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Abstract 

     Polarimetric and interferometric synthetic aperture radar (SAR) (PolInSAR) is a 

technology combing elements of polarimetric SAR (PolSAR) and interferometric SAR 

(InSAR). In this thesis, we approach PolInSAR as a system comprised of its PolSAR and 

InSAR subsystems. The information extraction from a PolInSAR system depends on the 

application of many signal processing methods. Most signal processing methods require a 

data statistical model as the a priori knowledge. This thesis addresses certain statistical 

analysis issues and signal processing methods of a non-specific PolInSAR system. 

     First, the statistical model describing  PolSAR data is studied. From this analysis, the 

covariance matrix based on fractional lower order statistics (FLOS) is proposed. Finally, 

an optimal despeckling method based on this statistical analysis is proposed. 

Coherence is one of the most important measurements of the InSAR subsystem. 

However, the traditional sample coherence estimation suffers from statistical and sample 

biases. In order to reduce these biases, in this thesis, a coherence definition based on 

FLOS is proposed. The proposed method can reduce the statistical bias in the sample 

coherence estimation.  

Phase filtering is an important signal processing technique in the InSAR subsystem. In 

this thesis, two new wavelet domain phase filtering methods using a simultaneous 

detection and estimation technique are proposed. In the first method, simultaneous 

detection and estimation is applied in the wavelet-packet domain, while in the second 

method, it is applied in the undecimated wavelet domain. 

     Phase unwrapping is another important InSAR signal processing requirement. In this 

thesis, a weighted regularized preconditioned conjugate gradient (PCG) phase 
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unwrapping method is proposed. This proposed method applies the regularization and 

weights in one unwrapping method. The regularization operation can interpolate the 

phase map at the areas that are missing valid phase data while the weights are used to 

suppress the noise. Therefore, the proposed method not only obtains a smooth surface in 

areas missing valid data but also suppresses the noise of other areas. 

        A phase quality map is an important component of many existing “quality-guided” 

phase unwrapping methods. In this thesis, the concept of residue is extended to the 

second order, which is proposed as the phase quality measurement. It can be used as the 

quality map for related phase unwrapping methods. 

   Finally, this thesis addresses the statistical analysis and coherence formulation of the 

whole PolInSAR system. First, the PolInSAR data is modeled using the alpha-stable 

distribution rather than the widely used but more restrictive Gaussian distribution. Then, 

a vector coherence definition based on FLOS is proposed. Finally, FLOS-based 

coherence optimization is proposed, which obtains a better separation of the underlying 

scattering mechanisms when the PolInSAR data are non-Gaussian distributed. 
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CHAPTER 1:  INTRODUCTION 

 

         Synthetic aperture radar (SAR) is an active remote sensing technology which has 

been widely used in various aspects of Earth observation from both airborne and satellite 

platforms. Polarimetric SAR (PolSAR) uses different polarizations in the transmitting 

and receiving antennas to obtain polarization characteristics of the imaged targets 

[1][2][3]. Interferometric SAR (InSAR) uses two or more antennas separated spatially to 

obtain a three-dimensional measurement of the Earth surface [7]. Polarimetric and 

interferometric SAR is the combination of PolSAR and InSAR. In this thesis, we use the 

term “polarimetric and interferometric SAR” (PolInSAR) to represent the whole system 

which includes the PolSAR and InSAR as its subsystems. 

        PolInSAR technology is evolved from the SAR technologies that have been 

developed during the past few decades and incorporates wide areas of SAR technology. 

Information extraction using a PolInSAR system requires signal processing. Moreover, 

most of the signal processing methods (such as filtering, detection, and estimation) 

requires statistical modeling of the PolInSAR data. Therefore, in this thesis, we try to 

discuss signal processing and statistical modeling together where possible. This gives two 

advantages. First, the study of statistical models will lead to the better understanding of 

data characteristics and provide the a priori knowledge for the development of a signal 

processing method. Second, the study of signal processing provides a verification tool for 

the study of statistical modeling. This thesis focuses on the statistical analysis and some 

of the major signal processing issues of the PolInSAR system.  
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         In the following sections, we first give a review of SAR, PolSAR, InSAR, and 

polarimetric SAR interferometry techniques and applications, and then provide the 

background and problem statement of the thesis research. 

 

1.1  Review of Related Studies and Problem Statement 

1.1.1 PolSAR 

1.1.1.1 General Review 

Basics of SAR: 

      The resolution of traditional real aperture radar is limited by the physical size of the 

antenna [319][321][322]. SAR uses a synthetic aperture technique to obtain a high 

azimuth resolution that cannot be obtained by the real aperture radar [319][321][322]. 

       The raw data obtained in the SAR system is not focused and must be focused before 

usage [319]. A focused image can be obtained using optical or digital processing methods 

[319][321]. Digital methods are widely used now due to the fast development of digital 

computer technique. Nowadays, SAR image focusing methods generally refer to digital 

processing methods, which apply complex signal processing techniques to compress the 

unfocused signal energy and obtain a well focused image. There are many image 

focusing methods in the literature, such as the well-known range Doppler [332] and chirp 

scaling algorithms [333]. The azimuth resolution is half of the antenna length 

[319][321][322]. The range resolution is WBc 2/  [321][319], where WB  is the bandwidth 

and c  is the velocity of light [321][319]. 
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       For distributed targets, a resolution cell involves the energy from a number of 

different scatterers; therefore, the focused amplitude image has a noisy, “salt and pepper” 

appearance called speckles [320][324]. The properties of speckle are as follows:  

(a) Speckle can be described by a random process and need to be studied using 

statistical methods [325]. 

(b) Speckle is signal dependent [326]. Therefore, useful information of SAR image 

may be removed during speckle filtering. 

(c) Speckle is spatially correlated and the degree of correlation is determined by 

sampling distance and resolution [326][327][331]. Therefore, speckle filtering 

methods need to consider the correlation of speckle. 

      Speckle needs to be reduced to obtain a better understanding of the SAR image. In 

order to reduce speckle, three ways can be used [323][331]: First one performs incoherent 

averaging during image focusing [324][331], which is called multi-look processing [320]. 

However, it is well-known that multi-look processing reduces spatial resolution [331]. 

The second and third ways are both conducted on the focused image. The second way 

performs the speckle removal in the image domain [323] while the third way is the 

speckle removal in the wavelet domain [328].  

    Speckle can be described by a multiplicative model [323],     

     nmvnmSnmS cv ,,,                                                                      (1.1) 

where  nmSv , ,  nmSc , , and  nmv ,  are the noisy signal, clean signal, and noise 

component due to speckle, respectively. This model is proved to be accurate only in the 

areas of distributed scatterers [329]. However, it is still widely used due to its simplicity. 
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     When we use logarithm to transform the SAR image, the speckle noise model is 

converted to an additive model [330],  

     jinjiSjiS cn ,log,log,log                                                 (1.2) 

Therefore, the speckle removal can be conducted on the original data using a 

multiplicative model or on the logarithm of the data using an additive model. 

Basics of Polarimetric SAR: 

        PolSAR uses information from the different transmit/receive signal polarizations to 

obtain target polarization characteristics [1][2][3]. Since different polarizations are 

applied, both in the transmitting and receiving antennas, more measurements can be 

obtained by a fully polarimetric SAR than for single polarization SAR [4]. PolSAR is a 

vector (i.e., multichannel) measurement system, and information regarding target 

polarization characteristics can be obtained from this vector measurement [4].  

        The electric fields of the incident and scattered waves can be described by the 

following Jones vectors [305],  
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where H  and V  refer to horizontal and vertical polarized components. Defining  k  as the 

radar wavenumber and r  as the distance between the target and the antenna, the 

relationship between these two vectors can be described as [1][305][304] 

 
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SEE

exp
                                                                     (1.4) 

where S  is a 2 2 complex matrix called the scattering matrix [2][304][306][307], which 

determines the scatterer characteristics observed by a calibrated polarimetric SAR, 
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where HHS , HVS , VHS , VVS  are the complex polarimetric SAR data of the horizontal 

transmit and horizontal receive, horizontal transmit and vertical receive, vertical transmit 

and horizontal receive, and vertical transmit and vertical receive, respectively. HHS  and 

VVS  are the co-polarized terms, while HVS  and VHS  are the cross-polarized terms [95]. 

There are at most seven independent parameters in the scattering matrix and can be 

reduced to five for the reciprocal case [95] where the HV and VH terms are equal. The 

scattering matrix has its limitations, and is insufficient for the description of distributed 

targets [307][305]. 

      The scattering matrix can be transformed into a vector form using the basis matrices 

such as the lexicographic and Pauli basis [311][38][26], 
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Using lexicographic and Pauli basis, the scattering matrix can be transformed into 

lexicographic and Pauli scattering vectors [311][38][26] 

 THHHHHHHHl SSSSk                                                               (1.8) 

  TVHHVVHHVHHVVVVHHPauli SSiSSSSSSk                     (1.9) 

The lexicographic and Pauli scattering vectors can be used to construct the covariance 

and coherency matrices, respectively. The coherency matrix has a clearer physical 
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meaning than the covariance matrix because the terms of Pauli basis are related to 

different scattering mechanisms [55]. 

      For distributed scatters, we need to use other representations other than scattering 

matrix to describe the scattering characteristics, such as a 4 4 real matrix called the 

Mueller matrix [304][305][308][311] 

  1 PWPM                                                                 (1.10) 

where 
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where  denotes the ensemble average operation. The Mueller matrix can describe more 

types of scattering than those of the scattering matrix [305][308]. For some special cases 

such as a deterministic scatterer [307], the scattering matrix and Mueller matrix are 

equivalent [305].     

  Another representation for the distributed scatterers is the covariance matrix [311], 

which is derived by performing the ensemble average on the outer product operation of 

the lexicographic scattering vectors  [311][145] (see Section 2.3.1 for the definition of 

covariance matrix, which is not repeated here). There are up to sixteen independent 

parameters in the covariance matrix, and for scattering media with different type of 

symmetry properties, the number of independent parameters will be reduced differently 
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[313]. The symmetry property of a specific type of media can be used in the polarimetric 

SAR calibration [313].  

Similarly, performing the ensemble average on the outer product of the Pauli scattering 

vectors, the coherency matrix can be defined as [145][311][26][312], 
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The coherency matrix and covariance matrix represent the second order statistics of the 

polarimetric SAR data [312].  

     Using the Mueller matrix, we can provide another definition to describe polarization 

characteristics, called the polarization signature [304][309]. Letting t , r , t , and r  be 

the transmitting ellipticity, receiving ellipticity, transmitting orientation, and receiving 

orientation angles of the polarization ellipse, respectively, the definition of polarization 

signature is [304][309] 

   
   
 

 
   
   
  










































r

rr

rr

T

t

tt

tt

k














2sin

2sin2cos

2cos2cos

1

2sin

2sin2cos

2cos2cos

1

4
2

M                                             (1.14) 

where the limitations of t , r , t , and r  are 4/4/   t , 4/4/   r , 

4/4/   t , and 4/4/   r  [306]. The polarization signature   describes the 

radar cross section of scatter for different transmit and receive polarization status 

[304][309][310], which can be displayed using a three-dimensional graph [304][58]. 
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However, there is a limitation of this representation: different type of scatters may have 

the same polarization signature [304]. The polarization signature can be used to estimate 

the orientation angle which can be used to estimate the digital elevation model [38][58], 

although this is seldom used in practice, InSAR being the preferred approach. 

 

        In the following, some of the major research areas of PolSAR are summarized. 

Target Decomposition: 

        In order to identify the type of scatterers in the observed scene, we need to 

understand the scattering mechanisms observed by the PolSAR data. The modeling that 

determines the underlying scattering mechanisms of the observed fully polarimetric SAR 

data has been one of the most important research topics. These models are generally 

called target decomposition techniques [26], which are summarized as follows: 

a) Coherent Decomposition: Most of the early target decomposition methods are 

based on the analysis of the scattering matrix, which is classified as coherent 

decomposition [38][311]. The typical example of coherent decomposition is the 

Krogager decomposition [74] and Cameron decomposition [80]. Since the 

scattering matrix is only good at describing the deterministic scatters, the coherent 

decomposition is only suitable for the application of few dominated scatters [95], 

it can not be used for the decomposition of distributed scatters.  

b) Incoherent Decomposition: The second class of target decomposition methods is 

called incoherent decomposition, which depends on the analysis of the second-

order statistics such as the covariance matrix (see Equation (2.5) for the definition 
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of covariance matrix) or the coherency matrix [95]. The incoherent decomposition 

is suitable for the application for distributed targets.  

c) Currently, many widely used target decomposition methods use second-order 

statistics such as covariance matrix or coherency matrix to perform the 

decomposition. 1) The following methods use the coherency matrix to perform 

target decomposition: The most recognized target decomposition method that 

uses the coherency matrix is Cloude and Pottier‟s method [26], which uses 

eigendecompostion to separate the scattering mechanisms. Based on this method, 

several improved methods have been proposed [51][29], and the bias due to 

multilook processing has been studied in [82]. 2) The following methods use 

covariance matrix to do the target decomposition: These methods include the 

three-component method [5] and its revision [24], four-component method [36], 

and two-component method [35]. In order to incorporate more types of scatterers 

in the decomposition, a five-component method which includes the wire 

scattering in the urban areas has recently been proposed in [45][64].  

d) Recently, a target decomposition method that uses quaternion formulism [75] and 

both scattering matrix and coherency matrix has been proposed in [75]. 

e) Some target decomposition methods have been designed to tailor to the specified 

applications. The following are some examples: In [25], a two-component model 

is designed for Earth surface roughness estimation; In order to improve the 

performance in soil moisture estimation, the three-component method in [5] has 

been revised in [57]; Recently, a coherent target decomposition method has been 

applied in wetland characterization and presented in [49]. 
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f) Target decomposition techniques have been widely applied in many areas of the 

PolSAR applications, such as the biogenic slicks [65] and oil slick observation 

[66].  

PolSAR Applications:       

        A lot of research has been done regarding the specific applications of PolSAR data. 

Since PolSAR data contains the information of target scattering characteristics, we can 

obtain much more accurate target separation from the fully polarimetric SAR data than 

from single polarization data. Therefore, it is not surprising that one of the most 

successful applications of PolSAR data is classification, which is mostly implemented 

through the application of the target decomposition technique. For instance, the method 

in [89] applies Cloude and Pottier‟s decomposition [26] while the method in [140] 

applies Freeman and Durden‟s decomposition [5] to perform land classification. Besides 

target decomposition, a variety of other techniques have been applied to do the 

classification, such as the neural network method [102] and the method that applies the 

deorientation parameters from the coherency matrix [88]. 

        Another important application of PolSAR is image segmentation. Target 

decomposition technique can be also used to help the segmentation, such as the method 

in [101]. Besides target decomposition, a broad range of image processing techniques 

have been applied to perform the segmentation, such as the maximum likelihood method 

[100] and the Markov random field method [30]. 

         Another important application of PolSAR is target detection. PolSAR can be used 

for general target detection [27] or the detection of specified type of targets, such as ship 
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detection [46][70] and coastline detection [98]. It even has the potential of detecting and 

classifying targets at the same time [28]. 

          PolSAR data can be used to extract the slopes of the observed objects. Through the 

extraction of slope information, fully polarimetric SAR data can be used to extract the 

digital elevation model [58][59][60], although it is not as popular as generating digital 

elevation model from InSAR data. Using its slope measurement ability, the object angles 

of urban areas have been extracted in [69] and ocean wave slopes have been measured in 

[99]. 

        Besides these aforementioned major applications, PolSAR has also been applied to 

numerous other applications, such as vegetation parameter estimation [34], biophysical 

parameter estimation [47], Earth surface roughness estimation [54][25][52][53], wetland 

characterization [48], sea ice thickness estimation [92], characterization of manmade 

targets [81], and target detection in urban areas [72].   

Other Major Research Areas: 

        One of the major research areas is PolSAR calibration, which is to reduce the cross 

talk, amplitude imbalance, and phase imbalance between different polarizations 

[84][85][86]. Calibration techniques can be also used to reduce the Faraday rotation 

[96][97]. One recent study is focused on reducing the calibration errors using an a 

posteriori method [87]. 

        Another major research area is compact PolSAR [62][63][68]. The fully 

polarimetric SAR mode has to sacrifice the swath width due to the limitations of other 

system parameters [62][63][68]. Some studies have focused on designing a compact 

PolSAR [62][63][68] which can not only extend the swath width and reduce the data rate, 
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but also maintain the basic observation ability of fully polarimetric SAR. The application 

of compact PolSAR to soil moisture estimation has been presented in [71]. 

1.1.1.2 Problem Statement 

        In Section 1.1.1.1, a brief, general review of PolSAR technique has been provided. 

As mentioned before, the information extraction of PolSAR requires the application of 

signal processing, such as filtering, detection, and estimation. Most of the signal 

processing methods requires the accurate modeling of the fully polarimetric SAR data. 

Polarimetric statistical models are important a priori information for many signal 

processing methods. Therefore, in this thesis, we study the PolSAR statistical modeling, 

covariance matrix formulation, and optimal despeckling. 

Limitations of Previous Research:  

1) PolSAR Statistical Model: 

        Appropriate statistical models are very important for PolSAR signal processing and 

information estimation [146]. However, there are many difficulties to obtain an 

appropriate statistical model:  

(a) In order to obtain a useful statistical signal processing method (for example, 

the PolSAR optimal despeckling in [144]), we need to establish an accurate 

statistical model for the PolSAR data. In order to adequately model the 

PolSAR data, generally we need to develop a statistical model with a higher 

level of complexity, hence requiring more parameters. Since single- or multi-

look complex PolSAR data are multichannel, this improves the model 

complexity as well. 
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(b) On the other hand, the more complex the statistical model, the more difficult it 

is to obtain a closed-form signal processing method. Therefore, in order to 

develop a closed-form signal processing method, sometimes we need to 

simplify a specified statistical model while maintaining its accuracy as much as 

possible. 

(c) The complex statistical model with more parameters generally increases the 

difficulty of parameter estimation. In this case, we need to develop more 

accurate parameter estimation methods. 

         All in all, we need to develop a statistical model which not only fits well with the 

fully polarimetric SAR data but also is easy to be implemented in signal processing. 

        The existing PolSAR statistical models are mostly based on the complex 

multivariate Gaussian [143] assumption and/or the product model [144][149] (see Section 

2.2.1 for the details). However, these models have their limitations (Section 2.2.1). 

Therefore, we need to develop a statistical model which can completely or partly 

overcome these limitations. In Chapter 2, we study the alpha-stable model, and try to find 

an appropriate form of it which is suitable for the modeling of multichannel fully 

polarimetric SAR data. In Chapter 2, a new PolSAR statistical model is proposed using 

the alpha-stable distribution. In this study, we model the multichannel fully polarimetric 

SAR data as following a multichannel isotropic symmetric alpha-stable distribution. The 

goodness-of-fit of the proposed model is examined by experiments using real PolSAR 

data.  

2) PolSAR Data Formulation: 
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       PolSAR information extraction and signal processing significantly depends on the 

data formulation. For example, existing PolSAR information extraction (such as the 

target decomposition techniques that reviewed in Section 1.1.1.1) and signal processing 

(such as despeckling [144], detection [27], and estimation) techniques are mostly 

implemented through the analysis of the second-order models such as the covariance 

matrix [145]. However, these second-order models are based on the assumption that the 

fully polarimetric SAR data follows a multivariate Gaussian distribution. Therefore, the 

traditional covariance matrix has its limitations (see Section 2.3.2 for details). For non-

Gaussian data, these second-order models may be inappropriate since sometimes the 

second-order moments do not exist [179]. In this case, model deviation introduces errors 

in the final results of information extraction or signal processing (Chapter 2 gives an 

example associated with despeckling). In Chapter 2, we study the covariance matrix 

definition based on the proposed PolSAR statistical model. The objective of this study is 

to develop a covariance matrix definition which can be applied to PolSAR data with a 

wide range of statistical characteristics of which the Gaussian assumption represents a 

sub-set. Based on some theoretical results from the alpha-stable model analysis, the 

covariance matrix based on fractional lower order statistics is proposed. 

3) PolSAR Optimal Despeckling: 

        Existing PolSAR despeckling methods are mostly based on the covariance matrix 

[147][148], and are developed assuming the PolSAR data follows a Gaussian or product 

model [144][149]. In this thesis, we study the PolSAR optimal despeckling method in 

[144]. The existing optimal despeckling methods are derived using the Gaussian-based 

covariance matrix as well. Therefore, they have their limitations (see Section 2.4.1 for the 
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detailed comments). When there are strong reflectors in the scene, most of the existing 

filtering algorithms obtain blurred filtering results around these areas (Section 2.4.6). In 

this thesis, we study the PolSAR optimal despeckling method and propose an improved 

method which can reduce the artifacts around strong scatterers (Chapter 2). This 

proposed method is based on the application of the proposed covariance matrix 

definition. 

 

1.1.2 InSAR 

1.1.2.1 General Review 

        InSAR uses two or more spatially separated antennas to obtain the multichannel 

(usually two channels) SAR measurements [7]. The multichannel measurements of 

InSAR are different than those of the PolSAR since both the master and slave images are 

of the same polarization. Since the two antennas are separated spatially by a baseline [6], 

there is a path difference and hence a phase difference between the common pixels of the 

two images from the antennas. A 2-dimensional map of the phase differences across the 

target area is called the interferogram. The interferogram contains information about the 

topographic elevation or target movement. Depending on the different measuring 

geometry, we can obtain either elevation [9] or movement information [8][14] by 

properly interpreting and processing the interferogram. Digital elevation model extraction 

is one of the most important applications of InSAR [12], and its measurement sensitivity 

is determined by the system and geometric parameters [10][11]. 
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Basics of InSAR: 

      The fundamental measurement of InSAR is the inteferogram, which is the complex 

product of the master image  nmS ,1 , multiplied by the complex conjugate of the slave 

image  nmS ,2   [7][311][6] 
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where  nmd ,1  and  nmd ,2  are the distances from the master and slave antenna to the 

target, respectively;   is the wavelength of the radar system. The phase in the 

interferogram is the most important observable, however, this phase is only within the 

range of   , , which needs to be unwrapped to obtain its original value. 

      From interferometric phase, we can obtain the height,  nmh , , of the target through the 

following relationship [141] [314], 

   nmh
G

nm ,
4

,



                                                                         (1.16) 

where G  is a parameter that relates to the baseline and the other geometric parameters 

[311]. Therefore, if we can obtain a correct estimation of the interferometric phase, the 

height of target may be obtained. However, the observation of  nm,  is in its principle 

value and contaminated by noise, which is [212] 
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where  nm,  is the observed phase value,  nm,  is the clean phase value before modulo 

2 ,  nm,  is the wrapped clean phase value, and  W  is the modulo operation. We need 

to perform phase filtering and unwrapping to restore its original value. Phase filtering is 

to estimate  nm,  from  nm, ; phase unwrapping is to restore  nm,  from  nm, .  

 

Phase Filtering of InSAR: 

      It is obvious that phase filtering is a signal estimation problem, and the Cramer-Rao 

lower bound of this estimation problem has been derived as [193][10] 

  
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2

2
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


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N
E


                                                                              (1.18) 

where N  is the number of samples used in the estimation. The phase filtering problem 

has been solved by a maximum a posteriori estimation [141]. 

Phase Statistics: 

      Phase statistics are important knowledge for the phase filtering and phase 

unwrapping. Assuming Gaussian statistics, the pdf of the interferometric phase is 

[298][150][110] 
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where 12 F  is the Gauss hypergeometric function [237],   and   are the observed 

interferometric phase and the clean wrapped phase, respectively;   is the coherence, and 

  . The single look form of (1.19) has been applied in the phase filtering [141]. 

       The variance of the phase is a function of coherence [7],  
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where 2Li  is the Euler‟s dilogarithm defined as [216] 
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This equation means that the noise standard deviation is related to coherence [318]. Since 

the value of coherence varies spatially, the noise standard deviation varies spatially, too. 

Phase Unwrapping of InSAR: 

     Phase unwrapping is an ill-posed problem which needs some a priori information 

[315]. From (1.17), we know that the phase unwrapping is to restore  nm,  from  nm, , 

i.e., to obtain the value of  nmk , .  

      The two-dimensional phase gradient of the wrapped phase can be defined as [127] 

      nmnmWnmx ,,1,       NnMm ,,2,1,1,,2,1    

  0,  nmx   otherwise                                                                           (1.22) 

      nmnmWnmy ,1,,       NnMm ,,2,1,1,,2,1    

  0,  nmy   otherwise                                                                          (1.23) 

Itoh‟s theory [316] means that when     nmx , ,     nmy , , the unwrapping 

can be correctly performed by simply integrating the phase gradient of the wrapped phase 

[127]. This is the fundamental theory of InSAR phase unwrapping, and most existing 

phase unwrapping algorithms can be considered as an implementation of this theory. 

     However, in the real InSAR case, the condition that     nmx , ,     nmy ,  

is not always satisfied due to the noise and other factors [315][127]. When this occurs, 
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phase unwrapping can be formulated as a signal estimation problem. Phase unwrapping 

has been formulated as a maximum a posteriori estimation which is implemented using 

the statistical information of the wrapped phase [134][317], and also has been formulated 

as a maximum a posteriori estimation problem and solved by the implementation of 

Kalman filtering [211]. Recent research showed that the weighted least squares method is 

equivalent to maximum likelihood and maximum a posteriori method under some 

conditions [211]. 

Coherence and Decorrelation: 

      Coherence   is one of the most important observables derived from InSAR because it 

can describe InSAR decorrelation effects. The detailed definition of coherence can be 

found in (3.2).  Coherence can be decomposed into several sources [6][311][94]: 

VNTB                                                                              (1.24) 

where  

1) B  is the spatial decorrelation (also known as baseline decorrelation), which is due to 

the different measuring geometry of the two antennas [311]. 

2) 
21 /11/11

1





N  is the thermal noise decorrelation [6], which is caused by the 

thermal noise in the radar system, where 1  and 2  are the signal to noise ratio of the 

mater and slave image channels, respectively. 

3) T  is the temporal decorrelation [311], which is due to the time difference between the 

two observations. 

4) V  is the volume decorrelation [6], which is due to the volume scattering existing in 

three-dimensional situations such as forest canopy and urban built-up areas [94]. 
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Major Research Areas of InSAR: 

     According to the directions of the baseline with respect to the flying track, it is well-

known that InSAR can be classified into across-track and along-track modes. In this 

thesis, we are mainly concerned with the signal processing methods of across-track 

interferometry. Along-track interferometry is mentioned here only for completeness. 

       In this thesis, we define the across-track interferometry as the InSAR mode that has 

antenna separation across the flying track for the single-pass mode or the different passes 

have spatial separation across the flying track for the repeat-pass mode [6]. Therefore, its 

most popular application is to measure the topography of the Earth, by deriving digital 

elevation models, digital surface models, and digital terrain models. When the temporal 

decorrelation can be neglected (for most of the cases, when use one single flying pass 

over the imaging area, the temporal decorrelation can be neglected), it is called single-

pass InSAR; otherwise, when the temporal decorrelation cannot be neglected, it is called 

multi-pass InSAR (Note: In [6], repeat-pass InSAR is defined as the mode outside of 

along-track or across-track interferometry, which is different to the definition here). 

Several of the major research and application areas for across-track InSAR are listed 

below: 

a) One important research area is to accurately extract digital terrain model from the 

measured digital surface model [78][79].  

b) It can also be used in the forest height estimation [119][151]. 

c) It has also been applied in the digital surface model mapping in urban areas: 

Because layover and shadow frequently occurs in urban areas, it is difficult to 
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conduct the urban mapping using InSAR [121][122]. Therefore, some studies are 

focused on the relative complex processing in urban areas [121][122].   

d) It also has the potential for ocean wave imaging [129]. 

e) The application of multi-pass across-track SAR for the digital elevation model 

generation has been studied in [137]. 

f) The most popular application of multi-pass InSAR is change detection [125], such 

as the measurement of subsidence in urban areas [126], and the observation of the 

water level change in flood plains [108] or wetlands [109]. 

g) The multi-pass data may be collected during a long period of time and from which 

we obtain the displacement information of objects from multiple interferograms. 

This technique is generally called differential interferometry [114][115][103]. 

One important research area related to differential interferometry is how to apply 

the permanent scatterers technique [83] in order to reduce the impact of temporal 

decorrelation. Applying the permanent scatters technique can remove the errors 

due to atmospheric phase screen [83], improve the measurement accuracy of 

differential interferometry [103], improve the height measurement accuracy of 

urban areas [114], and measure the ground deformation over interested areas 

[115]. 

        Along-track interferometry generally denotes the InSAR mode that has an antenna 

separation along the flying track [6]. In this thesis, we define along-track interferometry 

as the InSAR mode that is mainly sensitive to target movement information such as ocean 

currents or vehicle traffic. Along-track interferometry also includes the single- and multi-

pass modes. To list a few, along-track InSAR has the following major research areas: 
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a) One of the most popular applications is to measure the ocean current velocity 

[123][124].  

b) Another popular application of along-track InSAR is moving target detection 

[110] and velocity estimation [111]. When the baseline component exists in both 

the along- and across-track direction, the special processing methods for the 

moving target detection has been studied in [112]. 

        Single baseline InSAR can only obtain the gross height of all the scatterers, cannot 

obtain the distribution of the scatterers along the height direction [40]. Therefore, another 

important research area is to use multibaseline InSAR technique to achieve tomography 

[40]. 

       There are various sources of errors in InSAR, which has been discussed in [10][113]. 

The errors of the measured digital elevation model include the geometric errors such as 

baseline errors [10], signal processing errors such as phase filtering errors and phase 

unwrapping errors [113], and other errors such as the errors due to the penetration of 

radar signal into the different part of volume for different wavelengths [116] and the 

height measurement errors induced by the inappropriate selection of look angle [120]. In 

the following, we will give a more detailed introduction about the signal processing 

errors in the InSAR subsystem. 

1.1.2.2 Problem Statement 

       The successful extraction of digital elevation model depends on the development of 

many signal processing procedures. In this thesis, we study some of the signal processing 

methods that relate to digital elevation model extraction. 
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       Signal Processing Methods: After image formation, the InSAR data need to go 

through a series of signal processing steps in order to extract a digital elevation model. 

These steps generally include: coregistration [13], range spectral filtering [93], flat-Earth 

phase removal [15], phase filtering [150], phase unwrapping [142], geocoding, and 

digital elevation model generation. The steps addressed in this thesis include phase 

filtering and phase unwrapping. 

