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Abstract 
 

Leaf area index (LAI) is defined as the ratio of the foliage area contained within a given area 

divided by the ground area in question. This quantity is a useful input parameter in various 

environmental modeling applications. Unfortunately, in-situ sampling of LAI is spatially limited 

and costly; therefore researchers have tried to relate remote sensing measurements to in-situ LAI 

measurements.  

 

Remote sensing models have traditionally attempted to use spectral vegetation indices to model 

variations in LAI. However, these models have achieved only moderate success because their 

accuracy is often dependent on the influence of the background. Recently, two promising 

techniques have been applied for remote LAI estimation: linear spectral mixture analysis and 

modification of spectral vegetation indices. These techniques offer explicit strategies for the 

mitigation of background effects. Additional remote estimation techniques have been developed 

specifically for this study, namely the scale factor and the normalized distance methods 

 

These remote estimation models are derived and compared for a region of montane forest in 

Kananaskis Country. Analysis has been conducted for both needleleaf and broadleaf vegetation to 

determine the relative efficacy of the models for each particular vegetation type. Sensitivity 

analysis has been performed to determine the sensitivity of the derived-models to variation in 

background spectra and the accuracy of plot locations. Monte Carlo simulations have been 

performed to determine how various parameters influence the quality of landscape-level LAI 

estimates.  A multi-scale analysis has been performed across a portion of the Upper Elbow River 

watershed, using MODIS and resampled SPOT imagery, to determine the extent to which the 

derived relationships are sensor-specific and scale dependent. 

 

The results of this study indicate that the best overall technique for remote LAI estimation is the 

normalized distance method. The other modeling techniques exhibit varying degrees of modeling 

success, while evincing significant dependence on vegetation type. This is demonstrated by the 

contrast between the superior performance of the moisture stress index and the canopy shadow 
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fraction, for broadleaf and needleleaf vegetation respectively, with their inferior performance for 

the other vegetation type. The modeling of plot location errors confirmed the validity and accuracy 

of the plot location algorithm and the georeferencing of the SPOT-4 image. Spatial statistical 

analyses demonstrated the correlation of the modeling parameters to vary inversely with distance 

and thereby to demonstrate the validity of the estimation relationships derived. The Monte Carlo 

simulations determined that the quality of landscape-level LAI estimates depends on the number 

of pixels under consideration, the quality of the remote estimation model and the landscape 

variability in terms of LAI. These simulations allowed for the quality of a landscape level LAI 

estimate to be determined given the particular constraints associated with a given landscape. The 

multi-scale analysis demonstrated that the remote estimation techniques exhibited significant 

dependence on scale and imaging platform, almost irrespective of the remote estimation model 

used.   
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1. Introduction 
 

1.1 Problem Statement 
 

The estimation of leaf area index (LAI) has long been of interest to scientists in a variety of 

disciplines ranging from hydrology to forestry. LAI has been used as a primary variable of interest 

in a variety of environmental process models. 

 

Traditionally, measurements of LAI have been performed in-situ using a variety of sampling 

techniques including destructive sampling, allometric methods and optical observation. The 

primary disadvantage of these particular in-situ measurements is that they are geographically 

limited and considerable effort is required to obtain even the most local characterization of LAI. 

 

Due to the geographic limitation associated with in-situ LAI measurement and the modeling 

requirement for LAI estimates at the regional scale, remote sensing techniques have been 

developed to estimate LAI. Historically, remote sensing has used a variety of different spectral 

vegetation indices for the prediction of LAI. This approach has produced mixed and frequently 

ecosystem specific results due to problems such as saturation and insensitivity of spectral 

vegetation indices to changes in LAI. The primary advantage of this approach is the simplicity of 

obtaining spectral vegetation indices over large areas as compared to other more involved 

techniques. 

 

Two techniques have been developed in recent times in response to the need for higher quality 

results in remote LAI estimation.  

 

The first technique which has improved upon the use of spectral vegetation indices is the use of 

adjusted spectral vegetation indices for LAI estimation. Adjustment of spectral vegetation indices 

involves a scaling of the initial spectral vegetation index by a factor derived from the middle 

infrared bands. The incorporation of information from the middle infrared bands tends to improve 

LAI estimation because the middle infrared bands are the most sensitive to changes in LAI. This 
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sensitivity is thought to be related to observed differences in moisture content for areas of high 

LAI versus canopies of low LAI (Eklundh et al., 2001). 

 

The second technique that has seen increasing application for LAI estimation is linear spectral 

mixture analysis. The first task required in spectral mixture analysis involves the definition of 

classes, in this case typically sunlit canopy, shadowed canopy and background, which are used for 

LAI estimation. The second task of spectral mixture analysis is the selection of pixels contained 

within the image in which the classes do not co-exist. The third task is to determine the percentage 

of each pixel that belongs to each class, typically performed using a constrained least squares 

approach. Finally, the percentage composition of one of the classes is used for LAI estimation 

(Peddle et al., 1999, Peddle et al., 2001). 

 

Spectral mixture analysis and adjustment of spectral vegetation indices have consistently proven 

to be more effective than traditional remote sensing techniques using unadjusted spectral 

vegetation indices for LAI estimation (Peddle et al., 1999, Peddle et al., 2001, Peddle and Johnson 

2000, Seed and King 2003, Hu et al., 2004). However, few if any explicit comparisons of spectral 

mixture analysis and adjustment of spectral vegetation indices have been performed. As these 

techniques exhibit particular advantages and disadvantages it is important to know their relative 

modeling strengths so that an appropriate method can be selected based on the particular 

operational context for which estimates are required. Additionally, should neither technique prove 

sufficiently able to model variations in canopy LAI alternative techniques must be explored. 

1.2 General Thesis Objectives 
 

There are three primary objectives for this thesis. These objectives are: 

1) To derive and compare the relationships between in-situ LAI measurements and input 

parameters determined using the modification of spectral vegetation indices, linear 

spectral mixture analysis and methods developed for this study.   

2) To determine the sensitivity of these relationships to variations in error and scale.   

3) To determine the accuracy of the estimation process across a landscape to determine 

whether these relationships are useful in the derivation of input data to hydrological, 

forest management and climatic models 
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1.3 Thesis Outline 
 

To accomplish the three preceding objectives, several steps have been taken. Firstly, a literature 

review, presented in Chapter 2, has been conducted to provide a context for the work performed in 

this study. The relevance of this work is demonstrated through the examination of several process 

models making extensive use of the LAI parameter. 

 

The second component of the literature review involves an examination of the definition of LAI, 

due to its ambiguous nature. The various techniques for LAI measurement, along with their 

advantages and disadvantages, are discussed. Particular attention is paid to the in-situ optical and 

remote sensing techniques due to their application in this study. 

 

Detailed research objectives, along with an analysis of gaps in the literature, are presented in 

Chapter 3. The specific techniques and instruments that have been employed to collect the data for 

this study are also discussed.  

 

In Chapter 4, the methodologies described in Chapter 3 are implemented and their performances 

are validated where necessary. 

 

Chapter 5 discusses the relationships derived between the in-situ LAI measurements and the 

remotely sensed modeling parameters used in this study. 

 

Chapter 6 describes a sensitivity analysis of the relationships derived in Chapter 5 to various 

known error sources. This sensitivity analysis is performed by analyzing the relationships over a 

variety of spatial extents and areas. 

 

Chapter 7 provides the conclusions and recommendations of this study   
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2. Literature Review 
 

2.1 History and Definitions of LAI 
 

2.1.1 Definitions 
 

LAI is a term that has traditionally been defined quite ambiguously because it has been used to 

refer to quantities which can be similar but not identical (Barclay 1998). The definition of LAI is 

often dependent on the purpose of the study or the background of the investigator, with some 

disciplines preferring a certain definition over others. 

 

Historically, the simplest definition of LAI has been the total area of leaves per unit ground area 

(Nemani et al., 1993). This definition, which was first proposed (Watson, 1947) for agricultural 

purposes, accounts for leaf structure, particularly with respect to shape. This definition of LAI is 

used throughout this paper when either actual LAI or true LAI is referred to. The adoption of this 

definition as actual LAI is due to its historical primacy and the fact that has physical meaning. 

 

Another definition of LAI is half of the total area of leaves per unit ground area. This definition is 

frequently used for studies related to climate change or mass transfer as this definition is 

representative of the forest’s gas exchange potential (Barclay, 1998). 

 

Another definition used within the remote sensing community is the projected area of horizontal 

leaves per unit ground area. This measurement represents the maximum leaf area observable at 

nadir (Barclay 1998). 

 

Finally LAI has been defined as the projected area of leaves inclined to the horizontal. This 

definition is useful for modeling light transmission through a canopy, as it is equal to the foliage 

area intercepting light. This definition describes LAI observable at nadir. This definition has been 

slightly modified in many contemporary studies to be half the total surface area of green foliage 
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per unit of ground area projected on the local horizontal datum. This modification has been made 

to account for mass and energy transfer within the canopy (Fernandes et al.,2004, Chen and Cihlar 

1995). This definition will be used for the terms equivalent or effective leaf area as it measures the 

attenuation of light within the canopy. 

 

2.1.2 Measurement Techniques 
 

The term LAI, as demonstrated in the previous section, possesses many different definitions. 

Frequently, these definitions have evolved alongside the numerous techniques which have been 

used to obtain LAI measurements. This section discusses the common techniques for LAI 

measurement and their associated advantages and disadvantages. 

 

2.1.2.1 Destructive Sampling 
 

Traditionally, LAI has been measured directly through destructive sampling of the vegetation in 

the area of interest. This involves measuring the surface area of all foliage within a specified area, 

in addition to whatever necessary parameters such as mean leaf orientation are required by the 

particular LAI definition being used. Unfortunately, destructive sampling presents several 

problems related to its time-consuming and environmentally disturbing nature. These problems 

with direct sampling have prompted the development of alternative methods for LAI 

measurement. 

 

2.1.2.2 Allometric Equations 
 

The first class of alternative methods has been the definition of allometric relationships for LAI 

estimation. These methods are indirect, as they are based on well defined relationships between the 

value of a surrogate and LAI. These surrogates are typically attributes that are easily measured, 

such as diameter at breast height, and that exhibit strong correlation with LAI. These estimates 

tend to be species specific and regional in nature because differences in ambient and normal 

climatic conditions are not otherwise accounted for. Allometric methods are an improvement over 
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the direct method because they only require destructive sampling to define the initial relationships 

between LAI and the surrogate. Allometric methods also tend to require substantially less time due 

to the facility with which the surrogate is generally measured. Unfortunately, despite these 

advantages, allometric methods are limited by their requirement for in-situ measurements and by 

their regional applicability. 

 

2.1.2.3 Hemispherical Photography 
 

Another technique for LAI determination is the application of hemispherical photography. 

Hemispherical photography involves analyzing a circular image, covering 180°, taken upwards 

from the ground level. LAI is determined by measuring canopy gap fraction at various angles 

(Pontailler et al., 2003). The advent of digital photography has increased the applicability of this 

technique, rendering measurements more efficient in terms of time and cost. One significant 

difficulty associated with this method is its limited applicability due to the fact that it can only be 

applied on overcast days to avoid the scattering of incident radiation. Another disadvantage is that 

a clumping index (Chen and Cihlar, 1996) must also be determined to account for non-random 

foliage distribution within the canopy. The estimation of a clumping index is difficult to perform 

but is required to convert from effective to actual leaf area within a canopy. Hemispherical 

photography is not recommended for use in tall forests where leaves can be smaller than the size of 

one pixel resulting in a classic mixed pixel problem (Pontailler et al., 2003). 

2.1.2.4 Optical Measurement Techniques 
 

Another class of alternative methods for LAI measurement has been the development of optical 

techniques. Optical instruments observe incident radiation at the top of the canopy and compare it 

to that at the height of the instrument. The instrument then uses the known relationship between 

these two quantities to define an effective LAI. 

 

Prior to discussing the physical relationships which govern optical LAI measurement, it is 

important to define several concepts, namely canopy gap fraction and canopy gap size distribution. 
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Canopy gap fraction has been defined as the “…percentage of background area viewed from above 

(ground or understory), below (sky and clouds), or within a canopy,” (Gower et al., 1999). Canopy 

gap fraction is therefore a primary factor in the determination of the amount of light that would be 

able to penetrate a canopy. 

 

Canopy gap size distribution has been defined as the “…actual dimension of gaps between 

individual elements ranging from a fraction of a centimeter to several meters within a canopy,” 

(Gower et al., 1999). Canopy gap size distribution is important because gaps are assumed to be 

randomly distributed within a canopy by most optical measurement techniques. If the assumption 

of random foliage distribution is violated, errors are likely to be introduced into the estimation of 

canopy leaf area. Needleleaf canopies have been observed to exhibit foliage agglomeration in 

several studies (Stenberg et al., 2003, Eklundh et al., 2003). Therefore, adjustments to the initial 

estimates of leaf area have to be made. 

 

Optical measurement techniques are based on the relationship described in Equation 2.1 (Eklundh 

et al., 2003, Fernandes et al., 2004) 

 

 

 

 

[ ] ( ) ( )∫=
90

0
e dθθsinθcosT(ln-2LAI θ   Eq. 2.1 

Where LAIe is a measurement of the effective LAI, T(θ) is the transmitted non-intercepted 

radiation and θ is the view angle. The integral is taken over the range of zenith angle, from 0 to 90°.  

 

This relationship assumes randomly distributed foliage of convex shape. This relationship is then 

discretized in Equation 2.2. 

 

 - Eq. 2.2  

 

The number and location of the view angles at which the measurements are taken, symbolized by n 
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in the above equation, differs between measurement instruments resulting in slight variances in the 

observed values when different optical sensors are used. 

 

This effective LAI, sometimes referred to as the plant area index, deviates from the true LAI due to 

effects associated with both the structure and geometry of individual leaves and the canopy as a 

whole. These effects are partially mitigated by performing measurements to determine the extent 

of clumping within the canopy. The knowledge of the extent of clumping within a canopy allows 

for the quantitative adjustment of the LAIe so that it can serve as an LAI estimate, as in Equation 

2.3. 

 

eYLAILAI =  Eq. 2.3 

 

where Y is the clumping index of the foliage 

 

Optical methods are advantageous because of their global application, non-destructive nature and 

overall measurement efficiency compared to other methods. Optical methods can also, because of 

their non-destructive nature, be used to monitor changes in phenological development over time 

(Eklundh et al., 2003). The primary disadvantage of optical methods is their requirement for 

in-situ measurement, which limits the spatial extent of LAI estimates that can be practically 

achieved using these methods. Another disadvantage is that optical methods are somewhat limited 

in their application for non-homogeneous stands. Optical methods also assume that direct solar 

radiation is the only source of radiation observed beneath the canopy (Gower and Norman, 1991). 

 

2.1.2.5 Radiometric Techniques 
 

Another technique for LAI estimation is through passive radiometric measurement of the spectral 

reflectance properties of the vegetation of interest. Radiometric sensors have been employed 

in-situ or mounted aboard various vehicles, such as satellites and airplanes, to obtain remote LAI 

estimates. Radiometric techniques typically employ a combination of several spectral bands, 

usually located in the red and near-infrared (NIR) ranges of the spectrum to derive spectral 

vegetation indices. These portions of the electromagnetic spectrum are used because of the 
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distinctive reflectance properties that vegetation possesses in these bands, as shown in Figure 2.1.  
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Figure 2.1: Reflectance Spectra of Vegetation Measured by Spectroradiometer  

 

The formulas for the most commonly used spectral vegetation indices are provided in Table 2.1, 

with RED and NIR representing the values of the reflectance measurements obtained in the red and 

near-infrared channels respectively.  
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Table 2.1: A Summary of Vegetation Indices and their Formulas 

Name Originating 

Study 

Acrony

m 

Formula 

Normalized 

Difference 

Vegetation 

Index 

Rouse et 

al., ,1973 

NDVI 

REDNIR

REDNIR

RADRAD
RADRAD

+
−

 

Simple Ratio Jordan, 

1969 

SR 

RED

NIR

RAD
RAD

 

Weighted 

Difference 

Vegetation 

Index 

Clevers, 

1989 

WDVI REDNIR aRADRAD −  

where a=is the simple ratio of a pure soil pixel 

Soil-Adjusted 

Vegetation 

Index 

Huete, 

1988 

SAVI ( )( )
( )LRADRAD

L1RADRAD

REDNIR

REDNIR

++
+−

 

( )( )WDVINDVI2.121L −=  

Transformed 

Soil-Adjusted 

Vegetation 

Index 

Baret and 

Guyot, 

1989 

TSAVI ( )
( )2

RED

NIRREDNIR

s1XasRAD
aRADasRADRADs
++−+
+−−

 

where a is the soil line intercept,  
s is the soil line slope, and X 
is an adjustment factor which  
is set to minimize soil noise  
(0.08 in original papers). 
 

Perpendicular 

Vegetation 

Index 

Richardson 

and 

Wiegand, 

1977 

PVI ( ) ( )acosRADasinRAD REDNIR −  
where a is the angle between the soil line and 
the NIR axis. 
 

Moisture 

Stress Index 

Rock et al, 

1986 

MSI 

NIR

MIR

RAD
RAD  
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The primary advantage provided by remote sensing techniques is their capacity to estimate LAI in 

a geographically extensive and non-destructive manner. Remote LAI estimates can be obtained 

more efficiently in terms of time and cost than the majority of in-situ techniques. The primary 

disadvantage presented by LAI estimation using radiometric measurements is the saturation that is 

exhibited in certain wavelengths once LAI values exceed certain thresholds. 

 

Another technique applied for LAI estimation, with particular advantages in modeling 

non-random foliage distribution and its effects on transmitted radiation, is the Monte Carlo method 

(Kucharik et al., 1998). The authors applied this technique to clumping index estimation in boreal 

aspen, black spruce and jack pine stands in northern Saskatchewan and Manitoba. The primary 

goal of this work was to account for canopy architecture which exhibits agglomeration at different 

scales. The authors noted that there is a minimum element size at which the extent of clumping 

within a canopy can be measured. Within-shoot clumping can then be difficult to measure in a 

needleleaf canopy due to the spatial resolution of the sampling method which is often too coarse to 

observe this effect. The authors used the multiband vegetation imager (MVI) to obtain LAI 

estimates which had been adjusted for non-random foliage distribution and the effects of branches. 

They noted that the factors which they computed to account for canopy clumping were entirely 

dependent on the zenith angle at which the incident radiation penetrated the canopy. The estimates 

derived from the MVI differed from destructive samples at levels ranging from 10 to 25%. The 

authors determined that there is a much larger standard deviation associated with LAI 

measurements in black spruce and jack pine than in aspen which they attributed to lessened range 

of stem densities in the aspen stands. The authors noted that the difference between the boreal and 

temperate aspen communities was the lower values of crown closure observed in boreal aspen 

stands.  A significant difference between the needleleaf and broadleaf populations was observed in 

the contribution of between crown gaps to total gap fraction. The authors determined that 80 to 

95% of total measured gap fraction at zenith is due to between crown gaps in conifers while the 

contribution of aspen varies between 40 to 60%. The authors found that the measurements of the 

clumping index obtained from the MVI differed by 10 to 15% from those obtained using a tracing 

radiation and architecture of canopies (TRAC) measurement device for the aspen stands. The 

estimates of clumping index provided by the two measurement techniques exhibited deviations 



 

 12

which were approximately four times as large as the broadleaf case. The authors used Monte Carlo 

simulations to determine the extent to which the measured clumping index is dependent on the 

zenith angle and the clumping index at nadir. They concluded that the use of a clumping index can 

contribute to more accurate LAI estimates where the foliage distribution within the canopy is not 

random. The authors also concluded that where in-situ measurements of clumping index are not 

available it can be reasonably approximated using Monte Carlo simulations. 

 

2.1.3 Comparison of in-situ techniques for LAI estimation 
 

One study has analyzed the performance of optical measurement techniques for LAI estimation in 

the Canadian boreal forest (Chen and Cihlar, 1995). The authors noted disadvantages in the use of 

optical methods including leaf geometry, agglomeration and the contribution of woody material to 

light attenuation. The most significant of these difficulties was concluded to be agglomeration in 

conifer stands. This led to the use of a supplementary optical technique to measure gap size 

information to account for the agglomeration and the resulting underestimation of LAI. The 

authors concluded that they could accurately determine the agglomeration factor needed to convert 

the effective LAI to the actual LAI. 

 

Another study comparing the results of optical LAI measurements to allometric LAI estimates was 

performed in central Finland for Scots Pine stands (Stenberg et al., 2003). The goal of this study 

was to determine the effect that changes in actual LAI would have on in-situ optical measurements. 

The changes in actual leaf area were implemented through gradual defoliation. The authors noted 

that the effect of non-random foliage distribution would result in an underestimation of plant area 

index which could function as a more accurate LAI estimate. They determined that the relationship 

between changes in actual LAI and changes in LAI measured optically was approximately linear. 

They concluded that this result was important for applications where the change in LAI is of more 

interest than its absolute value. The authors concluded that the relationships they were able to 

derive were accurate predictors of LAI. These relationships tended to be more accurate at lower 

values of LAI and exhibited increasing divergence as these values increased. 

 

Another study compared LAI estimates obtained from in-situ radiometry, hemispherical 
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photography and optical measurements to destructive measurements for oak stands in Florida 

(Pontailler et al., 2003). The correspondence between the various LAI estimates and the actual 

measurements is high, with the coefficient of determination exceeding 0.95 in all cases. This high 

correspondence is likely due to the limited number of samples. The limited number of samples 

does not allow for a conclusion to be reached regarding the optimal technique for non-destructive 

in-situ LAI measurement. 

 

Another study related direct measurements of leaf area to estimates which were derived from 

optical techniques (Gower et al., 1999). Accurate in-situ LAI measurements are required to 

develop effective remote estimation algorithms for LAI, absorption of photosynthetically active 

radiation and net primary production. Unfortunately, due to the difficulty of measuring these 

quantities in a rigorous manner, various alternative in-situ techniques have been introduced for 

their measurement. These alternative techniques, such as optical methods for LAI estimation, 

introduce errors of approximation which intensify as these methods are applied in conditions 

where their governing assumptions do not hold.  The authors note that the most frequently used 

independent variables for the estimation of leaf area are sapwood cross sectional area or diameter 

at breast height. These relationships usually are of a power type, frequently transformed to 

logarithms as follows 

 
baXY =  Eq.2.4 

( ) ( ) ( )XblogalogYlog +=   Eq.2.5 

 

where X is the independent variable, Y is the dependent variable and a and b are coefficients 

determined by regression.  

 

The independent variable, typically diameter at breast height or sapwood area, is an easily 

measured parameter which evidences a strong relationship with the dependent variable. The 

dependent variable, typically LAI in this study, is an important quantity which is usually difficult 

to measure directly and uses a closely related and easily measured variable as a surrogate.   

  

Specific leaf area, the factor relating leaf area to measured biomass, was determined to be 
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important due to the strong positive correlation it exhibits with maximum rate of photosynthesis 

and nitrogen concentration in leaves. The authors also noted that the coefficients required to 

convert from projected leaf area to total leaf area were dependent on the characteristic shape of the 

leaf. They also determined that differences in the nutrients available to the vegetation could affect 

the allometric coefficients. After analyzing the optical measurement techniques, the difficulties 

presented by non-random foliage distribution in needleleaf canopies were explored. The authors 

hypothesized that instruments which measure clumping within a canopy will not be used 

frequently. They also noted that these instruments do not generally have sufficiently fine spatial 

resolution to quantify within-shoot clumping. Values of shoot to total needle ratio are required to 

normalize the clumping index to account for within-shoot clumping. The authors also noted that 

optical instruments for LAI measurement do not account for the contribution of woody material, 

which typically constitutes between 5-35% of total plant area. They noted that similar studies 

found only 10% of total branch area influenced optical LAI measurements and recommended that 

the effects of branches be neglected for canopies with large amounts of foliage. 

 

2.2 Role of LAI in Forest Management and Biodiversity 
 

The primary goal of contemporary forest management practice is to effectively plan and 

implement strategies to manage forest resources in such a way as to maximize profit without 

compromising the long-term viability of those resources. To accomplish this task, forest managers 

require data which provide them with insight into the current state of the forest and its associated 

processes. Knowledge of the current conditions of both vegetation and its processes within a 

management area allows forest managers to predict future developments in the forest area under 

their management plan. This allows for effective planning so that forest resources can be harvested 

optimally. After harvesting has taken place, the area can then be managed so that regeneration of 

the landscape occurs according to the design of the forest manager. 

 

LAI has been a quantity which has frequently been used by forest managers and researchers alike 

for the assessment of forest attributes and processes. The role of LAI is examined where it is a 

relevant indicator or surrogate for a specific forest characteristic or action. 
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2.2.1 Forest Productivity and Modeling 
 

The role of LAI has been determined to be an important variable in applications related to forest 

productivity. Forest productivity is a broad term for the expansion state of a forest and is a 

quantification of its growth rate. Knowledge of the state of current forest productivity can be used 

to compute its overall potential for growth given additional information such as stand age and 

species composition. 

 

To determine how and to what extent the canopy leaf area of a forest is related to forest 

productivity, measures of forest productivity must be discussed. Photosynthesis is the source of all 

energy available to a forest and it is this energy that makes forest productivity possible. The total 

energy produced by photosynthesis is reduced by the amount of energy required for respiration, for 

purposes of cell maintenance, resulting in the net primary productivity. This relationship is 

summarized in the following equation. 

 

RespirPhotoNPP EEE −=  Eq.2.6 

 

where ENPP is the energy available for net primary production, EPhoto is the energy produced by 

photosynthesis and ERespir is the amount of energy required by the vegetation for respiration. 

 

The energy remaining for net primary productivity is used in the synthesis of new structures within 

the forest such as foliage, branches and roots. Therefore, LAI exhibits a direct relationship with net 

primary productivity. If measurements of leaf area are considered over time, it is possible to 

determine trends in LAI which can be used as surrogates for trends in net primary productivity. 

After conducting an assessment of the net primary productivity of a forest, the problem of 

selecting an optimal harvest time is simplified. As a climax community is reached, net primary 

productivity decreases until equilibrium is reached between photosynthesis and respiration, apart 

from any disturbing factors. 

 

A study examined the relationship between LAI and rates of photosynthesis in boreal 

environments (Bonan, 1993). The author of this study conducted a sensitivity analysis for a model 
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which estimated rates of photosynthesis based on input values of LAI and species composition. 

LAI was determined to be an important parameter because it is a primary determining factor for 

both the absorption of photosynthetically active radiation and stomatal area. The author also noted 

the tendency of broadleaf species, by a factor of two, to apportion more energy produced from 

photosynthesis to the development of new foliage than do needleleaf species. Conversely, conifers 

apportion twice as much photosynthetic energy to the development of root networks than is the 

case for broadleaf vegetation. Physiological characteristics of needleleaf vegetation were observed 

to exhibit more substantial difference from those of broadleaf vegetation than between any species 

which were both members of the same evergreen or broad-leaf class. The results of the sensitivity 

analysis determined that estimates of photosynthesis exhibited the highest degree of sensitivity to 

variations in LAI, while exhibiting less sensitivity to differences between species. The author 

noted that uncertainty in LAI introduced greater errors into the estimation of photosynthesis than 

did species misclassification. Increased assimilation rates were observed for needleleaf vegetation 

over broadleaf vegetation due to nitrogen limitation imposed in broadleaf canopies. The author 

determined that variations in LAI were responsible for 77% of the modeled assimilation rates, in 

the linear case. It was also noted that LAI exhibited a strong correlation with species type. The 

variations in species composition and LAI were able to account for approximately 95% of the 

variance in the estimate of assimilation within the canopy. A coarser delineation into only 

broadleaf and needleleaf vegetation allowed for the comparison of this quantity with species type. 

