu 

Berlin, October 1999, pp195-211 

OpenGIS Consortium, Inc., 1998, OpenGIS Simple Features Specification for CORBA, 

Version 1.0, http://www.opengis.org 

OpenGIS Consortium, Inc., 1999a, The OpenGIS Abstract Specification Topic 12: Open-

GIS Service Architecture, Version 4, OpenGIS Project Document Number 99-

112.doc 

OpenGIS Consortium, Inc., 1999b, OpenGIS Simple Features Specification for OLE/ 

COM, Version 1.1, OpenGIS Project Document Number 99-050 

Schell, David, 2000, Introduction to OpenGIS Consortium, Inc., OpenGIS Consortium 

Documents, 2000. 

Smith, T. R.,1996, UCSB-UCGIS Proposed Research Priority: Distributed GIS 

architecture and semantic Interoperability for a Networked Information Society, 

Web document, http://www.ncgia.ucsb.edu/research/ucgis/proposals/networked. 

html, last visited at December 20, 1999 



 

 

120

Synder, J. P., 1987, Map Projections − A Working Manual, U.S. Geological Survey 

Professional Paper 1395, United States Government Printing Office, Washington, 

1987, pp60-64 

Tang, Q., 1998, Component Software and Internet GIS, 1998 CPGIS Conference 

proceeding, Association of Chinese Professionals in Geographic Information 

System (Abroad), 1998 

Tao, C. V. and Yuan, S., 2000a, Development of Web-based GIService, Proceeding of 

GIS 2000 conference (CD-ROM), Toronto, March 14-16, 2000. 

Tao, C. V. and Yuan, S., 2000b, Development of A GIS Service Model in Support of On-

line Geoprocessing, Proceeding of GITA 2000 conference (CD-ROM), GITA 

(AM/FM) Association, March 26-29, 2000. 

Thoen, Bill, 1999, How has the Internet Influenced GIS, GEOWorld, December 1999, 

Vol. 12, NO. 12 

Wielderhold, Gio, 1999, Mediation to Deal with Heterogeneous Data Resources, in 

Interoperating Geographic Information Systems, Proceedings of Second 

International Conferernce: INTEROP'99, Zurich, Switzerland, 1999 

Xia, F and Chao, C, 1995, The Internet GIS, in the Geographic Information Science, The 

Accociation of Chinese Professionals in Geographic Information System 

(Abroad), Vol. 1, No. 2, December 1995 



 

 

121

Yaakko, K., et al, 1999, Interactive Visualization of Geographical Objects on the Internet, 

International Journal of Geographical Information Science, 1999, Val. 13, N0. 4, 

pp429-438  

Zhang, L., Li, B. and Lin, H., 1998, "A Model of GIS Virtual Machine", Geographic 

Information Sciences, Vol 4. No.1-2, December 1998, pp23-28 

Zhang, M. and Zhang P., 1995, The design of the core GIS, Chinese journal of 

geography, Vol. 50, in Chinese 



 

 

122

APPENDIX A DATA MODEL NOTATION 

 

1. Conceptual Model Notation 
 

 

 

 

 

In the above diagram:  

 

�: Concepts or types in a conceptual model. The upper part of the rectangle box 

gives the name of the concept and the lower part list the important properties of the 

concept. In many cases, the property name could be empty.  

 

�: The association between two concepts. In this thesis, dotted lines represent 

association between remote objects. 

 

�: Association name: The name that describe the association between two concepts. 

 

�: Direction of association: It gives the direction to read the association. The default 

direction of an association is from left to right or from top to bottom, in which the 

arrow can be ignored. 

Concept 
A 

Property 
Names 

1..* 1

Concept 
B 

 
Association name �

� 

�

�

�

�



 

 

123

�: Multiplicity of an association. For example: "1" means only one, "*" means many, 
"1..*" means 1 or more, and so forth. 
 
 
  

2. Class Diagram Notation 

 

  Class Notation     Data Set 

 

 

 

  

Association      Multiplicity   Aggregation 

Exactly one 

 

Zero or more 

 

Two or more 

 

Inheritance 

 

 

 

 

Concrete Class 

Abstract Class 

Database 

Data Files 

Unimplemented 
Class  

Class 1 Class 2 

Class 1 Class 2 

Class 1 Class 2 2+

Class 1 
(aggregate) 

Class 2 
(component) 

SuperClass 

SubClass 

SuperClass 

SubClass 2 SubClass 1 



 

 

124

APPENDIX B UTM PROJECTION FORMULAS 

 
Forward formulas: 

x = 0k N [ A + ( 1-T+C ) 3A /6 + (5-18T + 2T +72C-58 2'e ) 5A /120]   (B-1) 

y = 0k { M- 0M +N tan φ [ 2A  /2 + (5-T+9C+4 2C ) 

4A /24 + (61-58T + 2T +600C -330 2'e ) 6A / 720 ] }    (B-2) 

k = 0k [ 1+ (1+C) 2A /2 + (5-4T+42C+13 2C -28 2'e ) 4A /24  

+ (61 - 148T + 16 2T ) 6A /720 ]       (B-3) 

where: 0k = scale on central meridian, 0.9996 for UTM projection 

2'e  = 2e / (1- 2e )        (B-4) 

N = a / (1- 2e sin 2 φ) 2/1        (B-5) 

T = tan 2 φ         (B-6) 

C= 2'e cos 2 φ         (B-7) 

A = (λ-λ 0 )cosφ, with λ and λ 0 in radians     (B-8) 

M = a[(1- 2e /4 - 3 4e /64-5 6e /256 - ...)φ - (3 2e /8 - 3 4e /32 - 45 6e /1024+  

...)sin2φ + (15 4e /256+45 6e 1024 + ...)sin4φ  

- (35 6e /3072)sin6φ + ... ]      (B-9) 

with φ in radians.  