       Although image coregistration is not the major concern of this thesis, for the sake of 

completeness, we give it a brief introduction here. Image coregistration (also called 

registration) is an important research area of InSAR. The coregistration accuracy is one 

of the factors that impact the quality of interferometric phase [128][104]. Some 

coregistration methods are performed during the image focusing [104], while most are 

performed after the image focusing step. Most of the coregistration methods need to 

conduct interpolation during the coregistration. The comparison of different types of 

interpolations has been presented in [105]. Most of the existing interpolation methods are 

time consuming. Therefore, it is important to develop a fast interpolation method, such as 

the method proposed in [117]. Coregistration accuracy largely depends on the 

interpolation accuracy. Therefore, a lot of research has been focused on developing an 

accurate interpolation method, such as the interpolation kernel proposed in [118]. Other 

studies use ancillary information to improve the coregistration accuracy [106]. Recently, 

the coregistration method that applies the analytic search instead of discrete search has 

been proposed in [107]. In this thesis, we do not discuss coregistration but consider two 

other InSAR signal processing methods: phase filtering and phase unwrapping. 
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Phase Filtering: 

        Phase filtering is one of the most important signal processing steps in InSAR for the 

following reasons: 

1) Phase quality directly impacts the accuracy of height measurements in the InSAR 

system [132] and thus influences the error level in the digital elevation model generation 

[10].  

2) Most InSAR suffers from the types of decorrelations noted in equation (1.22), which 

ultimately impact the phase quality [10][131][133]: baseline decorrelation, thermal noise 

decorrelation, temporal decorrelation, miscoregistration decorrelation, and topography 

decorrelation. In one form or another, these decorrelations create noisy and/or biased 

phase. Topography decorrelation is most eminent in the areas with foreshortening and 

layover [131]. Interferometric phase can be of very low quality due to the decorrelation 

effects in the InSAR subsystem [130]. When the decorrelation is severe, the signal to 

noise ratio is low [150]. In this case, phase filtering is an obvious way of reducing the 

noise in the InSAR system. There is another technique called range spectral filtering [93] 

which can be used to reduce decorrelation and improve coherence. However, range 

spectral filtering method can only remove part of the phase noise and is mostly applied 

when the topography is relatively flat [133][93]. After range spectral filtering, there will 

be noise remaining in the interferometric phase in most cases. Therefore, for most of the 

InSAR applications, phase filtering becomes the only effective way to reduce the phase 

noise and improve the phase quality.  

3) Additionally, the subsequent phase unwrapping may develop errors due to phase noise.  
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4) Due to layover and shadow, some areas of the phase image may be dominated by noise 

and difficult to interpret [131]. In this case, we need to apply phase filtering to reduce the 

noise inside these areas. 

        However, there are many difficulties in developing a successful phase filtering 

method: 

1) When the noise level is very high, the phase fringes may easily be 

destroyed during the noise removal. 

2) During the phase filtering (especially wavelet-domain filtering, also see 

Chapter 4 for details), we generally consider the high frequency 

information as noise [141]. However, when the phase fringes are dense, 

the high frequency information may contain phase information (see 

Section 4.5.2 for details). In this case, it is very difficult to separate the 

noise from the high frequency phase information. 

3) When there are shadow areas in the mapped scene of the phase image, the 

phase data may be dominated by noise inside these areas. This increases 

the difficulty of phase filtering. 

4) Phase filtering largely depends on the statistical analysis of phase data. For 

the transform-domain phase filtering, we need to establish the statistical 

models of the phase data in the transform domain. However, there are not 

many studies in the literature about this matter (see Chapter 4 for details). 

Therefore, a lot of research needs to be done for the transform-domain 

phase filtering. 
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5) The computational complexity may be very high for the filtering of large 

areas. 

6) The memory requirement may be very high for some phase filtering 

methods. 

 

Phase Unwrapping: 

         The original interferometric phase obtained from the focused SAR images is 

wrapped to ),[   and needs to be unwrapped to restore its original value. Generally 

speaking, phase unwrapping includes global and local methods [127]. Global methods are 

implemented by the formulation of the phase unwrapping problem as a mathematical 

problem [127][135]. The typical global methods include the least squares method [266] 

and the minimum pL  norm method [270]. Local methods are implemented by setting up 

the optimized integration path and unwrap the phase through the simple addition or 

subtraction of 2  for the specific pixels [127][135]. The typical local method is the 

Goldstein‟s branch-cut method [142][135]. There are many difficulties and challenges in 

phase unwrapping [134][135][136][138][139]:  

1) When the integration of the pixels in the 22  moving window inside the 

wrapped phase map is not zero, there is a discontinuity in these pixels 

[127][301] (For the definition of discontinuity, also see Section 6.2.1 for 

details). The discontinuity of the phase leads to phase unwrapping errors 

and when there are large numbers of discontinuities in the phase map, it is 

difficult to perform the unwrapping correctly. Phase discontinuities can be 
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described by the presence of residues [142][135] (The definition of residue 

is very similar to that of discontinuities, for the definition of residues, see 

Section 6.2.1 for details). By the proper arrangement of the unwrapping 

around the residues, we can reduce the phase unwrapping errors. 

2) In areas with mountains or urban objects, shadow and layover may cause 

large numbers of residues in the interferogram [134][136][139]. In the 

shadow areas, the interferometric phase is dominated by noise [138][139]. 

In these shadow areas, most of the local unwrapping methods cannot 

obtain an unwrapping result. Inside the shadow areas, the residues are very 

dense, which causes large numbers of global errors for the global 

unwrapping method. Layover may also cause large number of residues in 

the wrapped phase. More importantly, due to layover, the radar echoes 

from different topography positions may be received at the same 

resolution cell, which increase the difficulty of phase unwrapping 

[134][138][139].  

3) Decorrelation leads to phase noise and thus large numbers of residues. 

When the coherence level is very low, it is difficult to identify and 

separate the phase fringes from the noise. In this case, most existing phase 

unwrapping algorithms cannot obtain a satisfactory unwrapping result.  

4) For large area phase unwrapping, sometimes the memory and 

computational requirements remain a challenge even for the fastest 

computers [135]. 
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       Because of the importance and challenges of phase unwrapping, much research tends 

to be focused on developing robust phase unwrapping methods.  

Limitations of previous research:  

1) Existing phase filtering methods are mostly time domain methods, and existing 

wavelet-domain methods are mostly simple filtering methods (see Section 4.1 for 

details). When the value of coherence is very low, most of the existing methods cannot 

obtain a satisfactory residue reduction result and at the same time maintain the phase 

fringes (see Chapter 4). Therefore, in this thesis, we try to develop more advanced phase 

filtering methods. In Chapter 4, the wavelet-domain phase-filtering method is studied. 

Based on the statistical analysis of the wavelet coefficients of the phase data, two new 

wavelet-domain phase-filtering methods are proposed (Chapter 4). 

2) The existing phase unwrapping methods mostly cannot perform the unwrapping at the 

areas missing valid data due to shadow. In this thesis, we research the robust phase 

unwrapping methods which can perform a smooth unwrapping at the areas with invalid 

data. A phase unwrapping method which applies both the regularization and weighting 

techniques is proposed to solve this problem (Chapter 5). 

3) The “quality-guided” phase-unwrapping methods use a phase-quality map to direct the 

selection of the integration path to reduce phase unwrapping errors [127]. Weighted 

phase unwrapping methods use a phase quality map to assign weights to specific pixels in 

order to suppress the influence of noise [264][268][127]. Therefore, the phase quality 

map is an important input component for both quality-guided and weighted phase 

unwrapping methods (see Chapter 6). Residue is an important measurement of phase 

quality for the branch-cut method [142]. However, residue cannot be directly used as a 
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quality map for quality-guided methods [136] because it is not a quantitative 

representation of the noise levels. A new phase quality measurement called second-order 

residue is proposed in this thesis and applied in PolInSAR phase unwrapping (Chapter 6). 

 

1.1.3. Polarimetric and Interferometric SAR 

1.1.3.1 General Review 

       The combination of PolSAR and InSAR is called polarimetric and interferometric 

SAR (PolInSAR) (also called polarimetric SAR interferometry) [16]. InSAR is mainly 

sensitive to height information of the scatterers, while PolSAR is mainly sensitive to their 

shape and orientation [17][39]. Therefore, PolInSAR is sensitive to both height and shape 

information [17]. Since both the magnitude and interferometric phase information of 

PolInSAR data can be used to obtain the scattering characteristics of targets [21], 

PolInSAR provides more information than either PolSAR or InSAR [22] independently. 

The question is how to correctly extract the respective information for each designated 

application. 

Basics of PolInSAR: 

     The Pauli scattering vectors of the master and slave images (indices 1 and 2 

respectively) are 

  TVHHVVHHVHHVVVVHHPauli SSiSSSSSSk 11111111,1                  (1.25) 

  TVHHVVHHVHHVVVVHHPauli SSiSSSSSSk 22222222,2              (1.26) 

Assuming 21   , the interferogram of PolInSAR can be calculated as [19][38] 

     12
**

21
*
21  TT

kkII                                                  (1.27) 
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where Tkk *
2112  ,   is a parameter that defines the scattering mechanisms [16]. The 

interferometric phase of PolInSAR is [38][19] 

     12
*
21 argarg  TII                                                       (1.28) 

The vector coherence can be obtained as [23][38] 

 
 




TT

T

*
12

* 
                                                                           (1.29) 

where 
2

2211 TT
T


 , and TkkT *

1111  , TkkT *
2222   [19]. The definition in (1.29) is the 

special case of (7.3). 

Review of PolInSAR: 

        Currently, the most promising application of PolInSAR is vegetation height and 

structure measurement [18][19][20]. Although PolSAR can be used for vegetation 

parameter inversion [34], PolInSAR provides more accurate estimation results in many 

circumstances. However, without appropriate modeling, it is difficult to retrieve 

information from PolInSAR data. Therefore, the modeling of PolInSAR data is an 

important research topic. For example, the two well known models of tree height 

estimation are the orientated volume over ground [17][91] and random volume over 

ground [23] models. A comparison of these two models has been presented in [43] using 

the experimental results of agricultural applications. The experiments on applying these 

models have been demonstrated using L-band [19][76], P-band [20], and X-band [73][77] 

PolInSAR systems. However, these two models [23][91][43][19] are implemented by the 

inversion of the vector coherence (or coherency matrix) proposed in [16] (See equation 

(7.3) for the definition of the vector coherence in [16]. Also see the definition of (1.28) 



 

 

31 

 

and (1.29).). In Chapter 7, we will study the definition of vector coherence and propose a 

revised vector coherence definition. 

         Besides the application in agriculture and forest monitoring, the potentials of 

PolInSAR have also been demonstrated in urban mapping [31][32] and building height 

estimation [50][77]. 

         Another promising application is PolInSAR tomography, which is to obtain the 

distribution information in the vertical dimension [41][42]. 

         Besides these applications, PolInSAR demonstrates its advantages in land 

classification by using the phase information [33], coherence optimization [67], and 

volume decorrelation [94][95]. PolInSAR can be also applied in ship classification 

[55][56], detecting the target hidden under forest canopies [61], and the observation of 

glaciers [90]. 

1.1.3.2 Problem Statement 

        In this portion of the thesis, we are mainly concerned with statistical modeling, data 

formulation, and the related signal processing methods (such as coherence optimization) 

of PolInSAR. 

    PolInSAR Data Formulation: Generally speaking, there are eight input data 

channels (the four polarimetric channels for each of the two InSAR antennas). If we 

apply the reciprocal assumption [180][295], HV1=VH1, HV2=VH2, it is simplified to six 

independent PolInSAR channels (as in the example of Chapter 7). The information 

extraction generally needs to be applied on a specified formulation which organizes the 

multichannel PolInSAR data together. There are several ways to organize these data: 
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1) The most popular way is to arrange them as a coherence formulation, such as the 

vector coherence definition in [16], which has been widely accepted and extended to the 

so-called PolInSAR coherence set [38]. Similar to InSAR, one of the most important 

PolInSAR observables is coherence. The eight (or six) channels of PolInSAR data can be 

used to obtain the coherences for all the combinations of polarizations, these coherences 

can be formulated by the so called vector coherence [16]. Recently, a PolInSAR 

coherence formulation which includes polarimetric decomposition and the coherences of 

ground and volume has been proposed in [39].  

2) The second way is to design the PolInSAR formulation as a structure of parameter 

estimation [37].  

3) The third way is the PolInSAR formulation that uses the matrix analysis method [44]. 

    The second and third ways are included for the sake of completeness and will not be 

addressed further. 

Limitations of previous research:  

   1) In previous research, much work concerns the statistical analysis and modeling of 

PolInSAR data and similar to the PolSAR and InSAR cases noted earlier, the data are 

mostly modeled as multivariate complex Gaussian distributions [143][38] for simplicity 

[16]. However, when there are strong scatterers in the SAR image, which mostly (but do 

not have to) occur in urban areas, the SAR clutter may be impulsive in character. In this 

case, the SAR image may be represented better by a heavy-tailed distribution rather than 

a Gaussian distribution [179][183][184] (Here heavy-tailed means that the two ending 

parts of the probability density function (pdf) approach zero more slowly than the 

Gaussian distribution [179] while the central part is more strongly peaked than the 
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Gaussian distribution). Therefore, when the PolInSAR data are non-Gaussian (heavy-

tailed distributed), the existing Gaussian-based PolInSAR processing methods may 

introduce errors due to model deviation (see Chapter 7 for details). The objective in this 

thesis is to propose a PolInSAR statistical model which can accurately describe the data 

of a wide range of distributions.  

   2) The PolInSAR formulation (i.e. vector coherence, see Section 7.3.1) is developed 

based on the assumption that the multichannel PolInSAR data is multivariate Gaussian 

distributed [143][38]. This formulation is not accurate when the PolInSAR data includes 

heterogeneous areas. Therefore, in this thesis, the coherence formulation of PolInSAR 

data is studied under the assumption of a wide range of data distributions (Chapter 7).  

  3) A widely accepted PolInSAR coherence optimization scheme is that proposed in 

[16]. However, this method is also derived using the Gaussian-based PolInSAR 

formulation, i.e., the vector coherence in [16]. Since the vector coherence in [16] assumes 

the PolInSAR data as Gaussian distributed, which is inaccurate when the PolInSAR data 

include heterogeneous areas and/or heavy-tailed distributions. This leads to the errors in 

the results of coherence optimization (see Chapter 7 for details). In order to reduce these 

errors due to statistical model deviation, we study the PolInSAR coherence optimization 

when the PolInSAR data is non-Gaussian (heavy-tailed) distributed (Chapter 7). 

 

1.2 Research Objectives 

        In this thesis, three major issues are studied. First the statistical analysis and signal 

processing of the PolSAR subsystem are studied. Second, the signal processing 

(coherence estimation, phase filtering, and phase unwrapping) of the InSAR subsystem is 



 

 

34 

 

studied. Third, the statistical analysis and signal processing of the PolInSAR system are 

studied. 

 

       Most of the problems in the PolSAR subsystem and InSAR subsystem will be 

inherited by the whole PolInSAR system. Therefore, most of the signal processing 

methods of PolSAR and InSAR subsystems can be used in PolInSAR (For example, the 

coherence estimation, phase filtering method, and phase unwrapping method used in 

InSAR subsystem can be applied to the PolInSAR system as well). A typical PolInSAR 
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VV2 VH2 

InSAR 

Subsystem 4 

PolSAR Subsystem 1 
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PolInSAR System 

 

Figure 1.1. PolInSAR system. As defined in this thesis, the PolInSAR system includes 

two PolSAR subsystems and four InSAR subsystems providing a total of eight input 

data channels. 
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system which includes the PolSAR and InSAR as its subsystems has been illustrated in 

Figure 1.1.  

        The PolInSAR system in Figure 1.1 includes two PolSAR subsystems and four 

InSAR subsystems (When we apply the reciprocal assumption [180][295], HV1=VH1, 

HV2=VH2, the PolInSAR system can be simplified to six channels of SAR data, which 

includes two PolSAR systems and three InSAR subsystems). The observations of the 

PolSAR subsystem are the four channels of single-look or multilook complex SAR data. 

The PolInSAR system in Figure 1.1 includes two PolSAR subsystems, which are:  

(a) HH1, HV1, VV1, and VH1;  

(b) HH2, HV2, VV2, and VH2. 

        The fundamental observations of the InSAR subsystem are the single-look complex 

master and slave images. The PolInSAR system in Figure 1.1 includes four InSAR 

subsystems, which are:  

(a) HH1 and HH2;  

(b) HV1 and HV2;  

(c) VV1 and VV2;  

(d) VH1 and VH2.  

        The observations of the PolInSAR system in Figure 1.1 include eight channels: 

HH1, HV1, VV1, and VH1 are the master images; HH2, HV2, VV2, and VH2 are the 

slave images.  

        This thesis will first study the statistical characteristics of the PolSAR data, and 

select an appropriate model to describe these data. The validity of the proposed model is 
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tested by goodness-of-fit experiments. Using the proposed statistical model, some signal 

processing methods will be developed.  

       Since phase filtering and phase unwrapping are fundamental to accurate phase 

determination in InSAR, and ultimately determine the accuracy of digital elevation model 

generation, we therefore, research phase filtering and phase unwrapping methods in this 

thesis, developing new algorithms for both.  

       Finally, this thesis addresses a PolInSAR formulation which is suitable for the 

representation of PolInSAR data with a wide range of statistical characteristics. 

      The specific research objectives of this thesis are as follows: 

1) To study the statistical characteristics of PolSAR data; to propose a 

PolSAR statistical model (specifically, the alpha-stable model) which can 

represent the PolSAR data of not only non-heavy tailed but also heavy-

tailed distributions (The PolSAR data include the scenes of both 

homogeneous and heterogeneous areas).  

2) Based on statistical analysis of PolSAR data, to develop a PolSAR 

formulation which reflects its statistical information content. 

3) Based on the proposed PolSAR formulation, study the related PolSAR 

signal processing methods. 

4) To study the InSAR coherence estimation method. 

5) To research phase filtering methods of the InSAR subsystem; to propose a 

phase filtering method which can not only significantly reduce the number 

of residues, but also maintain most of the phase fringes even when the 

phase quality is poor. 
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6) To research phase unwrapping methods of the InSAR subsystem; to 

propose a phase unwrapping method which can obtain a robust 

unwrapping result when some areas of the phase data that are missing 

valid data and other areas are of low coherence. 

7) To study the statistical characteristics of PolInSAR data; to propose a 

PolInSAR statistical model which can accurately describe the statistical 

characteristics of multichannel PolInSAR data. 

8) To research PolInSAR coherence formulation, and propose an accurate 

PolInSAR formulation which considers the underlying statistical 

characteristics of PolInSAR data.  

9) Based on the statistical analysis, to study the PolInSAR signal processing 

methods (such as coherence optimization) in order to improve the 

processing accuracy and to reduce the processing errors. 

 

1.3 Thesis Overview 

       This thesis contains eight chapters. Chapter 1 (current chapter) is the literature 

review and thesis overview which provides the background to the thesis research and 

introduces the problem statement and research objectives. Chapter 2 to Chapter 7 are the 

chapters containing original research.  Most of this research work has been presented in 

separate papers (see Section 1.5 for details) that have either been published, accepted for 

publication or are currently under review. Each of the Chapters (Chapter 2 to Chapter 7) 

consists of a single paper. Chapter 8 is the summary of the thesis and introduces topics 

for future research.  



 

 

38 

 

       Chapter 2 concerns the statistical analysis of PolSAR data and its signal processing 

methods. In Chapter 2, we first study the statistical distribution of complex fully 

polarimetric SAR data. Based on the statistical analysis, we propose to use the 

multichannel alpha-stable model to describe the multichannel PolSAR data (see Section 

2.2.2 for the details). This statistical model has many advantages with respect to the 

traditional Gaussian model. From the review of Section 1.1.1.1, the traditional PolSAR 

information extraction is largely based on the covariance matrix. Therefore, we study the 

covariance matrix in Chapter 2 as well. Using the proposed statistical model, the 

covariance matrix based on fractional lower order statistics (FLOS) is developed. Using 

this FLOS-based covariance matrix, a revised optimal despeckling method is proposed. 

The proposed optimal despeckling method is not only an improved method, but also 

validates the proposed statistical model and covariance matrix definition. 

        Chapter 3 addresses the coherence estimation of an InSAR subsystem. Although the 

coherence estimation is discussed using InSAR as an example, it can be applied to the 

PolSAR subsystem and the whole PolInSAR system as well. Using the alpha-stable 

model, a new coherence definition has been proposed in this chapter.  

        Chapter 4 concerns the phase filtering of the InSAR subsystem (Note: Although 

phase filtering is discussed using the context of InSAR, it is obvious that it can be applied 

to the PolSAR subsystem and the whole PolInSAR system as well). First, the wavelet-

domain phase filtering is formulated as a signal detection and estimation problem. 

Second, a wavelet-domain phase filtering scheme using simultaneous detection and 

estimation has been established. Third, the closed-form estimator and detector are derived 

based on the statistical modeling of wavelet coefficients. Fourth, two wavelet-domain 
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phase-filtering methods using simultaneous detection and estimation are proposed. The 

first one is performed in the wavelet-packet domain while the second one is performed 

using undecimated wavelet.  

      Chapter 5 and Chapter 6 addresses the phase unwrapping and the phase quality map. 

The phase quality map can be used as an input parameter during the phase unwrapping. 

Therefore, Chapter 5 and Chapter 6 are related because the research in Chapter 6 can be 

used in Chapter 5. 

       Chapter 5 proposes a new phase unwrapping method called weighted regularized 

preconditioned conjugate gradient (PCG) phase unwrapping. Through the combination of 

regularization and weights, the proposed method reduces not only the phase unwrapping 

errors in the areas missing valid phase data, but also those of the noise contaminated 

areas. 

        Chapter 6 studies the phase quality map which is an important input parameter for 

many phase unwrapping methods. A phase quality map is important for the quality-

guided methods and also serves as the weights for many weighted phase unwrapping 

methods. In Chapter 6, we propose a new phase quality indicator which is called second 

order residue. The second order residue can be directly used as a quality map after simple 

arrangements. Finally, the proposed phase quality map is applied in PolInSAR phase 

unwrapping. 

       Similar to Chapter 2 and Chapter 3, Chapter 7 also address the statistical analysis 

based upon the alpha-stable model. Chapter 7 addresses PolInSAR coherence formulation 

and coherence optimization. First, the PolInSAR statistical model is studied using the 

alpha-stable model. Based on this study, a new PolInSAR coherence formulation based 
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on fractional lower order statistics is proposed. Finally, the proposed coherence 

formulation is verified using the coherence optimization technique. 

       Chapter 8 provides a summary and concluding remarks to the thesis and suggests 

topics for future research. First, the major results of this thesis will be summarized. Then 

the outlook of future studies will be provided. 

 

The link between the separate chapters: 

1. Chapters 2, 3, and 7 are concerned with the statistical analysis using the alpha-

stable distribution for PolSAR, InSAR, and PolInSAR, respectively. The 

statistical analysis is related to the single look complex SAR image. 

2. Chapters 5 and 6 are, respectively, about phase unwrapping and the quality map. 

The phase quality map can be used as the input parameters for some phase 

unwrapping methods, and therefore these topics are related. 

3. Chapter 4 and 5, and 6 are about the statistical analysis and signal processing of 

InSAR subsystem. 

4. Chapter 2 deals with specifically with PolSAR, Chapters 3, 4, 5, and 6 address 

issues with InSAR, while Chapter 7 is concerned with PolInSAR as a whole. All 

the Chapters 2-7 are concerned with statistical analysis and signal processing. 

They are just different subtopics of the PolInSAR system. 

 

1.4 SAR Data Used in this Thesis 

     The SAR data used in this thesis include P-band and L-band data: 
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      P-band: The fully polarimetric P-band repeat-pass InSAR data were acquired by 

Intermap Technologies Corporation using their airborne InSAR system [336][337]. This 

InSAR system operates at the wavelength of 72 cm [336]. The azimuth and range 

resolution are both approximately 3 meters [338]. 

      L-band: The L-band SAR data were also acquired by the Intermap Technologies 

Corporation. This single-pass InSAR system was developed using an upgraded platform 

from the TOPOSAR system [334]. The TOPOSAR L-band system has a range and 

azimuth resolution of about 1.1 and 0.25 meters (single-look), respectively [335]. 

 

 

1.5 Research Contributions of this Thesis 

The major contributions of this thesis are as follows: 

1) Chapter 2: In this chapter, a new PolSAR statistical model is proposed. In this 

study, the complex, multipolarization PolSAR images are modeled as a 

multichannel isotropic complex symmetric alpha-stable distribution. Based on this 

statistical model, a new covariance matrix based on the fractional lower order 

statistics has been proposed. Finally, a revised optimal despeckling method using 

the proposed covariance matrix is proposed. 

2) Chapter 3: A new coherence estimation method is proposed for InSAR data. 

Assuming the InSAR data follow an alpha-stable distribution, this new coherence 

definition is derived using the concept of fractional lower order statistics. The 

proposed coherence estimation reduces the statistical bias that exists in the results 

of the original, Gaussian-based sample coherence calculation. The statistical bias 
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due to the difference of the alpha-stable model relative to Gaussian is studied for 

the first time in the literature. The coherence estimation based on fractional lower 

order statistics can be applied whether the InSAR data is Gaussian or non-

Gaussian distributed.  

3) Chapter 4: The wavelet-domain InSAR phase filtering is for the first time 

formulated as a signal detection and estimation problem. The simultaneous 

detection and estimation technique is for the first time applied in the wavelet 

domain and applied in InSAR phase filtering. The new closed-form detector and 

estimator are derived based on the statistical analysis of the wavelet coefficients 

of the InSAR phase data. Based on this theoretical analysis, two new wavelet-

domain phase-filtering methods using simultaneous detection and estimation are 

proposed. First, the phase filtering method using wavelet-packet and simultaneous 

detection and estimation is developed. Second, the phase filtering method in the 

undecimated wavelet domain and using simultaneous and detection is developed. 

To the best of the author‟s knowledge, InSAR phase filtering is studied in the 

undecimated wavelet domain for the first time.  

4) Chapter 5: A new phase unwrapping method called weighted regularized PCG 

phase unwrapping method is proposed. This method applies both the 

regularization and weights during unwrapping. Therefore, this method not only 

can obtain an interpolated unwrapping result at the areas with missing phase data, 

but also obtain a more robust unwrapping result in areas of noisy data. The border 

conditions and implementation methods are proposed as well. The combination of 
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regularization and weights in one phase unwrapping method is presented in the 

literature for the first time. 

5) Chapter 6: A new concept called second order residue is proposed for phase 

quality maps and demonstrated in standard existing phase unwrapping methods. A 

new phase quality map is proposed using the second order residue. The second 

order residue can be directly used as quality map after some arrangements and 

used in the phase unwrapping.  

6) Chapter 7: Multichannel PolInSAR images are for the first time modeled as 

multichannel complex isotropic symmetric alpha-stable distribution. Based on this 

statistical model, the vector coherence based on fractional lower order statistics 

has been proposed. This FLOS-based vector coherence combines the statistical 

information in the vector coherence definition for the first time. 

 

1.6 List of Publications and Further Notes 

      Chapter 2 ~ Chapter 7 are presented using [199][302][303][253][255][192], 

respectively. Chapter 3 ~ Chapter 7 includes the reuse of the papers in 

[302][303][253][255][192], respectively, with the kind permission of the publishers. The 

reference numbers in the papers have been revised for this thesis to provide a single 

consistent numbering system. 

       Contributions of the authors: In Chapter 2 (reference [199]), I am the sole author. In 

the papers associated with Chapters 3-7 (references [302][303][253][255][192]), I am the 

first author, my supervisor is the second author. For the papers in Chapters 3-7, I initiated 
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and performed the research work and wrote the papers. My supervisor contributed mainly 

as an editor, improving the clarity of the presentations as well as critiquing the contents. 

      Redundancies: There are some redundancies among Chapters 2-7 because they were 

composed as stand-alone papers. 

      This thesis includes the following publications: 

Chapter 2 is from: 

[199] Yong Bian, “Polarimetric SAR statistical analysis using alpha-stable distribution 

and its application in optimal despeckling,” International Journal of Remote Sensing, 

Submitted for publication. 

 

Chapter 3 is reprinted, with permission, from: 

[302] Yong Bian and Bryan Mercer, “Interferometric SAR extended coherence 

calculation based on fractional lower order statistics,” IEEE Geoscience and Remote 

Sensing Letters, vol. 7, no. 4, pp. 841-845, October 2010. 

 

Chapter 4 is reprinted, with permission, from: 

[303] Yong Bian and Bryan Mercer, “Interferometric SAR phase filtering in the wavelet 

domain using simultaneous detection and estimation,” IEEE Transactions on Geoscience 

and Remote Sensing, vol. 49, no. 4, pp. 1396-1416, April 2011. 

 

Chapter 5 is reprinted, with permission, from: 

[253] Yong Bian and Bryan Mercer, “Weighted regularized preconditioned conjugate 

gradient (PCG) phase unwrapping method,” Journal of Optics: A: Pure and Applied 
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Optics, vol. 11, issue 1, article number: 015504, 11pp, 2009. doi:10.1088/1464-

4258/11/1/015504. 

 

Chapter 6 is reprinted, with permission, from: 

[255] Yong Bian and Bryan Mercer, “Using second order residue in PolInSAR phase 

unwrapping,” Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, May 26-30, 

2008, pp. 1-5. 

 

Chapter 7 is reprinted, with permission, from: 

[192] Yong Bian and Bryan Mercer, “PolInSAR statistical analysis and coherence 

optimization using fractional lower order statistics,” IEEE Geoscience and Remote 

Sensing Letters, vol. 7, no. 2, pp. 314-318, April 2010. 
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CHAPTER 2:  POLARIMETRIC SAR STATISTICAL 

ANALYSIS USING ALPHA-STABLE DISTRIBUTION AND 

ITS APPLICATION IN OPTIMAL DESPECKLING
1
 

 

        In this chapter, the statistical model of the polarimetric SAR single look complex 

image is analyzed using the alpha-stable distribution. It is better to use the alpha-stable 

distribution to represent statistical characteristics of the polarimetric SAR image than the 

Gaussian distribution. The polarimetric SAR covariance matrix estimation method based 

on fractional lower order statistics (FLOS) is proposed. Based on this model, an adaptive 

polarimetric SAR optimal despeckling method based on FLOS is developed. This 

algorithm adaptively estimates the characteristic exponents of each channel and uses 

these estimated alphas to adaptively calculate the parameters for the optimal despeckling. 