The author found that LAI and vegetation type, whether needleleaf or broadleaf, were responsible 

for 94% of the deviations in modeled assimilation rate. The authors concluded that uncertainty in 

LAI can cause errors between 42-70%. It was also concluded that characterization of vegetation 

type was sufficient, rendering further classification into individual species unnecessary, to provide 

accurate estimates of assimilation rates in boreal forest canopies. 

 

Another study used remote sensing techniques to estimate LAI within an ecosystem and to use 

these values to estimate net primary productivity (Franklin et al 1997).  Information regarding net 

primary productivity can be used to identify areas where productivity is less than expected given 

the location and environment of the region and remedial management strategies can then be 

employed. The study region was located in the Fundy National Forest and LAI estimates were 

derived from seventeen stands. The authors corrected for geometric errors by using the mean 



 

 17

NDVI of a sampling window centered at the presumed location of the stand for the prediction of 

that stand’s LAI. The authors determined that a weak relationship existed between NDVI and LAI 

for all stands. A strong relationship, possessing a coefficient of determination of 0.93, was found 

for the sampled needleleaf stands. The authors determined that the LAI estimate obtained from 

remote sensing for broadleaf vegetation was consistently underestimated. The authors concluded 

that forest species composition could be selected based on the extent to which the species 

optimally used the landscape relative to its potential productivity. 
 

2.2.2 Carbon Budgeting 
 

The estimates of net primary productivity generated above are not only of interest to the forest 

management community but they are also relevant to those wishing to determine carbon 

sequestration in forests and incorporate this information into an integrated carbon budget at 

various scales (Kergoat 1998). Net primary productivity is a measure of the carbon which has been 

converted in the photosynthetic reaction described in Equation 2.7 and is therefore removed from 

the atmosphere. 

 

2612622 6OOHCO6H6COtionSolarRadia +→++  Eq.2.7 

 

The sequestration of this carbon dioxide results in lower levels of atmospheric carbon dioxide than 

would be otherwise observed. The lower levels of carbon dioxide in the atmosphere which occur 

as a result of photosynthesis in forest ecosystems are important to the global carbon budget, 

particularly given recent trends towards rapid deforestation and increases in anthropogenic 

emissions of carbon dioxide. 

 

In addition to the relationships determined between net primary productivity and leaf area there are 

other ways in which leaf area affects carbon sequestration in forests. The canopy is the locus of 

energy and mass exchange within a forest. The ability to exchange carbon dioxide, water and 

oxygen is a function of the overall leaf area (Spanner et al., 1990). 

 

The knowledge regarding rates of carbon dioxide exchange and sequestration within the boreal 
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forests is important, particularly in the Canadian context, as this allows for the analysis of carbon 

sink potential and an improved bargaining position when negotiating international environmental 

treaties. 

 

In a series of papers, the FOREST-BGC model was developed to characterize water, carbon and 

nitrogen balances within forest stands (Running and Gower 1991, Running and Coughlan 1988). 

In the first study, the authors used LAI as the key parameter for modeling energy and mass 

exchange. The models were applied to seven distinctly different climatic regions and compared 

these values to those observed in-situ. A sensitivity analysis was performed for each of the 

environments by varying the LAI value. The authors determined that the ecosystem process and 

hydrological models that were developed exhibited high levels of sensitivity to the LAI.  They 

noted that they considered LAI to be the most important parameter for modeling vegetation 

structure at the regional scale and they designed their models accordingly with most of the 

quantities dependent on LAI. The authors concluded that their model exhibited sufficient relative 

accuracy when run at the continental scale to characterize regional variations in ecosystem 

processes without a-priori calibration. In the second study, the authors proposed an integrated 

modeling of the nitrogen and carbon cycles. They noted that the foremost difficulty they 

encountered was determining the relative allocation of photosynthetic material to roots and foliage. 

The FOREST-BGC model uses LAI as an attribute for the regulation of ongoing processes within 

the ecosystem. The boundary conditions of this model were determined by determining the rates at 

which these processes occur when they are limited by one of the three quantities alone. The 

authors also noted the relationship between foliage growth and corresponding root development. 

They concluded that the more efficient sites had higher rates of total photosynthate dedicated to 

foliage production. 

 

2.2.3 Other Relevant Studies 
 

The canopy leaf area has also been determined to have an effect on vegetation growth and 

development underneath the canopy. This is primarily due to the varying attenuation of incident 

radiation associated with variations in the density of foliage (Eklundh et al., 2003). As evidenced 

by the photosynthetic equation, an inverse relationship would exist between canopy leaf area and 
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understory growth. This would occur because a greater leaf area would result in increased 

radiation attenuation resulting in decreased radiation available to understory vegetation for 

photosynthesis. 

 

The knowledge of LAI is important because without information concerning it or some closely 

related parameter it will prove difficult to model or monitor the devastation from forest fires. It is 

also difficult to quantitatively observe regenerated forest landscapes without the introduction of a 

parameter which models the canopy structure.  

 

2.3. Relationship between LAI and Hydrology  
 

The LAI is an attribute of vegetation that has frequently been used to model hydrological 

processes because of its relationship to physical and biophysical processes occurring within the 

vegetation itself. 

 

2.3.1 Evapotranspiration 
 

LAI has been determined to be important for models of evapotranspiration and photosynthesis 

because it is a measure of the surface available for radiation absorption and material transfer 

(Kergoat 1998). Variations within the LAI can be indicative of changing moisture conditions and 

can result in a shift in the water balance due to differences in evaporation and transpiration. The 

amount of evaporation is dependent on the LAI in terms of the amount of precipitation intercepted 

and the amount of radiation able to penetrate the canopy. The amount of transpiration depends on 

the LAI as shown in the Penman-Monteith equation determined in Equation 2.8 
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Where ∆ is the slope of the saturation vapor pressure curve, Rn is the net radiation, G is the ground 
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energy flux, Pa is the density of air, Cp is the specific heat of air, Ez
0 is the saturation vapor pressure, 

Ez is the actual vapor pressure, Ra is the aerodynamic resistance, γ is the psychrometric constant 

and the surface resistance Rs is a function of stomatal resistance in the canopy. 

 

These typical functions of stomatal resistance are dependent on LAI and examples are contained in 

Table 2.2. 

 

Table 2.2: Expressions for Canopy Stomatal Resistance  

Model  Stomatal Resistance  

Zhang et al., ,2001  
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Transpiration exhibits a curvilinear relationship with LAI (Kergoat. 1998). Overall 

evapotranspiration maintains a direct relationship with LAI. The LAI exhibits a direct relationship 

with moisture demand as additional moisture is required to maintain vegetation health when 

additional foliage occurs within the system. As canopy LAI increases, the level of drought 

intensifies correspondingly. 
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Another study related changes in site water yield to variations in evapotranspiration related to 

changes in LAI. (Watson et al., 1999). The authors initially hypothesized that, through monitoring 

the changes in LAI across the catchment system over time, they could fully characterize the 

observed changes in streamflow. They first applied a relationship that had been derived between 

forest age and water yield. They hypothesized that forest age was really a surrogate parameter for 

LAI and that leaf area was actually the parameter governing the site water balance. The authors 

hypothesized LAI to be the governing parameter because of their subordinate hypothesis that both 

transpiration and interception are characterized by LAI. They noted that the leaf area of the forest 

canopy exhibits an increased level of control over evapotranspiration, compared to the leaf area of 

the understory, due to the greater amount of solar radiation it receives.  For this reason, the authors 

chose to separate out the contributions of canopy and understory LAI. A distributed hydrological 

model based on LAI derived from allometric relationships with stand age was used in this study. 

Variations in stand age across the watershed were simulated based on known harvesting and forest 

fire events. The output of the water balance simulation, which incorporated climatic data, was then 

compared to historical streamflow measurements. The authors concluded that variations in LAI 

were unable to fully characterize the changes in streamflow over the study period. They 

subsequently incorporated changes in stomatal conductance due to stand age dynamics. The 

authors concluded that the incorporation of changing leaf area and stomatal conductance with 

changes in stand age were able to adequately describe the changes in site water balance. 

 

2.3.2 Rainfall Interception 
 

Intuitively LAI would be thought to exhibit significant correlation with interception and further 

study has confirmed this initial supposition (Pierce and Running 1988). This study determined that 

interception was directly proportional to LAI. 

 

One study of interest has primarily focused on the theoretical relationship between interception 

and LAI (van Dijk and Bruijnzeel 2001).  The authors modified the Gash analytical model due to 

its consistent overestimation of rainfall interception in sparse canopies. The Gash model was 

reformulated according to several assumptions. Canopy storage capacity was assumed to be 
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directly proportional to LAI. It was also assumed that the ratio of mean evaporation rate over mean 

rainfall intensity could be expressed as a function of LAI. The authors noted conflicts with the 

adjusted Gash model for rainfall interception, which specified that canopy storage capacity was 

linearly related to crown closure and would therefore exhibit a negative exponential relationship 

with LAI. These data are usually agglomerated into forest inventory classes according to overall 

percentage of crown closure.  The authors concluded that LAI and canopy storage capacity 

exhibited a linear relationship in areas with low to medium LAI. It was noted that the only likely 

condition in which LAI and canopy evaporation would exhibit a linear relationship, according to 

the Penman-Monteith model,  would be due to an increase in LAI resulting in a considerable 

reduction in aerodynamic resistance of the canopy,. 

 

Another study has applied the reformulated Gash interception model in a northern hardwood stand 

in Ontario (Carlyle-Moses and Price 1999). The authors observed that canopy interception loss 

amounted to approximately 19% of incident rainfall. They noted that canopy interception loss is a 

factor of considerable importance in the determination of evapotranspiration in a forest. In contrast 

to empirical models which consider interception to be primarily related to intensity and frequency 

of storm events, the Gash model accounts for additional effects related to forest stand 

characteristics. The original Gash model has been modified to account for effects such as raindrop 

size and normalizes all measurements based on the stand’s canopy area, not the plot’s ground area. 

The revised Gash model has exhibited improved performance over the original Gash model 

although sparse forest conditions present difficulty. Predictions of interception to within 0.1 mm 

were obtained and verified against differences between incident precipitation, throughfall and 

stemflow. The error in the estimation of interception amounted to less than 1%. The authors 

concluded that the revised Gash model is an accurate predictor of canopy interception in a northern 

hardwood stand 

 

Another study examined rainfall interception in a black spruce canopy within the boreal forest in 

northern Manitoba (Price et al., 1997). Canopy interception efficiency ranged from 0.15 for large 

rainfall events to 0.60 for small amounts of precipitation.  Stemflow was determined not to be a 

substantial effect, as it was only evident at the largest values of precipitation and accounted for less 

than 1% of the total precipitation in all cases. Interception efficiency was concluded to be inversely 
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related to the magnitude of the rainfall event. Interception efficiency was determined to be 

significantly important irrespective of the magnitude of the rainfall event. The authors noted that 

the architecture of the spruce canopy contributed to variability in throughfall distribution. Over the 

study period canopy interception efficiency was measured to be approximately 0.23 of total 

precipitation at that location. The authors also noted the importance of understory interception, 

which contributed to further interception losses of 0.21 of incident precipitation at the top of the 

canopy. 

 

Another study examined the allocation of precipitation to each of throughfall, stemflow and 

interception in both natural-growth and plantation environments (Huber and Iroume 2001). The 

authors noted the effects that increasingly large forest operations can have on chemical and 

material cycling within a watershed. Precipitation was measured using standard rain gauges 

located in close proximity to the forest’s boundaries. Gutters were used in each of the twenty-nine 

plots for directing throughfall into a measurement tank. Stemflow was measured through the use of 

collars on the tree stems which were also connected to a measurement tank. Observed throughfall 

did not differ between needleleaf and broadleaf vegetation at a significance level of 0.05. A linear 

regression was performed between throughfall and incident precipitation and relationships which 

were statistically significant at a level of 0.01 were derived.  In contrast, stemflow was determined 

to be significantly different between needleleaf and broadleaf stands at a level of significance of 

0.01. Observed values of stemflow varied from 1 to 8% for broadleaf forests and from 1 to 13% for 

needleleaf forests.  Another linear regression was performed and it was concluded that incident 

precipitation exhibited a statistically significant relationship with stemflow for needleleaf 

vegetation but not for broadleaf stands. These relationships are presented in Table 2.3 below where 

I is interception, S is stemflow and P is incident precipitation in mm. 
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Table 2.3:  Equations Resulting from Linear Regressions of Stemflow versus Incident 

Precipitation for Various Vegetation Types (Modified from Huber and Iroume 2001)  

Vegetation Type Linear Regression 

Equation  

Coefficient of 

Determination 

Measurement 

Type 

Needleleaf 0.106P72.29S +−=  0.84 Stemflow 

Needleleaf  0.081P222.76I +=  0.60 Interception 

Broadleaf 0.014P20.65S +=  0.33 Stemflow 

Broadleaf 0.253P44.61I +=  0.73 Interception 

 

The authors also noted the effect of interception by multiple canopy layers which has often been 

assumed to be negligible. They propose that this assumption is only valid in dense canopies which 

do not allow incident radiation to penetrate sufficiently to evaporate intercepted precipitation at 

secondary layers of the canopy. The authors concluded that plantations should reduce interception 

losses due to the lessened contribution of the understory and lower stem density. They were not 

able to conclude what the overall impact of plantations would be on the water balance as 

evapotranspiration was not considered within this study. The authors recommended that 

watersheds which supported plantations should not be homogeneous in terms of age.  

 

Hydrologic measurements have also allowed for the examination of water balance in dense spruce 

stands in Sweden (Alavi et al., 2001). The primary objective of this study was to quantify 

interception losses and use these measurements to validate the interception component of the SOIL 

water balance model. The authors initially hypothesized that a more well-developed leaf area 

would lead to decreases in soil moisture due to increased interception and evapotranspiration. The 

development of water balance models, including the Rutter and Gash models, was examined. 

Throughfall was measured using two devices, roofs and funnel gauges, while precipitation was 

measured using rain gauges. LAI was measured using an LAI-2000 device which was corrected 

using the method proposed by Gower and Norman, 1991. The SOIL model was concluded to be 

reasonably accurate in its predictions of interception losses although it underestimates the 

interception loss for larger storms and overestimates it for smaller ones. The authors hypothesize 

that these predictions are in error because different governing factors control the magnitude of 

interception loss depending on the magnitude of the storm event. Canopy interception efficiency 
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was determined to vary from 0.30 to 0.60. The maximum storage capacity of the canopy, which 

was calculated from LAI estimates, was determined to be approximately three times that which 

was determined graphically. The authors concluded that interception losses can be estimated with 

reasonable accuracy using only LAI and aerodynamic resistance as input variables, on a seasonal 

time scale.               

 

2.3.3 Snowfall Interception 
 

In the boreal forest the interception of snow by vegetation and its subsequent sublimation have 

been identified as important factors contributing to hydrological dynamics within this environment. 

Global circulation models often implement simple interception and sublimation models. These 

models are not highly reliable and have often provided unrealistic estimates of interception and 

sublimation (Pomeroy et al., 1998). 

                                                                                                                                                                                    

One study which was undertaken in the southern boreal forest near Prince Albert, Saskatchewan 

measured the interception and sublimation of incident snowfall in a jack pine stand (Pomeroy et al., 

1998). The authors attempted to derive energy transfer models which could accurately model 

interception and sublimation within the canopy. The models were concluded to be moderately 

accurate predictors of the interception and sublimation occurring within the stand over a range of 

temporal resolutions. The authors concluded that losses of moisture due to sublimation are 

considerable, with sublimation occurring in the late-winter achieving particular importance. 

 

Another paper measured the interception of snowfall in the boreal forest near Prince Albert. 

(Hedstrom and Pomeroy, 1998). The authors attempted to extrapolate from measurements taken 

on the interception properties of an individual branch to those exhibited by an entire canopy. They 

wished to derive a model which was independent of the rate of unloading of intercepted snow as 

previous studies have been primarily conducted where sublimation is high. An inverse relationship 

was observed between the rate of interception and the total amount of snowfall due to the canopy’s 

structural strength. The authors distinguish between interception in the boreal and temperate 

forests because intercepted snow generally sublimate more quickly in temperate environments.  

They observed that the interception capacity of an individual branch depends on its surface area 
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and the amount of snow already intercepted and remaining on the branch.  Snow retention in the 

canopy results from the combined effects of branch structural strength, the structural strength of 

previously intercepted snow and snow/branch coherence. As LAI was determined to be an 

important measure of canopy interception area in-situ measurements were made with an LAI-2000 

optical measuring device. The LAI determined by the LAI-2000 was not adjusted for clumping as 

the authors assumed that clumped branches would not intercept snow to the same extent to which 

they attenuate incident radiation. Therefore the authors concluded that an unadjusted optical LAI 

measurement was optimal for studies of snow interception in needleleaf canopies. These LAI 

measurements were stated to be within 10% of their true values. The authors determined that the 

maximum load of snow that can be supported by the canopy exhibits a direct linear relationship 

with LAI and can be determined through application of the following formulae: 

( )( )emax LAISL =  Eq.2.9 

 

Where S is a coefficient determined by species and snow density. 
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Where ρs is the density of fresh snow and S is defined as in equation 2.9. 

 

A sensitivity analysis was conducted to determine to what variations in modeling parameters 

would affect the models which were derived in this study. The authors observed a decline in 

interception efficiency as LAI increased.  Crown closure exhibited a direct linear relationship with 

interception efficiency. LAI only affected this relationship in a significant fashion as crown 

closure exceeded 70%. The authors concluded that the derived interception efficiency models 

were most sensitive to amount of snowfall, amount of snowfall previously retained, leaf area and 

time since snowfall. They noted that some variables such as LAI and crown closure are correlated 

and that this will have important effects on the stand. Mature stands, with more dense canopies, 

will likely exhibit higher rates of interception than younger stands, which are likely to have more 

open canopies. 
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2.4 Temporal and Spatial Variations of LAI 
 

LAI once defined is not a static quantity. Seasonal variations in LAI can vary from minimal for 

needleleaf vegetation (Spanner et al., 1990) to considerable for broadleaf vegetation. Independent 

of seasonal variations, changes in environmental factors related to the availability of moisture and 

sunlight can impact foliage conditions. This dependence is due to the environmental limitations 

that can be imposed upon biophysical processes which are important to the development and 

maintenance of healthy foliage.  

 

Substantial differences can also exist between the measured LAI between stands, even among 

identical species of vegetation at the same time of year. These variations can be attributed to a 

variety of spatially dependent factors. One important factor in LAI determination is topography 

because topography largely determines the amount of moisture and sunlight available to a stand. 

Site conditions independent of topography, such as soil conditions and surrounding vegetation, 

can also influence foliage development.  

        

One study focused on a quantitative comparison of the allometric and optical methods for LAI 

measurement (Hall et al., 2003). Optical methods of LAI estimation which measured the fraction 

of incident radiation penetrating a canopy and then converted this value to a LAI were employed. 

This study noted that optical methods underestimate LAI whenever foliage is not randomly 

distributed throughout the canopy. The TRAC approach to optical LAI measurement also 

considered gap size distribution within its estimation procedure. The authors concluded that the 

assumption of randomly distributed foliage within a canopy is more valid for broadleaf vegetation 

with a closed canopy structure than for needleleaf vegetation with an open canopy structure. Due 

to the non-random distribution of foliage within a canopy structure, they concluded that the extent 

of foliage clumping is an important parameter to measure for all species under consideration in this 

study. Significant correlation between spectral vegetation indices and LAI was only obtained in 

the case of white spruce when LAI was measured optically. All other relationships were 

determined to be insignificant. This study recommended further research over more varied stand 

conditions to analyze the applicability of spectral mixture analysis for species other than white 

spruce. 
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In another study hemispherical photographs were used at multiple sites in North America and 

Europe to assess foliage clumping in forest canopies (Walter et al., 2003).  Both the clumping 

index, proposed by Chen and Cihlar, and the coefficient of segregation, proposed by Pielou, were 

used to quantify the degree of foliage clumping at each study site. The authors of this study defined 

the basic foliage unit in a needleleaf canopy to be the shoot and therefore needed to measure a 

species specific within-shoot clumping index. An exponential relationship was obtained between 

cumulative gap fraction and clumping percentage. The LAI values that were adjusted by the Chen 

and Cihlar clumping index are reliable at low values of clumping but unreliable as clumping 

increases. The Pielou coefficient of segregation exhibits acceptable performance at all clumping 

percentages from 0 to 80%.The estimates predicted using the Chen and Cihlar clumping index are 

systematically higher than the estimates obtained from the Pielou coefficient of segregation. The 

authors concluded that the Chen and Cihlar clumping index should be applied when the canopy 

does not exhibit significant clumping and the Pielou coefficient of segregation should be applied 

when the canopy exhibits significant clumping. 

 

Another study employed optical techniques for LAI estimation in needleleaf stands in Montana 

(Pierce and Running,1988). The authors used a sunfleck ceptometer to measure canopy 

transmittance and then converted this measurement to LAI using the Beer-Lambert law with a 

constant extinction coefficient of 0.52. The optical LAI estimates were then compared to 

allometric LAI estimates. The authors validated each of their assumptions regarding a constant 

extinction coefficient and the independence of measurements from incidence angle variations. 

Optical LAI estimates exhibited strong correlation with allometric estimates in this study. The 

authors noted that sampling error for optical techniques exhibited a positive exponential 

relationship with LAI. The ceptometer was determined to be effective in estimating values of leaf 

area indices under the following conditions: LAI(1.7-5.3) Stand Density (450-4140 trees/ha) 

Incidence Angle (32°-57°). 

 

A similar study occurred in Wisconsin in which destructive measurements were compared to 

optical LAI estimates(Gower and Norman, 1991).  The tendency for indirect optical methods to 

underestimate LAI in needleleaf forest was noted in the results of this study. The correlation 
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between the destructive measurements and the optical measurements was strong and positive 

although there was a systematic underestimation of approximately 35-40% due to non-random 

distribution of foliage. The authors noted that the ratio of total-projected needle area to the 

shoot-silhouette area for each species was similar. The effect of branches on LAI was determined 

to be approximately 1% of that of foliage. The LAI-2000 sensor was concluded to possess several 

advantages over other optical instruments including a larger field of view and better accuracy over 

a wide range of LAI. 

 

One study investigating the dependence of texture measures on pixel size was performed for 

boreal forest stands in northwestern Ontario (Gluck and Rempel 1996). Various topologic and 

geometric metrics, were examined through the comparison of Landsat images with infrared photos 

at resolutions of 1, 2 and 4m. Patch size metrics were determined to exhibit significant correlation 

with pixel size. Moderate correlations were evidenced between pixel size and shape. Interspersion, 

exhibited low levels of correlation with pixel size and was deemed to be scale invariant. These 

results corresponded to those which were expected a-priori except in the case of the patch shape 

metrics. 

 

2.4.1 Forest Dynamics (Boreal and Montane Forests) 
 

2.4.1.1 A Characterization of the Boreal Forest 
 

The boreal forest spans a considerable portion of the northern hemisphere and is one of the largest 

global biomes. In Canada the boreal forest comprises approximately 400,000,000 hectares, which 

is 35% of the national land area (Henry, 2002). The boreal forest is composed primarily of 

needleleaf vegetation although broad-leaved species can occur especially in the south. The most 

common needleleaf species in the Canadian boreal forest include jack pine, lodgepole pine, black 

spruce, white spruce and balsam fir. The prevailing broadleaf species in the Canadian boreal forest 

are aspen, balsam poplar and paper birch. The broadleaf and needleleaf species can occur in pure 

stands or in mixed stands. 
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Although there have been many schemes for the dichotomization of the boreal ecosystem a 

relatively straightforward delineation has been made between the open and closed boreal 

ecosystems. The closed boreal ecosystem is characterized by the formation of a canopy whereas 

the open boreal ecosystem does not form a canopy. 

 

Due to their compositional similarity the boreal forest has historically proven difficult to 

differentiate from the montane needleleaf forest, which occurs in the western mountain ranges of 

North America (Henry 2002). 

 

2.4.1.2 Trends in LAI 
 

The species which occur in the boreal forest have been studied extensively in terms of LAI. 

Typical LAI values have been determined for most species, often with associated variance 

information. The results obtained for common boreal species are presented in Table 2.4. 

 

Table 2.4: Summary of LAI Values for Various Tree Species 

Species LAI Value Source 

Black Spruce 1.1-3.8 Bonan 1993 

Black Spruce 4.1 Hedstrom and Pomeroy 1998 

White Spruce 4.4 Bonan 1993 

Trembling Aspen 2.3-4.6 Bonan 1993 

Lodgepole Pine 1.3-3.7 Kollenberg and O’Hara 1999 

Jack Pine 2.2 Hedstrom and Pomeroy 1998 

 

2.5 Relationships between LAI and Remotely Sensed Variables  
 

One of the first tasks for which remote sensing techniques have been applied has been the 

modeling and monitoring of vegetation and its processes. These techniques have contributed to 

advances in both methodology and understanding in a variety of scientific disciplines including 

agriculture, forestry, botany and chemistry.   
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2.5.1 Remote Sensing of Vegetation 
 

One of the first areas where remote sensing was applied is in the study of vegetation. Prior to the 

advent of remote sensing techniques vegetation studies were often labor intensive and thus quite 

limited in scale. Remote sensing provides a unique perspective for vegetation studies on the 

regional and continental scale that was largely unavailable previously. Historically, remote 

sensing has primarily used the red and near-infrared portions of the electromagnetic spectrum for 

characterizing vegetation and its processes. This concentration is due to the well defined spectral 

features of vegetation associated with these wavelengths demonstrated in Figure 2.1.  

 

2.5.2 Remotely Sensed Relationships for LAI 
 

Since the early 1980s remote sensing techniques have been increasingly applied to the problem of 

LAI estimation. The techniques and algorithms applied for LAI estimation have evolved 

considerably over time. The original techniques used for the remote LAI estimation are analyzed 

to demonstrate how they contributed to the development of the methods undergoing widespread 

use. 

   

2.5.2.1 Spectral Vegetation Indices 
 

The first studies which attempted to estimate LAI from remote sensing measurements typically 

involved the derivation of relationships between spectral vegetation indices and in-situ LAI 

measurements. The quality of the relationships which were derived varied substantially, 

depending considerably on location, environmental conditions and vegetation type. In addition to 

the variation associated with these methods of prediction, they tended not to be universally 

applicable due to saturation effects above certain LAI thresholds dependent on the observed 

vegetation. This technique is still commonly used due to the ease associated with the computation 

of spectral vegetation indices.   
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The primary objective of one study was to derive a relationship between structural parameters, 

which were measured in-situ, and spectral vegetation index values associated with Pacific 

Cordgrass (Phinn et al., 1999). Observations were carried out at high sun angles due to the fact that 

differences observed in the spectral properties of various vegetation species, caused by differences 

in structure condition and radiative transfer, are optimally observed at these angles. A preliminary 

classification of the marsh types using topography was performed to mitigate the measured 

differences due to factors such as leaf geometry, amount of light penetrating the canopy, 

orientation and amount of dead biomass. The results of this study concluded that canopy 

architecture, particularly leaf orientation, had a significant influence on the observed spectral 

reflectance. Moderate positive correlations were observed between the spectral values and the 

stem length measurements in all cases except the high marsh and the near-infrared. The one 

difficulty presented by this study is the fact that the sampling areas for stem length are not similar 

in size to the pixels defined by the remote sensing system. 

 

Similar relationships have been derived between other metrics of plant canopy structure (Kogan et 

al., 2003).  In this study the Global Vegetation Index (GVI) data set, derived from measurements 

made by the Advanced Very-High Resolution Radiometer (AVHRR), was used to compute the 

Vegetation Condition Index (VCI) from 1985 through 1994 for the country of Kazakhstan. In-situ 

measurements of plant density were made and a linear relationship was derived between plant 

density and VCI during 1991 and 1992. The relationship that was derived was a direct relationship 

with a coefficient of determination of 0.76. The results derived from this study are important 

because they demonstrate that spectral vegetation indices can be used as surrogate measurements 

for the ambient state of vegetation health and productivity. 