0M  = M calculated for φ0 , the latitude crossing the central meridian λ 0 at the origin of 

the x, y coordinates. 



 

 

125

 

If φ = ± π/2, all equations should be omitted except (B-9), from which M and 0M  are 

calculated. Then x = 0, y = 0k (M - 0M ), k = 0k . 

 

To obtain UTM coordinates, the "false easting" 500,000.0m is added to the x. 

Inverse formulas: 

φ = φ1  - (N1  tan φ1 / R1 ) [ 2D /2 - (5 + 3T1  + 10C1  - 4 2
1C -9 2'e ) 4D /24 + 

(61 + 90T1  + 298C1  + 45 2
1T - 252 2'e - 3 2

1C ) 6D / 720 ]   (B-10) 

λ = λ 0  + [D - ( 1 + 2T1  + C1 ) 3D /6 + (5 - 2 C1  + 28T1  - 3 2
1C  + 8 2'e  + 

 24 2
1T ) 5D /120 ] / cos φ1        (B-11) 

where φ1  is the "footpoint latitude" or the latitude at the central meridian which has the 

same y coordinate as that of the point (φ, λ). 

 

φ1  = µ + (3e1 / 2 - 27 3
1e / 32 + ... ) sin 2µ + (21 2

1e /16 - 55 4
1e /32 + ... ) sin 4µ + 

(151 3
1e /96 + ...) sin 6µ + (1097 4

1e /512 - ... ) sin 8µ + ...    (B-12) 

where  

e1 = [1 - (1 - 2e ) 2/1 ] / [1 + (1 - 2e ) 2/1 ]      (B-13) 

µ = M / [ a (1 - 2e / 4 - 3 4e / 64 - 5 6e / 256 - ... ) ]    (B-14)  

M = 0M  + y / 0k         (B-15) 



 

 

126

with 0M  calculated from (B-9) for the given φ0  

2'e  = 2e / (1- 2e )         (B-4) 

C1  = 2'e cos2φ1          (B-16) 

T1  = tan2φ1          (B-17) 

N1  = a / (1- 2e sin2φ1 ) 2/1        (B-18) 

R1  = a (1- 2e ) / (1- 2e sin2φ1 ) 2/3       (B-19) 

D = x / (N1 0k )         (B-20)  

 

 


	APPROVAL PAGE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	TERMS AND ACRONYMS
	CHAPTER 1	     INTRODUCTION
	1.1	Research Background
	1.2	Objectives and Limitations
	1.3	Outline

	CHAPTER 2	     DISTRIBUTED GIS SERVICES
	2.1	GIS Software Development
	2.1.1	Historic Stages in GIS Development
	2.1.2	GIS Trends

	2.2	Network-centric GIS
	2.2.1	Network-centric GIS architectures
	2.2.2	Web GIS Technologies
	2.2.3	Existing Problems

	2.3	Distributed GIS
	2.3.1	Distributed Object Technologies
	2.3.2	Open GIS Framework and Specifications
	2.3.3	Technical Issues for Distributed Geoprocessing Services


	CHAPTER 3	 DISTRIBUTED GEOPROCESSING SERVICE			MODEL DESIGN
	3.1	General Design
	3.1.1	An Ideal Conceptual Model for Distributed Geoprocessing
	3.1.2	General Analysis and Solutions
	3.1.3	Architecture

	3.2	Geospatial Data Model
	3.2.1	Abstract Geospatial Data Model
	3.2.2	Data Structure Objects
	3.2.3	Geometry Objects
	3.2.4	Geospatial Reference System Objects

	3.3	Distributed Geoprocessing Component Registration Model
	3.3.1	Distributed Geoprocessing Scenarios
	3.3.2	Distributed Geoprocessing Registration Model
	3.3.3	Geoprocessing Component Meta-information


	C
	CHAPTER 4	     MODEL PROTOTYPE IMPLEMENTATION
	4.1	GeoEye( ( Implementation of Foundation Classes and Client Interfaces
	4.1.1	Foundation Classes
	4.1.2	The Applet and Client Interfaces

	4.2	GeoServnet ( Implementation of Servers
	4.2.1	Web Server Program
	4.2.2	Component Registration Server
	4.2.3	Component Wrapper
	4.2.4	Component User Interfaces

	4.3	Examples (The Implementation of Distributed Geoprocessing Components
	4.3.1	Distributed Geoprocessing Component Examples
	4.3.2	Potential Use of the Distributed Geoprocessing Service Model


	CHAPTER 5	     CONCLUSIONS AND RECOMMENDATIONS
	5.1	Conclusions
	5.2	Recommendations

	REFERENCES
	APPENDIX A	DATA MODEL NOTATION
	APPENDIX B	UTM PROJECTION FORMULAS
	UCGE 20148.pdf
	Number 20148
	Department of Geomatics Engineering
	
	
	Shuxin Yuan
	December 2000




	UCGE 20148.pdf
	Number 20148
	Department of Geomatics Engineering
	
	
	Shuxin Yuan
	December 2000