The experiments using the polarimetric SAR data demonstrate that the proposed method 

not only reduces the blurs which occur in the area of impulsive reflectors in the result of 

the original optimal despeckling method, but also maintains the speckle reduction ability 

(equivalent number of looks (ENL)).  

 

2.1 Introduction 

      Polarimetric synthetic aperture radar (SAR) uses multi-polarization data to acquire 

the different polarization characteristics from different targets in order to obtain strong 

                                                 

1
 This chapter is from [199]. 
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target classification ability [1]. The statistical characteristics of single channel SAR 

images have originally been represented using a Gaussian model. However, previous 

research shows that it is more accurate to analyze the statistical characteristics of SAR 

images using a non-Gaussian model [160]. Recently, the alpha-stable distribution was 

used to model the SAR imagery [183] because it is more accurate in modeling SAR 

images than the traditional Gaussian model and it considers the Gaussian model as a 

special case. 

   To the best of our knowledge, the multi-channel polarimetric SAR data is not yet 

studied using the alpha-stable distribution. The alpha-stable distribution is mostly used in 

signal processing for the impulsive noise modeling [167]. For the SAR image modeling, 

the impulsive signal may come from the strong scatterers which mostly exist in urban 

areas. Therefore, when we process the SAR image with strong reflectors, the alpha-stable 

distribution is a method that needs to be considered. In this paper, the statistical model of 

polarimetric SAR images will be studied using the alpha-stable distribution.  

   Polarimetric SAR applications are largely based on the analysis of the covariance 

matrix of the different polarization data.  The covariance matrix of polarimetric SAR data 

is an important concept which is widely used in polarimeric SAR processing, especially 

in despeckling [144], target detection [172], and contrast enhancement [180]. However, 

the covariance matrix estimation is based on the Gaussian noise assumption which is not 

suitable for the non-Gaussian case [144]. In the applications of the traditional covariance 

matrix in the non-Gaussian distribution environment, most previous research was focused 

on using the product model [162][144]. However, the product model does not work well 

for urban areas [181][146][162], or long wavelength SAR data [146][149].  
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   The complex SAR data can be modeled with the complex alpha-stable distribution 

[183]. Therefore, it is useful to generalize the polarimetric covariance matrix into a 

formulation which is suitable for the alpha-stable model. In this paper, the covariance 

matrix estimation using the complex symmetric alpha-stable ( SS ) distribution [182] 

model is proposed. 

     Using this generalized covariance matrix, an optimal despeckling method which is 

suitable for the application under the stable distribution environment is proposed and 

used for the polarimetric SAR image despeckling. This adaptive method is the 

generalization of the method in [144].  

       The organization of this chapter is as follows. In Section 2.2, the polarimetric SAR 

statistical analysis using alpha-stable distribution is introduced. In Section 2.3, the 

covariance matrix estimation using alpha-stable distribution is presented. The 

polarimetric SAR optimal despeckling method based on FLOS is presented in Section 

2.4. The final section draws the conclusion. 

 

2.2 Polarimetric SAR Image Statistical Analysis Using Alpha-Stable 

Distribution 

 

2.2.1 Review of Polarimetric SAR Statistical Analysis 

    There is a lot of research related to the polarimetric SAR statistical model. Quegan 

and Rhodes [146] discussed the statistical model of different wavelength polarimetric 

SAR data using K-distribution. The polarimetric SAR data are widely modeled with the 

multivariate Gaussian distribution [181][143] in the homogeneous areas and multivariate 
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K-distribution [181][162][187][186] in the heterogeneous areas. In the heterogeneous 

areas, the SAR image can be modeled as a scalar product model [181][162][144][149]: 

GX                                                                                                (2.1) 

where   is a scalar that represents the texture, and G  is the vector that conforms to the 

Gaussian distribution. Although the product model is widely used in the modeling of the 

non-Gaussian case, there are some performance limitations in:  areas with impulsive 

reflectors such as urban areas [181][146][162], long wavelength data [146][149], or 

single look data [162]. 

2.2.2 Alpha-Stable Distribution in Complex Polarimetric SAR Data 

   The research of polarimetric SAR is mostly based on the assumption that SAR data 

conforms to the Gaussian distribution. However, this assumption is only valid in 

homogeneous areas [181]. In real applications, sometimes the in-phase, quadrature, and 

amplitude of the SAR image are better modeled with a heavy-tailed model. In previous 

research, the single channel SAR data was modeled using the alpha-stable distribution 

[183]. The in-phase, quadrature, and amplitude of the SAR data can be modeled with the 

univariate alpha-stable distribution. The characteristic function of univariate alpha-stable 

distribution is [176][179]: 
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where 
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In this definition,   (characteristic exponent),  ,  , and   are the parameters that 

control the heavy-tailed characteristic, skewness, dispersion, and position of the center of 

the spectral density function, respectively. The valid range limitations of these parameters 

are 20  , 11   , 0 ,    [179]. The smaller the  , the more impulsive 

the data and the heavier the tails in the probability density function (pdf).   controls the 

skewness of the pdf, when 01   , the pdf is skewed to the left; otherwise, when 

01   , the pdf is skewed to the right.   is similar to the variance of the Gaussian 

distribution, the larger the  , the more heavily the data deviates from the mean value. 

       The single channel complex polarimetric SAR image can be modeled with the 

bivariate alpha-stable distribution with in-phase and quadrature as the two variables. 

Assuming the single look complex SAR data is 21 jXXX  , for the stable non-

symmetric complex stable distribution, when 20  , the characteristic function is [176] 
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where   is the spectral measure, 2S  is the unit sphere, and 0
μ  is the vector of shift [176]. 

For the SAR image amplitude, the value of   is typically higher than 1 [160], therefore 

the case 21   is good enough for most of the SAR applications. 

    Tsakalides and Nikias [183] propose to use the complex SS  distribution to model 

the range focused SAR signal. In the study of Tsakalides and Nikias [182], they model 

the radar clutter as complex isotropic SS  distribution. Since the distribution of focused 

single-look complex image is heavy-tailed, in this paper, we assume the focused single-

look complex SAR image as a complex isotropic SS  distribution [182]. Therefore, the 

fully polarimetric SAR data can be modeled as a multi-channel isotropic complex SS  

distribution. The validity of applying this model will be discussed in the follows through 

a series of experiments. In order to assume that the single channel SAR data conforms to 

the isotropic symmetric alpha-stable distribution, the following must be satisfied [176]: 

(1) for being symmetric, the imagery part of the characteristics function is zero and the 

  0

22

0

11exp  j  term is one; (2) for being isotropic, the distribution is translation 

invariant. For the symmetric isotropic alpha-stable distribution, the characteristic function 

of single channel complex SAR data can be simplified as [182][156][183][176] pp. 86: 
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where   are the variables in x  [176], 2S  is the unit circle [176], and   is the dispersion 

parameter like the univariate case. 

        The multi-channel SAR data can be modeled as the multi-channel isotropic complex 

SS  distribution. The existing polarimetric SAR statistical models are mostly based on 

the multivariate complex Gaussian distribution [143]. Here we generalize this model to 

the multi-channel isotropic complex SS   distribution. The direct generalization of multi-

channel polarimetric SAR data is to model them with a multivariate alpha-stable 

distribution. However, it is very difficult to model the multivariate alpha-stable 

distribution using the complex data as each variable. Here, we use a simplified model, 

which is to model the multi-channel polarimetric SAR data as multi-channel data where 

each channel data conforms to the complex rotationally invariant SS  distribution. The 

statistical distribution of multi-channel polarimetric SAR single look complex data can be 

modeled with the multi-channel isotropic SS  distribution: 

 
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
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

k ,                                                                                (2.3) 

where HH , HV , VV , and VH  denote the single look complex images of HH, HV, VV, 

and VH polarizations, respectively; the symbol of  *,*,*,*S  means   ,,,S . This 

model means that each channel of the polarimetric SAR data follows the isotropic SS  

distribution, i.e., 0 VHVVHVHH   and 0 VHVVHVHH  . For different 

polarizations,   and   may be different due to the different polarimetric characteristics 

of different polarization channels. 
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(a) HH                         (b) HV 

  
(c) VV                       (d) VH 

Figure 2.2.  The amplitude images of polarimetric SAR data, Delta Fraser area. (a) HH, 

(b) HV, (c) VV, (d) VH. 

  
(a) HH                         (b) HV 

  
(c) VV                         (d) VH 

Figure 2.1.  The amplitude images of polarimetric SAR data, Edson area. (a) HH, (b) 

HV, (c) VV, (d) VH. 
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(c)                                      (d) 

Figure 2.3.  The histograms of the amplitudes of polarimetric SAR images, Delta area. 

(a) HH. (b) HV. (c) VV. (d) VH. 

TABLE 2.1 

ESTIMATED PARAMETERS OF POLARIMETRIC SAR DATA 

Parameters          

Amplitude HH 1.9241 1.0 3.47740 7.17045 

HV 1.9428 1.0 1.59765 3.34600 

VV 1.9012 1.0 2.66505 5.80590 

VH 1.9239 1.0 1.58872 3.36080 

Symmetrize

d Amplitude 

HH 1.6112 0.0241 3.34755 -0.0484316 

HV 1.6367 0.0101 1.56101 0.00418395 

VV 1.6553 0.0092 2.71891 -0.0190421 

VH 1.6463 0.0134 1.56919 0.00201623 

In-phase HH 1.6226 -0.0030 4.18928 0.0153376 

HV 1.6377 0.0048 1.95850 -0.00295551 

VV 1.6858 -0.0088 3.44901 0.0117014 

VH 1.6476 0.0111 1.97243 -0.0126495 

Quadrature HH 1.6212 0.0033 4.19741 -0.0116754 

HV 1.6493 0.0181 1.96868 -0.00912671 

VV 1.6819 -0.0029 3.43203 -0.00763687 

VH 1.6637 0.0237 1.98259 -0.0150660 

These parameters are estimated using the STABLE software. The estimation is on the 

Edson area. 
 
 



 

 

55 

 

 

2.2.3 Model Analysis Using Real Polarimetric SAR Data 

     In order to test the statistical characteristics of the polarimetric SAR data, several 

experiments have been performed using the polarimetric SAR data acquired by the 

Intermap Technologies Corp. This data set was acquired using the airborne fully 

polarimetric TOPOSAR system. For the detailed information about this SAR sensor, 

please see [177]. The full polarization images of the Edson and Delta Fraser areas are 

illustrated in Figure 2.1 and Figure 2.2, respectively. Figure 2.1 is an area with very few 

manmade structures. Figure 2.2 is an area with some strong reflectors from manmade 

structures. Therefore, the image in Figure 2.1 is more homogenous than that in Figure 

2.2. In the former research, Kuruoglu and Zerubia [160] modeled the SAR image 

amplitude as the heavy-tailed Rayleigh distribution and Nolan [171] discussed the density 

TABLE 2.2 

ESTIMATED PARAMETERS OF POLARIMETRIC SAR DATA 

Parameters          

Amplitude HH 1.4119 1.0 2.58667 4.42990 

HV 1.3453 1.0 1.41420 2.11980 

VV 1.4128 1.0 2.55052 4.43915 

VH 1.3474 1.0 1.40838 2.13140 

Symmetrized 

Amplitude 

HH 1.3642 -0.0104 2.10906 0.0248774 

HV 1.2715 0.0038 1.01396 -0.00377999 

VV 1.3775 -0.0151 2.11607 0.0159494 

VH 1.2817 0.0060 1.02376 -0.0105584 

In-phase HH 1.3805 0.0028 2.62231 0.00707275 

HV 1.2698 0.0091 1.25485 0.00365190 

VV 1.3981 -0.0026 2.61688 0.0150993 

VH 1.2785 0.0085 1.26699 -0.00118412 

Quadrature HH 1.3798 0.0015 2.61731 -0.0190060 

HV 1.2704 0.0085 1.25223 -0.0127902 

VV 1.3917 0.0012 2.61527 -0.00716129 

VH 1.2800 0.0087 1.26729 -0.00929617 

These parameters are estimated using the STABLE software. The estimation is on the 

Delta Fraser area. 
 
 



 

 

56 

 

function of the amplitude of sub-Gaussian distributions. Figure 2.3 illustrates the 

histograms of the amplitude image of the Delta Fraser area. From this, we found the 

image in this data set fits the heavy-tailed model; however, for different polarizations, the 

statistical characteristics are different. 

       In order to test the statistical characteristics of the polarimetric SAR data, we 

estimate the four parameters  ,  ,  , and  . In computing these parameters, we use the 

stable distribution analysis software STABLE which was developed by Nolan [168]. A 

detailed description of the STABLE software can be found in [169] and a description of 

the modifications in its new version is presented in [170]. In this software, the maximum 

likelihood estimation method proposed in [170] is used in the parameter estimation. 

Although the accuracy of this method depends on the number of samples used in the 

estimation, it is a relatively accurate method [170]. For the detailed analysis of the 

accuracy of this estimator, please see [170]. In this parameter estimation, the image data 

of size 512512   is used. The estimated parameters of SAR data are illustrated in Table 

2.1 ~ Table 2.2 for the Edson and Delta Fraser areas, respectively. Table 2.1 illustrates 

the estimated parameters from the Edson area, which is an area with few manmade 

structures. Table 2.2 shows the estimated parameters from the Delta Fraser area. In this 

paper, “in-phase” and “quadrature” denote the real and imaginary parts of the single-look 

complex image data, respectively; “amplitude data” means the amplitude of single-look 

complex image. From the estimated  , we observed that the amplitude of the SAR data 

is skewed, which verifies the analysis in [160]. From the in-phase and quadrature data, 

we found that the data can be approximated as the symmetric alpha-stable distribution, 

which validates the analysis in [183]. For different channels, the   may be similar 
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(Edson area) or slightly different (Delta Fraser area). For different polarization channels, 

the parameters of HH and VV are similar.  Also, the parameters of HV and VH are very 

similar, enough that HV and VH can be considered as approximately equal [180][173]. 

From these parameters, we can also observe that the amplitude distribution of the single-

look complex data of the test data is completely skewed to the right [176]. Therefore, the 

signal processing method which works on the amplitude data should use the skewed 

stable model. For the skewed stable distribution, we can use the symmetrized method 

proposed in [159] to change the data to a symmetric distribution; however, for the SAR 

image data, this operation produces data which is difficult to explain and hinders its 

applications. In Table 2.1 and Table 2.2, the parameters of symmetrized amplitude using 

the method in [159] are also illustrated. 

   From the data of different areas, we found that when there are more manmade 

structures in the data, there are more strong reflectors in the data, therefore the data has 

lower  . In the forest area,   is higher than that of the area with manmade structures. 

This means that when we process the polarimetric SAR data, it is better to use the spatial 

adaptive signal processing method (in this paper, it is spatially adaptive image 

despeckling method) according to the parameters estimated as this will be the most 

accurate way of handling the spatial statistical characteristics of the data. Therefore, it 

will be advantageous to use the spatial adaptive processing method which can change the 

parameters spatially in terms of the estimated statistical parameters of stable distributions. 

    For different channels of multi-polarization data (single-look complex data),   and 

  are similar in different channels and can be approximated as zero, but   and   are 

different for different polarizations, which means the model in (3) is appropriate for the 
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modeling of multi-polarization SAR data. From the estimated parameters, we found the 

parameters of the real and imaginary parts are similar. On the other hand,   and   are 

close to zero, this verifies the assumption that the real and imaginary parts are identically 

distributed. Thus, the complex SAR data can be approximately modeled as an isotropic 

SS  distribution. 

2.2.4 The Relationship Between the Characteristic Exponents of In-phase, 

Quadrature and Complex SAR Data 

    The estimation of the characteristic exponents of complex alpha-stable distribution is 

more complicated than its real counterparts. If we can find the relationship between the 

characteristic exponents of the real part, imaginary part, and the complex data, we can 

find a way to estimate the characteristic exponents of complex alpha-stable distribution 

by the estimation of real variables. In order to study the relationship between the 

characteristic exponents of in-phase, quadrature, and complex SAR data,  we assume the 

SAR data conforms to the sub-Gaussian distribution [176]:     0,4/cos,1,2/~
/2 

SA , 

1G  and 2G  are the variables with Gaussian distribution.  

    From pp. 21, pp. 77, and Corollary 2.6.4 of [176] and [182]: Assuming the single 

look complex SAR data is 2121 GAjGAjXXX  , the real part is 

 0,,0,~11 SGAX  , and the imaginary part is  0,,0,~22 SGAX  . Therefore, we 

have  0,,0,~21 SjXXX  . This means that if the symmetric complex distribution is 

sub-Gaussian, the   of the symmetric complex stable distribution is the same as the   of 

the real part and that of the imaginary part. Therefore, the characteristic exponents of the 

in-phase and quadrature equal that of the complex SAR data. 
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   Based on this analysis, we can use the characteristic exponent of the stable 

distribution from in-phase or quadrature to represent that of the complex SAR data. From 

Table 2.1 and Table 2.2, we found the characteristic exponents of in-phase and 

quadrature are approximately the same.  The slight difference is because the data used for 

estimation is not large enough for a more accurate estimation. Based on this knowledge, 

we can approximate the   of in-phase and quadrature data, and average the two 

approximations. The averaged   can then be used as the characteristic exponent of the 

complex SAR data and later used for the covariance matrix estimation. This means all the 

parameter estimation methods of real data can be used for the complex SAR data 

characteristic exponent estimation. Also, we can use the parameter estimation method in 

[164] which estimates the parameters of alpha-stable distribution using the complex SAR 

data. 

2.2.5 Goodness-of-Fit Tests between the Proposed Model and Real Polarimetric 

SAR Data 

   It is important to test the goodness-of-fit of the proposed model, which will give us a 

hint on its merits and limitations. For polarimetric SAR data, since the scene 

characteristics (which reflects the target scattering characteristics) may vary from 

homogeneous (can be described by a Gaussian distribution) to heterogeneous (can be 

described by a heavy-tailed distribution), and even to extremely heterogeneous (can be 

described by a very heavy-tailed distribution). Therefore, the distribution model of 

polarimetric SAR data needs to cover a variety of situations, which ranges from Gaussian 

to very heavy-tailed distributions. The alpha-stable distribution may be a reasonable 

choice because the shape of its pdf varies from non-heavy-tailed (Gaussian,   is close to 
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2) to very heavy-tailed (  is close to 0) while we change its characteristic exponent. 

   A series of experiments has been conducted to examine the fitness of the proposed 

alpha-stable model with respect to the real polarimetric SAR data as a function of 

polarizations, target characteristics, number of samples, and wavelength of the SAR 

sensor. The accuracies of the estimated pdfs using alpha-stable model are evaluated by 

comparing them with the histograms of real SAR data. In order to test the validity of the 

proposed model, we need to conduct experiments which examine the statistics of the 

single-look complex polarimetric SAR data. Since our major concern here is the 

distribution of the single-look complex data, a direct way is to fit complex SAR data with 

a complex alpha-stable distribution. From the analysis in Section 2.4, we know that the 

distributions of complex data can be described by its real or imaginary parts when the 

underlying distribution is sub-Gaussian (i.e. the complex data is complex SS  means that 

both the real and imaginary parts are real SS ). Therefore, in this paper, we use the real 

part of the focused single-look complex data to conduct the goodness-of-fit experiments. 

    These experiments are implemented as follows: first, the parameters of stable 

distribution are estimated using the STABLE software (i.e, using the maximum 

likelihood estimation method in [170]); second, the estimated parameters are used to 

calculate the pdf using the STABLE software; finally, the calculated pdf and the 

histogram of real polarimetric data are used to calculate the Hellinger distance [178] 

which is a measurement of the fitness of two distributions. The value of Hellinger 

distance is between 0 and 1, the smaller the Hellinger distance, the better is the fitness of 

two distributions [178]. 
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(c)                                                                 (d) 

Figure 2.5.  The goodness-of-fit experiment of L-band Delta area data. (a) HH. (b) HV. 

(c) VV. (d) VH. 
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(c)                                                                (d) 

Figure 2.4.  The goodness-of-fit experiment of L-band Edson area data. (a) HH. (b) HV. (c) VV. (d) VH. 
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2.2.5.1 Experiments of Different Polarizations 

   In this experiment, we examine the goodness-of-fit of different polarizations. The 

experiments of goodness-of-fit has been conducted on the two L-band fully polarimetric 

SAR data sets which have been used in the experiments of Section 2.3 and shown in 

Figure 2.1 (Edson area) and Figure 2.2 (Delta area). These two data sets have large 

number of samples. The estimated pdfs of Edson data and Delta data are calculated using 

the STABLE software using the estimated parameters in Table 2.1 and 2.2, respectively. 

The estimated pdfs and the histograms of the real part of Edson data in HH, HV, VV, and 

VH polarizations are plotted in Figure 2.4 (a), (b), (c), and (d), respectively. The 

estimated pdfs and the histograms of the real part of Delta data of HH, HV, VV, and VH 

polarizations are plotted in Figure 2.5 (a), (b), (c), and (d), respectively. From Figure 2.4 

and Figure 2.5, we found that although the statistical characteristics are different for 

different polarizations (especially between the co-polarized and cross-polarized terms), 

the estimated pdfs and the histograms of real SAR data are matched very well for all the 

four polarizations. This means that the proposed alpha-stable model is suitable for the 

modeling of all the polarizations of the fully polarized SAR data. The Hellinger distances 

between the estimated pdf and the real SAR data are calculated and shown in Table 2.3. 

The Hellinger distances in Table 2.3 are close to zero for all the polarizations, which 

indicates the estimated pdfs fit the real polarimetric SAR data very well when the number 

of samples is large. Therefore, the alpha-stable model is suitable for the modeling of fully 

polarimetric SAR data. Comparing the results in Figure 2.4 and Figure 2.5, we found that 

although the data from Delta and Edson area have quite different scene statistical 

characteristics, in both areas, the estimated pdfs fits the real SAR data very well.   
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2.2.5.2 Experiments of Different Types of Targets: 

In order to examine the modeling fitness with respect to target scattering characteristics 

(or scene characteristics), we perform the goodness-of-fit experiments on three selected 

areas of the Delta data. Three areas have been selected in terms of the follows: 1) Inside 

each area, the targets should have similar characteristics; 2) The type of dominant 

scatterers is different between any two of the three areas. Figure 6 shows the locations of 

the three testing areas, which are marked with squares, the squares from left to right in 

Figure 2.6 are area (c), (b), and (a), respectively.  

TABLE 2.3 

HELLINGER DISTANCE OF POLARIMETRIC SAR DATA 

 Polarizations Hellinger Distance 

 

L-band Edson HH 0.0365 

HV 0.0510 

VV 0.0237 

VH 0.0500 

L-band 

Delta 

HH 0.0302 

HV 0.0330 

VV 0.0262 

VH 0.0328 

 
 

 

 
Figure 2.6.  Three areas in the goodness-of-fit tests. The areas from left to right are (c), 

(b), and (a), respectively. 
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TABLE 2.6 

ESTIMATED PARAMETERS OF POLARIMETRIC SAR DATA 

Parameters          

In-phase HH 1.7936 0.0241 4.46237 0.00963377 

HV 1.7505 0.0520 2.64887 0.0648852 

VV 1.8057 0.2431 4.69927 -0.131143 

VH 1.7521 0.0638 2.64328 0.0429481 

Quadrature HH 1.7566 -0.0497 4.48640 0.0497022 

HV 1.7523 -0.0361 2.59112 0.200631 

VV 1.7088 -0.0238 4.62435 0.124756 

VH 1.7513 -0.0581 2.59251 0.185676 

These parameters are estimated using the STABLE software. The estimation is on the 
Delta Fraser area, area C. 
 
 

TABLE 2.5 

ESTIMATED PARAMETERS OF POLARIMETRIC SAR DATA 

Parameters          

In-phase HH 1.8172 0.1161 2.48804 -0.121979 

HV 1.8239 -0.0636 1.21146 0.0345459 

VV 1.9484 0.1158 2.58546 -0.0786491 

VH 1.7857 -0.0423 1.20595 0.0355041 

Quadrature HH 1.8976 0.1053 2.47720 0.0698504 

HV 1.8083 -0.0601 1.20480 0.0812927 

VV 1.9518 0.4851 2.50432 -0.0676317 

VH 1.8564 -0.1320 1.22155 0.0812304 

These parameters are estimated using the STABLE software. The estimation is on the 
Delta Fraser area, area B. 
 
 

TABLE 2.4 

ESTIMATED PARAMETERS OF POLARIMETRIC SAR DATA 

Parameters          

In-phase HH 1.6865 0.0258 8.69835 -0.121050 

HV 1.7600 0.1757 5.35792 -0.0683366 

VV 1.5991 0.0580 8.22691 -0.128653 

VH 1.7584 0.2775 5.28957 -0.122334 

Quadrature HH 1.7138 -0.0319 8.81907 -0.0345735 

HV 1.7654 -0.0146 5.37902 0.0116193 

VV 1.6394 0.1424 8.28765 -0.478279 

VH 1.7948 -0.0642 5.46454 0.180574 

These parameters are estimated using the STABLE software. The estimation is on the 
Delta Fraser area, area A. 
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    Area (a) is the area of strong manmade objects which represents a heterogeneous 

area, area (b) is the bare earth with low vegetations which represents a relatively 

homogeneous area, area (c) is a forested area which has a heterogeneity measure [163] 

between those of area (a) and (b). In other words, area (a) is the area of the highest 

heterogeneity, area (b) is of the lowest heterogeneity. The estimated parameters of alpha-

stable distribution of area (a), (b), and (c) are shown in Table 2.4, Table 2.5, and Table 

2.6, respectively. Among these three areas, the estimated alpha values of area (a) is the 

smallest, area (b) is the biggest. Therefore, the distribution of area (a) is the most heavy-

tailed, and the distribution of area (b) is the least heavy-tailed. This result indicates that 

the measured alpha value is a measurement similar to scene heterogeneity; the smaller the 

alpha value, the higher is the heterogeneity. Thus we can say that the estimated 

parameters of alpha-stable distribution (especially alpha) of the data can be used to 

classify the scenes of different statistical characteristics.  
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Figure 2.7.  The goodness-of-fit experiment of L-band delta data, for area A,.  (a) HH. 

(b) HV. (c) VV. (d) VH. 
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Figure 2.9.  The goodness-of-fit experiment of L-band delta data, for area C.  (a) HH. 

(b) HV. (c) VV. (d) VH. 
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Figure 2.8.  The goodness-of-fit experiment of L-band delta data, for area B.  (a) HH. 

(b) HV. (c) VV. (d) VH. 



 

 

67 

 

 

       The goodness-of-fit experiments of these three areas have been conducted. The 

estimated pdfs and the histograms of polarimetric SAR data in area (a), area (b), and area 

(c) are plotted in Figure 2.7, Figure 2.8, and Figure 2.9, respectively. The Hellinger 

distances are calculated and shown in Table 2.7. Since the number of samples used in this 

experiment is much smaller than that of Section 2.5.1, we can get a coarse idea with 

regard to how much the sample size influences the accuracy of parameter estimation by 

comparing the Hellinger distances in Table 2.7 (the results in large areas) with those of 

Table 2.3 (the results in small areas). After this comparison, we found that when more 

samples are used in the parameter estimation, the goodness-of-fit of the resulting pdf is 

largely improved. This conforms to the results in [170]. Comparing the goodness-of-fit 

results for those three testing areas, we found that the Hellinger distance is the largest in 

area (a), smallest in area (b), this is probably because the estimator has a different 

accuracy for the different alpha values [170]. 

TABLE 2.7 

HELLINGER DISTANCE OF POLARIMETRIC SAR DATA 

Parameters Polarizations Hellinger Distance 

Intermap L-band data, 

 delta, area A 

HH 0.1655 

HV 0.1317 

VV 0.1741 

VH 0.1329 

Intermap L-band data, 

 delta, area B 

HH 0.1181 

HV 0.0928 

VV 0.1009 

VH 0.0815 

Intermap L-band data, 

 delta, area C 

HH 0.1255 

HV 0.0824 

VV 0.1367 

VH 0.1013 
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2.2.5.3 Experiments of Different Wavelengths: 

       The statistical characteristics of polarimetric SAR data vary for different 

wavelengths. In order to examine whether the alpha-stable model is suitable for the 

application in the polarimetric SAR data of various wavelengths, the experiments of a P-

band data set is conducted in comparison with the aforementioned experiments of L-band 

Edson data. This P-band data set is acquired from Edson area, which is also acquired by 

Intermap Technologies Corp. (for the detailed description of this P-band SAR system, 

please see [155] and [153]). 

 

TABLE 2.8 

ESTIMATED PARAMETERS OF POLARIMETRIC SAR DATA 

Parameters          

Amplitude HH 1.7901 1.0 533.044 1064.64 

HV 1.8716 1.0 236.889 504.251 

VV 1.9041 1.0 396.729 887.014 

VH 1.8759 1.0 253.827 535.110 

Symmetrized 

Amplitude 

HH 1.5609 0.0104 380.889 -3.21727 

HV 1.6387 -0.0075 200.797 0.976749 

VV 1.6814 0.0022 379.625 1.86820 

VH 1.6172 -0.0001 211.437 0.463859 

In-phase HH 1.5773 -0.0007 628.907 -1.23077 

HV 1.6547 0.0073 300.258 -1.90635 

VV 1.7132 0.0028 526.549 -2.94949 

VH 1.6403 0.0014 317.862 0.444630 

Quadrature HH 1.5694 0.0014 625.420 -3.59525 

HV 1.6479 0.0020 299.919 -0.924835 

VV 1.7084 -0.0035 526.676 0.896941 

VH 1.6393 -0.0048 317.566 1.39359 

These parameters are estimated using the STABLE software. The estimation is on the 
Edson area (P-band Edson). 
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       The estimated parameters of alpha-stable distributions of this P-band data are shown 

in Table 2.8. The estimated pdfs and the histograms of real polarimetric SAR data are 

plotted in Figure 2.10. The Hellinger distances between the estimated pdf and the 

TABLE 2.9 

HELLINGER DISTANCE OF POLARIMETRIC SAR DATA 

Parameters Polarizations Hellinger Distance 

P-band Edson HH 0.0248 

HV 0.0326 

VV 0.0190 

VH 0.0306 

 

 

 

  
-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

 

 

SAR data histogram

estimated pdf

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

6000

7000

 

 

SAR data histogram

estimated pdf

 
(a)                                                      (b) 

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
0

500

1000

1500

2000

2500

3000

3500

 

 

SAR data histogram

estimated pdf

-5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000
0

1000

2000

3000

4000

5000

6000

 

 

SAR data histogram

estimated pdf

 
(c)                                                       (d) 

Figure 2.10.  The goodness-of-fit experiment of Intermap P-band Edson data.  (a) HH. (b) 

HV. (c) VV. (d) VH. 
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histogram of real SAR data are calculated and shown in Table 2.9. Comparing Table 2.3 

and Table 2.9, we found a similar goodness-of-fit results for the P-and L-band data, this 

means that although the SAR data acquired using different wavelengths has the different 

statistical characteristics, the alpha-stable model fits both of them well. Although we 

cannot conclude that the model fits well for all the wavelengths since this experiment 

only include two wavelengths, the similarity of the results between P- and L-band data 

indicates that the alpha-stable distribution may be applicable to a broad range of 

wavelengths. 