 

The primary objective of another study using spectral vegetation indices was to determine a 

relationship between NDVI and in-situ LAI measurements, for a variety of land-cover types (Kite 

and Spence 1994).  The LAI measurements were made using an optical LAI-2000 Plant Analyzer. 

Corrections were made to these measurements based on the ratio of mean projected needle area to 

projected needle area to account for the consistent underestimation of LAI resulting from the 

assumption of uniform foliage distribution within the canopy. The measurements were conducted 

at the peak of photosynthetic activity in July and August of 1994. The authors of this study noted 
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several advantages to using a normalized index, including partial mitigation of effects associated 

with changes in imaging geometry and ambient illumination. This study concluded that LAI 

estimates for each particular arboreal species did not vary significantly over the analysis period. 

The authors could not account for the aberrant NDVI values associated with spruce and tundra 

land-cover types. Additionally, the relationships between LAI and NDVI appeared to be specific 

to each land-cover type, but significant conclusions could not be made due to the lack of samples 

required for rigorous statistical analysis. 

 

Another study, relating to the relationship between LAI and NDVI in areas where regeneration 

after a forest fire had occurred, was performed on the Mediterranean coast of Spain (Videma et al., 

1996). This study attempted to relate the increasing LAI of a regenerating plant populations with 

NDVI derived from a Landsat Image. However, instead of relating NDVI to LAI directly, LAI was 

replaced with time in an exponential equation. The exponential equation derived in this study 

accounted for the effects of sensor saturation and soil reflectance at extreme values of LAI 

 

In a similar study in Holland several spectral vegetation indices were compared to determine their 

ability to estimate LAI and the sensitivity of these predictions to disturbance effects in agricultural 

applications (Bouman 1992). These disturbance effects include variations in illumination, soil, 

understory vegetation and canopy conditions. Variations in illumination conditions had the 

smallest effect on the predictive accuracy, amounting to 0.25 m2m-2. This allowed the authors to 

conclude that no further correction for illumination conditions was required. The errors introduced 

by the soil background effect ranged from 0.25 to 0.40 m2m-2 depending on the spectral vegetation 

index used. Errors introduced through variations in canopy properties had the largest effect on the 

LAI estimation accuracy. These errors increased in magnitude as LAI increased, with the WDVI 

and the PVI outperforming the NDVI and simple ratio by about 3.00 m2m-2.  The authors 

concluded that the selection of the most appropriate spectral vegetation index for LAI estimation 

depended on the variability of the radiance in the visible wavelengths. WDVI was determined to 

be preferable for large variations in observed radiances in the visible wavelengths and either the 

simple ratio or the NDVI was preferable for smaller variations in observed radiances. 

 

A similar study involved the use of spectral vegetation indices for LAI and canopy light 
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attenuation estimation (Baret and Guyot 1991). The authors noted the dependence of spectral 

vegetation indices on canopy structure, imaging conditions and reflectance properties. Areas with 

darker soils possessed higher vegetation index values when the amount of the vegetation was 

constant. A saturation of spectral vegetation indices with increasing LAI was observed. This 

saturation value varied depending on the spectral vegetation index used for estimation. The 

appropriate index for LAI estimation was concluded to depend on the characteristics and state of 

the observed vegetation. The authors concluded that the TSAVI was the best estimator of LAI for 

all LAI values less than 4. They concluded that for LAI values greater than 4, the NDVI was the 

best estimator for erect leaves and the PVI was the best estimator for leaves with low inclination. 

The PVI was determined to be the worst estimator for LAI values greater than 4 with erect leaves. 

The authors concluded that LAI estimation became increasingly difficult using spectral vegetation 

indices as these measurements became saturated. 

 

Another study examined the feasibility of using Landsat observations for LAI estimation in a 

boreal conifer forest in central Sweden (Eklundh et al., 2001). The analysis confirmed other 

published results in its conclusion that remote estimation models are sensitive to differing ground 

reflectances, as well as sun angle, in sparse stands. In denser stands the primary determining factor 

for visible reflectances was the reflectance properties of the leaf as less of the understory or 

background soil is visible. The density of the stands resulted in different trends occurring in 

Landsat channels 2 and 4. In dense stands bands 2 and 4 exhibited increasing reflectances contrary 

to the authors’ expectations. The results obtained from the sensitivity analysis allowed the authors 

to conclude that the middle infrared bands were important to observe forest stand structure. The 

middle infrared bands were concluded to be important because of their sensitivity to moisture 

content within the canopy. The authors found that corrected LAI values exhibited the highest 

correlation with Landsat Band 7, even over adjusted spectral vegetation indices. They concluded 

that the low correlation of the near infrared channel with LAI is likely the reason for the 

historically limited success of spectral vegetation indices in LAI estimation. LAI estimation by 

inverse canopy reflectance modeling was concluded to be difficult in needleleaf stands, due to the 

large number of parameters required by the models. These parameters are often difficult or 

time-consuming to measure in-situ and values are often taken from literature. 
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In another study, Landsat TM imagery was used for LAI estimation in broadleaf and needleleaf 

forests in Sweden (Eklundh et al., 2003). These estimates were compared to field measurements 

derived from optical, allometric and litter-trap techniques. These field measurements were 

adjusted according to three different correction methodologies to compare their correlation with 

remotely sensed LAI estimates. These correction factors accounted for non-random foliage 

distribution through the use of a clumping index. The contribution of woody material to the LAI 

estimate was accounted for in two of the methodologies through the incorporation of fractional 

measurements of woody area to total plant area. The authors compared the estimates obtained 

using various bands and their combinations as input parameters for LAI prediction models. The 

correlation coefficients with each adjusted LAI were determined to see correspondence between 

the remote LAI estimates and the in-situ measurements. The authors found that in needleleaf 

stands no statistically significant correlations were obtained between remotely sensed LAI 

estimates and in-situ measurements which accounted for the effects of non-random foliage 

distribution and woody contribution. The most significant correlations were observed between the 

LAI estimates obtained from the Landsat imagery and the in-situ measurements which had only 

been corrected for the non-random distribution of foliage within the canopy. Significant 

correlations were only observed in the visible bands for the allometric LAI measurements. The 

authors concluded that their modeling of LAI, which has only been adjusted for non-random 

foliage distribution, is capable of explaining 30% more of the measured variations in needleleaf 

stands than in broadleaf stands.  Several explanations for this difference were proposed, including 

the influence of crown closure, understory vegetation, intra-stand species variability, pigment 

variations and differences in internal structures and saturation thresholds. The authors explained 

the poor performance of more elaborate adjustments of optical measurements by the inclusion of 

outlying values which bias the derived model. Adjusted optical measurements were concluded to 

be only weakly correlated with allometric LAI estimates. In some cases adjusted optical 

measurements were determined to be negatively correlated with allometric LAI estimates, which 

is highly problematic. The authors attributed the low correlations between allometric and remote 

LAI estimates to “…site specific divergence…” from the allometric relationships that were used in 

this case study. Optical LAI measurements were concluded to be problematic because of the 

difficulty associated with measuring many of the relevant adjustment parameters in-situ. The 

authors determined that the adjusted optical models were extremely sensitive to the adjustment 
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parameters, in particular to the clumping index. The highest correspondence was observed 

between a multiple regression of TM bands 4 and 5 to the optical LAI measurement which had 

only been adjusted for non-random foliage distribution in the canopy. 

 

One study taking place in the western United States, with study sites located in the montane forest, 

examined the influence of canopy closure, understory vegetation and background reflectance on 

remote LAI estimates (Spanner et al., 1990). The authors determined that the influence of 

understory vegetation and soil background have a significant impact on the spectral properties of a 

forest stand and correspondingly on remote LAI estimates. They were able to conclude that LAI 

and near-infrared reflectance were uncorrelated, for stands with less than 89% canopy closure. The 

authors concluded that the simple ratio was more sensitive to differences in LAI at higher values 

than the normalized difference index. The normalized difference was more sensitive to LAI at 

lower values of LAI. The authors also concluded that accurate atmospheric correction is important 

in the remote sensing of needleleaf forests due to the larger contribution of path radiance to these 

radiance measurements than for other types of vegetation. It was suggested that spectral mixture 

models be used in the deconvolution of the spectral signatures of the needleleaf forest and the 

background. 

 

Another study was undertaken in the boreal forest within Canada to determine the optimal 

vegetation index for extracting the biophysical parameters of vegetation such as LAI and fractional 

absorption of photosynthetically active radiation (Chen, 1996). The quality of the estimates 

provided using each of the spectral vegetation indices was evaluated through a comparison with 

in-situ measurements. The results generated from this comparison demonstrated the advantages 

and disadvantages of the different spectral vegetation indices in modeling canopy structure and 

effects. The simple ratio performed the best in LAI estimation and was preferred over the NDVI 

due to its greater sensitivity and more linear response to changes in vegetation structure. The 

advantage presented by the NDVI is its fixed functional domain which ranges from negative one to 

positive one. The authors analyzed the effect of noise on these measurements and determined that 

the ratio spectral vegetation indices were preferable due to their noise attenuation.  Other spectral 

vegetation indices which are not generated from a ratio may actually amplify the measurement’s 

noise. The coefficients of determination of the relationships derived using other spectral 
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vegetation indices were negligible. The authors concluded that the use of a ratioing technique was 

critical in boreal forests due to the low signal to noise ratio within the individual bands. The 

estimation results depended significantly on the time of year with the best results being obtained in 

late spring because of the increasing magnitude of understory effects in the late summer. 

 

Another study which used spectral vegetation indices derived from hyperspectral imagery for 

remote LAI estimation was conducted for Norway spruce stands in the Idarwald study area in 

Germany (Schlerf et al., 2005). The authors related optical LAI measurements to spectral 

vegetation indices in samples stratified based on stand age. They observed positive correlations 

between LAI and reflectance in each of the near infrared, red and middle infrared bands with the 

strength of the correlation decreasing in that order. The authors concluded that due to the 

considerable LAI variability within age classes themselves the use of stand age as a surrogate for 

LAI is not advised. They noted that spectral vegetation indices which adjusted for the effects of 

background on the observed reflectance properties exhibited superior performance to all others 

within each of the stand age classes. However, when the whole data set was not stratified into age 

classes the indices which explicitly accounted for the performance of the background exhibited 

similar performance to those which did not. The authors compared broadband and narrowband 

versions of spectral vegetation indices and concluded that narrowband indices outperformed 

broadband indices in LAI estimation for every spectral vegetation index considered. 

 

Other studies of spectral vegetation indices have performed geostatistical analyses of observed 

variations in spectral vegetation indices over a variety of scales and topography to characterize the 

effects of these phenomena. One relevant study examined the effects of analyzing variations in the 

observed relationships between NDVI and LAI across multiple scales (Friedl et al., 1995). This 

involved the generation of a virtual image using LAI measurements which were subsequently 

inserted into the SAIL canopy reflectance model. The authors noted that joining process models at 

point locations to area extensive models can cause scale dependencies due to non-homogeneity of 

the land surface at the sub-pixel scale. A strong interrelationship between the structure of clumping 

in the vegetation was noted which complicates the overall relationship of spectral vegetation 

indices with LAI. One conclusion was that the relationship between NDVI and LAI is neither scale 

invariant nor linear. The authors also determined that the simulated NDVI values were not scale 
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invariant and tended to underestimate the true mean at coarser spatial resolutions. They noted that 

real world applications are likely to encounter errors of higher magnitude because of variation at 

the subpixel scale, due primarily to background effects. 

2.5.2.2 Geometrical-Optical Reflectance Models 
 

Due to the problems associated with the LAI estimation using spectral vegetation indices, 

alternative methods were explored. One such method was the use of geometrical-optical 

reflectance models. These models correlated in-situ measurements of modeling parameters, such 

as leaf orientation, with remote sensing observations of reflectance. These models were then used 

to compute the LAI that would produce such measurements. The advantage of this technique was 

that it required minimal in-situ measurements to derive LAI measurements across whole 

landscapes without the problems of saturation associated with spectral vegetation indices.  The 

disadvantages associated with geometrical-optical reflectance models is the fact that they require 

inversion which means that they can be sensitive to slight variations in input parameters. 

 

Another study relating remotely sensed imagery to LAI measurements in temperate needleleaf 

forests used simulator data to vary the disturbance factors within a needleleaf forest in Oregon 

(Peterson et al., 1987). This study focused primarily on canopy structure and concluded that LAI is 

one of the most significant factors in determining the reflectance properties of the canopy. The 

other factors affecting the spectral properties of the canopy are vertical foliage distribution, leaf 

inclination angle, leaf interactions with radiation, foliage aggregation and leaf azimuth angle. The 

authors noted that the response in the near infrared to increasing leaf area is negligible. They 

attribute this to the spatial organization and shape of the needles, as needles have rounded cross 

sections and small lateral dimension enhancing their ability to scatter radiation. Additionally, 

canopy structure contributes to this effect as canopies often have different heights in natural forests.  

The authors also noted that the architecture of forest stands can result in the penetration of 

radiation through the canopy without making contact with any needles. This unimpeded 

penetration is due to the presence of direct openings at off-nadir angles. Significant correlation was 

observed between the simple ratio and LAI across a regional gradient. A power relationship with a 

coefficient of determination of 0.91 was derived between the LAI and the simple ratio. 
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Forest reflectance models have also been applied for LAI estimation in needleleaf stands in 

Finland (Rautiainen et al., 2003). The red and near infrared bands of Landsat 7 imagery were used 

as a basis of comparison for the forest reflectance models. The important role understory 

vegetation played in the determination of the overall reflectance was noted in this study due to the 

observed difference between the measured reflectances and those predicted by the model. The 

authors determined that reflectance models are most useful for measuring differences in LAI. The 

disadvantages of reflectance models for LAI estimation through an inversion process are primarily 

related to the accurate estimation of understory parameters which is necessary to obtain 

meaningful results. 

 

With the recent proliferation of global LAI estimates from satellite measurements a study was 

undertaken to compare these estimated values with those estimated from data of higher spatial 

resolution (Fernandes et al., 2004). The Forest Light Interaction Model (FLIM) was implemented 

on CASI data which had been collected over two areas of boreal forest in Manitoba and 

Saskatchewan. This data possesses a spatial resolution of 2m and was compared, along with the 

results obtained using a Landsat TM image, to in-situ LAI measurements. This study mitigates the 

difficulties associated with using optical LAI measurements by using a TRAC instrument to 

account for foliage clumping. Knowledge of the extent of clumping is necessary to adjust the 

optical LAI measurement. The authors performed a structural regression due to the similar 

magnitudes of errors associated with spectral vegetation indices and LAI measurements. They 

concluded that the common assumption that errors associated with Landsat TM LAI estimates will 

be smoothed out with resampling to a coarser resolution is not always valid. 

 

Another study used 2m CASI imagery to map effective LAI for black spruce stands in a boreal 

environment (Fernandes et al., 2002). This study focused on black spruce stands as they are the 

dominant land cover class within the boreal forests of Canada. The FLIM was used as the 

geometric-optical model because of the low number of input variables it requires and its 

effectiveness in other studies for estimating effective LAI in needleleaf stands. The results that 

were obtained for this estimation were concluded to be highly dependent on the variability of 

effective LAI. Analysis at multiple scales was performed and it was determined that the simple 

ratio was strongly correlated to effective LAI at a pixel size of  30m but only weakly correlated at 
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a pixel size of 90m. The estimates of the FLIM-CLUS algorithm exhibited similar predictive 

accuracy to those obtained using the simple ratio. The authors concluded that the application of 

linear mixing models has the potential to account for the majority of variation in effective leaf area 

across a landscape, given large canopy gaps and lower spatial resolution imagery. 

 

2.5.2.3 Adjusted Spectral Vegetation Indices 
 

Although geometrical-optical models provided an alternative to LAI estimation from spectral 

vegetation indices, problems associated with inversion and in-situ measurements could occur. In 

response to this, development continued to occur to find spectral vegetation indices which would 

estimate LAI with greater accuracy. After noting the sensitivity of the middle infrared spectrum to 

variations in LAI (Eklundh et al., 2001) it became evident that incorporating this information into 

the estimation process had the potential to considerably improve both the applicability and the 

accuracy of remote LAI estimates. Several authors attempted to scale vegetation indices by factors 

derived from middle infrared measurements. The advantages of this technique were that it retained 

the conceptual simplicity and ease of implementation associated with spectral vegetation indices 

while greatly increasing the accuracy and applicability of the derived models. The increased 

robustness of the adjusted spectral vegetation indices was due to the lessened saturation effects 

they exhibited as LAI values increased within the landscape. 

  

Another study in needleleaf forests in western Montana explored the sensitivity of the modeling of 

forest processes across a watershed to variations in LAI estimates (Nemani et al., 1993). The 

authors identified the primary difficulties in LAI estimation in needleleaf forests to be variations in 

the canopy closure and the contribution of understory vegetation. These variations influence the 

near-infrared reflectance considerably. The authors concluded that the relationship between NDVI 

and LAI exhibits poor correlation at typical remote sensing resolution because of the contribution 

of understory vegetation and soil background in open canopies. A middle infrared band was used 

to adjust the NDVI to account for these effects. The relationship derived between the adjusted 

NDVI and the LAI achieved a moderate correlation, possessing a coefficient of determination of 

0.64. The mean LAI estimates obtained for the entire watershed from the prediction models for 

both the corrected and uncorrected NDVI were similar at 2.8 and 2.7 respectively. However, at a 
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hill slope level the differences in estimated LAI produce more variation in evapotranspiration and 

net photosynthesis. Simulations using the corrected NDVI for LAI prediction typically resulted in 

lower estimates of evapotranspiration and net photosynthesis but higher rates of discharge. At the 

hill slope level the estimates of evapotranspiration and photosynthesis varied by as much as 8 cm 

and 2 tons of carbon per hectare per year 

 

The adjustment of spectral vegetation indices by factors derived from middle infrared channels has 

also been applied to the simple ratio for study areas in the boreal forests of Saskatchewan and 

Manitoba (Brown et al., 2000). The simple ratio was selected due to its superior performance for 

LAI estimation, when compared to spectral vegetation indices (Chen and Cihlar 1996). LAI 

predictions were considerably improved and the authors concluded that this was due to the high 

sensitivity exhibited in the middle infrared to variations in LAI. As well, the middle infrared 

reflectance is similar across different backgrounds. The authors concluded that adjustment of the 

simple ratio allowed for improved LAI estimates for both needleleaf and broadleaf species. This 

result led to the conclusion that one algorithm had the possibility of application in both needleleaf 

and broadleaf forests. Therefore no prior knowledge of feature class types would be required when 

this algorithm is applied and mixed pixels are more effectively dealt with. Given the sensitivity of 

the middle infrared bands to moisture conditions it was proposed that further development include 

recent climatic data. This climatic data would be incorporated to characterize the moisture 

conditions in the canopy and the soil to more effectively estimate LAI. 

 

Research has been conducted to determine the scale dependence and topographic specificity 

associated with relationships derived for modified spectral vegetation indices. One particular 

study examined the dependence of adjusted NDVI values to terrain variables for a study area 

located in northwestern Montana (Walsh et al.,1997). The authors noted that the primary 

determining factors of the characteristic scale for analysis were based on the landscape structure 

and its history extending back to the previous ice age. Three separate models were derived based 

respectively on elevation alone, elevation and associated topographic variables and spatial 

statistical measures. The first model displayed an inverse relationship with observed spectral 

vegetation index as the analysis scale became increasingly coarse. The second model also 

displayed an inverse relationship however, in contrast to the first model it evinced a stronger 
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relationship with observed NDVI at finer scales of analysis. The statistical variables exhibited 

varying degrees of robustness in modeling the variations in NDVI. The coefficient of variation, 

standard deviation and fractal dimension were the more robust parameters in explaining variation 

in NDVI. The authors concluded that once the effects associated with feature class coverage are 

accounted for, there exists only a limited relationship between NDVI and topography at this site. 

They also noted the direct relationship between NDVI and pixels with high fractal dimension and 

low Moran values.    

 

2.5.2.4 Spectral Mixture Analysis 
 

Due to the perceived ineffectiveness of LAI estimation from spectral vegetation indices alternative 

methods have been investigated. One alternative method for LAI estimation that has been applied 

within the boreal forest in Minnesota is spectral mixture analysis (Peddle et al., 1999). The authors 

use a linear spectral mixture model because they concluded needleleaf forests do not evidence 

sufficient multiple scattering to make the response non-linear. The highest coefficient of 

determination, 0.82, was evidenced between the shadow fraction and the LAI estimated using a 

spheroid model at a solar zenith angle of approximately 45°. The authors explained the shadow 

fraction’s ability to improve LAI estimates across varying stand densities and solar zenith angles 

on its heightened sensitivity to tree size and morphology. 

 

A comparison of spectral mixture analysis models and models based on spectral vegetation indices 

for LAI estimation was undertaken for the Superior National Forest in Minnesota (Peddle et al., 

2001).  Disadvantages in the use of unadjusted spectral vegetation indices, such as their inability to 

account for background effects or canopy geometries, were noted in this study and cited as factors 

necessitating the use of spectral mixture methods. The primary disadvantage of the spectral 

mixture techniques was determined to be the complexity of their implementation. The authors 

observed that WDVI exhibited the best results amongst the spectral vegetation indices and this was 

hypothesized to be due to its capacity to deal with background effects. The spectral mixture 

analysis outperformed every vegetation index in all categories where significant correlations were 

observed, including LAI estimation. The authors concluded that, despite the increased difficulty 

associated with its implementation, spectral mixture analysis was a more appropriate approach for 
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the estimation of biophysical parameters within boreal forests. 

 

Spectral mixture analysis has also been applied in needleleaf montane forests and compared to 

methods employing spectral vegetation indices for LAI estimation (Peddle and Johnson 2000). 

This case study took place near Barrier Lake and used high spatial resolution imagery to estimate 

LAI. The authors noted that their model provided faulty estimates for entirely homogeneous stands 

containing one outlier species. They noted an uncharacteristically poor performance of the NDVI 

for LAI estimation particularly at low values of LAI where it is expected to exhibit optimal 

performance. The shadow fraction predictor derived from spectral mixture analysis exhibited 

higher correlation with LAI than did the unadjusted spectral vegetation index, with coefficients of 

determination of 0.66 and 0.46 respectively. The authors concluded that the results in montane 

needleleaf forests were inferior to those obtained in boreal environments. This decrease in 

performance was attributed to factors such as the assumption of homogeneous stands, the need for 

topographic correction and the lack of radiometric resolution due to the lack of a-priori sensor 

calibration. The most significant conclusion of the authors in this study was that spectral mixture 

analysis provided superior results in an environment that would be suited to the use of spectral 

vegetation indices for LAI estimation. 

 

Another relevant study using spectral mixture methods for LAI estimation occurred in a 

mixedwood boreal forest near Timmins Ontario (Seed and King 2003). The authors identified the 

primary goal of their research to be the development of an LAI estimation model that would 

function in a mixedwood environment where a-priori stratification of the forest was not performed. 

One advantage of using spectral mixture analysis for LAI estimation, versus more traditional 

vegetation index models, is its continued sensitivity to variations in LAI and stand density even at 

more extreme values. The authors note that although shadow fraction is the primary metric that has 

been used in spectral mixture analysis, several other shadow metrics exist such as shadow 

component brightness. Shadow component brightness was used in this study as the authors 

hypothesized that it would be related to LAI based on light transmission behavior exhibited by the 

overstory vegetation. The authors noted that scene fraction analysis differs between high and low 

spatial resolution sensors because at higher resolution it is not necessary to unmix individual pixels. 

A significant positive correlation was noted between effective LAI and percent composition of 
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conifers. A significant negative correlation was evidenced between effective LAI and percent 

composition of broadleaf trees. Effective LAI was also determined to have a significant correlation 

with canopy closure. The authors observed that the shadow fraction is relatively insensitive to 

changes in effective LAI at crown closures less than 80% but increased in sensitivity in more 

closed canopies. Shadow brightness was determined to outperform shadow fraction in the 

modeling of effective LAI. The authors concluded that the use of shadow fraction may not be 

advisable in boreal mixedwood environments, a conclusion which is attributable to the 

non-homogeneity of gap magnitude and occurrence within the canopy. The LAI estimates 

obtained using shadow brightness as an input parameter were slightly degraded due to unmitigated 

understory effects. The authors suggest the incorporation of texture information might partially 

account for the contribution of the understory but note the difficulty associated with this problem. 

They attempted to combine shadow fraction and shadow brightness information to provide 

estimates of effective LAI but determined that no additional value would be derived from doing so. 

The methods of this study were concluded to be valid for imagery of high spatial resolution but 

would likely be invalid for imagery of lower spatial resolution. 

 

A similar study used spectral mixture analysis to estimate LAI using CASI data degraded to 30m 

spatial resolution in the boreal forest (Hu et al., 2004). The authors performed an analysis of a 

winter scene and determined that the fraction of sunlit snow has the strongest correlation with LAI. 

It was also determined that the fraction of sunlit understory exhibited a strong correlation with 

in-situ LAI measurements  in a summer scene. The disadvantage of the spectral mixture analysis 

method is that it is difficult to extrapolate as the results are site-dependent. The authors conclude 

that using spectral mixture analysis in either the winter or the summer provides more accurate LAI 

estimates than the use of spectral vegetation indices did for the same area. 
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3. Research Objectives 

3.1 Gaps Identified in Literature Review 
 

Despite the substantial amount of research conducted on LAI estimation using remote sensing 

techniques, many areas exist where our understanding remains incomplete. Additionally, many of 

the techniques which are commonly applied for LAI estimation using remote sensing do not 

consider or cannot appropriately model certain phenomena which frequently confound LAI 

estimates. 

 

3.1.1 Background Effects 
 
One confounding phenomenon is the understory or background reflectance conditions which can 

have a dramatic impact on LAI estimation using remote sensing. The majority of the published 

literature indicates that the effects caused by understory conditions have not been considered 

extensively due to the complexity of the problem. These effects have proved difficult to model and 

in cases where this has been attempted, results which are contrary to measurement have been 

achieved (Eklundh et al., 2001). Understory effects are particularly prevalent in the open canopy 

areas characterizing the boreal forest. Although different techniques have attempted to account for 

the influence of the understory on radiometric measurements, such as the adjustment of spectral 

vegetation indices by middle infrared bands or spectral mixture analysis, substantial improvement 

is possible.  

 

3.1.2 In-Situ Measurement 
 
Another problem for remote LAI estimation has been related to the manner in which in-situ 

measurements have been obtained. Frequently, remote sensing models for LAI estimation have 

been derived using in-situ measurements which may not have been representative of the true LAI 

in the canopy. If the remote sensing models were derived based on inaccurate ground truth 

information, there is little doubt that the estimates obtained from the remote estimation models 
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would be systematically compromised.  When optical techniques have been used for in-situ LAI 

measurement a variety of effects influencing this estimate have not generally been considered. 

Optical measurement techniques often do not account for effects such as the non-random 

distribution of foliage and the contribution of woody material to the attenuation of radiation. The 

use of allometric techniques for LAI estimation has another set of difficulties which are 

completely different than those which influence the optical measurement. Allometric relationships 

for LAI estimation have been derived at a specific location and epoch and will only be valid for 

vegetation whose ambient state approximates those conditions well. Different conditions from 

those for which the allometric relationships have been defined, whether they be topographic, 

climatic or temporal, can produce biased ground truth measurements. Allometric relationships can 

also be inaccurate if vegetation attributes, such as vigor or size, fall outside of the conditions for 

which the relationship was initially defined. Finally, allometric relationships may not be 

sufficiently rigorous for LAI estimation due to an insufficient number of samples in their 

derivation. 