 

2.3 Covariance Matrix Based on FLOS 

2.3.1 Review of Covariance Matrix 

    The statistical model of polarimetric SAR data was assumed as Gaussian in many 

applications. However, the SAR data can be more accurately modeled with complex 

alpha-stable distributions [160]. Therefore, the polarimetric SAR data should be modeled 

using the alpha-stable distribution as well. 

   The covariance matrix plays a significant role in the polarimetric SAR processing, 

which is important for the understanding of wave scattering such as measuring 

depolarization [145], and also in areas such as despeckling [144], target detection [172], 

and contrast enhancement [180]. The covariance matrix of polarimetric SAR is mostly 

based on the assumption that SAR data conforms to the Gaussian distribution. The 

polarimetric SAR image can be formulated using a vector representation as 



















VV

HV

HH

3k ,                                                                                          (2.4) 
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where HH , HV , and VV  are the single look complex image data in HH, HV, and VV 

polarizations, respectively. Here only three polarizations are used because the HV and 

VH are correlated and are not used in the despeckling [173].  

       The traditional covariance matrix is [144][158] 
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kkC ,     (2.5) 

where E  denotes expectation, T  means transpose, and “*” means conjugate. 

2.3.2 Covariance Matrix Based on FLOS 

       In this section, we will develop the covariance matrix of polarimetric SAR using the 

fractional lower order statistics. When the noise model is non-Gaussian, the most popular 

noise model is the k-distribution, which was used in [146]. However, it is more flexible to 

use the stable distribution to model the non-Gaussian case [183]. As discussed before, the 

statistical distribution of three-channel polarimetric SAR single look complex data can be 

modeled with the three-channel isotropic SS  distribution: 
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k ,                                                                      (2.6) 

where HH , HV , and VV  denote the single look complex images of HH, HV, and VV 

polarizations, respectively. 

       The covariation [176] in the alpha-stable distribution is by definition similar to the 

covariance in the Gaussian case; however, covariation is not symmetric [176]. Therefore, 

we use fractional lower order covariance instead of covariation to derive the covariance 

matrix based on FLOS. The covariance matrix will be developed based on the fractional 
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lower order covariance which was proposed in [165] and used in [183], which is 

     ba

ba YXEYXYXFLOC  ,,, .                                                                 (2.7) 

We use the fractional lower order covariance (FLOC) proposed in [165][183] to derive 

the polarimetric SAR covariance matrix based on the alpha-stable distribution. The 

proposed covariance matrix is defined based on the operation 

1


pp
XXX ,                                                                                       (2.8) 

which is similar to the fractional lower order covariance in [165][183].  The only 

difference is that the conjugate is not used here. There are two reasons that we use this 

formation, which are as follows: First, this operation is similar to a conversion from the 

stable distribution to the Gaussian distribution, which will be analyzed in the following 

sections. Second, in order to maintain the basic structure of the covariance matrix which 

represents the wave scattering process of the polarimetric measurement [145], we discard 

the conjugate operation. The fractional lower order covariance [165] is symmetric when 

ba  , which is     aa

aa

aa XYYYXXYX ,

11

, ,, 


. 

       The traditional covariance matrix was derived according to the Gaussian noise 

assumption, whereas the covariance matrix based on fractional lower order statistics is a 

generalized version of the traditional covariance matrix in the alpha-stable distribution. 

Using the definition in (2.8), the proposed covariance matrix based on the FLOS is 

 Tpp

FLOS E
*

33 kkC  ,                                                                           (2.9) 

where 

 Tpppp

FLOS

VVHVHH

VVVVHVHVHHHH
111

3


 kK , 

and where HHp , HVp , and VVp  are the p  values for HH, HV, and VV channels, 
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respectively. Note, this FLOSK  is only used in the estimation of the covariance matrix, the 

SAR image data is not changed. Therefore the covariance matrix based on FLOS is: 
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(2.10) 

When we know the parameter   in the data, the p  value that satisfies the boundedness 

requirement can be derived using the following Theorem 2.1.  

      Theorem 2.1: When the HH, HV, and VV are statistically independent, the covariance 

matrix is bounded if  2/HHHHp  , 2/HVHVp  , and 2/VVVVp  . 

Proof: Specifically, for each term in the matrix, the boundedness should be satisfied 

when all the terms in (2.10) are bounded. Because the noise in different channels are 

statistically independent [180], we can assume that HH, HV, and VV are statistically 

independent. 

(1) The 11A , 22A , and 33A  term: From [167][166], it is easy to know that for 11A , 22A , and 

33A , the boundedness is satisfied when 2/HHHHp  , 2/HVHVp  , 2/VVVVp  , 

respectively. 

(2) The 12A , 13A , 21A , 23A , 31A , and 32A  term: Assume the HH, HV, and VH are 
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statistically independent, from [167][166], the requirements of boundedness are: 

12A :               2/HHHHp   and 2/HVHVp   

13A :               2/HHHHp   and 2/VVVVp   

21A :               2/HVHVp   and 2/HHHHp   

23A :               2/HVHVp   and 2/VVVVp   

31A :               2/VVVVp   and 2/HHHHp   

32A :               2/VVVVp   and 2/HVHVp   

Therefore, all in all, the covariance matrix is bounded if  2/HHHHp  , 2/HVHVp  , and 

2/VVVVp  . This concludes the proof.  

   Let 

 HHp

FLOS HHE
2

 ,                                                                                     (2.11)  

where the FLOS  term is actually the th2 HHp  order statistics of the HH  data. In the SS  

noise case, if 2/HHHHp   and 2HH , we have 22 HHp , and the FLOS  term is the 

statistics with the order lower than the second order statistics. 

   By a similar arrangement as [144][180], by taking the FLOS  term out of the matrix in 

(2.10), the covariance matrix based on FLOS for polarimetric SAR data processing can 

be formulated as 
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FLOS , FLOSf , and FLOS  are the most important terms and will be used later in the optimal 

despeckling.  The other terms are 
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which will not be used in the later optimal despeckling since they are close to 0 [146]. 

    The values of HHp , HVp , and VVp  can be defined in terms of different applications 

and statistical environments. Therefore, the covariance matrix based on FLOS is very 

flexible. From the definition of covariance matrix based on FLOS, we know that the 

alpha-stable distribution is not polarization independent, which is different from the 

product model [146]. Therefore, for the application of the covariance matrix based on 

FLOS, we should estimate the characteristic exponent for each channel separately. 

Comparing the product model [181][162][144][149], the following are some advantages 

for the proposed covariance matrix based on FLOS:  

1) This proposed covariance matrix performs well both in the urban and rural areas 

when we adaptively use the estimated   to calculate the covariance matrix. 
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2) Because the proposed method only uses the statistical information in the data, it can 

be applied to the data of any wavelength. 

3) The proposed method can be applied in single-look or multi-look data. 

4) The product model assumes the texture in each polarization is the same [146][162]; 

however, the proposed method does not have this assumption and is not polarization 

independent. This gives the advantage of the proposed method that when the polarization 

independent assumption of the product model fails, the proposed method still works.  

2.3.3 Analysis of the Covariance Matrix Based on FLOS 

    It is well known that the closed form pdf of the alpha-stable distribution is not 

available when 21   and 10    [176][167]. Therefore, the SAR data cannot derive a 

closed form pdf under the stable noise distribution. However, from the following 

analysis, we find that when calculating the fractional lower order covariance, 

12/2/ 



XXX  is an operation which approximates the conversion of the stable 

distribution to the Gaussian distribution.  

 

TABLE 2.10 

ESTIMATED PARAMETERS OF POLARIMETRIC SAR DATA AFTER THE SCALED OPERATION 

Parameters          

In-phase HH 2.0 0.0 1.52642 0.00710000 

 HV 1.7190 0.0123 1.00940 0.00532212 

 VV 1.9824 -0.0352 1.54276 0.0104154 

 VH 1.9222 0.0402 0.993579 0.000499269 

Quadrature HH 2.0 0.0 1.52511 -0.0136500 

 HV 1.7265 0.0232 1.01122 -0.0130095 

 VV 1.9830 0.1295 1.54768 -0.0123935 

 VH 1.9305 0.0677 0.993383 -0.00841240 

These parameters are estimated using the STABLE software. The estimation is on the Delta 

Fraser area and the data are scaled use the equation: 12/2/ 



XXX , where   is the 

estimated parameter using moving window with window size= 1111 . 
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    Although the covariance matrix is bounded when 2/HHHHp  , 2/HVHVp  , and 

2/VVVVp  , the method of selecting the value of p  is important to have a meaningful 

result. From the definition of the fractional lower covariance, let 2/p , so we have 

12/2/ 



XXX , where X  is the complex SAR data. 

       Theorem 2.2: When complex SAR data 21 jXXX   conforms to the isotropic 

complex SS  distribution  0,,0,~ SX , 
12/2/ 




XXX  tends to follow a Gaussian 

distribution. 

Proof: Assuming the SAR data conforms to the sub-Gaussian distribution, 

2121 GAjGAjXXX  , where we have 
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(a) when 2 , the data is already Gaussian, there is no change for the data. 

(b) when 20  : 

First, if   is low, the data is very impulsive. The   2/

A  term tends to be much smaller 

than A . Therefore, the impulsive term is reduced. Also, when   is low, 
2/1

2

2

2

1





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is very high, and 
1
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2

1 GGG  ,  therefore 
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1

1





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
 GG

G
 is much smaller than 1G . The 

scaled in-phase is much smaller than the original in-phase. Also the quadrature is much 

smaller than the original quadrature. Therefore, the data 2/
X  tends to be much smaller 

than X .  

Second, when   is high, the data is slightly impulsive, and the   2/

A  term tends to be 



 

 

78 

 

slightly smaller than A , therefore the impulsive term is slightly reduced. Also when   

is high, 
2/1

2

2

2

1








 GG  tends to be 1 and 

1

2

2

2

1 GGG  ,  therefore 
2/1

2

2

2

1

1








 GG

G
 is 

slightly smaller than 1G  and the data values tend to be slightly smaller after the 

processing. The scaled in-phase is slightly smaller than the original in-phase. Also the 

quadrature is slightly smaller than the original quadrature. Therefore, the data 2/
X  tends 

to be slightly smaller than X . 

      Therefore, the data tends to be Gaussian after 
12/2/ 




XXX . This concludes the 

proof. 

      In order to test this assumption, several experiments were conducted. In these 

experiments, we used the data from the Delta Fraser area and calculated 

12/2/ 



XXX , where X  is the complex SAR data of each polarization,   was 

estimated using the moving window of 1111  and the parameter estimation method of 

complex data in [164] (For the accuracy of this estimator, please see Section 4.4 of this 

paper). Table 10 shows 
12/2/ 




XXX  for each polarization.  From the parameters of 

in-phase and quadrature, we see that the data of 2/
X  tends to be Gaussian. This means 

the operation in (8) is similar to the conversion from the non-Gaussian to the Gaussian. 

       Therefore, when we multiply the complex data with  
12/ 

X , the data tends to follow 

a Gaussian distribution. Therefore the covariance matrix based on FLOS can be 

calculated using 2/HHHHp  , 2/HVHVp  , and 2/VVVVp   as (2.17): 
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 (2.17) 

       Similar to the well known product model [146], this covariance matrix based on 

FLOS only changes the amplitude of the matrix but the phase information remains [146]. 

   The depolarization measurement of polarimetric SAR is obtained by the estimation of 

covariance matrix or coherency matrix [145]. However, both these two matrices are 

estimated using the assumption that polarimetric SAR data are Gaussian distributed, 

which leads to estimation errors when the polarimetric SAR data includes heterogeneous 

scenes. Since the covariance matrix based on FLOS use a more accurate statistics which 

is alpha-stable, the depolarization measurement that estimated through the proposed 

covariance matrix based on FLOS may be improved. Moreover, the basic structure of the 

proposed covariance matrix based on FLOS remains the same with the original 

covariance matrix, the underlying wave scattering characteristics is maintained. 

Therefore, the proposed covariance matrix based on FLOS may obtain a better estimation 

of the target polarization characteristics. 

2.3.4 pdf of  the Covairance Matrix using FLOS 

   From the former analysis, the covariance matrix based on FLOS is similar to a 

preprocessing which changes the data from the SS  model to the Gaussian model [154], 

the statistics of the covariance matrix based on FLOS are now approximately Gaussian, 

therefore, the pdf can be developed similar to [162], 
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T

FLOS

FLOS

FLOSp KCK
C

K
1*

3
exp

det

1 


.                                            (2.18) 

 

where “ det” means the determinant and T

FLOS

*
K  means the conjugate transpose of FLOSK .  

 

2.4 Polarimetric SAR Optimal Despeckling Using FLOS  

2.4.1 Original Optimal Despeckling Method 

    The original optimal despeckling method was proposed by Novak and Burl [144] and 

was used in the target detection [27]; however, this method is only suitable for the single 

look image. Liu et. al. [161] extended the method in [144] to the multi-look case. Lopes 

and Sery [162] proposed some texture estimation methods for the product model which 

can be used in the multi-look case. However, as pointed out in [162], the despeckling 

method based on the product model does not perform well for areas with impulsive 

reflectors, such as urban areas. The despeckling method discussed in this paper is 

different to the problem of impulsive noise removal [152]. In this paper, we do not 

assume the noise is impulsive, the problem we discussed here is about the filtering when 

the signal distribution is heavy-tailed (strictly speaking, the noise contaminated signal is 

impulsive).  

2.4.2 Despeckling Based on FLOS 

    In this chapter, we only discuss the despeckling on the single- look complex image. 

Following the method in [144], and applying the pdf in (2.18), we can derive the 

despeckling based on FLOS, which is 
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.            (2.19) 

This optimal despeckling is a generalized method in the stable distribution environment. 

When 0.1 VVHVHH ppp , this method is the same as the method in [144]. For different 

impulsive noise levels, we can select different HHp , HVp , and VVp . 

     Because the modeling using the alpha-stable distribution only influences the 

covariance matrix estimation, i.e. the expectation of the data, in (2.19) we can use the 

original data instead of the scaled data in order to maintain the dynamic range of the 

image, which is 

    FLOSFLOSFLOSFLOSFLOSFLOSFLOS
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***

1


 . 

This is the intensity of the image. If we want to obtain the amplitude image, the final 

despeckled image is I . In this paper, the images and results are using the amplitude. 

Following the method in [144], the simplified version of the desepeckled image is 

  2

22

2 11
VV

f

HV
HHI

FLOSFLOS

FLOS







 .                                                     (2.20) 

2.4.3 Adaptive Despeckling Algorithm 

    Based on the former analysis, when calculating the FLOS , FLOSf , and FLOS  using 

(2.13), (2.14), and (2.15), respectively, the values of HHp , HVp , and VVp  should be 

selected in terms of HH , HH , and VV , respectively. The best selection of HHp , HVp , and 

VVp   is in terms of the characteristic exponent as     2/,, jijip HHHH  , 
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    2/,, jijip HVHV  , and     2/,, jijip HVVV  .  

    The original despeckling method in [144] includes the non-adaptive method and 

adaptive method. In the adaptive method, we need to estimate the parameters in the 

covariance matrix. In the proposed method, when we estimate the covariance matrix 

based on FLOS, there are two classes of parameters that need to be estimated adaptively 

or non-adaptively. The first class of parameters are HH , HV , and VV  for the calculation 

of  HHp , HVp , and VVp . The second class of parameters are FLOS , FLOSf , and FLOS , which 

need to be estimated. The adaptive ability is achieved by using a moving window of size 

NN  . The size of the window needs to be selected carefully. If the window size is too 

large, the estimation resolution is too low. Inversely, if the window size is too small, the 

parameter estimation is not accurate due to the small number of samples used in the 

estimation. In estimating the covariance matrix based on FLOS, we can use the same 

parameters HHp , HVp , and VVp  for the whole image. This is the non-adaptive despeckling 

method (Note: In this non-adaptive method, the second class of parameters FLOS , FLOSf , 

and FLOS  are still estimated adaptively, which means that we use the same parameters 

HHp , HVp , and VVp  for the whole image). 

       From the former analysis, we observed that for different areas of the image, the 

statistical parameters of the stable distribution vary. Therefore, when we apply the 

proposed despeckling method, the spatial adaptive ability is important. The proposed 

adaptive optimal despeckling method is as follows: 

      Parameter Estimation: Use a moving window with the window size NN   to 

calculate the mean and variance from the data inside the window, then apply the method 
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of [164] (Equation (21)) to calculate the ̂  from the samples inside each window. Then, 

for the pixel  ji,  of the center of the window, we obtain an  ji,̂ . 

      p  Value Calculation: The parameters estimated from the three channels are 

different. Therefore, we need to estimate the ̂  value for the three polarizations HH, HV, 

and VV. We calculate the p  values of each polarization using the equations 

    2/,ˆ, jijip HHHH  ,     2/,ˆ, jijip HVHV  , and     2/,ˆ, jijip VVVV  . For each pixel, we then 

obtain the values of  jipHH , ,  jipHV , , and  jipVV , . The reason that we choose 

    2/,ˆ, jijip   is that when   2,ˆ ji  and   1, jip , the covariance estimation is equal to 

the Gaussian noise case. 

     Calculate  FLOS , FLOSf , and FLOS : Use  jipHH , ,  jipHV , , and  jipVV ,  estimated 

from step 2) to calculate FLOS , FLOSf , and FLOS  using (2.13), (2.14), and (2.15), 

respectively. These parameters are also calculated adaptively using a moving window. 

     Optimal Despeckling:  Perform the despeckling using equation (2.20). 

2.4.4 Parameter Estimation 

     There are many parameter estimation methods for estimating  ,  ,  , and  . 

Fama and Roll [157] applied the sample fractiles to estimate the parameters. Press [174] 

proposed the moment estimation method which can be used in the parameter estimation 

of a wide range of parameter situations. However, the moment method is very slow 

[184]. Tsihrintzis and Nikias [184] proposed a fast estimation method using extreme 

value statistics. Also, most parameter estimation methods are only suitable for the real 

data so Ma and Nikias [164] estimated the parameters of real and complex data for the 
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SS  distribution. Since the method in [164] can only be used in the SS  distribution, 

Kuruoglu [159] extended the method in [164] to the skewed case.  

    For the proposed optimal despeckling method, we only need to estimate parameters 

HH̂ , HV̂ , and VV̂ . Based on the analysis in part D of Section II, the characteristic 

exponents are the same for the in-phase, quadrature, and complex data. Therefore, there 

are two ways to estimate the characteristic exponent. First, we can estimate the 

characteristic exponent from the in-phase or quadrature using the real data estimation 

method [157][174]. Second, we can estimate the characteristic exponent of the complex 

data using the complex data estimation method in [164].  

   Now we will discuss the accuracy of these methods. For the parameter estimation 

method in [164], although the accuracy is high for large sample size, for real applications 

of the parameter estimation, when the window size is 1111 , the estimation is not very 

accurate. The larger the window size, the more samples are used in the estimation and the 

more accurate the estimation. However, large window sizes lead to a coarser resolution. 

Therefore, we need to find an optimal window size for the parameter estimation. 

    When we use the parameter estimation method, we can use the real value parameter 

estimation method or the complex data estimation method. In the following experiment, 

we use the parameter estimation method of complex data in [164], which is 

   2
loglog6

ˆ

XEXE 




 ,                                                          (2.21) 

where X  is the complex SAR image data. In real applications, characteristic exponent 

can be estimated using the sample data in the moving window NM  . 

   Applying the results in [188], we can obtain the accuracy of the estimator in (2.21) as 
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ˆ


 ,                                                              (2.22) 

where N  is the number of samples used in the estimation. This means that the accuracy 

of this estimator depends on the number of samples and the value of alpha: The more 

samples used in the parameter estimation, the higher is the accuracy; the smaller the 

alpha value, the higher is the error variance. 

   The accuracy of the parameter estimation is essential for the polarimetric SAR data 

modeling. From our experiments, we found that the estimator in [164] tends to obtain a 

less accurate estimation of alpha values when the number of input data samples are 

getting smaller, which conforms to equation (2.22). However, we found that the proposed 

despeckling method is not very sensitive to the estimation errors of alpha; therefore, we 

use the method in [164] in the proposed despeckling method because it is a relatively 

direct and fast method. 

2.4.5 Computational Times 

   The proposed despeckling method needs extra CPU time for the characteristic 

exponent estimation. From the former analysis, we know that the only parameter that 

needs to be estimated is the characteristic exponent  . There are many parameter 

estimation methods in the literature. We use the characteristic exponent estimation 

method in [164] which is a relatively accurate method. The computational times for 

estimating ̂  in the proposed adaptive optimal despeckling method can be calculated. In 

this calculation, we assume that in the border area we also calculate the ̂  (for the 

experiments in this paper, we do not calculate the ̂  in the border area, the data in the 

border area are padded as zero).  
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   Now we discuss the extra computational times that are required for estimating the 

covariance matrix based on  

FLOS using the method in [164] as an example. In the following discussion, we assume 

the data size is QP  and window size is NM  , where PM   and QN  . For each pixel, 

the calculation of the mean needs 1 NM  real value additions, the calculation of the 

variance needs  22  NM  real value additions plus 1 NM  real value multiplications, 

and the calculation of ̂  needs 5 additional real value multiplications. 

   For the whole image, the calculation of the mean needs    1 NMQP  real value 

additions, the calculation of the variance needs  22  NMQP  real value additions 

plus   1 NMQP  real value multiplications, and the calculation of ̂  needs QP5  

additional multiplications.  

 

  
(a)                             (b) 

   
 (c)                               (d) 

Figure 2.11.  Estimated ̂  values from Delta data. Window size is 1111 . (a) HH, (b) HV, 

(c) VV, (d) VH. 
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   The total number of calculations for the ̂  of one channel are:  13  NMQP  real 

value additions and   QPNMQP  51  real value multiplications.  

   When calculating the covariance matrix based on FLOS, we need to calculate the 

characteristic exponents in three polarizations, which are HH, HV, and VV. Therefore, 

the total number of additions is  19  NMQP  and the total number of multiplications 

is   QPNMQP  1513 . 

 

   
(a)                          (b) 

  
(c)                             (d) 

Figure 2.12.  Despeckling results using the original despeckling method in [144] and the 

proposed non-adaptive and adaptive method. (a) Image after despeckling using the 

original despeckling method in [144], window size= 1111 . (b) Image after despeckling 

using the proposed non-adaptive method (Equation (20), 5.0 VVHVHH ppp , window 

size= 1111 ). (c) Image after despeckling using the proposed non-adaptive method 

( 2.0 VVHVHH ppp , window size= 1111 ). (d) Image after despeckling using the proposed 

adaptive method (window size in alpha estimation and despeckling are 1111 ).  
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2.4.6 Experiments of the Optimal Despeckling Method Using Alpha-Stable 

Distribution 

    We use the despeckling method in (2.20) to examine the despeckling performance of 

the covariance matrix based on FLOS. The evaluation of the despeckling result includes 

the equivalent number of looks (ENL) [185][162] (when we compute the ENL, we use 

the amplitude of the image). The estimated HH̂ ,  jiHV ,̂ ,  jiVV ,̂ , and  jiVH ,̂  are 

illustrated in Figure 2.11 (a), Figure 2.11 (b), Figure 2.11 (c), and Figure 2.11 (d), 

respectively (although  jiVH ,̂  is not used in the optimal despeckling, we show it here 

only for the comparison of the other polarizations). In Figure 2.11, the window size is 

1111 . Figure 2.11 shows the estimated ̂  of the Delta Fraser data from the HH, HV, 

VV, and VH polarizations, respectively (in the image, the ̂  value is scaled to obtain a 

better display result, white represents a higher ̂  value, black means a lower ̂  value). 

From the image, we observe that the ̂  value is the lowest in the area of strong reflectors, 

which mostly comes from manmade structures. 

      Figure 2.12 illustrates the despeckling result of the original despeckling method in 

[144] and the despeckling results using the proposed method. Figure 2.12 (a) is the result 

of the adaptive method in [144]. Figure 2.12 (b) and Figure 2.12 (c) are the results of the 

proposed method when the covariance matrix is estimated adaptively and HHp , HVp , and 

VVp  are using the fixed value for the whole image. In Figure 2.12 (b), 

5.0 VVHVHH ppp . In Figure 2.12 (c), 2.0 VVHVHH ppp . Figure 2.12 (d) shows the 

despeckling result using the method which adaptively estimates both covariance matrix 

( FLOS , FLOSf , and FLOS ) and characteristic exponents ( HH , HV , and VV ).  
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        From Figure 2.12 (a), we found that for the original despeckling method in [144], 

the despeckled image blurred the target in the top right part of the image, the edge of the 

square, and the other strong targets in the lower left part of the image. These blurs are 

because the statistical models around the strong target areas are very impulsive and 

deviate from the Gaussian assumption. Therefore, using the original method the 

estimation of FLOS , FLOSf , and FLOS  is not accurate. When we use the non-adaptive 

method with 5.0 VVHVHH ppp , these blurs are slightly reduced. When we use the non-

adaptive method with 2.0 VVHVHH ppp , these blurs are further reduced. However, 

when we compute the ENL (Table 2.11 illustrates the ENL of the original image and 

despeckled image), the non-adaptive method obtains a lower ENL than the original 

despeckling method in [144]. The lower the HHp , HVp , and VVp , the lower the ENL.  

        When we use the adaptive despeckling method, we compute FLOS , FLOSf , and FLOS  

for each pixel of each channel. We use the alpha value of the respective pixel in the 

TABLE 2.11 

ENL OF DESPECKLED AND ORIGINAL IMAGE (DELTA FRASER AREA) 

 
Original 

Image 

Despeckled 

Using 

method in 

[144]. 

Despeckled 

Using proposed 

non-adaptive 

method 

5.0



VV

HVHH

p

pp
 

Despeckled 

Using proposed 

non-adaptive 

method 

2.0



VV

HVHH

p

pp
 

Despeckled 

Using 

proposed 

adaptive 

method 

 

ENL HH 

1.878 

2.905 2.830 2.774 2.875 

ENL HV 

1.144 

    

ENL VV 

1.892 

    

ENL VH 

1.190 
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respective channel, which is     2/,, jijip HHHH  ,     2/,, jijip HVHV  , and 

    2/,, jijip HVVV  . On the other hand, all the values of the characteristic exponents are 

scaled to  2,0 . In this experiment, the window used for calculating ̂  is 1111 , also the 

window for estimating  FLOS , FLOSf , and FLOS  is 1111 . From the despeckled image 

(which is illustrated in Figure 2.5 (d)), we found the blurs are eliminated in all of the 

areas. In addition, the ENL is improved compared to the non-adaptive method and is only 

slightly lower than the original method. This means a similar amount of speckles are 

eliminated using the adaptive method as the original despeckling method in [144].  
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(a)                                                                      (b) 

 
(c) 

Figure 2.13.  Profiles in some areas. Area A is left, Area B is the right. (a) Profile of area 

A. (b) Profile of area B. (c) The two areas. 
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         In order to further examine the despeckling results, we plot the profiles of the image 

before despeckling, the despeckled result of the proposed adaptive method, and the 

despeckled result of the original method in [144] in Figure 2.13.  Figure 2.13(a) and (b) 

show the profiles of a thin feature and an edge in the image, respectively. Figure 2.13 (c) 

shows the locations of these two profiles. In the lower left part of Figure 2.13(c), a grey 

line shows the location of the profile shown in Figure 2.13(a). In the higher right part of 

Figure 2.13(c), a grey line shows the location of the profile shown in Figure 13 (b). From 

these two profiles, we found that the proposed adaptive method has a much better 

performance in terms of keeping the edges of the image than the original despeckling 

method in [144]. 

       All in all, the proposed adaptive method not only reduces the blurs in the areas of 

strong reflection, but also maintains the speckle reduction ability (ENL). This method 

keeps the sharpness around the strong reflectors and thus maintains the edges in the 

image. Thus, the despeckling result is more favorable in the application of classification, 

edge detection, etc than the original method in [144]. 

 

2.5 Conclusion 

     In this chapter, the polarimetric SAR data statistical model is established using the 

alpha-stable distribution and can be modeled as a multi-channel alpha-stable distribution.  

     The covariance matrix estimation method in the alpha-stable distribution 

environment is proposed based on the fractional lower order covariance. The covariance 

matrix is the generalization of the traditional covariance matrix. The proposed covariance 

matrix can be widely used in the image despeckling of polarimetric SAR data and can be 
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used in the polarimetric SAR processing under the non-Gaussian statistical assumption. 

   The polarimetric SAR optimal despeckling method based on the fractional lower 

order statistics was proposed. The proposed method reduces the blurs in strong reflection 

areas, which provides a better image for edge detection and classification applications. 

The proposed method obtains better performance than the original method at the cost of a 

heavier computational burden. 

   The future research will be using the mixture of alpha-stable model [175] to improve 

the proposed method. 
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CHAPTER 3:  INTERFEROMETRIC SAR EXTENDED 

COHERENCE CALCULATION BASED ON FRACTIONAL 

LOWER ORDER STATISTICS
2
 

 

      A polarimetric synthetic aperture radar (SAR) coherence calculation method based on 

fractional lower order statistics (FLOS) was proposed in [199]. In this chapter, we apply 

this approach to the coherence calculation for interferometric SAR (InSAR) and provide 

a detailed analysis. An L-Band InSAR data set is used to provide comparative results 

between the coherence derived in the traditional manner and that based on FLOS. In the 

areas around strong scatterers, the coherence is found to be biased due to the deviation of 

the statistical model from Gaussian when using the traditional coherence calculation. 

However, the coherence based on FLOS largely reduces this bias. From the experimental 

results using the InSAR data, we found that this method reduces the artifacts in the 

traditional coherence calculation method. The removal of bias due to sample estimation is 

also discussed. 