 

3.1.3 Limitations of Traditional Remote Sensing Techniques 
 

Accurate LAI estimation using traditional remote sensing techniques in forested areas has been 

severely limited by several factors, in addition to the previously discussed inattention to 

background effects in many studies. The most promising remote sensing techniques, linear 

spectral mixture analysis and modification of spectral vegetation indices, have rarely been applied 

simultaneously, so the relative performance of these techniques is not well characterized for 

different environments, vegetation populations or source imagery. Previous research has also 

largely neglected the substantial effects which sub-pixel heterogeneity in vegetation parameters 

can induce into LAI estimates obtained from remote sensing. As most LAI estimates are required 

over regional geographic extents, coarse resolution satellite imagery is frequently used. The use of 

such imagery is likely to result in increasing sub-pixel heterogeneity due to agglomerative effects 

caused by a coarser sampling regime, but this effect has not been substantially quantified.         
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3.1.4 Limitations of Sensitivity Analysis 
 
After the remote LAI estimation models have been derived their quality needs to be assessed to 

determine the accuracy and precision associated with LAI estimates and to assess the validity of 

their application for a given purpose. 

 

The first component of model assessment is an analysis of the geostastistical properties of the 

modeling parameters. The majority of studies in the literature did not perform analysis on the 

geostatistical properties of the input variables for their study area. The studies which did analyze 

the geostatistical properties of spectral vegetation indices did not derive relationships with LAI, 

therefore minimal assessment has been performed regarding the ability of these indices to predict 

reliably across multiple scales. 

 

Another component of model assessment is the simulation of known sources of error in the input 

data to determine the sensitivity of the derived models to this error. Previous studies have largely 

ignored the impact of known error sources on the models derived, perhaps due to their magnitude 

which would demonstrate the relative instability of the models. Knowledge pertaining to the 

expected impact of these error sources on the derived models allows us to assess the stability of the 

model in question and the validity of its implementation given the requirements of a particular 

application.  

 

The final component of model assessment is to determine expected values of precision and 

accuracy for a model when it is applied across a landscape with its associated geographic extent 

and intrinsic variability in terms of leaf area.  In the literature there have been few systematic 

investigations quantifying the errors expected from propagating a given model for LAI estimation 

at an individual pixel over a landscape. Without conducting a landscape level analysis, the validity 

of the implementation of a model for a specific application cannot be meaningfully assessed. 
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3.2 Detailed Research Objectives 
 

3.2.1 Comparison of Remote Estimation Techniques 
 
The first objective of this thesis is the comparison of models for LAI estimates which use the 

output from linear spectral mixture analyses, the adjustment of spectral vegetation indices or 

techniques developed for the purposes of this study as their primary modeling parameters. The 

estimates from these remote estimation models are then related to in-situ LAI measurements. They 

are then compared to determine their relative quality. This comparison allows for a conclusion to 

be reached regarding the optimal techniques for the remote estimation of each of the needleleaf 

and broadleaf vegetation types. 

 

3.2.2 Sensitivity Analysis 

  
The second objective of this research is the determination of the sensitivity of the relationships to 

known error sources and to variations in scale. This sensitivity analysis is performed through a 

systematic degradation of the initially derived conditions, in a manner designed to simulate the 

error sources to which these models are subject. Multi-scale analysis is performed to determine the 

applicability of the estimation relationships as scale coarsens. The degree of sensitivity of the 

relationships to variations in the initial conditions determines their relative robustness for diverse 

application. 

 

3.2.3 Overall Model Quality Assessment 
 
The third objective of this research is to determine the accuracy and precision associated with the 

estimation models at the landscape scale. An analysis of factors that determine the accuracy and 

precision associated with the application of these models across a landscape, as well as their 

relative contributions, is conducted. Completion of this objective allows for the conclusion as to 
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the suitability of the models for a variety of possible applications as they will be constrained by 

their performance in this regard. 

 

3.3 Methodology 
 

3.3.1 In-situ measurements 
 

3.3.1.1 LAI Measurements 
 

To perform the necessary in-situ measurements study plots have been selected according to criteria 

delineated in Chapter 4. These plots are set out to be squares of approximately 0.36 ha. The 

absolute locations of these plots are determined using adjusted measurements from the global 

positioning system so that sufficient positioning accuracy could be achieved. The absolute location 

is determined with enough precision so that it could be reliably identified on a registered satellite 

image. The plots were all in a northwest-southeast orientation which has been recommended for 

LAI measurements using the TRAC sensor (Leblanc et al., 2002). LAI measurements were 

performed during the same period of time each day. The consistency of measurement occurrence 

was performed in an attempt to minimize the effect of variations in the imaging conditions.  

 

To perform measurements of both effective LAI and clumping index using the TRAC device, 

measurement transects were established within the plots. Measurement transects were established 

at regular intervals within each plot and are oriented northwest-southeast, to be parallel to the 

plot’s boundaries. The overall mean of the measurements of the effective LAI measurements was 

computed to determine the overall measurement of the effective LAI for each plot. The processing 

of measurements performed using the TRAC device is conducted in accordance with the TRAC 

manual (Leblanc et al., 2002). 

 

After the effective leaf area indices have been determined by the TRAC, they are then to be 

converted to actual LAI through the use of the clumping index measured by the TRAC device 

according to equation 2.3. The actual LAI is then to be related to the measurements obtained by the 
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remote sensor. 

 

3.3.1.2 Spectral Measurements 
 
In-situ spectral measurements were conducted to determine the spectral properties of the canopy 

and the background conditions consisting of understory vegetation and soil. These measurements 

were taken in the portion of the electromagnetic spectrum between 300 and 2500 nm using the 

FieldSpec PRO spectroradiometer. 

 

For each of the plots in question, measurements of the spectral properties of the features of interest 

were always taken in units of reflectance with the maximum reflectance being assumed for the 

reference target under the ambient light conditions. A measurement of the white target reference 

spectrum is taken before a measurement of each spectral feature. The spectral averaging and 

integration times were held constant throughout the sampling.  

 

3.3.2 Remote Sensing Measurements 

3.3.2.1 Pre-Processing 
 

After the raw image was obtained from the data providers, as depicted in Figure 3.1 below, several 

processing steps were performed before these images were subjected to rigorous analysis.  
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Figure 3.1 SPOT Scene of Study Area Prior to Image Enhancement and Processing with RGB-432  

 

Image registration is necessary to spatially reference the image, as only the raw imagery had been 

purchased from the data provider. Although the image is available in orthorectified format, this 

option involves additional cost as well as uncertainty in terms of accuracy as both lower and upper 

thresholds of accuracy are quoted by the data provider.  For these reasons the raw images were 

obtained and referenced so that an exact measurement of the georeferencing accuracy is obtained. 

The purchased image is registered to a precisely referenced Landsat image obtained from 

Geogratis for the same region. This reference image has been precisely orthorectified using an 
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extensive network of ground control points. 

  

After the image is located spatially, the spectral properties of the image, both before and after 

atmospheric correction, are compared to in-situ measurements taken by a spectroradiometer. This 

analysis is performed to determine the effectiveness of atmospheric correction for this scene. The 

atmospheric correction that was applied was the PCI ATCOR2 module.  

 

3.3.2.2 Adjustment of Spectral Vegetation Indices 
 

To perform the adjustment of spectral vegetation indices, the first step is the selection of spectral 

vegetation indices.  

 

The spectral vegetation indices are computed according to the formulas given in Table 2.1. They 

are then adjusted, wherever necessary, by the middle infrared band according to the following 

formula (Nemani et al., 1993). 

 









−

−
−=

MINMAX

MIN
ADJ MIRMIR

MIRMIR
1SVISVI   Eq.3.1 

 

where SVIADJ is the adjusted spectral vegetation index, SVI is the unadjusted spectral vegetation 

index, MIR is the reflectance of the test plot observed by the remote sensor in the middle infrared 

band, MIRMAX is the reflectance observed from a completely open canopy in the middle infrared 

band and MIRMIN is the reflectance observed from a completely closed canopy in the middle 

infrared band. 

 

3.3.2.3 Spectral Mixture Analysis 
 

To perform spectral mixture analysis the first task that is performed is the selection of our 

component classes.  
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After the definition of the input spectral data classes it is necessary to define the endmember 

spectra. Endmembers are pixels contained within the image that are solely composed of one 

component class. Endmembers can be selected in a variety of ways. In this study they are selected 

through the use of spectra measured in-situ and the selection of endmembers directly from the 

image. The minimum and maximum sums of the reflectance from the red, near infrared and middle 

infrared bands were selected to represent shadowed and sunlit canopy respectively.  

 

After the endmembers are selected, a system of equations is then generated for each pixel which 

must then be solved to determine the percent composition of each of the plots. The constrained 

least squares approach is applied to a system of linear equations of the following type: 

( )( )∑= CLASSCLASS
i
OUT PCRADRAD i  Eq.3.2 

∑= n

0 CLASSPC1.0  Eq.3.3 

where RADi
CLASS is the radiance of the endmember of a specific class in band i, RADi

OUT is the 

measured radiance of the pixel of interest in band i and PCCLASS is the areal percent composition of 

the pixel of interest by a specified class. 

 

Once estimates of the percent composition of each of the classes have been determined, these 

values are then related to the LAI measurements obtained in-situ.  

 

3.3.2.4 Independent Investigations 
 

In addition to the promising new techniques previously discussed, further research has been 

conducted pertaining to the development of other methods for remote LAI estimation. These 

investigations have resulted in the development of two alternative methods namely the normalized 

scaling and the normalized distance techniques. 

 

The normalized scaling technique involves the computation of a scaling factor in each of the bands 

under analysis. This scaling factor is computed in an identical fashion to the scaling factor applied 

in Equation 3.1. The individual band scaling factors are then either multiplied or divided, in 

multiple combinations, based on whether the relationship they exhibit with LAI is direct or inverse. 
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After these values are computed, an area-weighted average is obtained for each plot. Subsequently, 

in-situ LAI measurements are regressed against these area-weighted mean estimates to derive 

modeling relationships. 

 

To illustrate the appropriate application of this technique a sample calculation is provided for a 

broadleaf pixel. For broadleaf vegetation it is known that red and middle infrared reflectances are 

inversely related to leaf area, while near infrared reflectance exhibits a direct relationship with LAI. 

In this case, the appropriate combination of these bands is the product of the scaling factors in the 

red and middle infrared bands divided by the scaling factor in the near infrared band. If the initial 

reflectances are 0.054, 0.227 and 0.125 respectively in the red, near infrared and middle infrared 

bands, the appropriate scaling factors can be computed using equation 3.1 for each channel. For 

broadleaf vegetation maximal and minimal reflectance values of MIRMAX=0.163, MIRMIN=0.105, 

NIRMAX=0.308, NIRMIN=0.209, REDMAX=0.067 and REDMIN=0.044 are used for all SPOT 

vegetation analyses as these were the maximum and minimum values of these quantities within the 

measurement plots. Applying these values in equation 3.1 yields scaling factors of FRED=0.563, 

FNIR=0.813 and FMIR=0.681. Combining these values as described above yields a normalized 

scaling factor of 0.471.  

 

The normalized distance technique is an expansion of the normalized scaling factor technique. The 

normalized distance technique involves the computation of the scaling factors and the subsequent 

computation of the normalized distance for a given pixel as in Equation 3.4.   
 

n

)F(
ND

n

1
2

i
1
0∑ ±

=   Eq. 3.4 

 

where ND is the normalized distance, F is the scaling factor computed in band i and n is the 

number of bands for which the analysis is being performed. 

 

3.3.3 Regression Analysis 
 

To perform regression between in-situ measurements and parameters, such as adjusted spectral 
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vegetation indices and plot fractions, the technique of least squares is applied. 

 

The technique of least squares is used to minimize the sum of the squares of the residuals obtained 

from fitting a given regression model to a data set as in equation 3.5. 

 

( )∑ ≡− MINYpredictedYactual 2   Eq.3.5 

 

where YActual is the measured value of the dependent variable and YPredicted is the predicted value of 

the dependent variable.   

 

The method of least squares determines the coefficients which will best fit the data according to 

the criteria established in equation 3.5. Least-squares analysis is robust in that it leaves the 

selection of a regression model to the modeler.  

 

In this study both linear, structural and Gaussian regressions are performed as each of these 

techniques are used extensively in literature. Although structural regression has demonstrable 

advantages over linear regression (Fernandes et al., 2004), the latter is more intuitive which 

accounts to a great degree for its continued use. 

 

The properties of the errors obtained for the relationships between remote and in-situ 

measurements are noted so that they could be applied in the sensitivity analysis portion of this 

research. 

  

3.3.4 Sensitivity Analysis  
 

3.3.4.1 Monte Carlo Simulation 
 

To determine the extent to which errors in both the in-situ measurements and radiometric estimates 

propagate into the subsequent modeling error, a sensitivity analysis was conducted using a Monte 

Carlo analysis. 



 

 56

 

Monte Carlo techniques involve the stochastic modeling of phenomena or processes difficult to 

describe in a deterministic fashion. Monte Carlo simulations are also used to gain an understanding 

of phenomena whose general characteristics are known but which cannot be experimented on 

directly due to monetary or temporal constraints.     

 

The Monte Carlo simulations performed for this study introduce typical stochastic errors into 

models of the parameters of interest. These estimates are then compared to known values.  

 

The determination of the typical errors from the remote sensing models is relatively 

straightforward after these relationships are derived, due to their known properties. Statistical 

analysis of the residuals after the least-squares analysis results in the determination of the typical 

error associated with these measurements. 

 

After specifying a typical error for a particular Monte Carlo simulation, the known parameter is 

then adjusted by a Gaussian random number produced according to the known standard deviation 

of the residuals as previously determined. This adjustment is summarized in equation 3.6. 

  

RandomPARAMPARAM KNOWNADJ +=   Eq.3.6 

  

where Random is the output of the Gaussian random number generator, PARAMKNOWN is the 

parameter specified for analysis and PARAMADJ is the estimate with measurement errors 

incorporated. 

 

3.3.4.2 Plot Location and Georeferencing Errors 
 

To quantify the impact of errors in georeferencing and plot location have upon the derived 

regression relationships, two techniques have been implemented. 

 

The first technique involves the modeling of a shift of each plot by one pixel in octants, which start 

and finish due North. The input modeling parameters are computed in the same weighted-area 
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determination of the mean as performed initially. 

   

The second technique to analyze the effects of location errors involves the performance of a 

geostatistical analysis to determine to what extent the values of the input modeling parameters 

used for LAI estimation are spatially correlated.  Samples are selected for both broadleaf and 

needleleaf vegetation in and around the areas where LAI is sampled and the input modeling 

parameters are computed. Moran’s I (Bailey and Gatrell,1995), which is used to quantify the 

extent of spatial correlation over a variety of lag distances, is then computed using the known 

values of the input modeling parameters and their spatial locations.  

 

3.3.4.3 Scale and Sensor Effects  
 

To analyze the effects caused by variations in scale and imaging platform, a comparison is 

performed between the LAI estimates determined across a given landscape using identical 

estimation relationships for classified MODIS and SPOT imagery at multiple scales. 
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4 Study Logistics 
 

4. 1 Study Area 
 

4.1.1 Kananaskis Study Area 
 
The study region selected for the derivation of the relationships between remote modeling 

parameters and in-situ LAI measurements is located in Kananaskis Country, near the University of 

Calgary research station at Barrier Lake (51°02’N, 115°03’W, Elev 1390m). The entire study 

area is depicted in Figure 4.1, with maps of the measurement plot areas represented at finer scale in 

Figures 4.2 and 4.3.  
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Figure 4.1: Contour Map of the Kananaskis Study Area in UTM Zone 11 
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Figure 4.2: Contour Map of the Measurement Plots Located near Barrier Lake in UTM Zone 11 
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Figure 4.3: Contour Map of the Measurement Plots Located near the Kananaskis Field Station in 

UTM Zone 11 
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The forests in this area are primarily needleleaf with a limited number of broadleaf species present. 

The needleleaf species that occur at this location are predominantly lodgepole pine and white 

spruce. The broadleaf species that occur most frequently at this location are trembling aspen and 

balsam poplar. 

 

Climatically the average monthly temperatures range from -7.5°C in January to 14.1°C in August. 

The majority of the 637.8 mm of annual precipitation occurs from mid-spring through late summer 

(Environment Canada, 2004). 

 

The choice of this study site is advantageous because the dominant species in this region are also 

among the most common species in the montane and the boreal forests of Canada. Additionally, 

this location has been used for other LAI studies (Peddle et al., 2000). This allows for a 

comparison of results between the two studies. Also Peddle and Johnson’s (2000) 

recommendations to investigate topographic corrections may be considered.  

 

Observations were taken during the periods specified in Table 4.1. 

 

Table 4.1: Schedule of In-Situ Measurements Performed in Kananaskis Study Area 

Measurement Type Start Date End Date 

Spectroradiometer September 1, 2004 September 5,2004 

TRAC August 4,2004 September 5, 2004 

GPS Measurements September 13,2004 September 14,2004 

Digital Photographs September 15,2004 September 16,2004 

  

4.1.2 Upper Elbow River Watershed 
 
The study site for which the multi-scale analysis has been performed is the Upper Elbow River 

watershed. The watershed is approximately 79 000 hectares in area and contributes to the City of 

Calgary’s water supply. An elevation map of this Watershed is presented in Figure 4.4.  
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Figure 4.4: Elevation Map of the Upper Elbow River Watershed in UTM Zone 11  
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The choice of this watershed is advantageous as the original SPOT image used for the derivation of 

the remote estimation relationships can also be used for the landscape level analysis. The use of the 

same image is beneficial because no additional processing is necessary to account for various 

heterogeneous parameters between the two images, which could introduce errors into the 

modeling. Additionally, the area covered by the watershed has sufficiently similar forest structure 

to the one for which the remote estimation models have been derived for their implementation to 

be meaningful.    

 

4.2 Species Selected, Stands and Ages Selected 
 

4.2.1 Species selected 
 

The species selected for this analysis were chosen based on the evaluation of a single criterion; that 

these species be prevalent in both boreal and montane forest environments. This criterion allows 

for the derivation of models which will be widely applicable in Canadian forestry applications. 

The species selected for this study were white spruce, lodgepole pine, and trembling aspen. 

 

4.2.2 Stand Selection 
 

The stands selected for study were chosen based on multiple selection criteria. The selected stands 

had to be pure in terms of vegetation type. The threshold for the definition of a pure stand is taken 

as possessing 80% composition of broadleaf or needleleaf vegetation.  A value of 80% was 

selected because it allowed for statistically meaningful and representative samples. The selection 

of pure stands t allowed for the derivation of higher quality LAI estimation models.  

 

The selected stands are mature communities which have not undergone disturbance. Mature 

communities are selected because of their predominance within the study area and the extensive 

studies which have been done in mature communities to validate the remote estimation applied in 

this study. The requirement that these stands not have undergone disturbance is to remove possible 
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effects affecting model application such as changes in reflectance properties or stand 

characteristics associated with disturbance events. 

 

The application of these criteria allowed for the selection of 20 plots. Ten of these plots are purely 

needleleaf stands and ten are purely broadleaf stands, with some mixing of species within plots of 

each type. The spatial location and description of each of the plots of interest are specified in 

Tables 4.2 and 4.3, for the broadleaf and needleleaf plots respectively. 
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Table 4.2: Center Coordinates and Description of the Broadleaf Plots 

Plot Number E (UTM Zone 11) N (UTM Zone 11) Description 

1 635815 5653998 Trembling Aspen, 

Some Balsam Poplar 

2 635807 5654126 Trembling Aspen, 

30m by 60 m Plot 

3 635933 5654040  Trembling Aspen, 

30m by 60 m Plot 

4 635637 5654001 Trembling Aspen  

5 635598 5653975 Trembling Aspen 

6 635647 5654075 Trembling Aspen, 

Lodgepole Pine 

Outliers. 

7 635606 5654044 Trembling Aspen 

8 635613 5654117 Trembling Aspen 

9 638290 5655077 Mixed Needleleaf and 

Broadleaf  

10 638512 5654848 Trembling Aspen 
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Table 4.3: Center Coordinates and Description of the Needleleaf Plots 

Plot Number E (UTM Zone 11) N (UTM Zone 11) Description 

1 638224 5654964 Lodgepole Pine, 

2 638193 5654991 Lodgepole Pine, 

3 638246 5655249 Lodgepole Pine, Some 

White Spruce 

4 638326 5655239 White Spruce, Some 

Lodgepole Pine 

5 638414 5655185 Lodgepole Pine. Some 

White Spruce 

6 638439 5655349 Lodgepole Pine 

7 638266 5655465 Lodgepole Pine 

8 638630 5655376 Lodgepole Pine 

9 638678 5655355 Lodgepole Pine 

10 

638503 5654649 

Dense leafy green 

understory, Lodgepole 

Pine 

 

4.3 Spatial Data Collection 
 

4.3.1 In-Situ Measurements 
 

In-situ LAI measurements are required so that relationships can be derived with remote modeling 

parameters. Due to the uncertainty regarding the correlation between LAI and remote estimation 

parameters, it is necessary to measure a clumping index so that it is possible to account for 

non-random foliage distribution. Firstly, optical instruments are used to measure the canopy gap 

fraction. From these measurements, an effective LAI is computed according to the equations 

contained in Section 2.2.2.4. Canopy gap distribution measurements are performed to obtain a 

clumping index to convert effective LAI to actual LAI. To account for the contribution of woody 
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material to the attenuation of solar radiation the ratio of wooded area to total plant area should be 

measured. Due to the fact that this ratio is extremely difficult to measure and the sensitivity of LAI 

estimates to typical values of this ratio is negligible, these values have not been measured but have 

been obtained from literature.     

 

4.3.2 Remotely Sensed Data 
 

The remote sensing imagery selected for use in this study has been acquired by the SPOT-4 sensor. 

The SPOT-4 sensor records data in four bands, from the green to the middle infrared, at a spatial 

resolution of 20m. A description of the band coverage associated with each of the SPOT-4 bands is 

described in Table 4.4. 

 

Table 4.4: SPOT-4 Imaging Channel Information 

Channel Number Band Coverage (µm) Spectrum Description 

1 0.500-0.590 Green 

2 0.610-0.680 Red 

3 0.790-0.890 Near Infrared 

4 1.580-1.750 Middle Infrared 

 

 The selection of SPOT-4 as the imaging platform allows for the application of spectral mixture 

analysis and adjustment of spectral vegetation index techniques at a spatial resolution suitable for 

regional climatic, circulation or hydrological studies. 

 

The SPOT-4 image used for analysis in this study was taken on August 13,2004 and is depicted in 

Figure 4.5.  
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Figure 4.5: SPOT Scene with RGB-432 with Measurement Plot Locations near Barrier Lake in 

Kananaskis Country Highlighted in Red 
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Relationships are derived between the in-situ LAI measurements and the radiances observed at the 

sensor. These relationships are derived for one general case for each vegetation type, whether 

needleleaf or broadleaf.  

 

Wherever forest inventory information is unavailable, a preliminary classification into broadleaf 

and needleleaf vegetation still allows for LAI estimation. This classification can usually be 

performed with a reasonable degree of accuracy (Reese et al., 2002). The application of Bayesian 

or fuzzy classification instead of the more traditional maximum likelihood method could result in 

an increased accuracy for remote LAI estimation in areas of heterogeneous species or vegetation 

type. Remote estimates would also be likely to improve as more regional LAI estimates are 

required. This would happen as a result of the anticipated smoothing associated with the scaling of 

this data. 

 

4.3.2.1 Geometric Correction 
 

Image registration was necessary to precisely spatially reference the image, as only the raw 

imagery had been purchased from the data provider. Although the image was available in 

orthorectified format, this option involved additional cost as well as uncertainty in terms of 

accuracy as lower and upper thresholds of accuracy were quoted by the data provider.  For these 

reasons the raw SPOT-4 image was obtained and referenced so that a precise measurement of the 

spatial measurement accuracies could be obtained. The purchased image was registered to a 

Landsat-7 image which had been obtained from the Geogratis website. This image, 

043024_0101_010923_l7_123457_utm11.pix, was acquired on September 23, 2001. This 

reference image had been very precisely orthorectified by Natural Resources Canada using an 

extensive network of ground control points. Twelve control points were selected based on their 

distinct appearance within both images as well as their spatial distribution across the image. After 

registration, the geometric accuracy of the pixels was quoted to be approximately 10m in each of 

Northing and Easting directions for the SPOT image. This amounts to a total registration error less 

than three quarters of a pixel, which is a reasonable result given the relief associated with the 

terrain covered by the image. 
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4.3.2.2 Radiometric Correction 
 

The first step involved in the radiometric processing of the SPOT image was its conversion from 

digital number to at-sensor radiance. This involved the division of the input digital number by a 

channel specific scaling factor and the addition of an offset as in equation 4.1 below. 

  

 i
i

i
i b

a
DNRAD +=   Eq 4.1  

where RADi is the radiance observed by the sensor in channel i, ai is the scaling factor term and bi 

is the offset term from the SPOT metadata. 

 

Subsequently the computed radiance in each channel is used to compute the observed reflectance 

according to equation 4.2 

 

( )si

2
i

i θcosE
πdRADREF =   Eq 4.2   

  

where d is the Earth-Sun distance in atmospheric units, θs is the solar zenith angle, and Ei is the 

solar irradiance in channel i. 

 

The channel specific coefficients for the SPOT-4 sensor are provided in Table 4.5. 

 

Table 4.5: Radiometric Coefficients of SPOT-4 Satellite on August 13,2004 from Image Metadata 

Channel Number ai (W/m2/sr/µm) bi (W/m2/sr/µm)-1 Ei W/(m2*µm) 

1 2.16226 0.00000 1843 

2 1.81845 0.00000 1568 

3 1.24567 0.00000 1052 

4 6.02900 0.00000 233 

 

 

After the image has been converted from digital number to at-sensor reflectance, the spectral 
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properties of the image, before and after atmospheric correction, were compared to in-situ 

measurements taken by a spectroradiometer. This analysis was performed to determine the 

efficacy of atmospheric correction for this particular scene. The atmospheric correction that was 

employed was the PCI ATCOR2 module. The spectra of known feature classes which were 

observed in the image both prior to and after atmospheric correction were observed and compared 

in Table 4.6. 

 

Table 4.6: Comparison of Reflectance Spectra within Feature Classes Before and After 

Atmospheric Correction 

Feature 

Class 

Post 

-Correction 

Middle- 

Infrared 

Reflectance 

Post 

-Correction 

Near- 

Infrared 

Reflectance

Post 

-Correction 

Red 

Reflectance

Pre 

-Correction 

Middle- 

Infrared 

Reflectance

Pre 

-Correction 

Near- 

Infrared 

Reflectance 

Pre 

-Correction 

Red 

Reflectance

Asphalt 

 

0.14 0.13 0.02 0.19 0.17 0.11 

Green 

Leafy 

Vegetation 

 

0.09 0.25 0.00 0.13 0.31 0.05 

Trail 

 

0.09 0.15 0.00 0.13 0.19 0.06 

 

These values exhibit differences from each other, particularly in terms of the red reflectance which 

is completely suppressed by the atmospheric correction algorithm for both the green leafy 

vegetation and trail feature classes.  

 

To determine whether the corrected or uncorrected image should be used the observed reflectance 

spectra from the image were compared to those measured in-situ, which are presented in Table 4.7. 
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Table 4.7: Reflectances of Various Feature Classes Measured Using a Spectroradiometer in 

Various Wavelengths   

Feature Class Middle Infrared 

Reflectance 

Near-Infrared Red Reflectance 

Asphalt 0.22 0.15 0.12 

Green Leafy 

Vegetation 

0.33 0.46 0.05 

Trail 0.18 0.13 0.10 

 

It is evident from the reflectance values presented that the in-situ measurements are more similar to 

the uncorrected image than the corrected image. To validate this conclusion, the sum of the squares 

of the differences between each of the sets and the in-situ measurements has been calculated and 

the results are presented in Table 4.8. 