 

3.1 Introduction 

        Interferometric synthetic aperture radar (SAR) (InSAR) is widely used in the 

creation of digital elevation models. Coherence is an important concept in the application 

                                                 

2
 © 2010 IEEE. Reprinted, with permission, from [Yong Bian and Bryan Mercer, “Interferometric SAR 

extended coherence calculation based on fractional lower order statistics,” IEEE Geoscience and Remote 

Sensing Letters, vol. 7, no. 4, pp. 841-845, October 2010.]. 
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of InSAR. It can be used in the phase unwrapping as a quality map [202], [127] or used in 

change-detection with repeat-pass InSAR data [196]. It is a fundamental parameter in 

polarimetric InSAR (PolInSAR) applications [189] and, recently, has been used for land 

cover classification [206]. There is much research related to InSAR coherence 

calculation, such as the early research in [191] and [200] and the recently developed 

methods in [195], [201], and [202].  

      In most of these coherence estimation methods, the complex InSAR images are 

assumed to be described by a Gaussian distribution [191]. However, some research has 

indicated that the InSAR image can more appropriately be represented using the alpha-

stable distribution [183]. In particular, this may be the case when the underlying Gaussian 

assumptions break down. Therefore, if we can estimate the coherence of InSAR based on 

the alpha-stable distribution, the accuracy will likely be improved. There is some research 

concerning the correlation or coherence estimation of the alpha-stable distribution, such 

as the “association parameter” [194], [205], the correlation coefficient of the sub-

Gaussian distribution [203], and the symmetric covariation [208]. However, these 

methods are not suitable for the estimation of the complex data and cannot be directly 

used in the InSAR coherence estimation. A polarimetric SAR coherence estimation 

method based on the alpha-stable distribution and fractional lower order statistics (FLOS) 

was proposed in [199], and some preliminary PolInSAR computations were introduced in 

[192].  In this chapter, we will apply this adaptive coherence estimation method in InSAR 

coherence estimation and give a detailed analysis. 
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3.2 Review of Alpha-Stable Distribution 

      Single look complex SAR image data 
imre jSSS   can be modeled by an isotropic 

complex symmetric alpha-stable ( SS ) distribution [183], [182]. Because its probability 

density function (pdf) does not generally exist in closed form, it is described by its 

characteristic function [156], [182], [176]  , which is the Fourier transform of the pdf, 

     

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

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
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

  exp,exp
2

imreimimrere ssdss ,                      (3.1) 

where ω  is the complex random variable,   is the characteristic exponent that 

determines the heavy-tailed characteristic of the distribution, and   is the dispersion 

[179], which is similar to the variance in the Gaussian noise case. 

 

 

3.3 Coherence Calculation Based on FLOS 

     In [199], a modified FLOS-based definition of coherence emerged relevant to 

polarimetric SAR images under the alpha-stable distribution following the derivation of 

the covariance matrix based on FLOS. Now, we apply this FLOS-based coherence to the 

calculation of InSAR coherence and give a detailed analysis. 

3.3.1 Review of Standard Coherence Estimation 

    The standard definition of the complex coherence for InSAR is [191], [201], [130] 
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where 
1S  and 

2S  are the master and slave complex InSAR scalar images, respectively; 
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“ E ” and “*” are the expectation operator and complex conjugate, respectively. This 

definition is based on second-order moments (SOMs) and the assumption of the 

applicability of Gaussian statistics.  

3.3.2 Coherence Based on FLOS 

    One of the properties of the alpha-stable distribution is that its SOMs generally do 

not exist [176], thus requiring a modification to the coherence definition of (2). The 

SOMs of alpha-stable distribution are not bounded when 2  [179]; therefore, for the 

alpha-stable distribution, fractional lower order moments (FLOM) [167], [179] have been 

used to substitute for the SOM. Therefore, the definition in (2) cannot be used under the 

alpha-stable distribution environment, and we define a modified coherence in the SS  

environment using the fractional lower order covariance [183], [165]. We assume that 

complex InSAR master (
1S ) and slave (

2S ) images follow the complex isotropic SS 1  and 

SS 2  distribution, respectively. We proceed by analogy with [199] in which the 

coherence between HH  and VV  was obtained, based on  FLOS. Letting 
1


tt

SSS , we 

can define the FLOS-based interferometric coherence as follows [199]: 
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This definition is similar to the FLOM in [197], and is similar to the generalization of the 

associated parameter [194], [205] in the complex SS  case. When 0.1t , the coherence 

based on FLOS is the same as (3.2), the standard definition of coherence [189], [191], 

[130]. Therefore, the coherence based on FLOS can be called the generalized coherence 
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in the alpha-stable distribution environment, which is natural since it includes the 

Gaussian distribution as the special case when 2 [176]. 

3.3.3 Discussion 

    In this section, we provide proof that FLOS  is bounded for 2/11 t  and 2/22 t , 

respectively, and that, moreover, 10  FLOS . 

      Theorem 3.1: Assuming that 
1S  and 

2S  are complex SS 1  and SS 2 , respectively, 
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Proof: See the Appendix for the proof. 
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(a)                                (b)                                  (c)                             (d) 

Figure 3.1.  Single-look images and estimated alpha values (the value of   is from high 

to low is denoted from white to black; 11*11 window) from InSAR data. (a) Master 

image. (b) Estimated alpha values of master image. (c) Slave image. (d) Estimated alpha 

values of slave image. 
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    For real-world applications, we generally use a moving window in computing the 

sample coherence based on FLOS. In the former analysis, we did not consider the phase 

fluctuation caused by surface topography [195] in the coherence estimation. Upon 

consideration of this, we may, following [190], [191], [195], and [130], write the 

definition of the FLOS-based sample coherence (with a LK   moving window) as (3.4), 
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where we have formally introduced 
T  to account for the effects of topography [195] on 

the total observed coherence. When the topography of the image is not changed very 

much (as is the case in this Chapter), the topographic phase term can be ignored. 

3.3.4 Bias Removal 

       Although the boundedness has only been proved for 2/11 t  and 2/22 t , there are 

advantages in setting 2/11 t  and 2/22 t , which has been applied in [199] and [192], 

which, for modest sample sizes, is reasonable. Based on the analysis in [199], in this 

Chapter, we formally let   2/11  t  and   2/22  t , for which the coherence based on 

FLOS becomes 
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where 
1  and 

2  are the characteristic exponents [165] of 
1S  and 

2S , respectively, and   
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is an arbitrarily small constant value in order to retain the boundedness of the estimate. 

    FLOS-based coherence will be biased due to sample estimation factors, just as it is 

when based upon complex Gaussian statistics. This bias can be calculated as the 

difference between the estimated coherence magnitude and the true coherence magnitude 

[204]. Although the bias due to the statistical model deviation (statistical bias) can be 

compensated by using the FLOS-based sample coherence estimation, the bias due to 

sample estimation (sample bias) still exists. We assume here that the bias removal of the 

coherence estimate can be considered as a two-step process in which the first step 

eliminates the statistical bias by using the FLOS-based sample coherence estimator (as 

shown in (3.8)), while the second step removes the sample bias. We further assume by 

analogy that the sample bias can be removed by mimicking the relationship between the 

true coherence and the estimated coherence under the Gaussian statistics assumption 

using the method in [190] and [191], which leads to 
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C
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where FLOSA  and FLOSÂ  are the true and estimated coherence magnitudes, respectively, C  

is the sample number and 
23 F  is the generalized hypergeometric function (GHF) [207]. 

Following the method in [191], we can reduce the sample bias from the estimated result 

of FLOS-based sample coherence (using (3.4) or (3.8)) by inverting (3.6). While this 

assumed relationship for FLOSÂ  is unproven at this point (to our knowledge), it appears 

plausible and is supported by the experimental results in the following sections. 

Therefore, the FLOS-based coherence estimation includes three steps: parameter 

estimation, sample coherence estimation (using (3.8)); and, sample-bias removal (by 
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inverting (3.6) or other methods). 

     In [191], the average of the estimated complex sample coherence is used to reduce 

the sample bias, and this method can be also used for the FLOS-based method, i.e.,  

   


I

i

J

j FLOSFLOS ji
1 1

,̂ .                                                 (3.7). 

 

 

        

(a1)                (b1)               (c1)                (d1)                  (A1)           (B1) 

        

(a2)                 (b2)              (c2)                (d2)                 (A2)           (B2) 

         

           (a3)              (b3)                 (c3)              (d3) 

Figure 3.2.  Experimental results of InSAR data. (a1)-(d1) Coherence maps before 

sample-bias removal. (a2)~(d2) Coherence maps after sample-bias removal. (a1) and 

(a2) Coherence maps using the standard coherence estimation method. (a3)~(d3) 

Difference maps between the coherence before and after sample-bias removal. (b1) and 

(b2) ((c1) and (c2)) Coherence maps using the non-adaptive FLOS-based coherence 

estimation method when t=0.6 (when t=0.25). (d1) and (d2) Coherence maps using the 

adaptive FLOS-based coherence estimation method. (A1), (B1), (A2), and (B2) are 

zoomed-in looks of (a1), (d1), (a2), and (d2), respectively. 
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3.4 Implementations and Experiments 

3.4.1 Adaptive Sample Coherence Estimation 

      Because the alpha varies spatially [199], an adaptive method is expected to have 

better performance in calculating the FLOS-based coherence. Similarly, we can represent 

the definition of adaptive coherence estimation using alpha-stable distributions when a 

moving window ( LK  ) is used in computing the sample coherence as in (3.8) [199], 
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              (3.8) 

where 1̂  and 2̂  are estimated from the data on a pixel-to-pixel basis. 

3.4.2 Sampled Estimate of the FLOS-Based Coherence 

   The implementation of a sampled estimate of the FLOS-based coherence is similar to 

[199], which is to use a moving window to estimate ̂  first, then select the value of t  for 

a moving window using the value   2/ˆ  t  (in the following experiments, 002.0 ), and 

finally, estimate the coherence using the definition of (3.8). Although this estimator is not 

the maximum likelihood estimation of the coherence [193], it reduces the statistical bias 

that exists in the standard sample coherence estimation as can be seen from the following 

experiments. We use the alpha parameter estimator of complex data as proposed in [164] 

(see Eqn. (23) of [164] for details), and which has been successfully used in [199] and 

[192]. Similar to that of the optimal despeckling method in [199], some extra 

computational time (relative to the nonadaptive case) comes from the estimation of alpha. 

The main difference is due to the need only to compute alpha for a single polarization 
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channel (but two interferometric channels) in this case, rather than the four polarimetric 

channels in the referenced case in [199]. 
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Figure 3.3.  Coherence histograms of the results in Figure 3.2. (a) Before sample-bias 

removal. (b) After sample-bias removal. 
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          The sample-bias removal (the inverse of (6)) involves the calculation of GHF, 

which needs a lot of CPU time. Therefore, we use a lookup table as suggested in [191] 

for different window sizes. The GHF calculation is implemented using the code provided 

in [207] and [209]. 

3.4.3 Experimental Results 

    In this experiment, an L-Band single-look complex InSAR image set is used. Figure 

3.1 shows the master and slave images and the estimated characteristic exponents ( ) for 

each. The experiments with and without sample-bias removal have been conducted. 

Figure 3.2 shows the experimental results of the traditional coherence calculation method 

and the FLOS-based coherence calculation. Figure 3.2(a1)-(d1) and (a2)-(d2) show the 

experimental results before and after sample-bias removal, respectively. Figure 3.2(a1) 

and (a2) show the estimated coherence maps using the definition in (2). There appear to 

be some artifacts around the strong scatterers particularly in Figure 3.2(a1) and (a2). This 

is assumed to be due to the departure from Gaussian in the areas around the strong 

           
(a)                                                            (b) 

Figure 3.4. Coherence maps of the average of complex sample estimation (5*5 window). 

(a) Standard method. (b) FLOS-based adaptive method. 
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scatterers. Figure 3.2 (b1) and (b2) (Figure 3.2(c1) and (c2)) show the calculated 

coherence using the non-adaptive FLOS-based method when 6.021  tt  ( 25.021  tt ) 

before and after bias removal, respectively. For 25.021  tt , the artifacts are mostly 

eliminated. Figure 3.2 (d1) and (d2) show the coherence using the adaptive FLOS-based 

method before and after bias removal, respectively. These artifacts appear to be further 

reduced in Figure 3.2(d1) and (d2). In the larger homogeneous areas, there appears to be 

little difference between the standard and the adaptive FLOS-based methods, i.e., the 

adaptive FLOS-based method is equal to the standard method when the alpha parameter 

approaches 2.0. In summary, the coherence anomalies appear to be visibly reduced near 

the strong scatterers, while in other areas, the adaptive method results in similar 

coherences as found in the standard Gaussian-based approach. 

   Figure 3.3 (a) and (b) show the histograms of the calculated coherences shown in 

Figure 3.2 before and after sample-bias removal, respectively. For both the histograms 

before and after bias removal, the standard coherences are larger than those computed 

using FLOS. This appears to be due to the areas near the strong scatterers which could be 

assumed to be a combination of the strong scatterers themselves and multiple weak 

scatterers included within the 1111  coherence windows. This interpretation therefore 

suggests that the standard method overestimates the coherence in these local areas (this 

reaches a similar conclusion as [192] in the PolInSAR case). The adaptive method itself 

provides coherences intermediate between the two “fixed t ” coherence computations. 

The histogram for the adaptive case appears to be quite close to that for 6.021  tt , 

corresponding to 2.1 , which itself implies a distribution different from Gaussian 



 

 

105 

 

( 2 ). 

     Comparison of the results Before and After Sample-Bias Removal: The difference 

between the results with or without bias removal is shown in Figure 3.2(a3)-(d3). Figure 

3.2(a3)~(d3) shows that the bias removal is mostly effective in the low-coherence area 

for both the standard and FLOS-based methods. Comparing the histograms before and 

after bias removal (Figure 3.3), it is apparent that the histograms are very similar. This is 

explainable given that the coherence values of most of the map are relatively high so that 

the sample-bias removal only affects a small part of the coherence map. During the 

sample-bias removal, the high coherence values are almost unchanged, but the low 

coherence values are corrected (which has been observed in [191]). On the contrary, 

during statistical-bias removal, the low coherence values are almost unchanged, but the 

high coherence values are corrected. Therefore, the FLOS-based method requires both 

the statistical bias (FLOS-based sample coherence estimation itself) and sample-bias 

removal. The results appear to support the two-stage sample-bias removal as invoked 

earlier. 

3.4.4 Experiments Using Averaged Complex Sample Coherence 

      The experiments using the averaged complex sample-coherence method in [191] were 

also performed and the results are shown in Figure 3.4. Contrasting the coherence maps 

between the standard and similarly averaged adaptive FLOS-based methods, we found 

comparable, but less conspicuous differences, between the two methods. For the standard 

method, the averaging process smoothes but cannot remove the artifacts around the 

strong scatterers. The FLOS-based method, on the other hand, has fewer observable 

artifacts around these strong scatterers. 
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3.5 Conclusion 

     In this chapter, the coherence calculation method based on FLOS and the isotropic 

complex SS  distribution is applied in the InSAR coherence estimation. The statistical 

and sample-bias removal techniques are discussed and experimental results compared 

with those from the standard Gaussian-based approach. The standard coherence 

calculation method appears to overestimate the coherence around strong scatterers 

relative to that based on FLOS. This method reduces the artifacts seen in the standard 

method at the cost of a slight increase of computational burden. 

 

3.6 Appendix 

      Here, we provide a proof of Theorem 3.1. Now, we need to prove that the 

expectations in (3) are bounded [156], [167], [179]. This includes the boundedness of   

and  . Assume that 
imre jSSS  .  

    (a) Now, we prove that   is bounded: In order to prove that    is bounded, we use the 

method similar to the proof of Theorem 1 of [198], which is to prove that both the real 

and imaginary parts of   are bounded. Similar to the proof of Theorem 1 in [198], we 

have 

 

 212121

2121

2121
1

2
1

1
*

21

1
2

1
1

*
21

1
2

1
1

*
21

tttttt

tttt

SSESSESSSSE

SSSSESSSSE






























 














 














 





. 

  From the analysis in [156] and [167], it is easy to know that, when 
11 t  and 

22 t , 

no matter whether 
1S  and 

2S  are complex [156] or real,   
21
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SSE [167]. Therefore, 
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when 2/11 t  and 2/22 t ,    is bounded. Similarly, the imagery part of   is also 

bounded. Therefore,   is bounded. 

(b) Now, we prove that   is bounded:    21 2
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CHAPTER 4:  INTERFEROMETRIC SAR PHASE 

FILTERING IN THE WAVELET DOMAIN USING 

SIMULTANEOUS DETECTION AND ESTIMATION
3
 

 

      In this chapter, two interferometric SAR (InSAR) phase-filtering methods are 

proposed. These methods are performed in the wavelet domain and employ the 

simultaneous detection and estimation technique. In the wavelet domain, closed-form 

estimator and detector equations are derived, based upon a quadratic cost function, to 

minimize the combined risk of detection and estimation and, thus, the least square errors. 

Both methods occur within the wavelet domain; however, the first method employs the 

wavelet packet, while the second method is performed in the undecimated wavelet 

domain. A major characteristic of InSAR phase data is that the noise level is spatially 

variable, and the proposed methods have a particularly good comparative performance in 

these situations. Tests are performed using simulated phase data and show that the 

proposed methods have lower root-mean-square error and less noisy fringes in the 

filtering results than those of three existing “state-of-the-art” wavelet-domain phase-

filtering methods. Tests using real InSAR data also demonstrate the superiority of the 

proposed methods in terms of visual and quantitative evaluation. 
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4.1 Introduction 

      Synthetic aperture radar (SAR) is an active remote sensing technology which has 

been and is still widely studied due to its successful applications in many areas. One of 

these important applications is interferometry. In interferometric SAR (InSAR), the 

quality of the interferogram determines the accuracy of many final products. However, 

due to many decorrelation factors [130], the interferogram (and the associated 

interferometric phase) is usually corrupted by noise. This leads to errors in the extracted 

digital elevation model, which is one of the most important products of InSAR. Usually, 

phase filtering is performed prior to unwrapping, although sometimes, the filtering may 

not be required provided the phase-unwrapping methods have the capability to process 

noisy phase [210][211][212]. Therefore, many research efforts have been engaged with 

the filtering of the interferometric phase. 

   The interferometric-phase-filtering approaches in the literature can be generally 

classified into two groups. The first approach uses direct filtering without transformation 

and includes the methods in [213][141][214][150][215][216]. The second approach is 

transformation-domain filtering [217] [218] [219] [220]. Direct filtering has the 

advantage of using the phase quality directly to guide the filtering, such as the method in 

[141], which uses residues to direct the filtering, or the methods in [150] and [216], 

which employ coherence to achieve spatially adaptive filtering. Transformation-domain 

methods [217][218][219][220] mostly proceed through filtering in the wavelet domain. 

The advantage of wavelet-domain phase-filtering approaches is that the time-frequency 

analysis capability [221] of wavelet decomposition allows retention of some of the 
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specified frequency bands while filtering unfavorable frequency bands. This property has 

been widely used in image filtering. 

   For the InSAR phase denoising problem, the wavelet-domain method is promising 

because the phase information and noise can be more easily separated in the wavelet 

domain. The InSAR phase-filtering method in the wavelet domain was first proposed in 

[218]. Phase-noise modeling in the wavelet domain and a phase-filtering method using 

wavelet or wavelet packets were proposed in [217], which has been of great importance 

to subsequent work. Recently, wavelet-domain phase filtering employing Wiener filtering 

has been studied in [219]. These research efforts provide some very useful wavelet-

domain phase-filtering methods; however, there are still many issues that need to be 

tackled. For example, the existing wavelet-domain phase-filtering methods need 

improvement when dealing with phase data from low-coherence interferometric sources. 

     In this chapter, we approach the InSAR phase-filtering problem in the wavelet 

domain and employ a more advanced method which incorporates simultaneous detection 

and estimation. A simultaneous detection and estimation technique was first applied in 

statistical communication [222] and later used in speech processing [223][224]. Since 

simultaneous detection and estimation considers the estimation problem under the 

uncertainty of signal appearance [222], this method may improve the accuracy of filtering 

in the wavelet domain. This is similar to the idea of simultaneous filtering and 

unwrapping [210][211][212] which performs the two tasks at the same time and may 

obtain improved or alternative performance. More importantly, it is suitable for 

estimation in the nonstationary noise environment, which has been proven to be a success 

in the speech enhancement [223]. Since the noise level of the interferometric phase is 
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spatially nonstationary and is determined by coherence [150], this method may have a 

robust phase-filtering performance. In the formulation developed here, an estimator and 

detector are derived under the assumption that the noisy wavelet coefficients are 

Gaussian distributed, and the clean coefficients are Laplacian distributed. Using this 

estimator and detector, two wavelet-domain phase-filtering methods are developed. The 

first method uses the wavelet packet, while the second method performs the filtering in 

the undecimated wavelet domain. 

  The major contributions of this chapter then are as follows: 

  1) We discuss the potential of using the method of simultaneous detection and 

estimation in the wavelet domain and apply it to InSAR phase filtering. The simultaneous 

detection and estimation technique is applied in the wavelet domain, and the estimator 

and detector are derived using a quadratic cost function under the assumption that the 

noisy wavelet coefficients are Gaussian distributed, and the clean coefficients are 

Laplacian distributed. 

  2) We investigate InSAR phase filtering in the undecimated wavelet domain, which 

has not been widely discussed before. In this paper, we propose two phase-filtering 

methods in the wavelet domain using the full scheme of strongly coupled simultaneous 

detection and estimation. The first method uses wavelet packets, while the second uses 

undecimated wavelets. The detailed implementations of these two methods are presented, 

and their performances are compared with each other and with other wavelet-based 

methods. The performances of the filtering in the wavelet-packet domain and in the 

undecimated wavelet domain are compared and discussed.  
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      The organization of this chapter is as follows. In section 4.2, the InSAR phase-noise 

model and the concept of simultaneous detection and estimation in the wavelet domain 

are introduced. The InSAR phase-filtering method using the wavelet packet is discussed 

in Section 4.3. The InSAR phase-filtering method in the undecimated wavelet domain is 

presented in Section 4.4. In Section 4.5, the implementation issues of the two proposed 

methods are discussed. The experimental results of the simulated and real InSAR data are 

presented in Sections 4.6 and 4.7, respectively. The final section concludes this chapter. 

 

4.2 Simultaneous Detection and Estimation for Phase Filtering in the 

Wavelet Domain 

4.2.1 Model 

  The noise of the extracted interferometric phase angle is assumed to be additive [150]. 

From the modeling analysis of [217], we can say that the noise in the real and imaginary 

parts are additive and slightly signal dependent (can be approximately considered as 

signal independent as the arrangement in [217]). Since the filtering should be performed 

on the real and imaginary parts of the phase separately in order to maintain the phase 

jumps in the filtering result [127], the noise model should be developed for the real and 

imaginary parts instead of the phase angle or complex phase. The noise model of the real 

and imaginary parts of interferometric phase in the two-dimensional (2-D) wavelet 

domain can be formulated as [217] 

     cc
j

D UNDWT   cos2cos2 ,                                                                  (4.1a) 

     sc
j

D UNDWT   sin2sin2 ,                                                                  (4.1b) 
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where   and   represent the observed noisy phase in the spatial domain and the clean 

phase in the wavelet domain, respectively, cU  and sU  denote the signal-dependent noise 

in the wavelet domain of the real and imaginary parts, respectively, j2  is the scale of 

wavelet, cN  is a parameter similar to coherence [202], and  xDWT D2  denotes the 2-D 

discrete wavelet transform of x . This formulation was derived based on the assumption 

that the wavelet is orthogonal and has ideal filtering response [217], although, for wavelet 

which does not satisfy this requirement, this model may be modified according to the 

specified filter banks used. For analysis purpose, this model is simple and meaningful. 

    It is well known that the noise standard deviation of the interferometric phase is 

different for different areas, and the local noise level is determined by the local coherence 

values [150] [7]. In the wavelet domain, the noise level of real and imaginary parts of the 

interferometric phase is spatially variable as well [217]. Since the simultaneous detection 

and estimation approach has been proven to be suitable for nonstationary noise filtering 

[223], in the following, we will examine whether this method can tackle the problem of 

spatially variant noise filtering, which is exactly the case of wavelet-domain phase 

filtering.   

    It is also well known that the signal energy in the wavelet domain is mostly carried 

by the largest few coefficients, and most of the small coefficients carry little or no signal 

energy [225]. However, this assumption does not hold when the noise level is large and 

spatially variable. In this situation, the small wavelet coefficients may carry signal 

energy, and some of the large coefficients may be contaminated by noise. If we include 

this as a special case, we can classify the wavelet coefficients into clean signal, noise-
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contaminated signal, and noise only. In order to simplify the wavelet-domain phase 

filtering as a two-state signal detection and estimation problem, the clean signal and noisy 

signal can be combined as signal plus noise. Under this assumption, the phase-filtering 

problem can be formulated as a signal detection and estimation problem, which is to 

classify the wavelet coefficients into signal-plus-noise and noise-only components. This 

is similar to the technique proposed in [217]. The simultaneous detection and estimation 

problem of the real and imaginary parts can be formulated as follows: 

:1H              nmUnmnmNnmW cc
jc

j ,,cos,2,    

   nmUnmS cc ,,   

:0H          nmUnmW c
c
j ,,                                                             (4.2a) 

and 

:1H                nmUnmnmNnmW sc
js

j ,,sin,2,    

   nmUnmS ss ,,   

:0H           nmUnmW s
s
j ,,                                                           (4.2b) 

where  nmW c
j ,  and  nmW s

j ,  denote the wavelet coefficients of the real and imaginary 

parts, respectively, 1H  and 0H  represent the signal-plus-noise and noise-only situations, 

respectively, and  nm,  are the spatial indices. 

    Therefore, the filtering process is to obtain the estimations of  nmSc ,  and  nmSs ,  

from the observations of  nmW c
j ,  and  nmW s

j , , respectively. The major difficulty of 

InSAR phase filtering is that, when the coherence level is very low (which means that the 

noise standard deviation is very high), some weak signals may be submerged in the noise 
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and are not easily detected. In this situation, a complex signal-estimation method is 

required. Since the filtering using simultaneous detection and estimation considers the 

uncertainty of signal appearance [222] during the estimation, it may have a good 

performance for the InSAR phase filtering when the coherence is low. 

   In order to simplify the symbols, the 2-D index, wavelet decomposition level, and 

symbols that represent real and imaginary parts are omitted in the following 

representations. In the remaining part of this chapter, the wavelet coefficients and other 

parameters are in 2-D, in different scale levels, and both for real and imaginary parts 

unless otherwise mentioned. 

4.2.2 Simultaneous Detection and Estimation in the Wavelet Domain 

  The simultaneous detection and estimation technique was discussed in [226] under the 

assumption that the noise is Gaussian distributed, while the closed-form estimator and 

detector were discussed in [227] for the purpose of amplitude estimation. In [223], the 

closed-form estimator and detector were derived for the purpose of amplitude estimation 

and in the short-time Fourier transform domain. Research of simultaneous detection and 

estimation was mostly related to statistical communication and speech processing. 

Recently, one of the most important concepts of simultaneous detection and estimation 

(generalized likelihood ratio) has been applied in wavelet-domain filtering [228], [229]. 

However, to the best of our knowledge, there is no research that uses the full scheme of 

simultaneous detection and estimation in wavelet-domain filtering. In this section, we 

follow the scheme in [222] and [223] and derive a closed-form estimator and detector of 

simultaneous detection and estimation for the purpose of filtering in the 2-D wavelet 

domain.  
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  Simultaneous detection and estimation method considers both the risk of detection 

and estimation [222], [226] and is designed to improve the estimation and detection 

performance by minimizing the combined risk of detection and estimation [222], [226], 

[230].  We define  SSC ji
ˆ,,  as the cost function, where 1,0i  represent 0H  and 1H , 

respectively, and where 1,0j  represent 0  (the  detection of noise) or 1  (the detection 

of signal), respectively. Accordingly, 0,1C , 1,1C , 1,0C , and 0,0C  represent the cost of the 

detection under the following four situations: 1) false detection of noise while the truth is 

that it is signal; 2) the correct detection of signal; 3) the false detection of a signal while 

the truth is that it is a noise; 4) the correct detection of noise [223], [230]. The space of a 

specified variable is a range that includes all the possible values [231]. Because the noisy 

and clean wavelet coefficients may take the values from negative infinity to positive 

infinity, this means that the spaces of these coefficients also range from negative infinity 

to positive infinity; under this assumption, the combined average risk can be defined as 

[222], [223] 

       

        
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



1

0

11,

1

0

00,

||ˆ,

||ˆ,

i

i

i

iSDE

dSdWWPSWpSpSSC

dSdWWPSWpSpSSCR





                                             (4.3) 

where  Sp  is the probability density function (pdf) of the signal,  which can be 

formulated as          110 | HPHSpHPSSp    [230] (  1HP  and  0HP  are the a priori 

probabilities of the signal and noise in each wavelet subband, respectively) under the 

assumption that    SHSp 0|  (  S  is the Dirac delta function),  SWp |  is the 

conditional pdf of the wavelet coefficients under the condition that a signal is given, and 
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 WP j |  is the conditional probability of the detection of signal [230] (   1|1 WP  ) or 

noise (   1|0 WP  ) when the wavelet coefficients are known. 

4.2.3 Estimator in the Wavelet Domain 

  From [222] and [223], in order to obtain an estimator which minimizes the Bayes risk 

SDER  during the simultaneous detection and estimation process, we need to solve the 

minimization problem     WW jj
S j

10
ˆ

minarg   , where [223] 

         



 dSSWpHSpSSCHPW jj ||ˆ, 0,000                                                 (4.4a) 

         



 dSSWpHSpSSCHPW jj ||ˆ, 1,111                                                  (4.4b) 

and where  Wj0  and  Wj1  represent the risk of the signal being absent or present, 

respectively (see section 4.2.4 below). 

  For the filtering problem using strongly coupled simultaneous detection and 

estimation [222], the estimation is first performed; then, the detection is performed using 

the output of the estimation. After detection, the input data are classified into signal and 

noise. Finally, the filtering result is obtained using both the results of estimation and 

classification. Therefore, the final filtering result depends both on the output of the 

estimator and the decision of the detector [223]. In the following, we will derive the 

estimator and detector based upon the same statistical model.  