 

Table 4.8: Sum of the Squared Differences between In-Situ Measurements and Atmospherically 

Corrected and Uncorrected Reflectances 

∑(REFCORR-REFIn-Situ)2 ∑(REFUNCORR-REFIn-Situ)2 

0.1395 0.0716 

 

This confirms the validity of the initial assessment that the uncorrected reflectances more closely 

resemble those of the in-situ measurements than do the atmospherically corrected reflectances. 

This allows us to conclude that it is preferable not to apply atmospheric correction as this will 

induce additional error. Another factor that leads to this conclusion is the absence of haze or cloud, 

as determined from the image using the PCI masking function, in the areas surrounding the 

measurement plots. Finally, if atmospheric correction were to be applied, the majority of the 

spectral vegetation indices computed in the areas surrounding the plots would be both unrealistic 

and invariant. This uniformity in the spectral vegetation indices in the atmospherically-corrected 

image is caused by the complete attenuation of the red signal. The computed NDVI and simple 

ratio are then uniformly defined with values of one and infinity respectively. This situation does 

not correspond to the situation observed on the ground and would almost certainly introduce 

significant problems into LAI estimation using the atmospherically-corrected image.  
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4.4 Field Methods 
 

There are two primary optical devices which are currently used to measure LAI in-situ. These 

devices are the LAI-2000 Plant Canopy Analyzer and the TRAC device which has been developed 

by the Canadian Centre for Remote Sensing. 

 

The LAI-2000 Plant Canopy Analyzer has been employed in similar studies to measure effective 

LAI in-situ measurements. The LAI-2000 uses fish-eye optics to measure light intensity over the 

wavelength spectrum between 320 and 490 nm. This wavelength spectrum is selected because the 

values of reflectance and transmittance exhibited by foliage are minimized when compared to 

other potential measurement locations. The LAI-2000 measures over 74° on each side of the zenith. 

This field of view is divided into five angular ranges with their corresponding detectors arranged 

in concentric rings. These rings are centered at zenith angles of 7°,22°,38°,53° and 68° 

respectively. The angles subtended by these rings range from 11° to 13°. The LAI-2000 

determines the amount of radiation intercepted by the canopy by taking the ratio of the below 

canopy measurements to the corresponding above-canopy measurements. This allows for the use 

of the equations in section 2.2.2.4 to compute the effective LAI. 

 

The TRAC instrument is used for the determination of both the canopy gap fraction and the canopy 

gap distribution. TRAC measurements record the photosynthetic photon flux density (PPFD) of 

photosynthetically active radiation, which occurs in the visible spectrum between 400 and 700 nm. 

Measurements are taken at a frequency of 32 Hz which yields a horizontal measurement resolution 

of less than one centimeter at the suggested walking speed of 0.3 m/s (Leblanc et al., 2002). PPFD 

is inversely related to the canopy gap fraction as larger values of PPFD are measured beneath gaps. 

Since TRAC measurements are obtained while the observer is moving beneath the canopy at a 

constant rate, the distribution and size of the gaps within the canopy can be characterized. The 

measured canopy gap fraction is related to the effective LAI as detailed in section 2.2.2.4.  

Measurements of the canopy gap fraction are then used to determine a clumping index which is 

used in the computation of the actual LAI. 
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4.4.1 Verification of In-Situ Measurement Devices 
 

Due to the fact that two optical devices for LAI measurement are available for use, a comparison of 

these two techniques has been undertaken. This comparison is performed to ascertain the 

similarity between the LAI estimates provided by the individual measurement devices. If the 

measurements are sufficiently similar between the two devices, then a single device could be 

selected for the performance of these measurements.      

 

The comparison of the LAI-2000 Plant Canopy Analyzer and the TRAC device is undertaken for 

one needleleaf stand and one broadleaf stand on the University of Calgary campus. The stands are 

selected because of their purity in terms of vegetation over an area for which a statistically 

meaningful sample can be obtained. LAI-2000 measurements are taken in a grid pattern every 5 m 

within each plot to match the sampling resolution of the TRAC transects. A 90° view cap is used to 

restrict measurements to the area within the plot.  

 

TRAC measurements are taken along a southeast-northwest transect orientation as prescribed in 

the literature (Leblanc et al., 2002)  Iterations where illumination conditions changed are not 

included in the statistical analysis of the results of the observations.    

4.4.1.1 Broadleaf Vegetation 
 

The broadleaf measurements are conducted on a 20 by 20m trembling aspen plot which possessed 

a relatively heterogeneous canopy due to its low to moderate stand density.  

 

LAI-2000 measurements are performed in the evening in two rounds separated by an hour and a 

half. The first round of observations consists of 6 iterations of the procedure described above and 

resulted in a sample mean of 1.498 and a sample standard deviation of approximately 0.040. The 

second round of observations consists of 3 iterations resulting in a sample mean of 1.340 and a 

sample standard deviation of 0.020. A two sample pooled t-test is performed using the sample 

variances to determine whether these samples are significantly different as they appeared to be on 

the surface. These values are concluded to be significantly different at a 99.9% level of confidence. 

This result is problematic as over this the time interval the leaf area will have changed negligibly. 
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However the magnitudes of the sample variances demonstrate that sequential measurements 

exhibit high degrees of precision.  

 

TRAC measurements are performed as close to local solar noon as possible to achieve optimal 

imaging conditions. To compare the results of the TRAC and the LAI-2000 it is important to note 

that effective LAI values observed by the TRAC were employed. This is necessary to compare the 

individual estimates because the LAI-2000 does not account for non-random foliage distribution 

or woody contribution to LAI estimates. The estimates are compared on the basis of effective LAI 

because this quantity is displayed along with actual LAI by the TRAC processing software 

whereas additional processing would be required to convert the LAI-2000 measurements. 

 

In the aspen plot sampling using the TRAC is performed for five iterations, of which only three 

provided meaningful measurements. The other two iterations are rejected as outliers; their errors 

probably caused by changes in imaging conditions associated with cloud cover. The results of the 

other samples exhibited a mean value of effective LAI of 1.59 and a standard deviation of 0.16. 

The mean of these three samples does not differ significantly from the mean observed for the 

LAI-2000 measurements, which are conducted at the same spatial resolution, at a 95% level of 

confidence. The variances of these samples are also compared using an F-test to determine if the 

variances of the measurements could be considered to be equal. The results of the F-test allow us to 

conclude that the variances are not significantly different at a level of significance of 0.10  

 

4.4.1.2 Needleleaf Vegetation 
 
The TRAC and LAI-2000 Plant Canopy Analyzer devices are also compared at 5m spatial 

sampling resolution for a needleleaf stand on campus. A sample of five iterations using the 

LAI-2000 yields a sample mean of 3.19 and a sample standard deviation of 0.05. A sample of five 

iterations taken using the TRAC device yields a sample mean of 3.23 and a sample standard 

deviation of 0.13. Comparing these results using a two-sample pooled T-test with unknown and 

unequal variance allows us to conclude that these techniques do not provide significantly different 

mean estimates at a 95% level of confidence. An F-test resulted in the conclusion that the sample 

variances were not equal at a 90% level of confidence.  
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These results allow us to conclude that when sampling at the same spatial resolution under optimal 

measurement conditions the TRAC and LAI-2000 devices measure to the same level of accuracy.  

In response to this result it is decided that the TRAC device alone will be employed to measure 

LAI in-situ. This decision is taken primarily because the TRAC measurements are necessary to 

determine the clumping index within a canopy to convert from effective to true LAI.  The TRAC 

exhibits superior measurement efficiency and logistical ease of use throughout the comparison 

described here while providing LAI estimates that are not different in terms of accuracy in a 

statistically significant way from those of the LAI-2000. The use of the LAI-2000 Plant Canopy 

Analyzer would be both time-consuming and redundant given the efficiency and versatility of the 

TRAC.  

 

 

4.4.2 Determination of TRAC Spatial Sampling Resolution 
 

To determine an optimal spatial sampling resolution for the TRAC measurement transects two 

techniques, namely Monte Carlo simulation and in-situ measurement are employed.  

 

4.4.2.1 In-situ Measurement 
 

In-situ LAI measurements using the TRAC device are compared for both the broadleaf and 

needleleaf stands on the University of Calgary campus at spatial resolutions of 5 and 10m. 

 

In the aspen stand, the means are not determined to be different at a 0.05 level of significance. The 

precision of the measurements are also concluded not to exhibit significant difference after the 

performance of an F-test at a 0.10 level of significance. The statistical values resulting from these 

tests are presented in Table 4.9.  

 

 

 

 



 

 78

Table 4.9: Statistical Comparison of TRAC Measurements Between 5 and 10m Sampling Intervals 

for Broadleaf Vegetation 

Test Name Test Statistic Critical Value 

F-Test 1.21 19.00 

Two-Sample Pooled T-Test 0.39 2.78 

 

In the needleleaf stand, the means observed at the different spatial resolutions are determined to be 

significantly different at a 0.05 level of significance. The precisions however did not exhibit 

significant statistical differences after conducting an F-test at a 0.10 level of significance. The 

statistical values resulting from these tests are presented in Table 4.10. 

 

Table 4.10: Statistical Comparison of TRAC Measurements Between 5 and 10m Sampling 

Intervals for Needleleaf Vegetation 

Test Name Test Statistic Critical Value 

F-Test 1.11 6.39 

Two-Sample Pooled T-Test 2.82* 2.31 

 

4.4.2.2 Monte Carlo Simulation of LAI Sampling Regimes 
 

To confirm the results obtained using in-situ measurement, random LAI landscapes are generated 

to simulate 1m sampling intervals and different sampling intervals are subsequently implemented 

on them. Twenty landscapes are generated in a Monte Carlo simulation and sampling intervals of 1, 

2, 5, 10 and 20 m are used for analysis. The mean LAI values are computed for each plot at each 

sampling interval, at which point the values are compared. This comparison involves taking the 

differences between the means determined for the various sampling intervals for each of the 

randomly generated surfaces. A statistical analysis of the mean difference values allows 

conclusions to be made regarding the appropriateness of the various sampling intervals.  The mean 

differences and the standard deviations of these differences between each of the sampling intervals 

are presented in Tables 4.11 and 4.12 
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Table 4.11: Mean Values of Mean Differences Resulting from Sampling of Modeled LAI Surfaces 

at Various Intervals 

Sampling 

Interval 

1m 2m 5m 10m 20m 

1m X 0.035 0.100 0.265 0.294 

2m 0.035 X 0 .066 0.231 0.260 

5m 0.100 0.066 X 0.164 0.193 

10m 0.265 0.231 0.164 X 0.029 

20m 0.294 0.260 0.193 0.029 X 

 

Table 4.12: Standard Deviations of Mean Differences Resulting from Sampling of Modeled LAI 

Surfaces at Various Intervals 

Sampling 

Interval 

1m 2m 5m 10m 20m 

1m X 0.005 0.007 0.009 0.013 

2m 0.005 X 0.008 0.006 0.013 

5m 0.007 0.008 X 0.008 0.013 

10m 0.009 0.006 0.008 X 0.013 

20m 0.013 0.013 0.013 0.013 X 

 

The results indicate that although significant differences exist at 95% levels of confidence between 

each of the sampling resolutions, the standard deviations on these differences are very small. This 

allows us to conclude that a relatively constant bias remains present in the observations depending 

on the spatial sampling resolution selected for implementation. 

   

Given that the evident biases between 5m and finer sampling intervals are less than half the typical 

standard deviation of the measurements associated with individual TRAC transects, it is 

reasonable to space the transects at 5m intervals. If a greater level of accuracy is desired, multiple 

measurements of the TRAC transects would be more advantageous than increasing the sampling 

interval. Additionally, given the typical footprint associated with the TRAC instrument, 
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determined by solar zenith angle and canopy height (Leblanc et al., 2002), the selection of 5m 

sampling intervals exhibits sufficient accuracy for this study. 

 

TRAC measurements are therefore taken according to the orientation and imaging conditions 

described to be optimal in the TRAC Manual (Leblanc et al., 2002). This involves TRAC 

measurements along transects located at 5m intervals at a specified northwest-southeast 

orientation.  

 

4.4.3 Validation of Plot Location Algorithm  
 

To perform relevant analysis the plots set out on the ground must be located accurately on the 

image. An algorithm for the location of the plots on the remote sensing imagery is developed and 

subsequently tested using a Monte Carlo simulation to determine whether sufficient accuracy is 

achieved. 

  

4.4.3.1  Description of Plot Location Algorithm  
 

To locate the plots on the remotely sensed image, the corner points of each of the plots are initially 

determined using the global positioning system (GPS). The quoted accuracy associated with these 

points is always less than or equal to 10m as quoted by the receiver.  These initial points are used to 

locate the polygon more accurately in space given its characteristic geometry. Additionally, points 

appearing to be outliers when initially measured are resurveyed until no outlying values are 

apparent upon inspection.    

 

The plot location algorithm is implemented by, firstly, computing the azimuths, between each of 

the adjacent points. These azimuths are then referenced to a single azimuth value by adding or 

subtracting multiples of 90° and the mean is taken. This referencing to a single azimuth was 

possible due to the fact that the sides were known to have been set out at angles of 90° to each other. 

The mean azimuth value was then used to determine the orientation of the plot within the UTM 

coordinate system in which the measurements were taken. 
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Secondly, the centroid of the polygon is determined using the initial corner points. This position is 

determined with higher accuracy than the initial coordinates due to the smoothing of random errors 

associated with the use of multiple points in this computation and the lessened sensitivity of the 

centroid of a polygon to random errors in its surrounding points. Given the orientation of the 

polygon and its central coordinates the coordinates of the plots corners are then computed using 

their known distance from the center point. The software used to perform this adjustment was 

developed using Visual C++ and is attached in Appendix A. The corner coordinates resulting from 

this adjustment are presented in Tables 4.13 and 4.14. 
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Table 4.13: Summary of Plot Corner Coordinates for Needleleaf Vegetation 

Plot Number Corner Coordinates UTM 

Zone 11-N  Easting 

Corner Coordinates UTM Zone 11-N  

Northing 

1 638250 
638203 
638187 
638242 

5654945 
5654927 
5654985 
5655003 

2 638299 
638298 
638250 
638242 

5655005 
5654945 
5654945 
5655003 

3 638288 
638246 
638203 
638245 

5655249 
5655206 
5655249 
5655291 

4 638369 
638322 
638284 
638331 

5655234 
5655196 
5655243 
5655280 

5 638454 
638428 
638374 
638400 

5655199 
5655145 
5655171 
5655225 

6 638545 
638517 
638463 
638487 

5655361 
5655309 
5655328 
5655382 

7 638598 
638565 
638517 
638545 

5655331 
5655281 
5655309 
5655361 

8 638667 
638641 
638590 
638617 

5655392 
5655338 
5655363 
5655417 

9 638718 
638692 
638641 
638667 

5655369 
5655315 
5655338 
5655392 

10 638545 
638500 
638460 
638505 

5654646 
5654607 
5654652 
5654691 
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Table 4.14: Summary of Plot Corner Coordinates for Broadleaf Vegetation 

Plot Number Corner Coordinates UTM 

Zone 11-N  Easting 

Corner Coordinates UTM Zone 11-N  

Northing 

1 635851 
635792 
635780 
635839 

5653975 
5653963 
5654022 
5654034 

2 635839 
635780 
635775 
635834 

5654116 
5654106 
5654136 
5654146 

3 635900 
635918 
635966 
635948 

5654046 
5654070 
5654035 
5654010 

4 635678 
635633 
635600 
635647 

5653992 
5653962 
5654009 
5654036 

5 635633 
635587 
635557 
635600 

5653962 
5653934 
5653986 
5654009 

6 635690 
635647 
635611 
635652 

5654075 
5654036 
5654078 
5654116 

7 635647 
635600 
635565 
635611 

5654036 
5654009 
5654053 
5654078 

8 635652 
635605 
635571 
635616 

5654116 
5654076 
5654119 
5654159 

9 638332 
638292 
638248 
638288 

5655079 
5655035 
5655075 
5655120 

10 638552 
638526 
638472 
638498 

5654862 
5654808 
5654834 
5654888 
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4.4.3.2     Monte Carlo Simulation of Plot Location 
 

To determine whether or not the position errors associated with locating the study plots using this 

algorithm meet the requirements of this study, a Monte Carlo simulation was conducted. The 

criterion applied to determine the suitability of the positioning solution was to be able to establish 

the position of the point of interest with an accuracy of less than the size of a pixel 95% of the time. 

This criterion was selected because the filtering of outlying GPS measurements would ensure that 

the occurrence of extreme errors would be unlikely to occur.   

 

The Monte Carlo simulation involves specifying an initial case which corresponds to that of the 

plots and operating conditions present in this work. A square with known initial points, 

corresponding to the dimensions of the plots, was created. Subsequently, these coordinates are 

degraded with random errors of magnitudes typical of those associated with the initial GPS 

measurements. The initial GPS observations are obtained using a 12-channel Garmin eTrex® 

receiver. This measurement unit provided a measure of accuracy associated with the position and 

measurements are not taken unless this number was 10m or less. Unfortunately, further 

degradation of the positioning solution had to be accounted for using the dilution of precision 

associated with the measurement conditions. All measurements are taken between 9:00 a.m. and 

6:00 p.m. and GPS constellation analysis software allowed us to evaluate the mean horizontal 

dilution of precision associated with our measurements. A mean horizontal dilution of precision of 

1.19 is determined for the observation period for one of the days on which measurements were 

performed. This number is used to compute the accuracy of the positioning solution as follows in 

Equation 4.3. 

 

)(HDOP)(σσ ReHOR c=  Eq.4.3 

 

where σHOR is the total horizontal positioning error, HDOP is the horizontal dilution of precision  

and σRec is the positioning error reported by the receiver. 

 

Applying the values determined from the literature and constellation analysis software yields a 
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value of 11.9 m. 

 

This value of σHOR is used as the standard deviation for the generation of random errors employed 

to degrade the accuracy of the initial coordinates. These degraded coordinates are used as initial 

conditions for application of the plot location algorithm described above. The resulting corner 

coordinates are compared to the initial coordinates to determine the typical errors associated with 

this solution. This process was performed for 50000 iterations to derive a statistically significant 

sample. The statistics resulting from this Monte Carlo simulation are presented in Table 4.15. 

 

Table 4.15: Summary of Mean and 95% Positioning Errors Resulting from Monte Carlo 

Simulation of Each Component of the Plot Location Algorithm. 

Algorithm Component Mean Error(m) 95% Error 

Centroid Determination 5.42 11.32 

Orientation Determination 3.29 8.03 

Total(Centroid and 

Orientation) 

6.51 13.45 

 

These statistics demonstrate that the determination of the centroid is the algorithm component that 

is most sensitive to initial coordinate errors. It is also evident from these statistics that errors in 

centroid and orientation determination can partially mitigate each other as is evident from the 

mean and 95% errors being less than the natural sum of their algorithm components.  

 

To gain a more complete understanding of the distribution of the total horizontal positioning error, 

the histogram of the Monte Carlo simulation results is presented in Figure 4.6. 
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Figure 4.6: Histogram of the Position Errors Computed from Monte Carlo Simulation Using 

Standard Deviation of 10m, HDOP of 1.19 and 50000 Iterations 

  

After analysis of the Monte Carlo simulation results it is evident that the plot location algorithm 

exhibits a positioning accuracy consistently less than the 20m spatial resolution associated with the 

SPOT image.  This is even more demonstrably the case when considering the removal of apparent 

outliers which would have biased the positioning solution to the greatest degree. Therefore, it can 

be concluded that using the initial GPS coordinates with outlier removal within the plot location 

algorithm previously described allows for location of the plots with sufficient accuracy for the 

purpose of this study.  

 

4.4.4 Determination of Background Composition and Spectral Properties  
 

To successfully implement the linear spectral mixture analysis technique, an accurate 
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determination of the spectra associated with features beneath the canopy, referred to as the 

background spectra, is required for each plot in the study area. There are two primary components 

involved in the determination of the overall background spectra, one related to the spectral 

properties of the designated feature classes which constitute the overall background signature and 

the other related to the relative abundance of these feature classes. 

 

4.4.4.1 Determination of Spectral Properties 
 

The measurement of the spectral properties of the background is necessary to perform linear 

spectral mixture analysis. Without background measurements the algorithm is unable to 

differentiate between the contributions of the canopy and the underlying soil and vegetation to the 

overall radiation reflected by the target and measured by the radiometer.  

 

The measurement of the spectral properties of the background feature classes is also important 

because it is these properties which influence the remotely sensed measurement when a pixel 

contains more than one feature type. An observation of the background, which can consist of many 

different feature class types, allows for a quantification of the background effects in each channel 

of interest. The effects of the background have been determined to be one of the most significant 

problems in remote LAI estimation and even its partial mitigation would result in worthwhile 

improvement. Additionally in-situ spectral measurements would verify that appropriate 

atmospheric correction had been applied to the image. An appropriate atmospheric correction is 

particularly important for this study given that needleleaf vegetation is among the most adversely 

affected feature classes due to its generally lower reflectance spectrum (Spanner et al., 1990).  

 

There are several methods by which background spectra can be obtained for linear spectral 

mixture analysis. One method is the determination of background spectra directly from the image 

itself. Another method is the use of standard library spectra obtained for feature classes similar to 

those encountered in the study area. A third method is in-situ spectral measurement of the 

background 
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The method of in-situ spectral measurement of the background feature classes is selected for this 

study. This method is selected because it accounts for local variations in the background’s spectral 

properties because measurements are taken at a specific location in the study area, rather than the 

more general area associated with library spectra. Another reason in-situ measurement is selected 

was due to the observed differences between understory composition and spectral properties 

observable beneath the canopy and in clearings where background spectra would be taken from the 

image. This observed difference is likely to introduce errors into the determined background 

spectra and subsequently into the spectral mixture analysis as representative and characteristic 

samples of the background are less likely to be obtained.  

 

In this study a FieldSpec Pro FR spectroradiometer is used for in-situ spectral measurement of the 

background feature classes. This spectroradiometer can measure the spectral properties of the 

background feature classes in wavelengths ranging from the ultraviolet through the middle 

infrared portion of the electromagnetic radiation spectrum. Measurements across these spectral 

bands are necessary due to the importance of the middle infrared spectrum for accurate LAI 

estimation (Eklundh et al., 2001).  

 

Measurements are taken at two different sites for each of the needleleaf and broadleaf canopies. 

Statistical testing is performed to determine whether the spectral properties exhibited by each 

feature class are significantly different, between each of the sample locations and feature class 

types. 

 

For the sites possessing broadleaf canopies the overall results are presented in Table 4.16 in terms 

of reflectance. 
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Table 4.16: Summary of Reflectances Measured by FieldSpec Pro Spectroradiometer for Feature 

Classes at Various Locations with Broadleaf Overstory. 

Feature Class Sample Location Mean 

Reflectance 

(0.61-0.68 µm) 

Mean  

Reflectance 

(0.79-0.89 µm) 

Mean 

Reflectance 

(1.58-1.75 µm) 

Green Vegetation Broadleaf One 0.056 0.509 0.280 

Yellow Vegetation 

and Soil 

Broadleaf One 0.055 0.149 0.256 

Green Vegetation Broadleaf Two 0.058 0.583 0.298 

Yellow Vegetation 

and Soil 

Broadleaf Two 0.055 0.237 0.269 

 

Two-sample pooled t-tests are performed and the test statistics from the intra feature class 

comparisons are presented in Tables 4.17 and 4.18  for the observed reflectances in each of the red, 

near infrared and middle infrared bands. 

 

Table 4.17: Summary of T-test Statistics with 0.05 Level of Significance for Mean Reflectances of 

Green Vegetation Compared at Sampling Locations with Broadleaf Canopies 

T-test Statistic for  

Mean Reflectance 

(0.61-0.68 µm) 

T-test Statistic for 

Mean Reflectance 

(0.79-0.89 µm) 

T-test Statistic for  

Mean Reflectance 

(1.58-1.75 µm) 

Critical Value  

0.166 0.856 0.393 2.571 

 

Table 4.18: Summary of T-test Statistics with 0.05 Level of Significance for Mean Reflectances of 

Yellow Vegetation and Soil Compared at Sampling Locations with Broadleaf Canopies 

T-test Statistic for  

Mean Reflectance 

(0.61-0.68 µm) 

T-test Statistic for 

Mean Reflectance 

(0.79-0.89 µm) 

T-test Statistic for  

Mean Reflectance 

(1.58-1.75 µm) 

Critical Value 

0.043 2.777* 0.682 2.306 
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The results in Tables 4.17 and 4.18 allow us to conclude that the spectral properties of green 

vegetation do not vary significantly between the sampling sites with broadleaf canopies in any of 

the imaging bands. However, the yellow vegetation and soil feature class exhibit significant 

variation between the two sampling locations with broadleaf canopies in the near-infrared channel. 

This variation allows us to conclude that the spectral properties exhibited by yellow vegetation and 

soil in the near-infrared bands are not homogeneous for the sites having broadleaf canopies for this 

study area. The significant difference in these values indicates that care should be taken in their 

application. 

 

The final step is to determine whether the feature classes under broadleaf canopies exhibit 

sufficiently different spectral properties for discrimination between them. The ability to 

discriminate between these classes was determined by performing a comparison of the mean 

spectral properties observed for the green and yellow vegetation respectively. Two-sample pooled 

T-tests are conducted using the measurements for each feature class type after the measurements 

from the two sampling locations had been unified to form one set. The results of this statistical 

testing are presented in Table 4.19. 

 

Table 4.19: Results of Two Sample Pooled T-tests Comparing Feature Class Spectral Properties 

for a Broadleaf Overstory  

T-test Statistic for 

Mean Reflectance 

(0.61-0.68 µm) 

T-test Statistic for 

Mean Reflectance 

(0.79-0.89 µm) 

T-test Statistic for 

Mean Reflectance 

(1.58-1.75 µm) 

Critical Value 

0.219 8.314* 1.178 2.131 

 

These results lead to the conclusion that the feature classes under a broadleaf canopy are 

sufficiently different to allow for separation solely in the near-infrared portion of the 

electromagnetic spectrum. The homogeneity of the spectral properties of these two feature classes 

in the middle infrared and red portions of the spectrum could allow for their treatment as one entity 

within the modeling process, simplifying it dramatically.  
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For the needleleaf sites the overall results are presented in Table 4.20 in terms of reflectance. 

 

Table 4.20: Summary of Reflectances Measured by FieldSpec Pro Spectroradiometer for Feature 

Classes at Various Locations for a Needleleaf Overstory. 

Feature Class Sample Location Mean 

Reflectance 

(0.61-0.68 µm) 

Mean  

Reflectance 

(0.79-0.89 µm) 

Mean 

Reflectance 

(1.58-1.75 µm) 

Green Vegetation Needleleaf One 0.058 0.555 0.371 

Yellow Vegetation 

and Soil 

Needleleaf One 0.155 0.272 0.466 

Green Vegetation Needleleaf Two 0.042 0.355 0.280 

Yellow Vegetation 

and Soil 

Needleleaf Two 0.075 0.205 0.323 

 

Two-sample pooled t-tests are performed and the test statistics from the comparisons of the sets 

within each feature class are presented in Tables 4.21 and 4.22 for the reflectances recorded for 

each of the red, near infrared and middle infrared bands. 

 

Table 4.21: Summary of T-test Statistics at Level of Significance 0.05 for Mean Reflectances of 

Green Vegetation Compared at Sampling Locations with Needleleaf Overstory 

T-test Statistic for  

Mean Reflectance 

(0.61-0.68 µm) 

T-test Statistic for 

Mean Reflectance 

(0.79-0.89 µm) 

T-test Statistic for  

Mean Reflectance 

(1.58-1.75 µm) 

Critical Value 

1.586 4.547* 2.243 2.262 

 

Table 4.22: Summary of T-test Statistics for Mean Reflectances of Yellow Vegetation and Soil 

Compared at Sampling Locations with Needleleaf Overstory 

T-test Statistic for  

Mean Reflectance 

(0.61-0.68 µm) 

T-test Statistic for 

Mean Reflectance 

(0.79-0.89 µm) 

T-test Statistic for  

Mean Reflectance 

(1.58-1.75 µm) 

Critical Value 

3.723* 1.898 1.961  2.306 
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The results in Tables 4.21 and 4.22 allow us to conclude that, for sites with needleleaf canopies, 

the spectral properties of green vegetation exhibit significant variance between the sampling sites 

in the near infrared bands while the yellow vegetation exhibits significant variation in the red 

bands. This variation allows us to conclude that the spectral properties of the feature classes are not 

homogeneous in all bands and the results occurring from the application of these measurements 

must be carefully scrutinized to see that their inclusion has not affected the quality of the results. 

 

The last step is to ascertain whether the feature classes with needleleaf canopies exhibited 

sufficient difference in their spectral properties for them to be mutually distinguished. Two-sample 

pooled T-tests are performed and the results of this statistical testing are presented in Table 4.23. 

 

Table 4.23: Results of Two Sample Pooled T-tests at 0.05 Level of Significance Comparing 

Feature Class Spectral Properties for Needleleaf Overstory Conditions 

T-test Statistic for 

Mean Reflectance 

(0.61-0.68 µm) 

T-test Statistic for 

Mean Reflectance 

(0.79-0.89 µm) 

T-test Statistic for Mean 

Reflectance (1.58-1.75 µm) 

Critical Value 

4.214* 4.977* 1.641 2.093 

 

The above testing permits us to conclude that the spectral properties of the feature classes under a 

needleleaf overstory exhibit significant differences in their reflectances in the red and 

near-infrared wavelengths. Due to the substantial nature of these differences it is reasonable to 

conclude that these feature classes should be distinguishable within these wavelengths. The 

similarity of the spectral properties of the feature classes in the middle infrared bans could allow 

for the agglomeration of these classes for modeling purposes.    

 

4.4.4.2 Determination of Feature Class Composition 
 

To determine the overall spectral properties of the background it is necessary to determine the 

relative abundance of each of the feature classes contained within each particular study plot.  The 

relative abundance of each of the feature classes determines the contribution of each respective 

feature class to the overall spectral signature of the background for that specific location. 



 

 93

 

The relative composition of each feature class is determined in the following manner. Digital 

photos were collected at 20m intervals within each plot on September 15th and 16th, 2004. This 

sampling regime resulted in a total of nine digital photos for each 60m by 60m plot. These photos 

are subsequently converted from JPEG to PIX file format to be analyzed in PCI. After the file 

format conversion, subset areas of the resulting images are taken for analysis. These subset areas 

are selected visually so as to comprise the largest representative area that could be obtained from 

the initial image, while minimizing the presence of overstory features in the image. 

 

Once the subset areas are obtained the initial red, green, blue (RGB) values obtained from the 

digital camera are transformed using an intensity, hue, saturation (IHS) transformation. This 

transform is used because of the substantial variability in light intensity under the canopy. These 

variations are evident in the images from the presence of shadows associated with overstory 

shading rendering members of the same feature class indistinguishable using a classification 

algorithm on the initial RGB channels. However, application of the IHS transform mitigates these 

difficulties to some extent due to its extraction of the intensity component.  Further processing is 

required after the IHS transform due to the scaling of the hue value, which is modeled to be 

circular, on a linear eight bit scale. This processing involves the separation of the hue into an X and 

Y component based on either the sine or cosine of its magnitude. 

 

After this initial processing an unsupervised classification is performed using the X and Y 

components of the hue value as input parameters. The input feature classes are then identified in 

the image, along with the output classification clusters they correspond to. The relative abundance 

is calculated by determining the proportion of the image which is occupied by each feature class. 

This process is performed for each photo within a plot. The results of these classifications are 

compiled at the plot level to determine the differences between the mean background compositions 

and the local background compositions. The classification results are compiled for broadleaf or 

needleleaf canopies, as variation between the spectral properties of the background feature classes 

is sufficient for separate analysis. 
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In Figures 4.7 and 4.8 photographs of typical needleleaf and broadleaf understory conditions are 

presented. 

    
Figure 4.7: Typical Understory Conditions Beneath a Broadleaf Canopy 
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Figure 4.8: Typical Understory Conditions Beneath a Needleleaf Canopy 

 

It is evident from the above photographs that the understory conditions associated with broadleaf 

and needleleaf canopies are distinct from each other. Beneath the broadleaf canopy, an abundance 

of leafy green vegetation is evident, with leafy yellow vegetation scarcely evident. Underneath the 

needleleaf canopy smaller needleleaf shrubs, in addition to an increased incidence of bare soil is 

evident. Although some leafy green vegetation is visible, an increased proportion of green 

understory vegetation is composed of weeds and mosses. 

   

In Tables 4.24 and 4.25 the statistics regarding feature class composition are presented for both the 

needleleaf and broadleaf canopy conditions. 
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Table 4.24: Feature Class Composition for Sites with Broadleaf Overstory 

Plot Number Percent Composition of Green 

Vegetation Feature Class 

Percent Composition of 

Yellow Vegetation Feature 

Class 

1 60 40 

2 55 45 

3 55 45 

4 55 45 

5 55 45 

6 50 50 

7 50 50 

8 60 40 

9  55 45 

10 60 40 

Total 55 45 
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Table 4.25: Feature Class Composition for Sites with Needleleaf Overstory 

Plot Number Percent Composition of Green 

Vegetation Feature Class 

Percent Composition of 

Yellow Vegetation Feature 

Class 

1 35 65 

2 40 60 

3 65 35 

4 50 50 

5 65 35 

6  60 40 

7 65 35 

8 50 50 

9  55 45 

10 50 50 

Total 55 45 

 

It is evident from these statistics that the understory is approximately equally composed of the two 

feature classes which were defined for the analysis for needleleaf and broadleaf vegetation. It is 

also evident that the needleleaf sites exhibit substantially more variance in the understory 

composition, their standard deviation being larger by a factor of approximately three, than do those 

of the broadleaf sites.   
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5. Regression Analysis 
 

The regression analysis using any modeling parameter employed in this study is performed in the 

same way. The values for each pixel contained within the boundaries of an individual plot are 

incorporated into the final estimate of the plot-wide LAI estimate. The contribution of each of the 

pixel values is weighted based on the area of the plot contained within that pixel to the total area of 

the plot. Once the overall parameter values are determined, after application of the weighting 

function, these values are regressed against in-situ LAI measurements.  

 

5.1 Spectral Vegetation Indices 
 

As previously discussed in Chapter 3 several spectral vegetation indices, both traditional and 

modified, are computed for each plot. These indices are compared to determine which one evinced 

the highest capacity to model the observed LAI variations for each vegetation type. This analysis is 

subdivided into needleleaf and broadleaf vegetation respectively to facilitate analysis and 

comparison. This subdivision also allows for a determination whether the optimal relationships 

derived for each vegetation type differs in terms of strength, accuracy or modeling inputs. 

 

5.1.1 Needleleaf Vegetation 
 

Relationships are derived between reflectance values, generic spectral vegetation indices, along 

with scaled versions of these indices incorporating middle infrared reflectance, and measured LAI. 

Linear and power relationships are derived between each spectral vegetation index and the LAI 

measurements. The results of these regressions are presented in Table 5.1.  
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Table 5.1: Coefficients of Determination for Spectral Vegetation Indices and LAI Measurements  

Input 

Parameter 

Linear Relationship Coefficient of 

Determination 

of Linear 

Relationship 

Power Relationship Coefficient 

of Determi- 

nation of 

Power 

Relationship

Red 

Reflectance 

(REFRED) 

19.57
359.42REFLAI RED

+
−=

 
0.50 

3.45
REDREF

058E
LAI

−
=  

0.44 

Near 

Infrared 

Reflectance 

(REFNIR) 

12.68
57.30REFLAI NIR

+
−=

 
0.80 

1.89
NIRREF

0.11LAI =  
0.73 

Middle 

Infrared 

Reflectance 

(REFMIR) 

11.25
84.76REFLAI MIR

+
−=

 
0.75 

1.49
MIRREF

0.099LAI =  
0.65 

RED
MIR  

BANDQUO 

12.68
4.31BANDLAI QUO

+
−=

 
0.63 

1.94
QUOBAND

14.91LAI =

 

0.59 

REDMIR*
BANDPROD 9.8

1581.7BANDLAI
 PROD

+
−=

 

0.76 
1.13

PRODBAND
0.007LAI =  0.64 

NDVI 19.3427.43NDVILAI +−=
 

0.54 -3.70NDVI45.0LAI =
 

0.54 

SR 13.852.76SRLAI +−=  0.56 2.3677.61SRLAI −=  0.56 

MSI 54.2232.33MSILAI +−=
 

0.27 -4.010.42MSILAI =  0.22 

NDVIADJ 
0.61

14.46NDVILAI ADJ

−
−=

 
0.77 

1.30
ADJNDVI
17.18LAI =

 
0.79 

SRADJ 1.302.64SRLAI ADJ −=  0.76 1.46
ADJ1.40SRLAI =  0.77 
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The relationships derived from the structural regressions are presented in Figures 5.1 through 5.10 

to facilitate interpretation. 
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Figure 5.1: Graph of LAI versus Measured Reflectance between 0.610 and 0.680 µm for 

Needleleaf Vegetation   
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Figure 5.2: Graph of LAI versus Measured Reflectance between 0.790 and 0.890 µm for 

Needleleaf Vegetation 
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Figure 5.3: Graph of LAI versus Measured Reflectance between 1.580 and 1.730 µm for 

Needleleaf Vegetation 
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Figure 5.4 Graph of LAI versus the Product of the Observed Reflectances in the Red and 

Middle-Infrared Bands for Needleleaf Vegetation 
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Figure 5.5 Graph of LAI versus the Quotient of Middle-Infrared Reflectance Divided by Red 

Reflectance for Needleleaf Vegetation 
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Figure 5.6: Graph of LAI versus Normalized Difference Vegetation Index for Needleleaf 

Vegetation   
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Figure 5.7: Graph of LAI versus Simple Ratio for Needleleaf Vegetation 
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Figure 5.8: Graph of LAI versus Modified Normalized Difference Vegetation Index for Needleleaf 

Vegetation 
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Figure 5.9: Graph of LAI versus Modified Simple Ratio for Needleleaf Vegetation 



 

 109

0

1

2

3

4

5

6

7

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6

Moisture Stress Index

Le
af

 A
re

a 
In

de
x

 
 

Figure 5.10: Graph of LAI versus Moisture Stress Index for Needleleaf Vegetation 

 

For needleleaf vegetation the spectral vegetation indices which exhibited the strongest 

relationships with measured LAI, incorporated measurements in each of the red, near-infrared and 

middle-infrared bands.  

 

One interesting feature of the needleleaf vegetation in this study, is the unexpected inverse 

relationship observed between NDVI and LAI measurements. Such behavior in traditional LAI 

estimators, which generally assume positive correlations with NDVI, almost certainly results in 

the introduction of errors into the modeling which propagate across the landscape. This inverse 

relationship is likely due to the reflectance properties of the understory, which differ from those of 

the needleleaf overstory as it is composed of green leafy vegetation. This is due to the visibility of 

understory vegetation by the sensor in sparser canopies. The presence of leafy green vegetation 

likely contributes to an increase in NDVI.  
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5.1.2 Broadleaf Vegetation      
 

As in the case of needleleaf vegetation already discussed, relationships are derived between in-situ 

LAI measurements and each of the modified and unmodified spectral vegetation indices. Linear 

and power relationships are derived between the spectral vegetation indices and the LAI 

measurements. It should be noted that only nine plots of the original ten are employed for the 

regression analysis. This decision has been made because the plot that is not being used, plot 

number 9, was significantly more mixed in terms of species composition than the other plots and 

substantially degraded the results in terms of quality and sampling uniformity. In Table 5.2 the 

coefficients of determination for each of the relationships are presented.  
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Table 5.2: Regression-Derived Coefficients of Determination between Spectral Vegetation Indices 

and LAI Measurements for Broadleaf Vegetation 

Input Parameter Linear Relationship Coeffic-i

ent of 

Determ-i

nation of 

Linear 

Relation-

ship 

Power Relationship Coefficient 

of 

Determinat

ion of 

Power 

Relationsh-

ip 

Red Reflectance 

(REFRED) 8.23
111.90REFLAI RED

+
−=

 
0.43 

21.2

0035.0
LAI

REDREF
=   

0.44 

Near Infrared 

Reflectance 

(REFNIR) 

0.38
8.52REFLAI NIR

+
=

 

 

0.11 0.76
NIR7.22REFLAI =

 

0.08 

Middle Infrared 

Reflectance 

(REFMIR) 

5.98
26.07REFLAI MIR

+
−=

 

 

0.47 -1.38
MIR0.16REFLAI =

  
0.49 

RED
MIR  

(BANDQUO) 
5.62

1.12BANDLAI QUO

+
−=

 

 

0.48 
1.14
QUOBand

7.42LAI =  

 

0.48 

REDMIR*  

(BANDPROD) 4.81
338.87BANDLAI PROD

+
−=

 

0.49 
0.88
PRODBAND

0.031LAI =  0.49 

NDVI 7.0114.05NDVILAI −=  0.46 3.6810.43NDVILAI =
 

0.43 

SR 1.160.70SRLAI −=  0.43 1.430.23SRLAI =   0.38 

MSI 6.047.20MSILAI +−=  0.63 1.370.93MSILAI −=  0.64 

NDVIADJ 
1.72

2.23NDVILAI ADJ

+
=

 
0.51 0.33

ADJ3.55NDVILAI =
 

0.59 

SRADJ 1.700.28SRLAI ADJ +=  0.56 0.33
ADJ1.79SRLAI =  0.63 
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The graphical results determined by structural regression are presented in Figures 5.11 through 

5.20. 
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Figure 5.11: Graph of LAI versus Measured Reflectance between 0.610 and 0.680 µm for 

Broadleaf Vegetation  
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Figure 5.12: Graph of LAI versus Measured Reflectance between 0.790 and 0.890 µm for 

Broadleaf Vegetation 
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Figure 5.13: Graph of LAI versus Measured Reflectance between 1.580 and 1.730 µm for 

Broadleaf Vegetation 
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Figure 5.14 Graph of LAI versus the Product of the Observed Reflectances in the Red and 

Middle-Infrared Bands for Needleleaf Vegetation 
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Figure 5.15 Graph of LAI versus the Quotient of Middle-Infrared Reflectance Divided by Red 

Reflectance for Needleleaf Vegetation 
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Figure 5.16: Graph of LAI versus Normalized Difference Vegetation Index for Broadleaf 

Vegetation   
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Figure 5.17: Graph of LAI versus Simple Ratio for Broadleaf Vegetation 
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Figure 5.18: Graph of LAI versus Modified Normalized Difference Vegetation Index for 

Broadleaf Vegetation 
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Figure 5.19: Graph of LAI versus Modified Simple Ratio for Broadleaf Vegetation 
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Figure 5.20: Graph of LAI versus Moisture Stress Index for Broadleaf Vegetation 

 

It is evident that the strongest relationships are derived between measured LAI and spectral 

vegetation indices which incorporate middle-infrared information. The unmodified spectral 

vegetation indices, namely the normalized difference vegetation index and the simple ratio, exhibit 

the poorest performance in modeling LAI in broadleaf canopies.  

 

These results differ from those of the needleleaf canopy in that the moisture stress index, which 

exhibits the weakest relationship with LAI in the needleleaf case, is now the parameter which best 

models LAI. The variable performance of the moisture stress index in its ability to reliably model 

LAI is likely attributable to the differing spectral properties of needleleaf and broadleaf canopies, 

particularly in the middle infrared bands. The variations in reflectance observed in the middle 

infrared are primarily due to the relative moisture content. Given the different moisture storage 

mechanisms associated with needleleaf and broadleaf vegetation, it is therefore not surprising that 

the performance of the models employing the moisture stress index as the input parameter exhibit 
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varying performance.      

 

5.2 Linear Spectral Mixture Analysis 
 

As previously discussed in Chapter 3, techniques of linear spectral mixture analysis are employed 

to determine the relative composition of each pixel of interest in terms of predefined feature 

classes. The three feature classes defined for this study are sunlit canopy, shaded canopy and 

background. These classes are selected as the majority of studies implementing spectral mixture 

analysis techniques for LAI estimation in boreal or montane forests have used these specific 

classes. (Peddle et al 2001, Peddle et al., 1999) The shaded canopy is also referred to as the 

shadow fraction. 

 

Spectral endmembers for each of the needleleaf and broadleaf cases are determined in the same 

way. The sum of the observed reflectances of the red, near-infrared and middle-infrared are taken 

for each pixel observed and contained within a plot of a given overstory type. The pixels 

possessing the minimum and maximum values of these sums are determined and then specified as 

endmembers. The pixel with the minimum value for the reflectance sum is taken to be the shaded 

canopy endmember, as a decrease in observed reflectance is expected with increasing shade. The 

pixel with the maximum value for the reflectance sum is taken to be the sunlit canopy endmember, 

as an increase in observed reflectance is expected with minimal shading. 

 

To determine the impact of variations in the remote estimation models based on the method of 

determination of background spectra, two different background values are employed. One 

background spectrum has been determined from in-situ spectral and composition measurements of 

feature classes, while the other has been selected directly from the image. Regression analysis 

between measured LAI and shadow fraction is conducted to determine whether a significant 

relationship exists.   

 

To ensure convergent solutions that satisfied the preliminary constraints of non-negative percent 

compositions, which computed over all feature classes sums to one, the application of both 

analytical and numerical solution techniques is necessary. The analytical solution consisted of a 
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parametric least-squares algorithm designed to determine the optimal composition to generate the 

observed reflectance for a particular pixel. If the analytical solution satisfied the initial constraints 

it was accepted, however if it violated the initial constraints a numerical solution algorithm was 

implemented. The numerical solution algorithm implemented a constrained solution where the 

errors generated by particular values of pixel composition are to be evaluated. The values of pixel 

composition are varied at uniform intervals across the domain specified by the initial constraints. 

The pixel composition which minimizes the differences between the observed and modeled 

reflectances is selected as the solution. The numerical method is specified to have an evaluation 

interval of 0.5%. Due to the voluminous computations associated with the numerical method, 

employing a finer sampling regime would have necessitated non-linear increases in computational 

time without corresponding increases in accuracy. Although the numerical solution has lower 

accuracy than the analytical solution, the extent to which it affects the solution is an order of 

magnitude less than the evaluation interval. 

    

5.2.1 Needleleaf Vegetation 
 

In the needleleaf case, the relationships determined between the shadow fraction (SF) and the LAI 

are stronger than those derived using the technique of modified spectral vegetation indices.  

 

The results obtained from the use of different background spectra produced are similar overall, 

although the background spectra derived from in-situ spectral sampling slightly outperforms that 

determined from the image for both the linear and power relationships. Additionally, the power 

relationship appears to exhibit increased robustness in its modeling of LAI, for needleleaf canopies, 

than does a linear model.  This is evident from Table 5.3 and Figures 5.21 and 5.22.     
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Table 5.3: Coefficients of Determination Determined from Regression of LAI against Shadow 

Fraction for Needleleaf Vegetation  

Background 

Spectra 

Derivation Type 

Linear Relationship Coefficient of 

Determination 

of Linear 

Relationship 

Power 

Relationship 

Coefficient of 

Determination 

of Power 

Relationship 

Spectroradiometer 0.807.15SFLAI −=

 

0.81 1.316.59SFLAI =  

 

0.83 

Image 0.136.38SFLAI +=

 

0.78 1.116.81SFLAI =  0.82 
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Figure 5.21: Graph of LAI versus Shadow Fraction for Needleleaf Vegetation Using Background 

Spectra Derived from In-Situ Spectroradiometer Measurements 
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Figure 5.22: Graph of LAI versus Shadow Fraction for Needleleaf Vegetation Using 

Image-Derived Background Spectra 

 

5.2.2 Broadleaf Vegetation  
 

For broadleaf canopies the relationship derived between in-situ LAI measurements and the 

shadow fraction computed using linear spectral mixture is extremely weak, barely exceeding that 

of complete randomness. In contrast to the needleleaf case, the employment of the background 

spectra derived from the image resulted in a stronger relationship with LAI than did the application 

of the background spectra derived from in-situ measurement. Power relationships again exhibit an 

increased capability to accurately model LAI over more traditional linear relationships in a 

broadleaf canopy as demonstrated in Table 5.4.  
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Table 5.4: Coefficients of Determination Determined from Regression of LAI against Shadow 

Fraction for Broadleaf Vegetation  

Background 

Spectra 

Derivation Type 

Linear Relationship Coefficient of 

Determination 

of Linear 

Relationship 

Power 

Relationship 

Coefficient of 

Determination 

of Power 

Relationship 

Spectroradiometer 2.670.049SFLAI +=
 

 

0.00 0.0142.72SFLAI =
 

 

0.00 

Image 2.580.37SFLAI +=
 

 

0.02 0.0792.96SFLAI =
 

0.08 
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Figure 5.23: Graph of LAI versus Shadow Fraction for Broadleaf Vegetation Using Background 

Spectra Derived from In-Situ Spectroradiometer Measurements 
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Figure 5.24: Graph of LAI versus Shadow Fraction for Broadleaf Vegetation Using 

Image-Derived Background Spectra 

 

5.3 Independent Investigations 
 

5.3.1 Scale Factor Method 
 

To compute the normalized scale factor (NSF) the product of the middle-infrared and the red factor 

was divided by the near-infrared factor in the broadleaf case and multiplied by this factor in the 

case of needleleaf vegetation. This change in methodology is performed due to the differences in 

the observed relationships between LAI and near-infrared reflectance for needleleaf and broadleaf 

vegetation at this particular study site. 

 

After an area-weighted mean of the overall scale factor is computed for each plot, a regression 

against in-situ LAI measurements is performed.    



 

 128

 

The results of the application of the normalized scaling algorithm are presented in Figures 5.25 

through 5.28 and Table 5.5. 

 

Table 5.5: Regression Relationships Determined between In-Situ measurements of LAI and Scale 

Factor for Various Vegetation Types 

Scale Factor Formula Derived Power 

Relationship 

Coefficient of 

Determination 

Vegetation Type 

))(F)(F(FNSF MIRNIRRED=  

 

0.467.06NSFLAI =  

 

0.74 Needleleaf 

))(F(FNSF MIRRED=  0.646.99NSFLAI =  

 

0.69 Needleleaf 

NIR

MIRRED

F
))(F(F

NSF =  
0.142.45NSFLAI =  

 

0.59 Broadleaf 

))(F(FNSF MIRRED=  0.273.24NSFLAI =  

 

0.54 Broadleaf 
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Figure 5.25: Graph of LAI Against Scale Factor Determined Using Red and Middle-Infrared 

Channels for Needleleaf Vegetation 
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Figure 5.26: Graph of LAI Against Scale Factor Determined Using Red, Near-Infrared and 

Middle-Infrared Channels for Needleleaf Vegetation 
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Figure 5.27: Graph of LAI Against Scale Factor Determined Using Red and Middle-Infrared 

Channels for Broadleaf Vegetation 
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Figure 5.28: Graph of LAI Against Scale Factor Index Determined Using Red, Near-Infrared and 

Middle-Infrared Channels for Broadleaf Vegetation 

 

It is evident from these results that the scaling technique exhibits slightly inferior performance 

when compared to the parameters which most robustly model LAI. However, the results derived 

from the scale factor technique are still a considerable improvement over the results obtained using 

the unadjusted vegetation indices. It should also be noted that it may be advantageous to use the 

two band scaling factor versus the three band scaling factor as the results do not degrade 

substantially. This decision might be prudent based on the sensitivity of observed reflectance in the 

near-infrared channel to the influence of the background spectra, particularly in the case of 

needleleaf vegetation.   
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5.3.2 Normalized Distance 
 

The results obtained from applying the normalized distance method are presented in Table 5.6 and 

Figures 5.29 through 5.32.  

 

Table 5.6: Regression Relationships Determined between In-Situ measurements of LAI and 

Normalized Distance for Various Vegetation Types 

Normalized Distance Formula Derived  

Relationship 

Coefficient of 

Determination 

Vegetation 

Type 

( ) ( ) ( )
3

F1F1F1
ND

2
MIR

2
NIR

2
RED −+−+−

=

 

23.30ND6.29eLAI −=  

 

0.86 Needleleaf 

( ) ( )
2

F1F1
ND

2
MIR

2
RED −+−

=  

23.35ND6.32eLAI −=  

 

0.79 Needleleaf 

( ) ( ) ( )
3

F1FF1
ND

2
MIR

2
NIR

2
RED −++−

=  

21.53ND3.28eLAI −=  

 

0.65 Broadleaf 

( ) ( )
2

F1F1
ND

2
MIR

2
RED −+−

=  

21.06ND3.00eLAI −=  

 

0.58 Broadleaf 
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Figure 5.29: Graph of LAI Against the Square of Normalized Distance Determined Using Red and 

Middle-Infrared Channels for Needleleaf Vegetation 
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Figure 5.30: Graph of LAI Against the Square of Normalized Distance Determined Using Red, 

Near-Infrared and Middle-Infrared Channels for Needleleaf Vegetation 
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Figure 5.31: Graph of LAI Against the Square of Normalized Distance Determined Using Red and 

Middle-Infrared Channels for Broadleaf Vegetation 
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Figure 5.32: Graph of LAI Against the Square of Normalized Distance Determined Using Red, 

Near-Infrared and Middle-Infrared Channels for Broadleaf Vegetation 

 

It is evident from theses results that the Gaussian relationships derived between the normalized 

distances and the in-situ LAI measurements exhibit superior performance to any regression 

relationships derived in this study for both needleleaf and broadleaf vegetation. One advantage of 

the regression relationships derived using normalized distances is their inherently bounded nature 

over the range of input values for which they are defined, as well as the more realistic values which 

they exhibit over this entire range. Another advantage presented by this technique is the between 

the relationships derived using two and three channels, particularly for needleleaf vegetation, 

which may prove useful in situations where the reflectances in the near-infrared band are highly 

dependent on the influence of the background. 

 

It is also evident that the incorporation of additional spectral information is beneficial, as 

evidenced for both needleleaf and broadleaf vegetation, where the superior performance of 

normalized distances for three spectral bands is compared with those derived using two spectral 
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bands. However, the normalized distances derived using two spectral bands exhibit superior 

modeling performance for LAI as compared to other input modeling parameters derived using two 

spectral bands except for the moisture stress index in the broadleaf case. This generally superior 

performance in the special case where two spectral channels are used is evidence of the overall 

robustness of the normalized distance technique in LAI modeling for needleleaf and broadleaf 

vegetation. It should be noted in the needleleaf case that the two spectral channel normalized 

distance model may be preferred in areas where the background effects are not well characterized. 
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6 Sensitivity Analysis 
 

To determine the relevance and suitability of the LAI estimation models developed in the previous 

section, given the typical errors associated with them, several simulations are conducted.  

 

The first simulation involves testing the sensitivity of the model derivation process to errors in 

spatial location. This analysis is composed of two distinct approaches. The first approach employs 

a simulation of a uniform spatial shift in each of the cardinal directions and then computes the 

input parameter upon which models are then derived. The variability and quality of the models are 

then compared to the initial models.  The second approach implements a spatial statistical analysis 

to determine the magnitude and distance over which modeling parameters are spatially correlated. 