       In order to obtain the closed form-estimator and detector, an appropriate cost 

function must be defined, which is one of the most important issues in the simultaneous 

detection and estimation. There are many cost functions which can be found in [222] and 

[231]. In this chapter, we use a quadratic cost function [222], [223] similar to [223] 
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   

   






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
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where   is a small-value parameter; 10 , 11 , 01 , and 00  are the weight parameters for 

the cost 0,1C , 1,1C , 1,0C , and 0,0C , respectively, (see Section 4.6.2 hereafter). Using the 

quadratic cost function in (4.5) and simplifying the results using the assumption that 

   SHSp 0| , the estimation of clean wavelet coefficients can be further formulated as 

    
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.                                             (4.6) 

  In order to obtain a closed-form estimator and detector, the following conditional pdfs 

must be defined in terms of the statistical characteristics [231] of the wavelet coefficients. 

In [232], the wavelet coefficients of clean and noisy phase are modeled, respectively, as a 

generalized gamma model and as a Gaussian model. In this paper, we assume the clean 

wavelet coefficients to follow a Laplacian distribution because 1) this is a heavy-tailed 

distribution and 2) it is easy to obtain a closed-form solution. Therefore, in order to 

simplify the analysis, we assume that the noisy wavelet coefficients are Gaussian 

distributed and that the clean wavelet coefficients are Laplacian distributed. Following 

[259], we then define the following conditional pdfs: 

 
 













 


2

2

2
exp

2

1
|

UU

SW
SWp


                                                          (4.7a)   

 

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SS

S
HSp
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2
exp

2

1
| 1                                                                   (4.7b) 
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 















WW

W
HWp



2
exp

2

1
| 1                                                                 (4.7c) 

 















2

2

0
2

exp
2

1
|

UU

W
HWp


                                                                (4.7d) 

where U , S , and W  are the standard deviations of the noise, clean coefficients, and 

noisy coefficients, respectively, and 222
USW    since we assume that the signal and 

noise are independent. For the image-filtering method in the wavelet domain, U  can be 

estimated using the widely used method of [225] and [233], which is 

   6745.0/ˆ 11 HHHHU WMedWMed                                                           (4.8) 

where 1HHW  represents the wavelet coefficients in the first level HH wavelet subband; 

“  xMed ” means to obtain the median value of x . This estimator is based on the median 

absolute deviation [234], [235] and is developed under the assumption that the noise 

standard deviation is spatially invariant, which is not the case for InSAR phase noise. In 

the proposed phase-filtering methods, this parameter should be adjusted to obtain a better 

filtering performance. This modification should be applied according to some factors, 

such as the level of spatial coherence variability and fringe densities of the phase data, 

which will be discussed in the following part of this chapter.  

      Substituting (4.7) into (4.6) and solving this minimization problem by letting 

     0
ˆ 10 




WW

S
jj   [223], we have the estimator as follows: 

 

  jj

jj
j

AW

WBW
S

01

01ˆ







                                                                          (4.9) 

where 
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 
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


 dSSWpHSp

HWp
A ||

|

1
1

1
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 
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


 dSSWpHSSp

HWp
B ||

|

1
1

1

                                                       (4.10b) 

and  W  is the generalized likelihood ratio [222]. Using (4.7c) and (4.7d),  W  can be 

represented as 

 
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11                                   (4.11) 

where  1HP  and  0HP  can be defined by the user according to the probability of signal 

appearance of each subband which is determined by the fringe densities of the input 

phase data. In the proposed phase-filtering methods, we use the same  1HP  and  0HP  

values for all the subbands. 

  In order to obtain the closed-form estimator of the signal, the integration of (4.10a) 

and (4.10b) needs to be solved. Following [259], after solving the integration of (4.10a) 

and (4.10b) (for the detailed derivation of (4.12a) and (4.12b), see Appendix A), we have 

        
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U W






2
 , 

US

U W






2
 , and    




x
dttxerfc 2exp

2


 [237] is the 

complementary error function which will be also used in the following equations. 

      Substituting (4.12a) and (4.12b) into (4.9), we obtain the closed-form estimator as 

(4.13): 
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where 1,0j . This is the estimator using the quadratic cost function under the assumption 

that the noisy wavelet coefficients are Gaussian distributed, and the clean wavelet 

coefficients are Laplacian distributed in each wavelet subband. Similar to the analysis in 

[223], the major difference between 0Ŝ  and 1Ŝ  is in the parameters j1  and j0 . 0Ŝ  and 

1Ŝ  are determined by U , S , W ,  W , j1 , j0 , and  . U , S , W , and  W  can 

be estimated using the observed wavelet coefficients. j1 , j0 , and   are the user-

defined parameters. Since this estimator incorporates both the knowledge of the 

likelihood of signal appearance (  W ) and the local statistics of wavelet coefficients 

( U , S , W ), we refer to it as an advanced estimator.  

        The filtering performance can be adjusted by selecting the user-defined parameters 

j1 , j0 , and  . By selecting appropriate parameters, we can obtain a filter with desired 

performance. In wavelet-domain InSAR phase filtering, it is preferable to obtain a soft 

method in order to reduce the artifacts in the filtering result [217], [218], [225], [233], 

[236], which means that the wavelet coefficients are only shrunk but not totally 

eliminated when they are detected as noise. In order to obtain a soft method, when a 

wavelet coefficient is detected as 10  , it should not be killed but rather suppressed. 

Based on the analysis in [223], in order to obtain a soft method, 01  should not be too 

large. 
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4.2.4 Detection in the Wavelet Domain 

   In the proposed phase-filtering method, we use strongly coupled simultaneous 

detection and estimation [222] in which the detection depends upon the result of 

estimation [223].  

    Introducing (4.7a) and (4.7b) into (4.4a) and solving its integral, the risk when the 

signal is not present can be formulated as 
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     Following [259], substituting (4.7a) and (4.7b) into (4.4b), the risk when the signal is 

present can be written as (see Appendix B for the detailed derivation of (4.14b)) 
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where  x  is the gamma function defined as    
 
0

1exp dtttx x  [237]. In (4.14b) (and 

in the remaining part of this chapter),  z;,  is the confluent hypergeometric function, 

which is a very complex function to calculate. A detailed discussion on calculating 

 z;,  will be given in Section 4.5. 

   The optimum detection rule can be derived, according to [223], [230], and [231], by 

minimizing the combined risk in (4.3). This detection rule, in the two circumstances of 

10   (the detection of noise only) or 11   (the detection of signal plus noise), is shown 
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in (4.15) [223], [230], [231] 
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      Following [259], substituting (4.14a) and (4.14b) into (4.15) and after some 

simplification arrangements, we arrive at the closed-form decision rule as follows: 

a) The detector decides 11   when 

rl  .                                                                                   (4.16a) 

b) The detector decides 10   when  

rl  .                                                                                   (4.16b) 

In (4.16a) and (4.16b), we have 
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This detection rule uses standard deviations ( W , U , and S ) as the local statistical 

parameters similar to [226]. However, since different statistical models are used, the 

detector is different from that in [226].  

     Similar to the method in [223], for the proposed InSAR phase-filtering methods, 

when a wavelet coefficient is detected as noise, it is shrunk instead of killed. This is 

because the signal coefficients may be detected as noise, and if we eliminate these 

coefficients, large amount of errors will result. Therefore, we expect both the proposed 
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methods to act as soft wavelet-domain filtering methods. 

4.2.5 Summary of the Proposed Simultaneous Detection and Estimation Algorithm 

    As mentioned before, for the wavelet-domain phase-filtering methods using strongly 

coupled simultaneous detection and estimation, the estimation is first computed; then, the 

detection is performed using the estimated result. The final filtering result is based on 

both the results of estimation and detection. No matter which of the wavelet packet or 

wavelet decomposition is used, the proposed algorithms are performed following similar 

steps as follows.  

1) The data are transformed into the wavelet domain. 

2) In the wavelet domain, the estimator is computed for each coefficient using (4.13). 

3) The detector is implemented from (4.17a) and (4.17b) using the estimator output. 

4) The detector result is then used to classify the wavelet coefficients as signal or noise 

(using (4.16a) and (4.16b)). 

5) If a coefficient is classified as signal, the value of 1Ŝ  is used as the filtering result. 

Otherwise, 0Ŝ  is used as the filtering result. Therefore, the two proposed methods are a 

soft wavelet-domain filtering method.  

6) The filtered data are transformed back to the spatial domain.  

   In the following, we present the two methods to implement the InSAR phase filtering. 
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4.3 Phase Filtering Using Wavelet Packet and Simultaneous Detection 

and Estimation 

4.3.1 Simultaneous Detection and Estimation Using Wavelet Packet 

      The first method is phase filtering using wavelet packet and simultaneous detection 

and estimation (PFWPSDE), which performs the phase filtering in the full tree of 

wavelet-packet decomposition, and the filtering in each node uses the full scheme of 

simultaneous detection and estimation filtering introduced in Section 4.2.  

      Wavelet packets, since their introduction in [238], have been widely used in image 

compression and filtering. Wavelet packets, unlike wavelet transforms, not only 

decompose the approximation coefficients but also the detail coefficients when further 

level of decomposition is performed [239][240][241]. This gives the wavelet-packet 

method an advantage in suppressing the noise in high-frequency signals [242]. Since 

wavelet-packet methodology has stronger frequency-selection capability than wavelet 

transforms [243], [244], it has the ability to perform the filtering for the frequency bands 

of any interesting frequency ranges. This is a benefit for InSAR phase filtering since the 

phase information of different fringe densities is described in different frequency bands.  

  Since phase information (after flat-Earth removal [7]) of InSAR data is mostly of 

lower spatial frequencies and the noise is in higher frequencies, most of the phase 

information is concentrated in the low-frequency nodes of the wavelet-packet 

decomposition [217]. Moreover, how much phase information the other nodes contain 

depends on the densities of the phase fringes. If the phase shows very sparse fringes, then 

the phase information is mostly in the low-frequency nodes. As the fringe density 
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increases, phase information will also be found in the higher frequency nodes: If the 

phase contains the low and moderate density fringes, then the phase information is mostly 

in the low- and middle-frequency nodes. If the phase contains the low, moderate, and 

high density fringes, then the low-, middle-, and even high-frequency nodes may contain 

phase information. 

  In the PFWPSDE method, based on the analysis in [127], the real and imaginary parts 

need to be filtered separately but to the same degree. However, in order to preserve the 

low-frequency phase information, the node of the lowest frequency is not filtered since it 

contains most of the phase information [217], [218]. For the same decomposition level, 

more nodes may be decomposed using the full tree of the wavelet packet than the 

subbands of the wavelet method. Therefore, a wider range of frequency information can 

be separated from the noise using the wavelet packet than using the wavelet transform. 

This is a major advantage of the phase-filtering method using wavelet-packet methods. 

  For example, when the interferometric phase contains densely populated fringes, the 

high-frequency nodes (or subbands) contain part of the signal energy. The wavelet-

transform method may eliminate part of the high-frequency phase fringes (high-

frequency signal) because the signal has similar characteristic as noise in the high-

frequency subband. The wavelet packet can partly solve this problem because the high 

resolution in the high-frequency nodes provides strong signal and noise separation ability. 

4.3.2 Processing Steps 

      The flowchart of the PFWPSDE algorithm is shown in Figure 4.1. In Figure 4.1, the 

square box plotted using the dashed lines denotes the module of the full scheme of 

simultaneous detection and estimation, which is the key procedure in the proposed 
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method. In Figure 4.1, the dotted and solid lines denote the parameter flow and data flow, 

respectively. The proposed PFWPSDE method is performed using the following steps:  

1) Estimate the Noise Standard Deviation: Since the estimator and detector both require 

the parameters of local statistics and the calculation of S  needs the value of U , the 

noise standard deviation U  needs to be estimated first. In the PFWPSDE method, the 

noise standard deviation is calculated in the wavelet domain (using the discrete wavelet 

transform (DWT) [244]). Therefore, we first transform the original data into the wavelet 

domain using the specified type of wavelet. The type of wavelet used in estimating the 

noise standard deviation should be the same as that used in the later wavelet-packet 

decomposition. Since we use all the nodes of the full tree [241], [243] except the node of 

the lowest frequency to do the filtering, it means that the algorithm conducts the filtering 

at the nodes of the same decomposition level. Since, in the PFWPSDE method, the noise 

standard deviations are the same for all the nodes in the same decomposition level [217],  

the same U  is used for all the nodes to be filtered. In the following part of this paper, we 

refer to the nodes to be filtered in the algorithm as the “filtering nodes”. 

    As noted earlier, when U  is estimated, the method of [225] needs to be modified 

since the noise standard deviation in interferometric phase is spatially variable. In the 

PFWPSDE method, we modify the method in [225] by considering the special 

requirements of InSAR phase filtering, which is implemented by introducing a scaling 

parameter, as shown in the following: 

aveUU .̂  ,                                                                                    (4.18) 

where   is an operator-set scaling parameter that reflects the scene-wide magnitude of 
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the noise, aveU .̂   is the average of the noise standard deviations of the real ( realU .̂ ) and 

imaginary ( imagU .̂ ) parts, which, since they are approximately equal, reduces to 

   2/ˆˆˆ ... imagUrealUaveU   .                                                                   (4.19) 

In order to maintain the phase jumps in the filtered phase, the real and imaginary parts 

must perform the same degree of filtering; therefore, we use the same noise standard 

deviation for the filtering of the real and imaginary parts.  

    The estimation of the noise standard deviation in the PFWPSDE method is 

implemented employing the following substeps: First, the real and imaginary parts are 

decomposed using the wavelet transform. Second, the noise standard deviation of real 

( realU .̂ ) and imaginary ( imagU .̂ ) parts are estimated using (4.8). Third, aveU .̂  is 

calculated using (4.19). Finally,  U  is calculated using (4.18).  

    In the PFWPSDE method, the same U  is used for all the filtering nodes. This is 

unlike W  and S , which are estimated in every filtering node using a moving square 

window. 

2) Wavelet-Packet Transform: The real and imaginary parts of the original phase data are 

transformed into the wavelet packet-domain (using the discrete wavelet-packet transform 

(DWPT) [260]). After the wavelet-packet decomposition, many nodes are generated. In 

the subsequent filtering, all the nodes in the full tree except the node of the lowest 

frequency are filtered. 
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Figure 4.1.  Flowchart of the proposed PFWPSDE method. The dotted lines denote the 

parameter flow, while the solid lines describe the data flow. 
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     Note: The following step 3) to step 6) are the steps that conduct the full scheme of 

simultaneous detection and estimation, which are performed in the real and imaginary 

parts and in all the nodes of the full tree except the node of lowest frequency. In 

PFWPSDE method, the estimation and detection are performed in every wavelet 

coefficient of the filtering node. 

3) Parameter Estimation or Calculation in Each Node: In this step, we estimate the 

parameters for all the nodes except the node of the lowest frequency. In the wavelet-

packet decomposition, for every coefficient of the filtering nodes,  W  and S  are 

estimated using the input wavelet coefficients. First, the standard deviation of noisy 

coefficients W  is estimated using a moving window as the method in [219], which is 
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where W  is the mean value in a NM   moving window. 

    After obtaining the values of U  and W , the signal standard deviation S  is 

calculated using the relation 

  0,max 22
UWS                                                                            (4.21) 

where the “max” operation is to make sure that the value of S  is not less than zero.  

        The parameter  W  also needs to be calculated using (4.11). In (4.11),  1HP  and 

 0HP  can be defined by the user. The same  1HP  and  0HP  values are used for all the 

filtering nodes. 

4) Estimation: In each filtering node, we use the estimated parameters ( U , W , S ) and 

the user-defined parameters j1 , j0 , and   to estimate the coefficients ( 0Ŝ  and 1Ŝ ) 
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using equation (4.13). The estimated results of 0Ŝ  and 1Ŝ  will be used for the following 

detection step (step 5) and the filtering step (step 6).  

5) Detection and Decision Making: The purpose of detection and decision making is to 

classify the coefficients in each filtering node into signal or noise. In this step, first, l  

and r  are calculated using (4.17a) and (4.17b), respectively (the implementation of 

calculating l  and r  will be discussed in Section 4.5.1). The estimated parameters 

( U , W , S ) and the user-defined parameters j1 , j0 , and   are used in this 

calculation. More importantly, the estimation results of step 4) are used in calculating 

(4.17a) and (4.17b). After l  and r are calculated, we use the decision rule in (4.16a) 

and (4.16b) to classify all wavelet coefficients of each filtering node into signal or noise.  

6) Filtering Using the Results of Detection and Estimation: After decision making, the 

wavelet coefficients of each filtering node are classified as signal or noise. If a coefficient 

is classified as signal, the value of 1Ŝ  is assigned as the filtering result; otherwise, 0Ŝ  is 

assigned as the filtering result.  

7) Inverse Discrete Wavelet-Packet Transform: In this step, the filtered nodes and the 

unfiltered node of the lowest frequency are used as the input to the inverse wavelet-

packet transform (IDWPT) [260] to reconstruct the phase of real and imaginary parts. 

8) Phase Reconstruction: In this step, the filtered phase is retrieved using the filtered real 

and imaginary parts, given by 

  realimag  ˆ/ˆarctanˆ                                                                              (4.22) 

where imag̂ and real̂  are the filtered real and imaginary parts, respectively. 



 

 

132 

 

 

 

UDWT 

xj
e

  

Subband HH3, LH3, HL3, HH2, 

LH2, HL2, HH1, LH1, HL1 

 

Estimate realU .̂  using HH1 

Parameter 

definition  

Estimation 

Detection and 

decision making 

Estimation 

IUDWT IUDWT 

Phase reconstruction 

Simultaneous 

detection and 

estimation 

Filtering using the results of detection 

and estimation 

Subband HH3, LH3, HL3, HH2, 

LH2, HL2, HH1, LH1, HL1 

 

UDWT 

Calculate aveU .  

Real part Imaginary part 

Calculate U  for each wavelet decomposition level 

Calculate W , S  Calculate W , S  

LL3 LL3 

Detection and 

decision making 

Parameter 

definition  

Estimate imagU .̂  using HH1 

Filtering using the results of detection 

and estimation 

 
Figure 4.2.  Flowchart of the proposed PFUWSDE method. The dotted lines denote the 

parameter flow, while the solid lines describe the data flow. 
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4.4 Phase Filtering in the Undecimated Wavelet Domain Using 

Simultaneous Detection and Estimation 

4.4.1 Detection and Estimation in the Undecimated Wavelet Domain 

    It is well known that filtering in the undecimated wavelet domain reduces artifacts in 

the results due to redundancy [245], [246], [247]. However, to the best of our knowledge, 

none of the state-of-the-art InSAR phase-filtering methods is conducted in the 

undecimated wavelet domain. In this chapter, we propose a phase-filtering method which 

performs filtering in this domain while employing the full scheme of simultaneous 

detection and estimation introduced in Section 4.2. We refer to this as phase filtering in 

the undecimated wavelet domain using simultaneous detection and estimation 

(PFUWSDE). In the PFUWSDE method, the undecimated wavelet transform is achieved 

through use of the “a trous” method [248]. The flowchart of the proposed PFUWSDE 

method is shown in Figure 4.2. In Figure 4.2, the square box plotted using the dashed 

lines denotes the module of the full scheme of simultaneous detection and estimation. In 

Figure 4.2, the dotted and solid lines denote the parameter flow and data flow, 

respectively. In this algorithm, the real and imaginary parts are filtered separately as well. 

4.4.2 Processing Steps 

   The processing steps of the PFUWSDE method are as follows: 

   1) Wavelet Transform: In this step, the real and imaginary parts of the InSAR phase 

data are transformed into the undecimated wavelet domain (using the undecimated 

discrete wavelet transform (UDWT) [248]). Using the three-level (three-scale) 
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decomposition as an example, after wavelet decomposition, the detail coefficients of first 

(HH1, HL1, LH1), second (HH2, HL2, LH2), and third level (HH3, HL3, LH3) are 

obtained, and the approximation coefficients of the third level (LL3) are computed. All 

the detail coefficients will be filtered (the “filtering subband”), while the approximation 

coefficients will not be filtered but will be saved in memory and used in the 

reconstruction. 

2) Parameter Estimation: For the PFUWSDE method, the filtering happens at different 

decomposition levels. For the subbands of different decomposition levels, the noise 

standard deviation may be different depending on the type of filter banks used [249]. For 

most types of wavelets, the greater the decomposition level is, the lower is the noise 

standard deviation. Therefore, the noise standard deviation for different levels of 

decomposition should be calculated separately. Although there are methods in estimating 

the noise variances for different levels in the undecimated wavelet domain, such as the 

method in [229] and [249], these methods are designed for the filtering of images and are 

for the estimation of spatially invariant noise. Since the noise level of the interferometric 

phase is spatially variable, in order to filter the phase noise thoroughly, in the PFUWSDE 

method, we use a modified noise standard-deviation estimation method based on the 

method in [229] and [249] as 
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where j  is the level of decomposition, LH
Uj  , HL

Uj , and HH
Uj  are the noise standard 

deviation in LH, HL, and HH subbands, respectively, j  is a scaling parameter similar to 

that of (4.18), g  and h  are the high-pass and low-pass filter coefficients of wavelet 

decomposition, respectively, and aveU .̂  is the average noise standard deviation of the real 

( realU .̂ ) and imaginary ( imagU .̂ ) parts, which is calculated using (4.19). The scaling 

parameter (mostly taking values between 1.0 and 2.0) can be selected in terms of the 

level of phase-noise variation and the fringe density. Also, we can improve the value of 

U  if we want to suppress more noise in the phase.  

       There are three substeps when LH
Uj , HL

Uj , and HH
Uj  are calculated: First, the noise 

standard deviations of the real ( realU .̂ ) and imaginary ( imagU .̂ ) parts  are calculated 

using the HH1 subbands of the real and imaginery parts (i.e. using (4.8)), respectively. 

Second, aveU .̂  is calculated using (4.19). Third, LH
Uj , HL

Uj , and HH
Uj   are calculated 

using (4.23a) and (4.23b). 

     In the PFUWSDE method, for each filtering subband, W , S , and  W  are 

estimated or calculated using the same method as that in PFWPSDE (i.e. by using (4.20), 

(4.21), and (4.11)). The same  1HP  and  0HP  values are used for all the filtering 

subbands. 

   3) Simultaneous Detection and Estimation: This step is performed for all the filtering 

subbands and for the real and imaginary parts. We use a three-level decomposition as an 

example. In this step, the algorithm conducts the filtering in the third-level detail 

coefficients (HH3, HL3, LH3), second-level detail coefficients (HH2, HL2, LH2), and 
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first level-detail coefficients (HH1, HL1, LH1). For each decomposition level, the 

different LH
Uj , HL

Uj , and HH
Uj  (which are calculated using (4.23a) and (4.23b)) are used. 

The detailed processing steps of simultaneous detection and estimation are similar to the 

step 3) to step 6) of section 4.3.3 (the only difference is that the filtering nodes should be 

substituted by the filtering subbands). 

   4) Wavelet Reconstruction: In this step, performed for real and imaginary parts, the 

filtered subbands and the unfiltered LL subband are used as the input of the inverse 

undecimated discrete wavelet transform (IUDWT) [248] to reconstruct the filtered real 

and imaginary parts. 

        5) Interferometric-Phase Retrieval: In this step, the filtered phase is retrieved from 

(4.22) using the filtered real and imagery parts. 

 

4.5 Implementation Issues 

4.5.1 Function Calculation 

   For the PFUWSDE method, for every level of wavelet decomposition, each subband 

has the same size as the original data. For both the PFWPSDE and PFUWSDE methods, 

the computational cost largely depends on the simultaneous detection and estimation step 

(in the simultaneous detection and estimation, most of the CPU time is spent during the 

calculation of the detector), and the processing time is proportional to the total number of 

coefficients in all the filtering subbands. For the same level of decomposition, the total 

number of coefficients in all the filtering subbands of the undecimated wavelet domain is 

much greater than that of the full tree of wavelet-packet decomposition. Therefore, the 
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computational cost and memory requirement of the PFUWSDE method is much higher 

than that of the PFWPSDE method. This is a major drawback of the PFUWSDE method.  

     For both the PFWPSDE and PFUWSDE methods, several mathematical functions 

need to be calculated during filtering. When the estimator is calculated (equation (4.13)), 

several complementary error functions are calculated. When the detector is calculated 

(equation (4.17a) and (4.17b)), the complementary error function, gamma function, and 

confluent hypergeometric function need to be calculated. These three functions are 

calculated for every coefficient of all the filtering subbands (or filtering nodes), therefore 

requiring a large amount of CPU time.  

    The gamma function and the complementary error function are easily calculated 

using the MATLAB function. The computation of the confluent hypergeometric function, 

however, is complex and time consuming. Most of the CPU time is used in calculating 

the confluent hypergeometric function if we perform the calculation every time we use 

this function. In order to speed up the algorithm, in the proposed PFWPSDE and 

PFUWSDE methods, we precalculated all the values of  x;5.0,5.1  and  x;5.1,2  for 

different possible values of x  using the method in [250]. These values are saved in two 

lookup tables. The filtering algorithm each time searches the respective values from the 

respective lookup table according to the values of 2  or 2 . By introducing these two 

lookup tables, much CPU time is saved. This is particularly important for the PFUWSDE 

method because more coefficients need to be filtered than for the PFWPSDE at the same 

decomposition level. 
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4.5.2 Wavelet Decomposition Level 

    For filtering of different types of InSAR phase data, different levels of 

decomposition may be used. When the noise level is low and the phase fringes are sparse, 

the phase information is mostly concentrated in the lowest frequency subband (or node). 

In this case, we can only filter the middle- and high-frequency subbands (or nodes), while 

the subband (or node) of the lowest frequency should not be filtered. When the phase is 

very noisy and the decomposition level is low, even the subband (or node) of the lowest 

frequency may be noisy. In this case, we still do not want to filter the lowest frequency 

subband (or node) in order to maintain the phase information as much as possible. 

Instead, we should apply additional levels of decomposition. When additional levels of 

decomposition are applied, the two proposed methods are implemented in different ways. 

For the PFWPSDE method, all the nodes are further decomposed. For the PFUWSDE 

method, only the subband of the lowest frequency is further decomposed; all the other 

frequency subbands are not changed. For the PFWPSDE method, all the nodes in the new 

decomposition level except the node of the lowest frequency are filtered. For the 

PFUWSDE method, the newly generated lowest frequency subband (approximation 

coefficients) is not filtered; the other three relatively high-frequency subbands (detail 

coefficients) are added to the other subbands of the filtering queue. Based on this 

analysis, the level of decomposition of the two proposed methods cannot be too low. 

   On the other hand, the decomposition level cannot be too high for both the 

PFWPSDE and PFUWSDE methods. In the PFWPSDE method, the filtering accuracy 

depends on the accuracy of local statistics estimation, and when the decomposition level 

is too high, the number of coefficients available for parameter estimation of simultaneous 
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detection and estimation may be too small. If this is the case, the estimated parameters 

will be insufficiently accurate for the filtering. In PFUWSDE method, the higher the 

decomposition level, the more coefficients need to be filtered and the higher is the 

computational cost.  

       Therefore, for both the PFWPSDE and PFUWSDE methods, the decomposition level 

cannot be too high or too low. For most cases of InSAR phase filtering, three-level 

decomposition is a reasonable compromise. 

 

4.6 Experimental Results Using Simulated Data 

4.6.1 Methods Used in the Experiments 

     In this section, we introduce the experimental results using simulated InSAR phase 

data. In all the experiments in this section, for the two proposed methods, a 77  window 

was used in the estimation of parameters. 

1) PFWPSDE Method: In this experiment, three-level wavelet-packet decomposition is 

used, and the same scaling parameter 0.1  is used. The node of the lowest frequency 

contains most of the phase information [217], [218] and is not filtered. All the other 63 

nodes in the full tree are filtered. All the filtering operations are performed in the third 

decomposition level. 

2) PFUWSDE Method: This method also uses three-level decomposition, so the 

approximation coefficients of the third level are not filtered.  The first filtering is in the 

third level of detail coefficients, the second filtering is in the second level, and the last 

filtering step is in the first level. All the three detail coefficients for horizontal, vertical, 

and diagonal directions are filtered. The simulated phase data are very noisy at high-
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frequency subbands; therefore, in order to reduce the noise sufficiently, we set the scaling 

parameters as 0.1,0.2 321   . 

4.6.2 Parameter Selection in Simultaneous Detection and Estimation 

    From the analysis in Section 4.2, we know that there are several parameters that need 

to be defined by the user both for the PFWPSDE and PFUWSDE methods. The 

parameter selection supports the flexibility of the algorithm but must be considered 

carefully in order to obtain a qualitatively strong filtering performance.  

    The parameter selection of the estimator and detector is based on the basic idea that 

wrong classification should have a higher cost than correct classification [231]. As long 

as this is satisfied, small changes of the parameters does not influence the filtering 

performance significantly. On the other hand, it is not necessary to change the parameters 

for most applications. In this experiment, we use the same parameters for both the 

proposed PFWPSDE and PFUWSDE methods. Following [223], we set the parameters 

11100   . The other parameters are defined as 3001  , 5.410  , and 02.0 . In this 

set of parameters, 01  is larger than that in [223] in order to reduce the detection errors 

when the detection result is a signal when, in reality, it is a noise. 

    For the selection of  1HP  and  0HP , although these probabilities are different for 

different subbands (or nodes), we can use the same value for all the subbands in the two 

proposed methods. For the wavelet image denoising,     5.001  HPHP  is used [251]. 

Since most of the signal energy of InSAR phase data is concentrated in a small number of 

wavelet coefficients, we reduce the possibility of signal appearance to   4.01 HP . Since 

    101  HPHP , we have   6.00 HP . 
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4.6.3 Experimental Results of Simulated Data I 

    In order to examine the filtering performance of the two proposed methods, three 

simulated data sets are used (Data I, Data II, and Data III). All these 512512   data sets 

are generated using the same clean phase, which is shown in Figure 4.3. The fringe 

density ranges from very dense to very sparse and therefore can be used to examine the 

filtering performance for various types of phase data. Although the very high density 

fringes of the simulated data do not occur often in the interferometric phase of real 

InSAR data, for a theoretical study, this gives us some insight on how the proposed 

algorithms behave for a wide range of fringe densities.  

       Data I is designed for examining the filtering performance of spatially invariant 

noise, while Data II and Data III are designed for examining the filtering performance of 

spatially varying noise. In this section, we will introduce Data I and the experimental 

results using Data I. In the following tests, for comparative purposes, we present results 

from the earlier wavelet-based algorithms reported in [217], [218], and [219] as well as 

from the two methods developed here. 