These two approaches allow us to conclude whether the derived models are valid and whether the 

contribution of errors in spatial location to errors in the models is significant.       

 

The simulations employ the remote estimation algorithms for LAI in an application for which 

these values are required as input parameters with certain levels of accuracy. The first of these 

simulations is a Monte Carlo simulation which examines the magnitude of the difference between 

the known and estimated LAI, given the known errors of the remote estimation model and 

randomly generated surfaces.  

 

6.1 Sensitivity Analysis for Location Accuracy 
 

6.1.1 Spatial Error Analysis 
 

To determine the sensitivity of the derived models to errors in location, due to errors in plot 

location or in georeferencing, a shift of each plot by one pixel in octants, which start and finish due 

north, is modeled. The input modeling parameters are recomputed to find the area-weighted mean 

value for the shifted plot location. 
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To decrease the computational volume of the regression combinations by orders of magnitude, 

resampling is performed to determine estimates in each of the cardinal directions. This resampling 

is conducted by resampling the weighted means in each of the octant directions to each of the 

cardinal directions, as described in Table 6.1, to incorporate all of the information from the various 

octants. 

 

Table 6.1: Resampling Equations from Octants into Cardinal Directions 

Cardinal Direction Formula 

West 
4

VAL2VALVAL swwnw ++
 

East 
4

VAL2VALVAL seene ++
 

North 
4

VAL2VALVAL nennw ++
 

South 
4

VAL2VALVAL swsse ++
 

 

This resampling is justified, despite some data smoothing, quantified in the statistics of Tables 6.2 

and 6.3, due to the size of the remaining statistical sample and the strength of conclusions derived 

from the analysis.  
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Table 6.2: Statistics of Input Parameters with Modeled Location Errors in Broadleaf Sites 

Input Parameter Mean Plot 

Standard 

Deviation Octant 

Maximum Plot 

Standard 

Deviation Octant 

Mean Plot 

Standard 

Deviation 

Cardinal 

Maximum 

Plot Standard 

Deviation 

Cardinal 

NDVI 0.018 0.036 0.014 0.027 

Simple Ratio 0.321 0.562 0.255 0.422 

Modified NDVI 0.058 0.032 0.045 0.047 

Modified Simple 

Ratio 

0.469 1.030 0.377 0.849 

Moisture Stress 

Index 

0.023 0.042 0.018 0.036 

Shadow Fraction 0.112 0.174 0.087 0.145 

 

Table 6.3: Statistics of Input Parameters with Modeled Location Errors in Needleleaf Sites 

Input Parameter Mean Plot 

Standard 

Deviation Octant 

Maximum Plot 

Standard 

Deviation Octant 

Mean Plot 

Standard 

Deviation 

Cardinal 

Maximum 

Plot Standard 

Deviation 

Cardinal 

NDVI 0.0129 0.0221 0.0104 0.0180 

Simple Ratio 0.135 0.256 0.109 0.209 

Modified NDVI 0.0294 0.0812 0.0241 0.0660 

Modified Simple 

Ratio 

0.172 0.492 0.140 0.398 

Moisture Stress 

Index 

0.0147 0.0271 0.0118 0.0229 

Shadow Fraction 0.068 0.134 0.055 0.111 
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It is evident from the results that the resampling decreases the standard deviation in all cases, in the 

majority of cases by approximately 20%. The effect of this resampling is an increase in the 

modeling accuracy due to noise reduction and a greater proportion of accurate results due to the 

marked decrease, over 99% in all cases, in the number of samples. It should be noted that the plots 

with the highest standard deviations associated with the modeled location errors, were those 

surrounded or partially bounded by land cover distinct from the vegetation type. This is expected 

as the spectral properties in these boundary regions are the most variable due to their 

non-homogeneous composition and therefore have the potential to induce considerable error if 

they are mistakenly included in the modeling areas due to errors in spatial location. Comparisons 

between the initial results and the results with induced spatial error, determined by the coefficients 

of determination, are presented in Tables 6.4 and 6.5. 
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Table 6.4: Comparison of Initial Coefficient of Determination with Coefficients of Determination 

Derived with Induced Location Error for Broadleaf Canopies  

Input 

Parameter 

Mean 

Coefficient of 

Determination 

Linear Model 

Standard 

Deviation 

Coefficient of 

Determination 

Linear Model 

Initial 

Coefficient 

of 

Determina-

tion 

Linear 

Model 

Mean 

Coefficient 

of 

Determina-

tion 

Power 

Model 

Standard 

Deviation 

Coefficient 

of 

Determina-

tion  

Power 

Model 

Initial 

Coeffic

ient of 

Determ

-ination 

Power 

Model 

NDVI 0.27 0.22 0.46 0.26 0.23 0.43 

Simple 

Ratio 

0.27 0.21 0.43 0.25 0.22 0.38 

Modified 

NDVI 

0.37 0.18 0.51 0.43 0.21 0.59 

Modified 

Simple 

Ratio 

0.41 0.19 0.56 0.45 0.22 0.63 

Moisture 

Stress 

Index 

0.43 0.19 0.63 0.43 0.19 0.64 

Shadow 

Fraction 

0.64 0.14 0.81 0.64 0.16 0.83 

 



 

 144

 

Table 6.5: Comparison of Initial Coefficients of Determination with Coefficients of Determination 

Derived with Induced Location Error for Needleleaf Canopies 

Input 

Parameter 

Mean 

Coefficient 

of 

Determinat

-ion Linear 

Model 

Standard 

Deviation 

Coefficient 

of 

Determinat

-ion  

Linear 

Model 

Initial 

Coefficient 

of 

Determinat

i-on 

Linear 

Model 

Mean 

Coefficient 

of 

Determinat-

ion 

Power 

Model 

Standard 

Deviation 

Coefficient 

of 

Determinat-

ion  

Power 

Model 

Initial 

Coefficient 

of 

Determinat

-ion Power 

Model 

NDVI 0.53 0.13 0.54 0.51 0.13 0.54 

Simple 

Ratio 

0.53 0.15 0.56 0.51 0.15 0.56 

Modified 

NDVI 

0.62 0.14 0.77 0.61 0.17 0.79 

Modified 

Simple 

Ratio 

0.59 0.15 0.76 0.59 0.18 0.77 

Moisture 

Stress 

Index 

0.18 0.15 0.27 0.16 0.14 0.22 

Shadow 

Fraction 

0.04 0.06 0.00 0.06 0.08 0.00 

 

These statistics demonstrate the validity of the initial models as they outperform the majority of 

the models derived with enhanced data in a reduced sample size. The initial modeling is even more 

marked in its success for the modeling parameters which exhibited the highest initial correlation 

with measured values of LAI, exceeding one standard deviation above the mean in some cases. 

The validity of this solution is indicative that the measurements plots are located with sufficient 

accuracy to derive meaningful results and that the known positioning errors did not substantially 
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compromise the initial estimation models. It also demonstrates how errors in the spatial location of 

plots can degrade the measurements from which models are derived, even after the effects of the 

reduced sample size and measurement smoothing have been considered.  

6.1.2 Spatial Statistics 
 
Although the previous section demonstrates that errors in the location of plots influence the quality 

of the models derived, an explicit relationship between the magnitude of the spatial location error 

and the magnitude of its effect on the models has not been derived. This effect is landscape specific 

and therefore relationships between modeling parameters should be examined for the extent of 

spatial correlation they exhibit to determine the relative impact of location error on the derived 

models. 

 

6.1.2.1 Broadleaf Vegetation 
 

The values of Moran’s I determined for each of the modeling parameters over various lag distances 

are presented graphically in Figures 6.1 through 6.7. 
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Figure 6.1: Plot of Moran’s I versus Lag Distance for Normalized Difference Vegetation Index for 

Broadleaf Vegetation 
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Figure 6.2: Plot of Moran’s I versus Lag Distance for Simple Ratio for Broadleaf Vegetation 
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Figure 6.3: Plot of Moran’s I versus Lag Distance for Moisture Stress Index for Broadleaf 

Vegetation 
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Figure 6.4: Plot of Moran’s I versus Lag Distance for Modified Normalized Difference Vegetation 

Index for Broadleaf Vegetation  
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Figure 6.5: Plot of Moran’s I versus Lag Distance for Modified Simple Ratio for Broadleaf 

Vegetation  
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Figure 6.6: Plot of Moran’s I versus Lag Distance for Shadow Fraction for Broadleaf Vegetation  
 



 

 152

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 25 50 75 100 125 150 175 200 225

Lag Distance(m)

M
or

an
's

 I

 

Figure 6.7: Plot of Moran’s I versus Lag Distance for Normalized Distance Computed Using 

Middle Infrared, Near Infrared and Red Channels for Broadleaf Vegetation  
 

 

One feature evident from the figures is the inverse relationship that Moran’s I values maintain with 

lag distance. Substantial positive correlation is observed over shorter distances, as demonstrated 

by the values of the nearest spatial neighbors which range from a minimum of 0.78 for the 

normalized distance to a maximum of 0.94 for the canopy shadow fraction. Values of all the 

modeling parameters except the shadow fraction become weakly correlated at distances of 50m. 

The approximate range of the relationships varies from a value of 100m for the normalized 

difference vegetation index and the simple ratio to 190 m for the modified normalized difference 

vegetation index and the shadow fraction. Complete spatial randomness occurs within broadleaf 

patches at the range value for the observed relationship. Another interesting feature is the presence 

of negative Moran’s I values in relation to some of the vegetation indices. Negative values of 

Moran’s I typically suggest inter-event repulsion however the negative values are so close to zero 

that they are more likely due to a modeling artifact. 
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6.1.2.2 Needleleaf Vegetation 
 

Moran’s I values for each of the modeling parameters are also evaluated over a range of lag 

distances for needleleaf vegetation. The results are presented in Figures 6.8 through 6.14. 
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Figure 6.8: Plot of Moran’s I versus Lag Distance for Normalized Difference Vegetation Index for 

Needleleaf Vegetation 
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Figure 6.9: Plot of Moran’s I versus Lag Distance for Simple Ratio for Needleleaf Vegetation 
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Figure 6.10: Plot of Moran’s I versus Lag Distance for Moisture Stress Index for Needleleaf 

Vegetation  
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Figure 6.11: Plot of Moran’s I versus Lag Distance for Modified Normalized Difference 

Vegetation Index for Needleleaf Vegetation 
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Figure 6.12: Plot of Moran’s I versus Lag Distance for Modified Simple Ratio for Needleleaf 

Vegetation  
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Figure 6.13: Plot of Moran’s I versus Lag Distance for Shadow Fraction for Needleleaf Vegetation 
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Figure 6.14: Plot of Moran’s I versus Lag Distance for Normalized Distance Computed Using 

Middle Infrared, Near Infrared and Red Channels for Needleleaf Vegetation 

 

As in the broadleaf case, Moran’s I values for each modeling parameter evinced an inverse 

relationship with lag distance. The correlations at the shortest lag distance vary from a minimum of 

0.77 for the simple ratio to a value of 0.95 for the normalized distance method. The range varies 

from a value of 130m for both the NDVI and the simple ratio to 190m for the modified versions of 

these indices. Complete spatial randomness is again achieved when the lag distance exceeds the 

range. Insubstantial negative values of Moran’s I are again observed and are attributable to 

modeling artifacts.    

 

6.1.2.3 Discussion of Spatial Statistical Analysis 
 

The overall results generated from the analysis of the spatial statistics have implications in two 

areas, namely the impact of geo-referencing and plot location accuracy on the relationships 
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derived as well as characterizing the spatial correlation observed between modeling parameters 

and consequently on  LAI estimates. 

 

The results from the analysis of the spatial statistics confirm that the effects of errors in location 

are minimal. Given the typical accuracies associated with plot location, presented in Table 4.15, 

and geo-referencing, presented in section 4.3.2.1, the measurements determined by these 

relationships do not vary substantially enough to dramatically shift the relationships derived in 

Chapter 5. Additionally, given the known location of the plots in terms of their distance to trails 

and other easily-identifiable features it is apparent from the image that errors in the locations of 

plots are not substantial. 

 

In terms of spatial autocorrelation, one result of interest is the evident difference in the spatial 

autocorrelation values evidenced for the normalized distance model between the needleleaf and 

broadleaf cases. In needleleaf vegetation the highest initial spatial correlation is observed between 

neighboring indices whereas for broadleaf vegetation the lowest initial spatial correlation is 

observed. Additionally, the needleleaf model exhibits a longer range, of approximately 50m. 

These differences are likely indicative of the varying degrees of similarity exhibited by forest 

structures of different type observed by remote sensing at this particular scale. This result is more 

compelling particularly given the robustness of the normalized distance model for modeling LAI 

in both needleleaf and broadleaf vegetation.  

 

6.2 Monte Carlo Simulation 
 

Monte Carlo simulation consists of multiple determinations of the difference in mean LAI between 

the known value for the randomly generated surface and that derived from an estimate with 

modeling precision identical to that of the derived models. There are two quantities of interest 

which are determined through the Monte Carlo simulation, namely the accuracy and precision of 

the model over a given landscape. The modeling accuracy is quantified through an examination of 

the difference in the means computed over a landscape with a given number of samples. The 

modeling precision is determined through an examination of the standard deviation of the errors of 

the differences of the actual and modeled LAI across a landscape.  
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There are three primary factors which largely determine the precision and accuracy that can be 

generated in a given situation. These factors are the number of samples, the variability of the 

landscape in terms of LAI and the quality of the initial model.     

 

6.2.1 Number of Samples 
 

It is evident from the Monte Carlo simulations that for constant landscape variability and uniform 

modeling there is a strong dependence of the overall modeling precision on the number of samples.  

The number of samples exhibits a direct relationship to the size of the region in question. 

 

To demonstrate this effect, Monte Carlo simulations are performed with varying sample sizes, 

ranging from 100 to 1000 to demonstrate the effect of increasing sampling size on modeling 

precision. Two values of underlying variability are used, each of which was derived from the 

in-situ LAI measurements, to simulate each of the broadleaf and needleleaf cases.  

 

These simulations produce the graphical results displayed in Figures 6.15 and 6.16.  
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Figure 6.15: Typical Standard Deviation of Mean Differences in LAI Expressed as Percent of 

Mean Resulting from Monte Carlo Simulations with Varying Number of Samples for Broadleaf 

Vegetation with 50000 Iterations. 
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Figure 6.16: Typical Standard Deviation of Mean Differences in LAI Expressed as Percent of 

Mean Resulting from Monte Carlo Simulations with Varying Number of Samples for Needleleaf 

Vegetation with 50000 Iterations. 

 

It is evident from Figures 6.15 and 6.16 that a well-defined power relationship exists between the 

number of samples and the standard deviation associated with the derivation of landscape level 

LAI estimates. This allows us to conclude that given the number of samples the component of the 

overall precision of the mean LAI determined by the sampling size can be estimated. 

 

In contrast, modeling accuracy seems to be largely independent of sample size. This is evident 

from Figures 6.17 and 6.18. 
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Figure 6.17:  Mean Error of Mean Differences in LAI Expressed as Percent of Mean Resulting 

from Monte Carlo Simulations with Varying Number of Samples for Needleleaf Vegetation with 

50000 Iterations. 
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Figure 6.18:  Mean Error of Mean Differences in LAI Expressed as Percent of Mean Resulting 

from Monte Carlo Simulations with Varying Number of Samples for Broadleaf Vegetation with 

50000 Iterations. 

 

The figures demonstrate that the mean accuracy is largely insensitive to variation in the number of 

samples. This permits the conclusion that the number of samples is an important quantity in 

determining the precision of the modeling results but is of little importance in the determination of 

the accuracy of these results.  

 

6.2.2 Initial Model Quality 
 

To examine the effects of the quality of the initial model on the overall modeling accuracy and 

precision in isolation, the data from the simulations performed above is analyzed. 

 

The overall modeling accuracy exhibits the expected direct relationship with initial model quality 
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for the simulated landscapes, as demonstrated in Figures 6.19 and 6.20. 
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Figure 6.19: Mean Error of Mean Differences in LAI Expressed as Percent of Mean Resulting 

from Monte Carlo Simulations with Varying Initial Modeling Accuracies for Broadleaf 

Vegetation with 50000 Iterations and 100 Samples. 
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Figure 6.20: Mean Error of Mean Differences in LAI Expressed as Percent of Mean Resulting 

from Monte Carlo Simulations with Varying Initial Modeling Accuracies for Needleleaf 

Vegetation with 50000 Iterations and 100 Samples. 

 

It is evident from Figures 6.19 and 6.20 that the initial modeling accuracy displays a strong power 

relationship with the overall mean error, although the introduction of a bias term may be necessary 

depending on the underlying variability of the landscape.  

 

In terms of modeling precision, the results from the Monte Carlo simulation evince the anticipated 

direct relationship between the overall modeling precision and the accuracy associated with the 

initial model. This relationship is most appropriately modeled linearly as in Figures 6.21 and 6.22. 
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Figure 6.21: Standard Deviations of Errors of Mean Differences in LAI Expressed as Percent of 

Mean Resulting from Monte Carlo Simulations with Varying Initial Modeling Accuracies for 

Broadleaf Vegetation with 50000 Iterations. 
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Figure 6.22: Standard Deviations of Errors of Mean Differences in LAI Expressed as Percent of 

Mean Resulting from Monte Carlo Simulations with Varying Initial Modeling Accuracies for 

Needleleaf Vegetation with 50000 Iterations. 

 

The results from the Monte Carlo simulations indicate the strong dependence of both the overall 

modeling precision and accuracy on the quality of the initial model. These results also provide a 

basis of comparison against which to analyze the models derived in Chapter 5 for a given 

landscape. 

 

6.2.3 Landscape Variability 
 

The third primary factor that substantially contributes to the determination of the overall modeling 

accuracy and precision is the inherent variability in LAI associated with a particular landscape. In 

the previous simulations, canopies with variability in LAI similar to those found in the study 

region are simulated using variability parameters determined from the in-situ LAI measurements. 
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In this result the variability of the landscape in question is systematically altered, while holding the 

other primary determining factors constant, and the results generated are therefore independent of 

vegetation type. 

 

Figure 6.23 demonstrates that, for a given model and number of samples, a linear relationship is 

evident between the degree of landscape variability and the resulting standard deviation of the 

observed differences in mean LAI computed by the Monte Carlo simulation 

 

0

5

10

15

20

25

0 0.5 1 1.5 2 2.5

Standard Deviation of Landscape Leaf Area Index(

St
an

da
rd

 D
ev

ia
tio

n 
of

 M
ea

n 
Er

ro
rs

 (%
 o

f M
ea

n)

 
Figure 6.23:   Standard Deviations of Mean Differences in LAI Expressed as Percent of Mean 

Resulting from Monte Carlo Simulations with Varying Degrees of Landscape Variability for 

Modeling Quality of 10%, Mean LAI of 4.56 and 50000 Iterations. 

 

The observed linear relationship between the degree of landscape variability and the overall 

modeling precision is quite strong and well-defined.  
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In terms of overall modeling accuracy, another direct relationship is observed although in this case 

it is best modeled as a power relationship, as in Figure 6.24. 
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Figure 6.24: Mean Errors of Mean Differences in LAI Expressed as Percent of Mean Resulting 

from Monte Carlo Simulations with Varying Degrees of Landscape Variability for Modeling 

Quality of 10%, Mean LAI of 4.56 and 50000 Iterations. 

 

The strength of these relationships allows for the conclusion that knowledge of the variability of 

the landscape allows for a quantification of the impact which LAI possesses on expected modeling 

precision and accuracy.  

 

6.3 Adjustment of Mean Error 
 

Due to the presence of a residual modeling error, which is almost solely dependent on the 

variability of LAI across a landscape, further analysis has been performed to determine whether 
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the effect of the variability of the landscape can be mitigated through mathematical adjustment of 

the initial model output. The power relationship, displayed graphically in Figure 6.10, is used to 

determine an appropriate adjustment factor for a given landscape variability.  

 

In Equation 6.1 through 6.3 the relationship between the mean leaf area indices estimated by a 

model for a given landscape at a given accuracy are characterized as follows: 

  

 

ErrorTrueModelTrue LV*LAILAILAI −≅  Eq.6.1 

ModelErrorTrueTrue LAILV*LAILAI ≅+  Eq.6.2 

( )Error

Model
True LV1

LAI
LAI

+
≅  Eq.6.3 

  

where LAITrue is the true mean LAI of the landscape, LAIModel is the mean estimate generated by a 

given prediction model and LVError is the predicted error in the mean based on the degree of 

variability in measured LAI for the sample in question.  

 

Monte Carlo simulations are performed to determine the mean error with and without adjustment, 

using Equation 6.1 and the derived mean error prediction function from section 6.3 to determine 

the adjustment factor. Values of landscape variability that are not used in the derivation of the 

mean error prediction function are used for this task. The results of this analysis are presented in 

Table 6.6. 
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Table 6.6: Statistical Results of Monte Carlo Simulations at Various Values of Landscape 

Variability with Adjusted and Unadjusted Mean Values for Mean LAI of 4.56, Modeling Quality 

of 10% and 100 Samples 

Variability of 

LAI  

Mean Error of 

Unadjusted Mean 

Difference (% of 

Mean) 

Standard 

Deviation of 

Unadjusted Mean 

Difference (% of 

Mean) 

Mean Error of 

Adjusted Mean 

Difference (% of 

Mean) 

Standard 

Deviation of 

Adjusted Mean 

Difference (% of 

Mean) 

0.17 0.35 4.75 0.11 4.74 
0.33 0.76 5.59 -0.04 5.54 
0.67 2.67 8.21 -0.16 7.99 
0.83 4.07 9.59 -0.1 9.21 
1.17 7.86 12.58 0.12 11.68 
1.33 9.96 13.99 0.21 12.75 
1.67 14.93 16.98 0.24 14.81 
1.83 17.46 18.37 0.16 15.67 
 

It is evident from these results that the adjustment of mean differences is effective in reducing the 

observed mean error by one to two orders of magnitude in the majority of cases tested. The 

resulting mean errors appear to be non-systematic, due to their oscillation and the absence of any 

apparent trend. The standard deviations of the samples with adjusted means had reduced 

magnitudes as compared to those of the unadjusted sample, providing an ancillary benefit to the 

adjustment procedure. 

 

6.4 Simulation Conclusions 
 

By combining knowledge regarding the sample size of the region of interest, for a given model, 

with accompanying analysis of the degree of canopy variability across a landscape, it is possible to 

quantify both the magnitude and characteristics of the error associated with the predictions of the 

models. This quantification of error allows for a definitive conclusion to be drawn regarding the 

suitability of the implementation of a given model for a particular area with certain accuracy 
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specifications. It should be noted that standard normal distributions were assumed for LAI across a 

landscape. This allowed for a general validation of the technique, while permitting rigorous 

modeling of the landscape variability. In general, however, such rigid control of landscape 

variability is not possible and the distribution of LAI values must be considered in the derivation of 

models for the application of similar techniques to those described above.   

 

6.5 Multi-Scale Analysis 
 

To determine the scale dependence that the remote estimation relationships for LAI exhibit these 

relationships are implemented across a landscape. The selected landscape, which covers a portion 

of the Upper Elbow River watershed, is similar to the one for which these relationships are derived, 

as evidenced in Figures 6.25 and 6.26. 
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Figure 6.25: MODIS Image of the Upper Elbow River Watershed 
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Figure 6.26: SPOT Image at 20m Spatial Resolution of Upper Elbow River Watershed 

 

 To analyze the sensitivity of these relationships to sampling resolution, a MODIS satellite image 

is acquired and the SPOT image is resampled to 1200 m spatial resolution, to approximate the 

spatial resolution of the MODIS sensor, using a mean resampling approach. The acquired image is 

the MODIS surface reflectance product which is used to compute the input parameters necessary 

for estimation of the LAI. The MODIS channels are summarized in Table 6.7. 
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Table 6.7: MODIS Sensor Channel Information 

Channel Number Band Coverage (µm) Spectrum Description 

1 0.620-0.670 Red 

2 0.841-0.876 Near-Infrared 

3 0.459-0.479 Blue 

4 0.545-0.565 Green 

5 1.230-1.250 Middle-Infrared 

6 1.628-1.652 Middle-Infrared 

7 2.105-2.155 Middle-Infrared 

 

Channels one, two and six are selected for this analysis as they correspond most closely to the 

portions of the spectrum, as determined by the width and location of the spectral channels, whose 

measurements are used in the initial models.  

 

To determine the appropriate model for application within a given area, a maximum likelihood 

classification is performed on each of the images that have been analyzed. In terms of 

classification parameters both the normalized difference vegetation index and the middle infrared 

channel are selected as this combination effectively differentiates vegetation from the surrounding 

landscape and needleleaf vegetation from broadleaf vegetation. Another reason for the selection of 

these quantities is their relatively low correlation, which contributes to the robustness of the 

solution. Training areas are selected for the desired output classes of needleleaf and broadleaf 

vegetation. A null class is also required in this classification as no discrimination is needed 

between other feature class types.  

 

For each image the modeling types which exhibit the most robustness in their modeling of 

variations in LAI for each of the vegetation types are applied. Based on this criterion, needleleaf 

vegetation uses the models derived based on shadow fraction, modified NDVI and normalized 

distance. Broadleaf vegetation uses the models derived based on the moisture stress index, 

modified NDVI and normalized distance. These models are analyzed separately to determine their 

individual performance. 
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6.5.1 Broadleaf Vegetation 
 

The results derived from application of the moisture stress index, modified NDVI and normalized 

distance models for the estimation of LAI in broadleaf vegetation for SPOT and MODIS imagery 

are presented in Table 6.8.  
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Table 6.8: Statistics of LAI Computed Using Various Imagery Types for the Upper Elbow 

Watershed for Broadleaf Vegetation 

Image Type Mean 

LAI 

Median 

LAI 

Standard 

Deviation 

of LAI 

Maximum 

LAI 

Minimum 

LAI 

Modeling 

Parameter 

SPOT -20m 2.35 2.33 0.23 3.94 1.79 Moisture 

Stress 

Index 

MODIS 1.87 1.86 0.29 2.90 1.05 Moisture 

Stress 

Index 

SPOT-1200m 1.63 1.66 0.18 1.95 1.17 Moisture 

Stress 

Index 

SPOT-20m 2.65 2.66 0.22 3.16 2.12 Modified 

NDVI 

MODIS 2.55 2.64 0.50 3.36 0.00 Modified 

NDVI 

SPOT-1200m 2.49 2.58 0.45 2.92 0.00 Modified 

NDVI 

SPOT-20m 2.35 2.35 0.24 3.18 1.84 Normalized 

Distance 

MODIS 2.23 2.27 0.35 3.08 1.37 Normalized 

Distance 

SPOT-1200m 2.21 2.18 0.36 2.93 1.17 Normalized 

Distance 

 

It is evident from the statistics in Table 6.8 that the models derived in Chapter 5 exhibit varying 

degrees of robustness in LAI estimation for broadleaf vegetation. The overall error in the mean 

LAI determined using the observations at coarser resolutions underestimates the mean LAI of the 

landscape, obtained from the original SPOT imagery, by between 3 to 30%. The presence of this 
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mean error is indicative of degraded performance exceeding that anticipated by Monte Carlo 

simulations due to the marked decrease in the number of samples used to compute the mean LAI 

for the coarser resolution data sets. 

 

It is interesting to note the high degree of similarity between the statistical values computed for the 

moisture stress index model and the normalized distance model. This high similarity is indicative 

of the underlying stability and modeling robustness of these models and is a partial confirmation of 

the results expected from the Monte Carlo simulation.  