 
Figure 4.3.  “Clean” (noise-free) simulated phase. 
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TABLE 4.3 

RESIDUAL ERRORS (RMSES) OF THE FILTERED RESULTS OF DATA III 

 
Method 

in [218] 

Method 

in [217] 

Method 

in [219] 

Proposed 

PFWPSDE 

method 

Proposed 

PFUWSDE 

method 

Data III-1 2.6909 

 

1.6863 

 

1.5421 

 

1.2054 0.8714 

 

Data III-2 3.5968 

 

2.2084 

 

1.9698 

 

1.4998 1.2880 

 

Data III-3 3.6813 2.3782 

 

2.2787 

 

1.6043 

 

1.4463 

 

 

 

TABLE 4.2 

RESIDUAL ERRORS (RMSES) OF THE FILTERED RESULTS OF DATA II 

 
Method 

in [218] 

Method 

in [217] 

Method 

in [219] 

Proposed 

PFWPSDE 

method 

Proposed 

PFUWSDE 

method 

Data II-1 4.2368 

 

2.1286 3.9053 

 

1.9947 1.6729 

Data II-2 4.4956 

 

2.3337 

 

4.3621 

 

1.7678 1.6694 

Data II-3 4.1107 

 

2.1613 

 

3.3319 

 

1.3312 1.1993 

 

 

TABLE 4.1 

RESIDUAL ERRORS (RMSES) OF THE FILTERED RESULTS OF DATA I 

 
Method 

in [218] 

Method 

in [217] 

Method 

in [219] 

Proposed 

PFWPSDE 

method 

Proposed 

PFUWSDE 

method 

Data I-1 1.7352 0.8868 

 

0.9649 

 

0.5495 0.3850 

Data I-2 2.6390 1.0837 

 

1.1470 

 

0.7326 0.5521 

Data I-3 3.3344 1.3628 

 

1.3005 

 

0.8962 0.7114 
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      The distribution of phase noise can be modeled as Wishart [252], but in order to 

simplify the analysis, it is also modeled as Gaussian [220], [253]. Data I adds additive 

phase noise of constant variance for the whole phase data set. The simulated data 

contaminated by noise of increasing variance are shown in Figure 4.4(a) (Data I-1, noise 

variance is 0.45), Figure 4.4(b) (Data I-2, noise variance is 0.65), and Figure 4.4(c) (Data 

I-3, noise variance is 0.85), respectively. Columns A, B, C, D and E of Figure 4.5 show 

the filtering results of the method of [218], [217], [219], PFWPSDE, and PFUWSDE, 

respectively. In Figure 4.5, the first, second, and third rows show the filtering results of 

Data I-1, Data I-2, and Data I-3, respectively. In Figure 4.5, the fourth row shows the 

difference maps between the filtered results and the original clean phase of Data I-3. In 

this experiment, for both the PFWPSDE and PFUWSDE methods, the Daubechies 

wavelet with four vanishing moments [254] is used. 

     
(a)                            (b)                              (c)  

Figure 4.4.  Simulated input data contaminated by noise: Data I. (a), (b), and (c) are Data 

I-1, Data I-2, and Data I-3, respectively.  

  



 

 

144 

 

 

      

(A-I)                         (B-I)                        (C-I)                        (D-I)                         (E-I) 

     

(A-II)                         (B-II)                       (C-II)                      (D-II)                        (E-II) 

     

(A-III)                    (B-III)                         (C-III)                      (D-III)                       (E-III) 

     

(A-V)                        (B-V)                     (C-V)                       (D-V)                      (E-V) 

Figure 4.5.  Phase-filtering results using simulated Data I. First row: (A-I)-(E-I) includes 

the filtered results of Data I-1; second row: (A-II)-(E-II) includes the filtered results of 

Data I-2; third row: (A-III)-(E-III) includes the filtered results of Data I-3. Fourth row: 

(A-V)-(E-V) includes difference maps between the filtering results of Data I-3 and the 

original clean phase. Column (A): Filtering results of the method in [218]. Column (B): 

Filtering results of the method in [217]. Column (C): Filtering results of the method in 

[219]. Column (D): Filtering results of the proposed PFWPSDE method. Column (E): 

Filtering results of the proposed PFUWSDE method. 
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     In order to evaluate the filtering performance quantitatively, the root-mean-square 

errors (RMSEs) of the experimental results are calculated and presented in Table 4.1. We 

observe that, for each input noise level, both the proposed PFWPSDE and PFUWSDE 

methods have slightly lower RMSEs than those of the methods in [217], and [219] and 

considerably lower RMSEs than those of method in [218]. The PFUWSDE method has 

lower RMSEs than those of PFWPSDE method.  

    A qualitative comparative evaluation is performed by visual inspection of Figure 4.5, 

which can be conducted by comparing the filtering results in the areas of different fringe 

densities. We arrive at the following conclusions:  

1) The filtering results of the method from [218] show large numbers of errors in almost 

all the areas of the phase image. These increase with increasing input noise level.  

2) The filtering results of the methods in [217] and [219] show far fewer errors than those 

of the method in [218]. The filtering results of the method in [217] appear to have more 

large-scale errors than the method of [219] and the two proposed methods in the filtered 

phase. Qualitatively, the filtering results of the PFWPSDE method appear similar to the 

method in [219] upon first examination. Upon closer scrutiny, the errors of the 

PFWPSDE method are smaller in almost all the areas of the image than those of the 

method in [219].  

3) Among these five methods, the PFUWSDE method has the least residual noise and 

artifacts remaining in the areas of low and moderate fringe density (which is true in most 

cases in real InSAR phase data), particularly for the data set with high input-noise level. 

This supports the suggestion that the redundancy of wavelet coefficients provides a 

stronger filtering performance than can be obtained in the wavelet-packet domain. 
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4) When the noise level is high (Data I-2, Data I-3), some very high density phase fringes 

are eliminated in the PFUWSDE method. For the PFWPSDE method, this does not occur. 

This shows that the PFUWSDE method has weaker performance than the PFWPSDE 

method when the phase fringes are of very high density. This is because in the wavelet-

packet decomposition, the high-frequency phase information is more easily separated 

from the noise because its frequency resolution is high in the high-frequency filtering 

node. On the contrary, in the undecimated wavelet domain, the high-frequency 

information is harder to be separated from the noise because of the low resolution in the 

high-frequency subbands. 

4.6.4 Experimental Results of Simulated Data II 

         In this section, we will introduce the simulated data set “Data II” and the 

corresponding experimental results. Data II is the simulated phase data with different 

noise levels for the four quadrants of the synthetic phase image. 

       
(a)                              (b)                               (c)  

Figure 4.6.  Simulated input data contaminated by noise: Data II. (a), (b), and (c) are 

Data II-1, Data II-2, and Data II-3, respectively. 
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(A-I)                       (B-I)                          (C-I)                      (D-I)                        (E-I) 

     

(A-II)                    (B-II)                          (C-II)                          (D-II)                         (E-II) 

     

(A-III)                       (B-III)                         (C-III)                       (D-III)                    (E-III) 

     

(A-V)                     (B-V)                       (C-V)                         (D-V)                       (E-V)                                                

Figure 4.7. Phase-filtering results using simulated Data II. First row: (A-I)-(E-I) are the 

experimental results of Data II-1; Second row: (A-II)-(E-II) are the experimental results 

of Data II-2; Third row: (A-III)-(E-III) are the experimental results of Data II-3; Fourth 

row: (A-V)-(E-V) are difference maps between the filtered results of Data II-3 and the 

clean phase. Column (A): Filtering results of the method in [218]. Column (B): Filtering 

results of the method in [217]. Column (C): Filtering results of the method in [219]. 

Column (D): Filtering results of the proposed PFWPSDE method. Column (E): Filtering 

results of the proposed PFUWSDE method. 
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     There are two layers of noise added in Data II. The first layer has constant variance 

for the whole phase data set. The noise variances of the first layer of noise added to Data 

II-1, Data II-2, and Data II-3 are 0.25, 0.35, and 0.55, respectively. In order to examine 

the filtering performance under a spatially variable noise environment, the second layer 

of noise is added in the simulated Data II. The second layer of noise is generated using a 

method similar to [214], which generates different noise levels for four quadrants. During 

the generation of the second layer of noise, different levels of noise are added to the four 

quadrants of the simulated data, but the noise level inside each quadrant is constant. 

Figure 4.6(a)-(c) shows the noisy input phase data of Data II-1, II-2, and II-3, 

respectively. The first, second, and third rows of Figure 4.7 show the filtering results of 

Data II-1, II-2, and II-3, respectively. In the second layer of noise, the noise levels 

(variances) of Data I-1 are 0.85, 0.25, 0.65, and 0.45 for the first, second, third, and 

fourth quadrants, respectively. In the second layer of noise, the noise levels of Data I-2 

are 0.95, 0.35, 0.75, and 0.55 for the first, second, third, and fourth quadrants, 

respectively. In the second layer of noise, the noise levels of Data I-3 are 0.85, 0.55, 0.75, 

and 0.65 for the first, second, third, and fourth quadrants, respectively. Thus the noise 

level in each quadrants changes as we go down from row to row. Columns A, B, C, D, 

and E of Figure 4.7 show the filtering results using the methods of [218], [217], [219], 

PFWPSDE, and PFUWSDE, respectively. In this experiment, Daubechies wavelet with 

20 and 10 vanishing moments [254] are used in the PFWPSDE and PFUWSDE methods, 

respectively. 

    From the noise-level scheme of the second layer of noise in data II, it can be seen that 

in Data II-1, the noise level has large differences among the four quadrants, but the 
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overall noise level is relatively low. In Data II-2, the noise level also has large differences 

for four quadrants, and the noise level is higher than that of Data II-1. In Data II-3, the 

noise level has only small differences among the four quadrants, but the noise level is 

higher than that of Data II-1.  

    The RMSEs (filtered minus clean-phase data) of the experimental results using 

simulated Data II are calculated and illustrated in Table II. By comparing the RMSEs of 

the filtering results of simulated Data II, we have the following conclusions: 

1) For all the methods except the method in [217], the experimental results of Data II-3 

have lower RMSEs than those of Data II-1 and Data II-2. This is because the noise-level 

change (variability) is smaller in Data II-3 than that of the others; therefore, filtering is 

relatively easier. 

2) For all three data sets, the results from both the PFWPSDE and PFUWSDE methods 

show lower RMSEs than those of methods [217] and [219] and much lower RMSEs than 

those of the method of [218]. This demonstrates that both the proposed methods exhibit 

improved comparative performance relative to the method in [217], [218], and [219] 

when the noise level is spatially variable. The reason behind this is that the simultaneous 

detection and estimation scheme has better estimation ability in the case of nonstationary 

noise.  

3) The RMSEs of the PFUWSDE and PFWPSDE methods are similar. 

   Qualitatively, the results of the four methods can be intercompared by inspection of 

the images of Figure 4.7, which is conducted by comparing the filtering results for the 

areas of different fringe densities. We arrive at the following conclusions. 

1) There are large numbers of errors in the filtering results from the application of the 
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method of [218]. Most of the phase fringes are modified in the filtering results of the 

method of [218]. 

2) The results from the method of [219] are considerably improved relative to [218]. 

However, several artifacts, such as scalloping, are observed at all noise levels. The results 

from the method of [217] have fewer artifacts than those of [219].  

3) Both PFWPSDE and PFUWSDE results appear to have fewer artifacts than those of 

[217], [218], and [219]. 

4) Similarly to the simulated Data I, for the area of sparse fringes and the area of phase 

fringes with moderate densities, the filtering results of the PFUWSDE method have fewer 

artifacts and less noise remained than those of the PFWPSDE method. Visually 

PFUWSDE appears very close to the input clean phase image of Figure 4.3. This shows 

that the PFUWSDE method outperforms the PFWPSDE method when the phase fringes 

are sparse or with moderate density. 

 

       
(A1)                             (B1)                           (C1)  

 

0.9 0.75 

0.8 0.85 

            

 

0.8 0.65 

0.7 0.75 

           

 

0.75 0.675 

0.7 0.725 

 
(A2)                             (B2)                        (C2) 

Figure 4.8.  Simulated input data contaminated by noise: Data III. (A1), (B1), and (C1) 

are Data III-1, Data III-2, and Data III-3, respectively. (A2), (B2), and (C2) are the 

coherence levels of Data III-1, Data III-2, and Data III-3, respectively. 



 

 

151 

 

 

     

(A-I)                         (B-I)                         (C-I)                      (D-I)                             (E-I)  

     

(A-II)                        (B-II)                       (C-II)                       (D-II)                          (E-II) 

      

(A-III)                          (B-III)                     (C-III)                  (D-III)                      (E-III) 

     

(A-V)                       (B-V)                       (C-V)                         (D-V)                       (E-V)                                                                                                         

Figure 4.9. Phase-filtering results using simulated Data III. First row: (A-I)-(E-I) are the 

experimental results of Data III-1; Second row: (A-II)-(E-II) are the experimental results 

of Data III-2; Third row: (A-III)-(E-III) are the experimental results of Data III-3; Fourth 

row: (A-V)-(E-V) are difference maps between the filtering results of Data III-1 and the 

clean phase. Column (A): Filtering results of the method in [218]. Column (B): Filtering 

results of the method in [217]. Column (C): Filtering results of the method in [219]. 

Column (D): Filtering results of the proposed PFWPSDE method. Column (E): Filtering 

results of the proposed PFUWSDE method. 
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5) Some phase fringes around the area of very high fringe densities are eliminated in the 

PFUWSDE method, which is more conspicuous than the experiments of simulated Data 

I. This shows that the PFWPSDE method outperforms the PFUWSDE method when the 

phase fringes are very dense. The explanation is similar to that discussed for simulated 

Data I in Section 4.6.4. 

   Based on these analyses, we can say that the two proposed methods outperform the 

methods of [217], [218], and [219] when the noise standard deviation in the phase is 

spatially variable. 

4.6.5 Experimental Results of Simulated Data III 

   Data III also applies different noise levels for different quadrants of the simulated 

data, and the noise is additive and generated using the method in [215]. Figure 4.8(A1), 

(B1), and (C1) shows the noisy input phase data of Data III-1, III-2, and III-3, 

respectively. The coherence levels inside each quadrant are calculated using the method 

in [150] and [7] and are shown in the second row of Figure 4.8. In this experiment, 

Daubechies wavelet with 20 and 10 vanishing moments [254] are used in the PFWPSDE 

and PFUWSDE methods, respectively. Figure 4.8(A2), (B2), and (C2) shows the input 

quadrant coherence levels for Data III-1, III-2, and III-3, respectively. The RMSEs of the 

experimental results of Data III are illustrated in Table 4.3. From Table 4.3, we observe 

that the two proposed methods have lower RMSEs than the other considered methods. 

The filtering results of Data III are shown in Figure 4.9. From Figure 4.9, we can see the 

following: 

1) The filtering results of the method in [218] are still very noisy, which reflects that 

large amount of noise still remain in the filtering results. 
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2) The filtering results of the method in [217] and [219] are much less noisy than those of 

[218]; however, there are still some noise remaining in the filtered results. 

3) The least amount of noise remains in the filtering results of the proposed PFWPSDE 

and PFUWSDE methods. This suggests that the two proposed methods have stronger 

noise-removal ability than the other considered methods.  

4.6.6 Processing Speeds of the Algorithms 

     The average processing times of the methods of [218], [217], [219], PFWPSDE, and 

PFUWSDE method are 4.5, 15.5, 2100.1  , 2103.7  , and 3109.3   s, respectively. Because 

these were executed in MATLAB (with some C routines), they are useful only in 

showing relative computation times. We note that the method in [217], [218], and [219] 

are faster than the two proposed methods, and the proposed PFUWSDE method is the 

slowest method. This is because large amounts of CPU time are consumed in the 
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(a)                                                          (b) 

Figure 4.10.  (a) Coherence of the Intermap InSAR data. (b) Histogram of the 

coherence. 
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calculation of the simultaneous detection and estimation step (which is mostly in the 

calculation of the detector) in the two proposed methods. The more pixels that need to be 

classified, the higher is the processing time. The PFUWSDE method requires more CPU 

time than the PFWPSDE method because more coefficients are used in the PFUWSDE 

method for the same decomposition level. 

 

 

4.7 Experimental Results Using Real InSAR Data 

   Further tests were conducted with real InSAR data sets to examine the performance 

of the two proposed methods. The particular examples shown here are two real InSAR 

data sets. The first real InSAR data set uses repeat-pass InSAR data acquired by Intermap 

Technologies Corporation. The data were selected because of the conveniently varying 

fringe density (after flat-Earth removal [7]) over a small sloping area, along with a wide 

range of coherence values reflecting, in part, the spatially varying signal-to-noise ratio 

(SNR).  The data are from a heterogeneous area of forest and suburban features. Figure 

4.10(a) and (b) shows the coherence map of this data set and its histogram, respectively. 

From the coherence histogram of these data, we observe that the coherence level ranges 

from very low to very high (which means that the noise standard deviation changes 

drastically for different areas), part of which is due to decorrelation effects other than 

noise and part due to the variability of the SNR within the area. Figure 4.11(a) shows the 

interferometric phase (image size is 10241024  ) of these real InSAR data. These InSAR 

phase data are directly extracted from the single-look complex images, unlike the data 

used in [253] and [255], which are the output of the coherence optimization. Therefore, 
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the data used in this experiment are much noisier than those used in [253] and [255]. This 

data set is relatively noisy and has a very low average coherence (0.39). The second real 

InSAR data set is the ALOS PALSAR data acquired by the Japan Aerospace Exploration 

Agency (JAXA). Figure 4.12(a) shows the interferometric phase (image size is 512512  ) 

of these data.  

   In this experiment, the same parameters as defined in Section 4.6.2 are used, and a 

77  moving window was used in the estimation of parameters. 

   Figure 4.11(b), (c), (d), (e) and (f) shows the filtered phase maps resulting from 

application of the methods of [218], [217], [219], PFWPSDE, and PFUWSDE on the 

Intermap data, respectively. Figure 4.12(b), (c), (d), (e) and (f) shows the filtered phase 

maps resulting from application of the methods of [218], [217], [219], PFWPSDE, and 

PFUWSDE on the ALOS data, respectively. From visual inspection of these results in 

Figure 4.11 and Figure 4.12, it appears that the phase filtered result according to the 

method in [218] is still relatively noisy; not much of the noise is eliminated. The phase 

map resulting from the method in [219] is less noisy than that of [218]; however, some 

phase fringes are not clearly visible. The filtering result of the method in [217] is less 

noisy than that of [219], but significant noise remains.  Both of the methods proposed in 

this chapter appear to demonstrate lower noise content and better definition in these 

results than those using the earlier wavelet approaches of [217], [218], and [219]. 

   We now examine the results of the two proposed methods in more detail. In this 

experiment, both the PFWPSDE and PFUWSDE methods use the three-level 

decomposition. 
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(a)                                (b) 

    
(c)                            (d)                                        

    
 (e)                                (f) 

Figure 4.11.  Original interferometric phase and the filtering results of Intermap 

InSAR data (1024*1024). (a) Interferometric phase of real InSAR data. (b) Filtering 

result of the method in [218]. (c) Filtering result of the method in [217]. (d) Filtering 

result of the method in [219]. (d) Filtering result of the proposed PFWPSDE method. 

(e) Filtering result of the proposed PFUWSDE method. 
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(a)                                 (b) 

                
(c)                               (d) 

    
 (e)                                  (f) 

Figure 4.12.  Original interferometric phase and the filtering results of ALOS PALSAR 

data (512*512). (a) Interferometric phase of real InSAR data. (b) Filtering result of the 

method in [218]. (c) Filtering result of the method in [217]. (d) Filtering result of the 

method in [219]. (e) Filtering result of the proposed PFWPSDE method. (f) Filtering 

result of the proposed PFUWSDE method. 
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   PFWPSDE Method: Because the input phase data are very noisy and coherence 

changes drastically for different areas, the scaling parameter 0.2  is used to improve 

the filtering ability. In this experiment, Daubechies wavelet with four vanishing moments 

was used.  

   Comparing the filtering results, we observe the following.  

1) For both the results of Intermap and ALOS data, the PFWPSDE method eliminates 

more noise than the methods in [217], [218], and [219]. The phase fringes are easier to be 

observed from the filtering result of the PFWPSDE method than those of the methods in 

[217], [218], and [219]. 

2) Inspecting the results of Intermap InSAR data, all the four methods, the PFWPSDE 

method and the methods in [217], [218], and [219] show numerous anomalous phase 

jumps, and the filtered results are not as smooth as expected in these areas of sparse 

fringes. This may be explainable in a manner similar to [256], which is the case of 

orthogonal wavelet filtering: The PFWPSDE method performs the filtering using the 

orthogonal wavelet packet, which may cause the artifacts in the filtering result. 

3) For the ALOS data, since the coherence is higher than the Intermap data, the 

anomalous phase jumps are much less than the Intermap data. However, there is much 

less noise remaining in the result of the PFWPSDE method than the methods in [217], 

[218], and [219]. 

   PFUWSDE Method: The two real InSAR phase data sets are very noisy, and the 

noise standard deviation varies spatially. Since the noise dominates part of the low-

frequency and high-frequency wavelet subbands, therefore, when calculating the noise 

standard deviation using (4.23a) and (4.23b), scaling parameters 5.1321    are used 
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in the PFUWSDE method. Since the fringes in the InSAR phase data sets are not densely 

populated, greater smoothness in the wavelet is preferable, such as the quadratic spline 

wavelet proposed in [257], which has been used in [258]. In this experiment, the 

quadratic spline wavelet in [257] is employed in the PFUWSDE method.  

    Comparing the filtering results of the PFWPSDE method and PFUWSDE method, it 

is easy to observe that the PFUWSDE method has stronger noise-removal ability than the 

PFWPSDE method. For the Intermap data, in the filtering result of the PFUWSDE 

method, there are much fewer anomalous jumps than that of the PFWPSDE method, and 

the phase fringes of the filtered phase are more distinct than that of the PFWPSDE 

method. Therefore, it appears that the PFUWSDE method is more suitable for the phase 

filtering of the InSAR phase data of low coherence than the PFWPSDE method. For the 

ALOS data, the PFUWSDE method obtains a smoother result than the PFWPSDE 

method. 

    Residues have been used in the evaluation of InSAR phase-filtering performance in 

[214] and [215]. In this chapter, we also evaluate the proposed methods quantitatively by 

comparing the residues before and after filtering. The percentage of remaining residues of 

the filtered phase for the methods of [218], [217], [219], PFWPSDE, and PFUWSDE are 

calculated and illustrated in Table 6.4. From Table 6.4, it is easy to draw the following 

conclusions: 1) For percentage of residues removed from the original data as a figure of 

merit, the proposed PFWPSDE and PFUWSDE methods considerably outperform the 

benchmark methods of [217], [218], and [219] and 2) the PFUWSDE method has the 

fewest residues left in the filtering result, which means that the PFUWSDE method has 

the highest noise-removal ability than all the other tested methods. 
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         In summary, the proposed PFWPSDE and PFUWSDE methods outperform the 

methods in [217], [218], and [219] in terms of the visual inspection and quantitative 

evaluation (residuals) for both the two real InSAR phase data sets tested. The proposed 

PFUWSDE method outperforms the PFWPSDE method in terms of the quality of the 

filtered phase when using real InSAR phase data. 

 

 

4.8 Conclusion 

   In this chapter, the simultaneous detection and estimation have been applied to 

interferometric SAR phase filtering in the wavelet domain. Using this strongly coupled 

simultaneous detection and estimation scheme, two wavelet-domain InSAR phase-

filtering methods were proposed. The first, referred to as the PFWPSDE method, uses the 

wavelet packet; the second, referred to as the PFUWSDE method, performs filtering in 

the undecimated wavelet domain. The detailed implementations of these two methods 

were presented. 

   Three sets of simulated phase data were used to test the performance of the two 

TABLE 4.4 

PERCENTAGE OF RESIDUES LEFT IN THE FILTERING RESULTS 

 

Residues 

in Original 

Data 

Method 

in [218] 

Method 

in [217] 

Method 

in [219] 

Proposed 

PFWPSDE 

method 

Proposed 

PFUWSDE 

method 

Percentage 

left 

(Intermap 

data) 

100 30.20 11.82 7.94 1.32 1.05 

Percentage 

left 

(ALOS 

data) 

100 57.70 16.69 19.86 1.02 0.47 
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proposed methods. The first data set was designed for the testing of spatially invariant 

noise. For relative comparison to the proposed methods, three other wavelet-based 

methods for phase filtering presented in literature were implemented and tested against 

the same data sets. The experimental results demonstrate that the two proposed methods 

have slightly better performance quantitatively (RMSE-based) and qualitatively 

(inspection-based) than the other considered methods. The second data set was designed 

to examine the filtering performance when the phase noise level is spatially variable, 

which is particularly useful to examine because the noise level of real interferometric 

phase data is often spatially variable. The experimental results demonstrate that the two 

proposed methods have the stronger filtering ability when they are applied in the filtering 

of spatially variable noise compared with the other considered methods. This suggests 

that the two proposed methods appear promising for filtering of real InSAR phase data. 

The third data set further verifies that the two proposed methods outperform the other 

considered methods according to their experimental results. 

       The two proposed methods can be selected according to the specified situations of 

the InSAR phase data. Since the proposed PFWPSDE method has a stronger ability for 

the filtering of high-frequency information but weaker ability for noise removal, therefore 

it is suitable for phase filtering when phase fringes are of high density and phase quality 

is good. The proposed PFUWSDE method has the stronger ability to filter very noisy 

phase data and can reduce the artifacts in the filtering result but with phase fringes of 

relatively low to moderate density. In addition, because the PFUWSDE method is slower 

and needs more memory than the PFWPSDE method, the PFWPSDE method is preferred 

when large-area filtering is required. For real-world InSAR data, because most phase 
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fringes are of moderate to low density, the PFUWSDE method is promising because it 

can obtain a filtering result with fewer residues and clearer fringes than that of the 

PFWPSDE method. 

 

4.9 Appendix A 

   In this Appendix, we give the detailed derivations of (4.12a) and (4.12b), which are 

obtained by solving the integrations of (4.10a) and (4.10b), respectively.  

     Substituting (4.7a), (4.7b), and (4.7c) into (4.10a), and using the 3.322.2 of [237] to 

solve the integral of (4.10a), we derive (4.12a). Substituting (4.7a), (4.7b), and (4.7c) into 

(4.10b), and using the 3.462.1 and 9.254.2 of [237] to solve the integral of (4.10b), we 

derive (4.12b). 

 

 

4.10 Appendix B 

   In this Appendix, we give a detailed derivation of (4.14b). Substituting (4.7a) and 

(4.7b) into (4.4b), we have  
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                                  (4.25b) 

     Using the 3.462.1 and 9.240 of [237], we can solve the integrals in 1D  and 2D . Using 

the 3.462.1 and 9.254.2 of [237], we can solve the integrals and obtain 1E  and 2E . Using 

the 3.322.2 of [237], we can solve the integrals in 1F  and 2F . Finally, after some 

arrangements, we obtain (4.14b). 

 

 

 

 

 

 

 

 



 

 

164 

 

CHAPTER 5:  WEIGHTED REGULARIZED 

PRECONDITIONED CONJUGATE GRADIENT (PCG) 

PHASE UNWRAPPING METHOD
4
 

 

        In this chapter, a weighted regularized preconditioned conjugate gradient (PCG) 

phase unwrapping method based on the fast cosine transform is proposed. The boundary 

conditions of this method are researched. By adding weights to the regularized PCG 

method, the unwrapping accuracy of a noisy phase map is improved. The method is 

tested with both simulated phase data and real interferometric synthetic aperture radar 

(InSAR) data. In particular, the simulated data show both visual and quantitative 

improvements while in the case of the real InSAR data set that was used, it is 

demonstrated that certain large scale unwrapping errors can be reduced. 

 

5.1 Introduction 

     Phase unwrapping is an important processing step for many imaging systems, and 

especially for interferometric synthetic aperture radar (InSAR). There are many phase 

unwrapping algorithms in the literature, including the widely used global and local 

methods [127]. The basic global method is a least squares algorithm which was proposed 

                                                 

4
 © 2009 IOP Publishing Ltd. Reprinted, with permission, from [Yong Bian and Bryan Mercer, “Weighted 

regularized preconditioned conjugate gradient (PCG) phase unwrapping method,” Journal of Optics A: 

Pure and Applied Optics, vol. 11, issue 1, Article number: 015504, 11pp, 2009. doi:10.1088/1464-

4258/11/1/015504.]. 
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in [266] [267]. Many research activities have been focused on the improvement of the 

least squares method. By applying weights in the least squares method, the „weighted 

least squares‟ method [264] shows improvements in the unwrapping accuracy when the 

phase map is contaminated by noise. The PCG method [264] is one of the efficient 

implementations of the weighted least squares approach.  

    In order to improve the processing efficiency, a wavelet based unweighted least 

squares method was proposed in [284] and later this was expanded to the weighted case 

[285] which uses the wavelet to solve the partial differential equation and thus improve 

the processing speed. However, the processing accuracy is not improved in these methods 

[285]. In order to improve the unwrapping accuracy of the weighted least squares 

method, more accurate weights to improve the processing accuracy were proposed 

recently in [286]. However, the objective function in this method is the same as the 

traditional weighted least squares method, which limits its applications. 

      In the traditional least squares method, the a priori information of the wrapped phase 

is not used. When the error sources of phase unwrapping are known, we can use the a 

priori information of the error sources to define the objective function [261] [262]. After 

the appropriate consideration of the error sources in the objective function, the 

unwrapping errors can be reduced [261] [262]. In order to take advantage of the a priori 

information, a regularization based method was proposed in [261] which aimed to 

interpolate areas of invalid data. After that, the constrained method based on the Fourier 

transform was proposed in [262]. In the InSAR phase unwrapping, when the phase 

quality is very low, these methods which can combine a priori information can be used to 

improve the unwrapping accuracy. 
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      However in these investigations of the regularized methods, weights were not 

considered. When the phase map is noisy, it may be beneficial to take advantage of 

weights in the unwrapping process. For example, with InSAR, a noisy phase map leads to 

large scale unwrapping errors when the traditional PCG method is used. In this chapter, 

we further investigate the regularized unwrapping method, and propose a weighted 

regularized PCG (WRPCG) unwrapping method based on the traditional PCG [264] 

[127] approach. Since the WRPCG method is based on the fast cosine transform, the 

boundary conditions are also investigated in this chapter.  