 

The standard deviations in Table 6.8 appear dissimilar between the estimates at finer and coarser 

spatial resolution and an F-test is conducted on these standard deviations to determine whether this 

variation is statistically significant. The results of the F-tests allow the conclusion that the 

variances of the coarser resolution images are significantly different from the original SPOT 

imagery fro all models at a level of significance of 0.10. This dissimilarity in standard deviations is 

indicative of non-uniformity in the overall precision exhibited by the model in using each of the 

input data sets.      

 

It is also important to consider whether the frequency distribution of LAI is scale invariant for 

broadleaf vegetation. This is done first through a comparison of the LAI histograms determined for 

each case and then through a χ2 goodness-of-fit test of the coarser resolution data to the frequency 

distribution observed for the original SPOT image.  The LAI histograms are presented in Figures 

6.27 through 6.35. 
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Figure 6.27: Histogram of LAI Estimated Using Modified Normalized Difference Vegetation 

Index Values from MODIS Imagery   
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Figure 6.28: Histogram of LAI Estimated Using Modified Normalized Difference Vegetation 

Index Values from SPOT Imagery at 1200m Spatial Resolution   
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Figure 6.29: Histogram of LAI Estimated Using Modified Normalized Difference Vegetation 

Index Values from SPOT Imagery at 20m Spatial Resolution   
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Figure 6.30: Histogram of LAI Estimated Using Moisture Stress Index Values from MODIS 

Imagery   
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Figure 6.31: Histogram of LAI Estimated Using Moisture Stress Index Values from SPOT 

Imagery at 1200m Spatial Resolution 
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Figure 6.32: Histogram of LAI Estimated Using Moisture Stress Index Values from SPOT 

Imagery at 20m Spatial Resolution 
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Figure 6.33: Histogram of LAI Estimated Using Normalized Distance Values from MODIS 

Imagery 
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Figure 6.34 Histogram of LAI Estimated Using Normalized Distance Values from SPOT Imagery 

at 1200m Spatial Resolution   
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Figure 6.35: Histogram of LAI Estimated Using Normalized Distance Values from SPOT Imagery 

at 20m Spatial Resolution 

 

It seems apparent from the above figures that the LAI distributions possess similar shapes, despite 

the statistical differences noted above. This could be attributable to the presence of systematic bias 

between the estimation models when they are applied at different scales Fewer high frequency 

oscillations in percent composition are noticed in the original SPOT image as compared to the 

coarser resolution imagery, which is expected due to its increased sample size.  

 

To determine quantitatively whether the frequency distributions of LAI values are significantly 

different a χ2 goodness-of-fit test is performed between the two distributions. This goodness-of-fit 

test uses the frequency distribution of the initial SPOT image to determine the expected rate of 

occurrence over a specific range of LAI values and then compares this to that observed in the 

coarser resolution imagery. The χ2 test determines the frequency distributions of LAI to be 

significantly different at a level of significance of 0.05 with two degrees of freedom for the 

MODIS cases and the coarser resolution SPOT estimates using the moisture stress index and the 
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normalized distance model. However, the estimate computed using the modified NDVI cannot be 

concluded to follow different distributions at a level of significance of 0.05 with two degrees of 

freedom between the SPOT images.  

 

Spatial statistical analysis demonstrates that these modeling parameters still possesses the capacity 

to model LAI at coarser scales. This is evident from the plots of Moran’s I versus distance in 

Figures 6.36 through 6.41 which demonstrate similar behavior to those initially derived using the 

original SPOT data. 
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Figure 6.36: Plot of Moran’s I versus Lag Distance for Moisture Stress Index Values Computed 

from SPOT Imagery at 1200m Spatial Resolution 
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Figure 6.37: Plot of Moran’s I versus Lag Distance for Moisture Stress Index Values Computed 

from MODIS Imagery 
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Figure 6.38: Plot of Moran’s I versus Lag Distance for Modified Normalized Difference 

Vegetation Index Values Computed from SPOT Imagery at 1200m Spatial Resolution 
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Figure 6.39: Plot of Moran’s I versus Lag Distance for Modified Normalized Difference 

Vegetation Index Values Computed from MODIS Imagery 
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Figure 6.40: Plot of Moran’s I versus Lag Distance for Normalized Distance Values Computed 

from SPOT Imagery at 1200m Spatial Resolution 
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Figure 6.41: Plot of Moran’s I versus Lag Distance for Normalized Distance Values Computed 

from MODIS Imagery 

 

In similar fashion to Figure 6.3 the Moran’s I values consistently decrease until complete spatial 

randomness is reached. The fact that complete spatial randomness is reached at different values for 

each spatial resolution is important. It is indicative of the extent to which the processes 

determining LAI vary depending on the scale of analysis for broadleaf vegetation. The fact that the 

imagery with coarser spatial resolution evidences correlation in Moran’s I values over lag 

distances exceeding the range observed for the initial SPOT imagery is further evidence that 

analysis of the processes that determine variations in the input modeling parameter is scale 

dependent. This means that estimation relationships derived for use with a given imagery type at a 

given scale cannot necessarily be reliably applied for even the same imagery type at another scale. 

 

Additionally, it should be noted that the initial correlations observed between values are in all 

cases lower than those observed at finer scales. This is likely indicative of increasingly 
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heterogeneous pixel composition at coarser scale, perhaps with non-linear mixing, and generally 

increasing dissimilarity between the spectral properties within a vegetation type as distance 

increases.             

 

6.5.2 Needleleaf Vegetation 
 

The results derived from application of the remote estimation models for both MODIS and SPOT 

imagery are presented in Table 6.9. 
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Table 6.9: Statistics of LAI Computed Using Various Imagery Types for Needleleaf Vegetation 

Image Type Mean 

LAI 

Median 

LAI 

Standard 

Deviation 

of LAI 

Maximum 

LAI 

Minimum 

LAI 

Model 

Type 

SPOT-20m 4.81 4.84 0.96 6.46 1.37 Shadow 

Fraction 

MODIS 2.59 2.25 1.37 6.59 0.00 Shadow 

Fraction 

SPOT-1200m 2.15 2.00 1.36 6.59 0.00 Shadow 

Fraction 

SPOT-20m 4.86 4.81 0.88 7.52 3.26 Modified 

NDVI 

MODIS 5.57 5.71 2.91 12.42 0.00 Modified 

NDVI 

SPOT-1200m 2.25 1.84 1.60 7.90 0.00 Modified 

NDVI 

SPOT-20m 4.67 4.77 0.96 6.27 0.96 Normalized 

Distance 

MODIS 3.08 2.99 1.49 6.27 0.41 Normalized 

Distance 

SPOT-1200m 1.65 1.33 1.16 5.70 0.38 Normalized 

Distance 

 

In comparison to the broadleaf case the shadow fraction model proved less robust in its estimation 

of the mean LAI exhibiting an error of between 12 to 65% for the coarser resolution imagery. The 

presence of a residual mean error above that which is predicted by Monte Carlo simulation is likely 

attributable to variance in the derived relationships as the resolution of the input imagery decreases, 

as well as a decreased number of samples. 

 

The same high similarity between landscape level estimates of mean LAI exhibited for broadleaf 

vegetation is also present for needleleaf vegetation. The mean estimates are within at least 5% of 
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each other which is indicative of the quality of the remote estimation models. The correspondence 

between the statistical properties of landscape level LAI estimates is in line with the results 

predicted by Monte Carlo simulation.  

 

An F-Test is performed to determine whether the apparent differences between the observed 

standard deviations are statistically significant. The results of the F-Test indicate that the LAI 

sample variances indices are different at a level of significance of 0.10 when comparisons are 

made between each of the coarser spatial resolution images and the original SPOT image for all 

remote estimation models. This indicates that the precision of LAI estimation is not 

scale-invariant.   

 

The frequency distributions of LAI values are examined first qualitatively and then quantitatively 

to determine whether they are scale invariant. In qualitative terms, the frequency distributions 

exhibit a greater degree of variation in the needleleaf case than in the broadleaf case, as evidenced 

in Figures 6.42 through 6.50.   
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Figure 6.42: Histogram of LAI Estimated Using Modified Normalized Difference Vegetation 

Index Values from MODIS Imagery   
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Figure 6.43: Histogram of LAI Estimated Using Modified Normalized Difference Vegetation 

Index Values from SPOT Imagery at 1200m Spatial Resolution   

   



 

 201

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10 11 12

Leaf Area Index

Pe
rc

en
t C

om
po

si
tio

n

 
Figure 6.44: Histogram of LAI Estimated Using Modified Normalized Difference Vegetation 

Index Values from SPOT Imagery at 20m Spatial Resolution      
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Figure 6.45: Histogram of LAI Estimated Using Canopy Shadow Fraction Values from MODIS 

Imagery 
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Figure 6.46: Histogram of LAI Estimated Using Canopy Shadow Fraction Values from SPOT 

Imagery at 1200 m Spatial Resolution      
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Figure 6.47: Histogram of LAI Estimated Using Canopy Shadow Fraction Values from SPOT 

Imagery at 20 m Spatial Resolution      
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Figure 6.48: Histogram of LAI Estimated Using Normalized Distance Values from MODIS 

Imagery 
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Figure 6.49: Histogram of LAI Estimated Using Normalized Distance Values from SPOT Imagery 

at 1200m Spatial Resolution 
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Figure 6.50: Histogram of LAI Estimated Using Normalized Distance Values from SPOT Imagery 

at 20m Spatial Resolution 
 

The histograms of the functions appear much less smooth when compared to the broadleaf case. 

This is likely due to the nature of the estimation models and their requirement for robust 

endmember selection. As sample sizes decrease and spatial agglomeration effects contribute to 

increasingly mixed pixels the ability to define reasonable endmembers decreases markedly and 

likely contributes to the degraded LAI estimates for needleleaf vegetation derived from imagery 

with coarser spatial resolution.  

 

In similar fashion to the broadleaf case, a χ2 goodness-of-fit test is performed to quantitatively 

compare the frequency distributions of LAI of each image. For needleleaf vegetation the χ2 test 

found that the LAI distributions o are significantly different at a level of significance of 0.05 with 

two degrees of freedom between each of the coarser resolution images and the original SPOT 

image.  
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The scale dependence of the measurements can again be evaluated through a geostatistical analysis 

of the input modeling parameters as in Figures 6.51 through 6.56.    
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Figure 6.51: Plot of Moran’s I versus Lag Distance for Shadow Fraction Values Computed from 

MODIS data 

 

 



 

 209

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

Lag Distance(km)

M
or

an
's

 I

 
Figure 6.52: Plot of Moran’s I versus Lag Distance for Shadow Fraction Values Computed from 

SPOT Imagery at 1200m Spatial Resolution 
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Figure 6.53: Plot of Moran’s I versus Lag Distance for Modified Normalized Difference 

Vegetation Index Values Computed from MODIS data 
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Figure 6.54: Plot of Moran’s I versus Lag Distance for Modified Normalized Difference 

Vegetation Index Values Computed from SPOT Imagery at 1200m Spatial Resolution 
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Figure 6.55: Plot of Moran’s I versus Lag Distance for Normalized Distance Values Computed 

from MODIS data 
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Figure 6.56: Plot of Moran’s I versus Lag Distance for Normalized Distance Values Computed 

from SPOT Imagery at 1200m Spatial Resolution 

 

These figures demonstrate the same decreasing trend as the original modeling parameters did for 

the original SPOT data at 20m spatial resolution. It is evident that complete spatial randomness is 

achieved at a much higher value of lag distance than for the initial SPOT image. It is also evident 

that strong correlation is observed between certain input modeling parameters for coarser spatial 

resolution at values of lag distance for which complete spatial randomness is achieved in the 

original SPOT image. In similar fashion to the broadleaf case this variation in the range observed 

between the coarser and finer spatial resolution imagery is indicative that the processes 

determining the observed values of the input modeling parameters are scale dependent. This scale 

dependence arises from factors such as increasing sub-pixel heterogeneity and increasingly 

heterogeneous properties of vegetation spectra as sampling intervals coarsen. 

  

 



 

 214

7 Conclusions and Recommendations 
 

7.1 Conclusions 
 

There are several conclusions which can be drawn from the results obtained in this study and the 

implications which they possess for further applications of, and research related to, remote LAI 

estimation. 

7.1.1 General Conclusions 
 

One conclusion that can be drawn from the results obtained in this study is that the selection of an 

appropriate method for the remote LAI estimation is, to a large extent, application and resource 

dependent. The advantages exhibited by the modified spectral vegetation indices are their robust 

modeling of both needleleaf and broadleaf vegetation and their ease of use. The linear spectral 

mixture analysis method, despite the difficulties it possesses related to the subjectivity of 

end-member selection, outperformed all the modified spectral vegetation index models derived for 

needleleaf vegetation. The normalized distance technique, despite the considerable promise it has 

demonstrated in remote LAI estimation for both broadleaf and needleleaf vegetation in this study, 

requires further validation before it can be concluded to exhibit generally superior LAI estimates.  

Therefore, model selection must be made on the basis of factors such as the required accuracy of 

LAI estimation, resource availability and composition of the landscape in question. 

 

 

7.1.2 Conclusions Related to Remote Sensing 
 

One conclusion that is evident from the results of this study is that the observed reflectance 

properties associated with a pixel can be substantially influenced by the background spectral 

properties, particularly in forested areas of reduced crown closure. This phenomenon is made 

apparent in the needleleaf vegetation by the counter-intuitive decrease in each of the normalized 

differenced vegetation index, simple ratio and near infrared reflectance. This deviation from the 

results obtained in similar studies (Spanner et al., 1990) is indicative of the presence of a leafy 
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understory, which is visible to the sensor and introduces bias into the measurements. A corollary to 

this conclusion is that any relationships for  remote LAI estimation that have been presented in 

literature for a particular environment have the potential to be invalid for different environments or 

epochs unless explicit techniques have been applied to account for the influence of understory or 

background conditions.       

 

A second conclusion that can be drawn from the remote estimation relationships is that similar to 

results obtained in literature (Fernandes et al., 2004), structural regressions generally exhibited 

increased modeling robustness when compared to the results of standard linear regression. The 

enhanced capabilities of power relationships versus their linear counterparts are most importantly 

demonstrated for the input parameters which exhibited the strongest relationships with LAI. In 

addition to the enhanced modeling robustness structural regressions result in LAI estimates that 

possess physically meaningful lower boundaries. Possible disadvantage to the use of power 

relationships is their non-linear transformation of the distribution associated with the input 

modeling parameters when used for LAI estimation and rapid divergence in application 

environments for which the models are ill-suited.        

 

A third conclusion is that reflectance information in the middle-infrared portion of the 

electromagnetic spectrum can substantially contribute to remote LAI estimation. For both 

needleleaf and broadleaf vegetation the most robust and accurate estimation relationships 

incorporated the middle-infrared bands in some capacity. This is particularly evident in the results 

achieved by the modified spectral vegetation index method, when the modified indices are 

compared to their unadjusted counterparts. The marked improvement in the ability to model LAI 

from the original spectral vegetation indices to the modified spectral vegetation indices is 

indicative of the substantial information contained in the middle-infrared band. 

 

One final conclusion that can be reached based on the results in Chapter 5 is that the linear spectral 

mixture analysis method appears to be relatively insensitive to the method of determination of the 

background member spectrum. This conclusion is important because if it possesses general 

validity it removes the necessity for in-situ sampling of background reflectance. The general 

validity of this conclusion would permit people without access to in-situ spectroradiometers to 
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implement these models without constraint.        

 

7.1.3 Conclusions Related to Sensitivity Analysis 
 

7.1.3.1 Monte Carlo Sensitivity Analysis 
 

One conclusion derived from the results of the Monte Carlo sensitivity analysis is that, almost 

irrespective of the accuracy and precision associated with a remote model, the quality of the 

solution for a mean value of LAI across a landscape is constrained by the size and inherent 

variability of that landscape in terms of LAI  Although these constraints can be estimated and ,to 

some extent, mitigated, particularly as this relates to the anticipated mean error, the resulting 

accuracy and precision of regional LAI estimates will always be limited by these factors. 

 

7.1.3.2 Spatial Statistics 
 

Despite the fact that the degree of spatial correlation observed between values of the various 

modeling parameters at a variety of lag distances is in all cases relatively uniform, certain 

conclusions can be drawn. It is evident from the analysis that the highest degrees of spatial 

correlation with a pixel and its nearest neighbors are observed for the unmodified spectral 

vegetation indices in both the broadleaf and needleleaf cases. As the unmodified spectral 

vegetation indices generally exhibit the least robustness in LAI modeling, these results are 

indicative as to the reason for this. This modeling deficit for the unadjusted spectral vegetation 

indices versus the adjusted spectral vegetation indices is likely attributable to the variability of 

these indices for adjacent pixels possessing different LAI values. This greater sensitivity to 

variations observed between a pixel and its nearest neighbors for the modified spectral vegetation 

indices is indicative of the enhanced capability of these indices to capture variations in leaf area. 

One codicil to this enhanced modeling is that due to the lessened degree of spatial correlation, 

greater accuracy may be required in the determination of the location of the plots. Another feature 

of interest is the decreased ranges associated with the unmodified spectral vegetation indices, 

which are exceeded by those of the modified spectral vegetation indices for both needleleaf and 
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broadleaf vegetation. It is evident from the results presented that the incorporation of additional 

information from the middle infrared bands lengthens the distance over which the values of these 

modeling parameters remain correlated. This may be indicative of the robustness in these 

parameters that although they initially exhibit less correlation, underlying correlations do exist. 

These underlying correlations could be attributable to the ability of these parameters to model 

some underlying large-scale vegetation process, such as moisture transfer, in a way which 

improves their modeling over those exhibited by the modeling parameters which do not 

incorporate middle infrared data.  

 

7.1.3.3 Multi-Scale Analysis 
 
Through an examination of the degree of spatial correlation in the modeling parameters at different 

scales it is  possible to conclude how the results of analysis vary with scale and determine whether 

it is either advisable to conduct analysis at another spatial resolution.  

 

One conclusion is that the LAI estimation relationships are both scale dependent and sensor 

specific. Therefore applying the relationships derived for SPOT directly to MODIS imagery is 

unadvisable.  This conclusion is supported by LAI estimates from MODIS data not following the 

same distribution as those for SPOT for needleleaf and broadleaf vegetation. Even applying the 

relationships derived for SPOT at a given scale to SPOT imagery resampled to another scale 

causes degradation of the precision and accuracy associated with the estimation model.  

 

Another conclusion derived from the multi-scale analysis is that the input modeling parameters 

used in this study exhibit spatial correlation over a variety of lag distances and that these 

relationships are highly dependent on the spatial resolution of the imagery. This is evident from the 

comparison of the spatial statistical analysis of the input parameters from coarser resolution 

imagery against those of the initially derived parameters from finer scale imagery. Coarser 

resolution imagery evidences spatial correlation over lag distances where the initial SPOT imagery 

has already deteriorated into complete spatial randomness.      

 



 

 218

7.2 Recommendations 
 

After reviewing the conclusions of the success and achievements of this research relative to its 

initial goals, there are several pertinent recommendations for those wishing to conduct further 

research related to the remote LAI estimation. Recommendations are also provided for those 

wishing to apply similar methods to those utilized within this study to obtain LAI estimates to 

serve as input parameters to process models of various types. 

 

7.2.1 Recommendations Related to Remote LAI Estimation 
  

One recommendation for further research, regarding remote LAI estimation is to expand the 

current focus from LAI estimation for pure stands to LAI estimation for stands composed of 

heterogeneous vegetation types. This would involve the performance of in-situ LAI measurements 

in forests within heterogeneous stands of both needleleaf and broadleaf vegetation. T techniques 

such as spectral mixture analysis or fuzzy classification could then be implemented within the 

plots to determine the relative composition of each vegetation type. These composition estimates 

could then be used to estimate LAI. 

 

Another recommendation for further research is the further investigation of linear spectral mixture 

analysis techniques for broadleaf vegetation. To have observed such a disparity between the 

efficacy of linear spectral mixture analysis between vegetation types is intriguing and further 

investigation is necessary to determine whether these results are anomalous or are indicative of an 

underlying effect that limits linear spectral mixture analysis in broadleaf canopies. The observed 

inefficacy of linear spectral mixture analysis may be due to non-linear scattering in broadleaf 

canopies, which should be investigated.    

 

It is also recommended that investigations be performed related to the use of remote LAI estimates 

in climatic and environmental models, particularly related to gas-exchange. Similar sensitivity 

analyses to those conducted for hydrological models could help to determine the sensitivity of 

these models to error in LAI estimates and whether the current techniques yield sufficient accuracy 

for their utilization as input parameters in such models.    
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Comparison of spatial correlation values for various modeling parameters over a range of spatial 

scales allows for the determination of whether an optimal scale for analysis exists and to select an 

appropriate scale for analysis given the constraints of the implementation. Further investigations to 

determine robust relationships at coarser scales could be generated through the use of estimation 

models at higher resolution with a subsequent downsampling and regression analysis similar to 

that performed in chapters 5 and 6.                 

 

7.2.2 Recommendations Related to Use of Remote LAI Estimates in Process Models 
 

The most important recommendation for users of remote estimation techniques who are wishing to 

obtain LAI estimates for input into process models is that they be cognizant of the limitations and 

the requirements of the estimation techniques and the process models.  

 

The relevant application of a remote estimation model is limited by the degree of 

sensor-specificity and scale dependence it exhibits. Therefore, it is recommended that 

investigation be performed as to the scale-dependence of that model, prior to its use for a 

landscape. If any model is to be applied on a different sensor than the one for which it has 

originally been derived the performance of a comparison is recommended to examine the 

variability of modeling parameters given any differences between the two imaging systems. 

 

In order for meaningful results to be obtained for a process model, input parameters require a 

certain degree of accuracy and precision. It is recommended that when any process model is 

selected for application that the user be acquainted with the accuracy and precision required for 

LAI estimates within that model. It is then recommended that the user examine the factors 

influencing the quality of the specified estimation model over the landscape in question to 

determine whether that particular model will provide LAI estimates that satisfy the accuracy and 

precision requirements necessitated by the process model.      
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Appendix A: Plot Location Algorithm Code 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
// Filename:Main.cpp 
// Author:David McAllister 
// Date:October 6,2004 
 
#include "Matrix.hpp" 
#include "Functions.h" 
 
void main() 
{  
 //Define the output file streams 
 ofstream out1; 
 out1.open("Final.txt"); 
 out1.setf(ios::fixed); 
 out1.setf(ios::showpoint); 
 out1.precision(2); 
 
 //Reads in the input file matrix of initial corner coordinates 
 char *cFileName="Coords.txt"; 
 Matrix<double> mdCoords= mdReadIn(cFileName); 
 mdCoords.redim(mdCoords.nRows()+1,mdCoords.nCols()); 
 mdCoords[mdCoords.nRows()-1][0]=mdCoords[0][0]; 
 mdCoords[mdCoords.nRows()-1][1]=mdCoords[0][1]; 
  
 //Compute mean azimuth and orient ourselves toward the corner 
 double dAzimuth=dGetAzimuth(mdCoords); 
 dAzimuth-=dPi/4.0; 
  
 double dX=0.0; 
 double dY=0.0; 
 double dDist=pow(1800,0.5); 
 double dArea=dPolArea(mdCoords); 
 int iRowCount=0; 
  
 //Determine the centroid coordinates 
 for(int iRow=0;iRow<mdCoords.nRows()-1;iRow++) 
 { 
  
 dX=dX+(mdCoords[iRow][0]+mdCoords[iRow+1][0])*(mdCoords[iRow][0]*mdCoords[iR
ow+1][1]-mdCoords[iRow+1][0]*mdCoords[iRow][1]); 
  
 dY=dY+(mdCoords[iRow][1]+mdCoords[iRow+1][1])*(mdCoords[iRow][0]*mdCoords[iR
ow+1][1]-mdCoords[iRow+1][0]*mdCoords[iRow][1]); 
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 } 
  
 dX=dX/(6.0*dArea); 
 dY=dY/(6.0*dArea); 
 
 //Output the centroid coordinates 
 out1 << dX << " " << dY << endl; 
  
 //Compute the new corner coordinates 
 Matrix<double> mdNewCoords=mdCoords; 
 mdNewCoords.redim(mdNewCoords.nRows()-1,mdNewCoords.nCols()); 
 
 for(iRow=0;iRow<mdNewCoords.nRows();iRow++) 
 { 
  mdNewCoords[iRow][0]=dX+dDist*sin(dAzimuth); 
  mdNewCoords[iRow][1]=dY+dDist*cos(dAzimuth); 
  dAzimuth+=dPi/2.0; 
 } 
  
 //Print the new corner coordinates to an output file 
 mdNewCoords.print(out1); 
} 
 
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
// Filename: Functions.cpp 
// Author:David McAllister 
// Date:September 23,2004 
 
#include "Functions.h" 
 
Matrix<double> mdReadIn(char* cFileName) 
{  
 //Define and open the input file stream 
 ifstream if1; 
 if1.open(cFileName); 
 
 //Define and read in the row and column number variables 
 int iRowNum=0; 
 int iColNum=0; 
 if1 >> iRowNum >> iColNum; 
  
 //Define matrix and temporary storage variables 
 Matrix<double> mdRead(iRowNum,iColNum); 
 double dTempStore = 0.0; 
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 //Read in the values from the text file and insert them into the Matrix 
 for(int iRowIter=0; iRowIter<iRowNum;iRowIter++) 
 {  
  for(int iColIter=0;iColIter<iColNum;iColIter++) 
  {  
   if1 >> dTempStore; 
   mdRead[iRowIter][iColIter]=dTempStore; 
  } 
 } 
  
 //Return the matrix that was read in 
 return mdRead; 
} 
 
double dPolArea(Matrix<double> &mdCoords) 
{  
 double dArea=0.0; 
  
 for(int iRow=0;iRow<mdCoords.nRows()-1;iRow++) 
 { 
 
 dArea=dArea+0.5*(mdCoords[iRow][0]*mdCoords[iRow+1][1]-mdCoords[iRow+1][0]*md
Coords[iRow][1]); 
 } 
 
 return dArea; 
 
} 
 
double dGetAzimuth(Matrix<double> &mdCoords) 
{  
 //Define azimuth variables 
 double dAzSum=0.0; 
 double dAzimuth=0.0; 
  
 //Compute azimuth between adjoining points 
 for(int iRow=0;iRow<mdCoords.nRows()-1;iRow++) 
 {  
 
 dAzimuth=atan2(mdCoords[iRow+1][0]-mdCoords[iRow][0],mdCoords[iRow+1][1]-mdCo
ords[iRow][1])+double(iRow)*dPi/2.0; 
   
  //Ensure angle is from 0 to 2Pi 
  while(dAzimuth<0.0) 
  {  
   dAzimuth+=2.0*dPi; 
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  } 
   
  while(dAzimuth>2.0*dPi) 
  { 
   dAzimuth-=2.0*dPi; 
  } 
 
  dAzSum+=dAzimuth; 
 } 
     
 double dMeanAz=dAzSum/double(mdCoords.nRows()-1); 
  
 return dMeanAz; 
}  
 
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// 
// FileName:Functions.h 
// Author:David McAllister 
// Date:Sept 22,2004 
 
 
#ifndef FUNCTIONS_H 
#define FUNCTIONS_H 
 
#include<fstream.h> 
#include<math.h> 
#include "Matrix.hpp" 
#include "ErrorGrids.h" 
 
const double dPi=3.14159265; 
 
//Computes the azimuth given the initial coords 
double dGetAzimuth(Matrix<double> &mdCoords); 
 
//Reads the data in the specified file into a matrix of type double 
Matrix<double> mdReadIn(char *cFileName); 
 
//Computes the area contained within a given set of points 
double dPolArea(Matrix<double> &mdCoords); 
 
 
#endif FUNCTIONS_H 
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////  