        The organization of this chapter is as follows. Section 5.2 is the introduction of the 

WRPCG method. Some issues, relating to the boundary conditions, implementations of 

the PCG method, and weight definition, will be introduced in Section 5.3. Several 

unwrapping experiments using simulated data and the evaluation of the WRPCG method 

are introduced in Section 5.4. The unwrapping method and unwrapping experiments 

using real InSAR data are introduced in Section 5.5. Discussion and conclusion occur in 

Section 5.6. 

 

 

5.2 Weighted Regularized PCG Method 

5.2.1 Review of Least Squares Method 

   The PCG method was proposed in [264]; it is in essence a least squares method. 

Assuming that the wrapped phase is NM  , the unweighted least squares method is based 

on minimizing the following objective function [264] [127],  
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where  

      jijiWjihx ,,1,   , 

      jijiWjihy ,1,,   ,                                          (5.2) 

where  ji, ,  ji,  denotes the unwrapped and wrapped phase, respectively;  aW  is a 

wrapping process to limit the value of a  to the range of   , . 

5.2.2 Weighted Regularized PCG Method 

   The regularization process uses some a priori information from the phase map and 

provides some constraints on the minimization problem [261] [262]. The original PCG 

method does not use any regularization processes for the unwrapping.  

There are many regularization functions for the phase unwrapping [261] [262] [263] 

[265] [277]. For different applications, different a priori information can be provided; 

therefore, different regularizations should be used. For InSAR, there are many error 

sources for the phase unwrapping [255] [136] [274] [275]. Most error sources of the 

phase data can be evaluated according to the amount and distribution of the residues in 

the phase map [142] [276]. The essence of residue is that it reflects the discontinuity in 

the wrapped phase [142] [276] [278]. In this Chapter, we combine the weighted PCG 

method [264] with the regularized terms in [262] to improve the robustness for the phase 

unwrapping and reduce the influence of discontinuities in the wrapped phase. The reason 

that we choose the regularization terms in [262] is that these regularization terms reduce 
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the influence of phase discontinuity (or residue) in the unwrapping [262] [265], thus 

making it potentially attractive for unwrapping of InSAR phase data. In the proposed 

WRPCG method, the weights and regularization are simultaneously used in the phase 

unwrapping; therefore this method can be used on the InSAR phase unwrapping 

especially when the phase quality is low. 

   Assuming that the wrapped phase map can be divided into the valid area V  and 

invalid area I  (the valid and invalid areas can be classified according to different criteria 

for different data sets which will be discussed in the following section), the proposed 

method is based on the following objective function: 
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where 
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In this objective function, the first and second terms are the same as in the weighted least 

squares method.  jiR ,  is a regularization term which penalizes the data with 

discontinuities [262] [265]; it was used in [262] to constrain the phase consistency, and 

was also used in [265]. Compared to the definition of residue, this regularization is very 

similar to the computation of residue; the main difference is that, in the computation of 

residue, the phase difference is wrapped to   ,  while this regularization is without this 
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processing. Due to this similarity, the penalization of the data with discontinuities also 

means the data around the residues are penalized. The fourth and fifth terms were also 

used in [262], which are the regularization terms aim to processing the invalid data [262]. 

On the other hand, these terms only exist in the specified areas of the data [262]: The first 

and second terms exist in the valid area, the third term exists in both valid and invalid 

areas, while the fourth and fifth terms exist only in the invalid areas.  ji,  and  ji,  are 

the user-defined weights in the row and column directions, respectively. In the valid 

areas, the data are weighted by the user-defined weights, unlike [262], where no weight is 

applied.   and   are the parameters of the regularized term:   should be big enough and 

  should be small enough for the regularization [262].  

       This minimization problem can be solved by solving the following partial differential 

equation [270]: 

0



































F

j

F

i
.                                                      (5.5) 

Using a method similar to that in [261], the derivatives of   and h  are computed with 

respect to i  and j , respectively, and the terms are rearranged to give an equation of the 

form 

 Q ,                                                                    (5.6) 

where 

 EEEQ  ,                                                           (5.7) 

and 

         
       1,1,,,

,1,1,,,





jihjijihji

jihjijihjiji

yy

xx




.                                  (5.8) 
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In (5.7), the definitions of E , E , and E  are as (5.9a), (5.9b), and (5.9c), respectively, 

which are as follows: 

             jijijijijijiE ,,1,,1,,1    

             jijijijijiji ,1,,1,,1,   ,                    (5.9a) 

 

           jijijijiE ,,1,1,    

          1,11,1,1,1  jijijiji   

          1,,,1,  jijijiji   

          jijijiji ,11,11,1,1   ,              (5.9b) 

 

          jijijijiE ,,1,1,    

         jijijiji ,1,1,,   .                               (5.9c) 

        In Equations (5.9a)-(5.9c), all the terms for both valid and invalid areas are included, 

and they need to be separated as further discussed in Section 5.3. As expressed in (5.8),  

  is defined as the weighted Laplacian in [264] [127].  

5.2.3 Valid and Invalid Data Areas 

   The regularization method in [262] differentiates the data into different areas of valid 

and invalid phase data. In the real applications of InSAR phase unwrapping, we do not 

know which area is valid or invalid before we do the unwrapping; therefore we should 

first classify the data into valid and invalid according to some criteria before the 

unwrapping step, as the discussion in the following section. In the method in [261] [262], 

the phase data are simply differentiated as valid and invalid, but when there are noisy 

regions of the wrapped phase in the valid areas, we need to use the weights to improve 
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the unwrapping accuracy. In the proposed method, the wrapped phases are separated into 

valid and invalid, and the valid data components are weighted according to the phase 

quality. 

   1) For the areas with valid data, the  Q  is formulated as 

 EEQ  ,                                                  (5.10) 

and the definition of  ji,  is the same as (5.8). 

   2) For the areas with invalid data, the  Q  is formulated as 

 EEQ  ,                                                           (5.11) 

and the definition of  ji,  is the same as (5.8). 

        In the method of [262],   0, yx  in the invalid areas. In the proposed method, in the 

area of invalid data, we replace this with (5.8). This is because we found that setting 

  0, yx  reduced the robustness of the method when used in the computation of the 

Laplacian in the invalid data area. 

 

5.3 Implementation of the WRPCG Method 

5.3.1 Border Manipulation 

    In the solution of (5.6), we use the fast cosine transform method of [264]. This 

requires an appropriate arrangement of border conditions. As noted in [261] [262] [264] 

[127], the border term should be carefully defined to get a workable boundary condition. 

We will test two different boundary conditions in the WRPCG method. Assuming the 

data size is NM  , the two boundary conditions are defined as follows:  

   5.3.1.1 Boundary Condition One: Boundary condition one is a simplified boundary 
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condition. The process here is to define the phase values outside the boundary as the data 

inside the boundary according to a partly symmetric assumption. The complete 

symmetric assumption is that the data outside the boundary should be symmetric with the 

data inside the boundary, using the data on the boundary as the symmetric axis [127]. 

Some conditions of boundary condition one conform to the symmetric assumption, while 

others do not. We therefore refer to it as a partly symmetric boundary condition. 

Boundary condition one is defined by the following conditional expressions (5.12a)-

(5.12g): 

   
   
   



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   
   



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The first four of these conditions ((5.12a)-(5.12d)) are the same as those of [127], while 

the remainder ((5.12e)-(5.12g)) are new. 

    Boundary condition one is not a condition completely based on the assumption that 

the data are symmetric with the border as the symmetric axis [127]. In the expressions 

(5.12a)-(5.12d) and the first three cases of (5.12e)-(5.12g), the boundary condition 

follows the symmetric assumption. In the “otherwise” of (5.12e),    jiji ,1,1   ; this 

is similar to the boundary condition in [264] which does not conform with the symmetric 

assumption. Similarly, in the “otherwise” of expressions (5.12f) and (5.12g), the 

boundary conditions are similar to those in [264] and are not conformed with the 

symmetric assumption. Therefore, the boundary condition one is not completely 

symmetric with the border as the symmetric axis. Because this is a partly symmetric 

boundary condition, for different parts of the boundary, the data may define their values 

in different ways because of the symmetric and non-symmetric boundary arrangements 

existing in the same method. This may cause an inconsistency in the boundary area and 

thus cause unstable unwrapping results. Since, in boundary condition one, instabilities 

may result from these deviations from the symmetric assumption, this motivates us to 

introduce boundary condition two. 

   5.3.1.2 Boundary Condition Two: This boundary condition differs from the first, in that 

it is the phase difference at the boundary rather than the phase itself that is arranged to 

obtain a symmetric boundary. The first four conditions in boundary condition two are the 

same as in boundary condition one, namely (5.12a)-(5.12d); the remaining four 

conditions are defined in (5.13a)-(5.13d): 
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       Condition two is different from condition one because condition two considers the 

phase difference instead of phase value in the boundary area. All the conditions in 

boundary condition two conform to the assumption that the data are symmetric, using the 

border as the symmetric axis [127]. Therefore, boundary condition two is a complete 

symmetric boundary condition and the unwrapping method using boundary condition two 

is more stable than that using boundary condition one.  

5.3.2 PCG Method 

   In [262], a fast unwrapping method based on a fast Fourier transform (FFT) and the 

PCG method was proposed; however, the user-defined weights were not considered. In 
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this paper, we used a method similar to that in [264] to solve the weighted regularized 

unwrapping problem using a fast cosine transform and the PCG method. 

   The processing steps of the proposed method are as follows. 

1) Let μd 0 . 

2) Solve the equation μQe   using the fast cosine transform method described in [264]. 

3) When 0m , set 01 ep  . Otherwise, set 
111 /   m

T

mm

T

mm eded , mmmm pep 11    . 

4) In computing the QφQpΘ  , the data should be classified into valid and invalid 

areas. Compute QφQpΘ   using Qφ  from (5.10) for the valid data area, and 

QφQpΘ   using Qφ  from (5.11) for the invalid data area. Note: when we compute 

Θ , the border conditions are used. 

5) Set 11 /   mm

T

mm Θped , 111   mmmm p , Θdd 11   mmm  . 

6) When the iteration times are reached, end the processing; otherwise go to step 2). In 

the literature, there are several criteria which are designed to determine when to 

terminate the iteration, such as the methods described in [283] and [261]. In the 

WRPCG method, we use the method of [283], which is to compare the difference of 

the unwrapped phases between the neighboring iterations, and end the iteration when 

the difference between the neighboring iterations is lower than a preset value. 

       In these steps, step 4) is the key step in the WRPCG method: by using the (5.10) and 

(5.11) for the valid and invalid areas, respectively, the regularization terms are combined 

in the PCG method. In (5.10) as well as the computation of the Laplacian, the weights are 

used. For the real applications, there should be a step to differentiate the valid and invalid 

area. This implementation is based on the traditional PCG method in [264] [127], but by 
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using the fast cosine transform it is different from the method in [262], which uses the 

FFT. 

5.3.3 Weight Selection 

    We use the same weight definition as in [264] [127], which is 

   2

,

2

,1 ,min, jijiji   ,                                                  (5.14a) 

   2

,

2

1, ,min, jijiji   ,                                                   (5.14b) 

where ji,  is the weight in the  ji,  pixel of the quality map. There are many kinds of 

quality maps [127] [268] [281] [282], appropriate to different applications. For the 

unwrapping of InSAR data, we mostly use the phase derivative variance (PDV) [268] 

[127] and maximum phase gradient (MPG) [127]. (For the definitions of PDV and MPG, 

please refer to [127]). 

 

 

 

    
 (a)                          (b)                         (c)                          (d) 

Figure 5.1. The original phase before wrapping and the wrapped phase. (a) Correct 

unwrapped phase. (b)-(d) are the wrapped phases contaminated by Gaussian noise when the 

noise variance is 0.5, 0.7, and 0.9, respectively.  
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 (a1)                    (b1)                   (c1)                   (d1)                  (e1)              (f1) 

      

(a2)                 (b2)                  (c2)                   (d2)                 (e2)             (f2) 

      

(a3)                    (b3)                (c3)                 (d3)                  (e3)              (f3) 

Figure 5.2. The unwrapped phase results for the simulated data in Figure 5.1. In these 

experiments, we use the PDV as a quality map. The first, second, and third rows are the 

unwrapping results using different methods when the noise variance of the input data is   

0.5 (Figure 5.1 (b)), 0.7 (Figure 5.1 (c)), and 0.9 (Figure 5.1 (d)), respectively. (a1)-(a3) 

are the unwrapping results using the multigrid method in [268] [127], with weights; the 

quality map is thresholded. (b1)-(b3) are the unwrapping results using the multigrid 

method in [268] [127], with weights, but the quality map is not thresholded. (c1)-(c3) are 

the unwrapping results using the original PCG method in [264] [127], with weights; the 

quality map is thresholded. (d1)-(d3) are the unwrapping results using the original PCG 

method in [264] [127], with weights, but the quality map is not thresholded. (e1)-(e3) are 

the unwrapping results using the WRPCG method, 1200 , 015.0 , no weights, and 

boundary condition one. (f1)-(f3) are the unwrapping results using the WRPCG method, 

1200 , 015.0 , with weights, and boundary condition one; the quality map is not 

thresholded. 
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5.4 Unwrapping Experiments on Simulated Data 

5.4.1 Simulated Data 

    In order to give a quantitative evaluation of the WRPCG method, we have performed 

several experiments on the simulated wrapped phase. This simulated data are similar to 

the data used in [280]: the main difference is that an area with missing phase data is 

added in the simulated data. In this simulated data set (as shown in Figure 5.1), the total 

data size is 512512  , and it includes a 128128  square subset containing no phase data. 

We denote this subset as an invalid area, while the remaining data are described as a valid 

area. These wrapped phase data are contaminated by Gaussian noise, with increasingly 

large noise variances 0.5, 0.7, and 0.9, respectively. For the simulated data, we know 

where the data are missing; therefore there is no need to find the area with missing data.  

    The phase before wrapping is shown in Figure 5.1 (a); this is also what the correct 

unwrapped phase should be. The wrapped phases of the simulated noisy data with 

increasing noise variance (0.5, 0.7, and 0.9) are illustrated in Figure 5.1 (b), Figure 5.1 

(c), and Figure 5.1 (d), respectively; the square in the middle of the wrapped phase is the 

area with no phase data. 

5.4.2 Unwrapping Experiment on Simulated Data 

     In order to test the unwrapping result of the WRPCG method, the unwrapping 

experiments of the original PCG method [264] [127] and the multigrid method [268] 

[127] are also conducted for performance comparison. In all the experiments described in 

this chapter, the quality map is averaged in a 33  window as suggested in [127] and the 

unwrapping results are obtained after 30 iterations for the WRPCG and PCG methods, 
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and after 4 iterations for the multigrid method.  

         After 30 iterations, WRPCG and PCG algorithms are considered to be converged 

since further iterations do not improve the results significantly. Similarly, 4 iterations are 

adequate to achieve convergence of the multigrid algorithm. Therefore, the results are 

suitable for the comparison study. 

       Figure 5.2 shows the unwrapping results for the simulated data in Figure 5.1. In 

Figure 5.2, the first, second, and third rows show the unwrapping results of different 

methods when the noise variance of the input data is 0.5 (Figure 5.1 (b)), 0.7 (Figure 5.1 

(c)), and 0.9 (Figure 5.1 (d)), respectively. (a1)-(a3) are the unwrapping results using the 

multigrid method in [268] [127] while the PDV is used as a quality map and the quality 

map is thresholded; (b1)-(b3) are the unwrapping results using the multigrid method in 

[268] [127] while the PDV is used as a quality map and the quality map is not 

thresholded; (c1)-(c3) are the unwrapping results using the weighted PCG method in 

[264] [127] while the PDV is used as a quality map and the quality map is thresholded; 

(d1)-(d3)  are the unwrapping results using the weighted PCG method in [264] [127] 

while the PDV is used as a quality map and the quality map is not thresholded; (e1)-(e3)  

are the unwrapping results using the WRPCG method with no weight: the regularization 

parameters are 1200 , 015.0 ; (f1)-(f3)  are the unwrapping results using the WRPCG 

method with weight, the PDV is used as a quality map, and not thresholded, and the 

parameters are 1200 , 015.0 . In this experiment, in the WRPCG method, boundary 

condition one is used; the unwrapping result when using boundary condition two is 

similar to condition one; therefore in order to save space, the unwrapping result of 

boundary condition two is omitted here. 
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TABLE 5.1 

MEAN RELATIVE ERROR, STANDARD DEVIATION OF UNWRAPPING ERROR, AND RMSE OF THE UNWRAPPING RESULT 

Data and Parameter 

 

Method and  
Quality Map 

Error 

Metrics 

(noise 
variance= 

0.5) 

1200 , 

015.0  

Error 
Metrics 

(noise 

variance= 
0.5) 

9000 ,

0025.0  

Error 

Metrics 

(noise 
variance= 

0.7) 

1200 , 
015.0  

Error 

Metrics 
(noise 

variance= 

0.7) 

9000 ,
0025.0  

Error 

Metrics 

(noise 
variance= 

0.9) 

1200 , 
015.0  

Error 
Metrics 

(noise 

variance= 
0.9) 

9000 ,
0025.0  

Multigrid [268] 

[127] with weight, 

threshold quality 
map. 

PDV   0.0723486 

13.7430 

17.1540 

0.106984 

14.5757 

20.9195 

0.131636 

16.9482 

24.6555 

  

  

MPG   0.0720922 

13.8618 

17.0974 

0.307578 

35.5659 

45.0704 

0.480783 

46.5899 

81.3470 

  

  

Multigrid [268] 

[127] with weight, 
not threshold quality 

map. 

 

PDV   0.0931849 

12.7954 

17.6380 

0.0955678 

13.5381 

18.4993 

0.115453 

15.8681 

20.3108 

  

  

MPG   0.0715647 

13.6347 

16.8769 

0.0939449 

14.7578 

18.0749 

0.129498 

17.2748 

23.7293 

  

  

PCG [264] [127] 

with weight, 
threshold quality 

map. 

PDV   0.0923011 

11.5350 

17.3620 

0.0979659 

13.7322 

19.2705 

0.122683 

15.1089 

22.5253 
  

  

MPG   0.0830878 

13.4914 

18.2129 

0.321930 

26.4145 

48.0339 

0.354781 

31.9377 

50.8089 

  

  

PCG [264] [127] 

with weight, not 

threshold quality 
map. 

PDV   0.0783783 

10.9839 

15.1362 

0.0906183 

13.4420 

17.1359 

0.113122 

15.5101 

19.5049 

  

  

MPG   0.0934688 

14.6788 

19.1668 

0.157692 

17.6336 

27.7298 

0.156875 

18.4822 

27.2029 

  

  

Boundary 

Condition  

One 

WRPCG 
Method 

with 

weight 

PDV   0.0668806 

10.1517 

13.8263 

0.0667911 

10.1479 

13.8117 

0.0732251 

10.5090 

14.7046 

0.0698172 

10.4700 

14.2312 

0.0665961 

10.5311 

13.4927 

0.0652012 

10.5457 

13.1620 

  

  

MPG   0.0617150 

10.1749 

13.3075 

0.0601976 

10.1666 

13.1295 

0.0713062 

10.5445 

14.2969 

0.0715910 

10.4782 

14.3714 

0.0644896 

10.3949 

12.6022 

0.0672019 

10.5556 

13.0105 

(invert) 

  

  

 WRPCG 

Method with no 
weight 

  0.0702864 

10.1972 

14.1487 

0.0695064 

10.1972 

14.0787 

(invert) 

0.0764416 

10.6116 

15.0611 

0.0783375 

10.7000 

15.3165 

0.0780758 

11.5147 

13.9483 

0.0774673 

11.4872 

13.8182 

  

  

Boundary 

Condition  

Two 

WRPCG 
Method 

with 

weight 

PDV   0.0668578 

10.1564 

13.8305 

0.0664736 

10.1434 

13.7805 

0.0732189 

10.4534 

14.6933 

0.0734679 

10.4673 

14.7275 

0.0663076 

10.5487 

13.3984 

0.0671603 

10.5505 

13.5680 

  

  

MPG   0.0618698 

10.1740 

13.3279 

0.0618610 

10.1926 

13.3354 

0.0702133 

10.5013 

14.1625 

0.0710902 

10.5811 

14.2434 

0.0646967 

10.4109 

12.6374 

0.0654481 

10.4885 

12.5644 

  

  

WRPCG 

Method with no 

weight 

  0.0708909 

10.2066 

14.2136 

0.0703797 

10.1850 

14.1302 

0.0770030 

10.5963 

15.1332 

0.0751377 

10.5860 

14.8822 

0.0771094 

11.4669 

13.7609 

0.0785673 

11.5738 

13.8421 

  

  

 



 

 

181 

 

   From Figure 5.2, we observe that the multigrid method and weighted PCG method 

have large global errors in the unwrapping result due to the invalid data in the wrapped 

phase. The WRPCG method without weights can eliminate the large scale unwrapping 

errors in the unwrapping result, but in the valid area, some unwrapping errors still exist. 

When weights are used in the proposed WRPCG method, the large scale unwrapping 

errors are eliminated and the errors in the valid area are further reduced due to the 

weights used in the unwrapping. For different noise levels, the different methods have 

similar results: the lower the noise level, the better the unwrapping result. 

5.4.3 Evaluation and Discussion of the Unwrapping Results 

   In order to fully evaluate the unwrapping result, three evaluation methods are used. 

First, the mean relative error [273] is computed. (For the definition of mean relative error, 

please refer to [273].) Second, the standard deviation [271] [272] of the phase error is 

computed. (For the definition of standard deviation, please refer to [271] [272].) Finally, 

the root mean square error (RMSE) [244] is computed; the definition of RMSE is [244] 

    









1

0

1

0

2
,,

1 M

i

N

j

unwrapcorrect jiji
MN

RMSE  ,                                 (5.15) 

where  jicorrect ,  and  jiunwrap ,  are the correct unwrapped and real unwrapped phase, 

respectively. In addition, the invalid area is excluded in the computations of mean 

relative error, standard deviation, and RMSE computations. 

       It should be noted that, in the unwrapping result of the WRPCG method, the dynamic 

range is changed; therefore, we rescale the unwrapping result before computing the mean 

relative error, standard deviation of the phase error, and RMSE. This scaling is different 

from the scaling in [261] which rescales the shape of the unwrapped phase. In the 
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proposed method, the scaling is just to rescale the dynamic range of the unwrapped 

phase; the shape is not changed during the scaling.  

   Table 5.1 shows the mean relative error (  ), standard deviation of the phase error 

( ), and RMSE ( ) for different unwrapping methods using the PDV and MPG as 

quality maps, respectively.  

       From the unwrapping result, we found that the unwrapping result of the WRPCG 

method sometimes may get a unwrapping result which is totally the inverted version of 

the correct unwrapping result; therefore, we need to invert the unwrapping result when 

this happens (when the inversion operation is performed, we indicate by „invert‟ in table 

5.1). The inversion operation is    jiSSjiS ,)max(,  , where  jiS ,  is the unwrapped 

phase. The reason for this inversion is still not clear, but we found in our experiment that 

this inversion mostly occurs when the parameter   is too large and with the boundary 

condition one. This first of these indicates that the parameter   can not be too large, 

while the second suggests the instability associated with boundary condition one.  

       The major results to note from Table 5.1 are that the mean relative error, standard 

deviation of the phase error, and RMSE from all the experiments. These experiments 

include the various combinations of unwrapping algorithms, parameters, boundary 

conditions, noise level, etc.   

      Comparing the mean relative error, standard deviation, and RMSE of the unwrapping 

results of Table 5.1, we can get the following results. 

  5.4.3.1 Different Unwrapping Methods. For the weighted multigrid and PCG method, 

the mean relative error, standard deviation, and RMSE are all high compared to the 

WRPCG method. This is due to the large scale errors propagated from the invalid area. 
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When using the WRPCG method with no weights applied, the mean relative error, 

standard deviation, and RMSE are all reduced. When using the WRPCG method with 

weights, the mean relative error, standard deviation, and RMSE are further reduced. 

  5.4.3.2 Low and Moderate Noise Level. Now we compare the unwrapping results of 

Table 5.1 when the noise level is low or moderate (i.e. noise variance is 0.5 or 0.7). The 

mean relative error, standard deviation, and RMSE of the multigrid and weighted PCG 

method are all slightly higher than those of the WRPCG method with or without weight. 

The WRPCG method with weight mostly has  lower mean relative error, standard 

deviation, and RMSE than the WRPCG method without weight. (Only one case is an 

exception: when noise variance is 0.5, 9000 , 0025.0 , the weighted WRPCG method 

using MPG as weight obtains slightly higher standard deviation than the WRPCG method 

without weight. This means that, at a low noise level, the   value should not be too high 

while the   value should not be too low.) This indicates that the WRPCG method is 

slightly better than the multigrid and PCG method when the noise level is low or 

moderate. Since the WRPCG method is designed for the unwrapping of noisy data, it is 

not unexpected that only minor improvements are seen in low or moderate noise 

situations. On the other hand, the WRPCG method with weight is slightly better than the 

WRPCG without weight when the noise level is low or moderate. 

  5.4.3.3 High Noise Level. When the noise level is high (i.e. noise variance is 0.9), the 

WRPCG method with or without weight shows conspicuously lower mean relative error, 

standard deviation, and RMSE than the multigrid and PCG methods. This means the 

WRPCG method outperforms the multigrid and PCG method for the unwrapping of noisy 

phase data. When the noise level is high, for the WRPCG method with weight, the mean 
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relative error, standard deviation, and RMSE are all conspicuously lower than those of 

the WRPCG method without weight. This means that the WRPCG method with weight 

outperforms the WRPCG method without weight when the noise level is high. 

Comparing the mean relative error, standard deviation, and RMSE of the weighted and 

unweighted WRPCG methods, we found that the weighted method further reduces the 

unwrapping errors. 

  5.4.3.4 Impact of Boundary Conditions and Quality Maps. Now we compare the 

different boundary conditions and quality maps in the WRPCG method. For different 

boundary conditions in the proposed method, the mean relative error, standard deviation, 

and RMSE are similar; this means that both boundary condition one and two perform 

well in the unwrapping. (But, as previously noted, the inversion of the unwrapping result 

mostly happens when using boundary condition one, suggesting a stability problem 

owing to the lack of full symmetry. This shows the boundary condition two is more stable 

than condition one.) For the different quality maps, the unwrapping results vary. When 

the MPG is used as a quality map, the mean relative errors and RMSEs are mostly lower 

than those when the PDV is used as a quality map. When the MPG is used as a quality 

map, the standard deviations are sometimes lower than these when the PDV is used as a 

quality map, but sometimes higher than these when the PDV is used as a quality map.  

  5.4.3.5 Parameter Sensitivity of the WRPCG Method. For different parameters, the 

performance of the proposed method varies. For different parameters in the regularization 

term,   should be big enough to penalize the discontinuous data, and   should be small 

enough [262]. We conducted experiments using two sets of parameters: first, 1200 , 

015.0 ; second 9000 , 0025.0 . From Table 5.1, we found that the relative error, 
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standard deviation, and RMSE of the second case are sometimes lower than those of the 

first case, but sometimes are higher than those of the first case. Although from these 

evaluations we cannot say which parameter is better, because the inversions mostly 

occurred in the second case, this means that the second case is less stable than the first 

case. 

  5.4.3.6 Error Metrics. Comparing the different evaluation methods (mean relative error, 

standard deviation, and RMSE), we found that although each method has different 

characteristics, the same conclusion is achieved irrespective of the error metric. 

        In summary, the error performance shown in Table 5.1 indicates that the WRPCG 

method with weight outperforms the WRPCG method without weight, the weighted 

multigrid method in [268] [127], and the PCG method in [264] in terms of mean relative 

error, standard deviation, RMSE. This supports the conclusion of the visual comparison. 

5.4.4 Memory Requirement and CPU Time 

   The memory requirement and processing time are important in phase unwrapping, as 

discussed in [127] for the PCG case. For the proposed WRPCG method for the 

unwrapping of real InSAR data, the memory requirement is slightly increased, relative to 

PCG, because two phase quality maps are needed (see Section 5.5 for the details): one is 

for the computation of weights, and the other is for the classification of valid and invalid 

areas. Compared to the PCG method, in which only one quality map is used [127], the 

WRPCG method needs slightly more memory than the PCG method. 

        As regards the CPU time, the WRPCG method only adds some steps for the 

classification of valid and invalid areas, and thus adds little computational time relative to 

the PCG method. Therefore, the WRPCG method has a slightly higher computational 
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time than the PCG method. For the unwrapping experiments in Table 5.1, the processing 

time varies slightly for different situations, but the average processing time for the PCG 

method is 12.5 s, while the average processing time for the WRPCG method is 13.6 s. 
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Figure 5.3. The flowchart of the WRPCG method when unwrapping the real SAR data.  
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5.5 Unwrapping Method and Experiments on Real SAR Data 

5.5.1 Unwrapping Method for Real SAR Data 

        In this section, we apply the WRPCG method to real InSAR data. In the case of 

InSAR phase unwrapping, if the noise level is high, or the shadow or layover occurs in 

the wrapped phase [127] [134] [136] [274] [279], the phase data may be of very low 

quality. Therefore, when the phase quality is very low, we can classify these data as 

invalid data, otherwise, the data can be classified as valid data. 

        For the real InSAR data, the valid and invalid data should be differentiated 

according to the quality map. When the quality value is lower than a threshold, it is 

assumed that this area has invalid data; otherwise the data are considered valid. Because 

the quality map of the PCG method is generally thresholded before the computing of 

weights [127], we should use two quality maps in this processing: one is thresholded and 

is for the computing of weights, and the other is not thresholded and is used to 

differentiate the valid data from the invalid data; this means that the memory requirement 

for the WRPCG method is higher than that for the PCG method. The different processing 

methods of the data in valid and invalid areas are shown in the flowchart in Figure 5.3. 

First, the quality map is computed. Second, the quality map is used to compare a user-

defined threshold for assignment of a valid/invalid label. If the quality value is lower than 

the threshold, we assign the data as invalid data; otherwise, we assign the data as valid 

data. Third, the quality map is thresholded to compute the weights for later processing. 

Fourth, for the valid data, we use the PCG method with (5.10); for the invalid data, we 

use the PCG method with (5.11).  

   For the real InSAR data, we should also rescale the unwrapping result; in order to do 
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this, we can use the ground truth or the crude digital elevation model (DEM) or light 

detection and ranging (LiDAR) [269] DEM. 

5.5.2 Unwrapping Experiment on Real SAR Data 

   In this experiment, we use the polarimetric InSAR (PolInSAR) data which is after 

coherence optimization [16]. Similar to [255], the phase data with the lowest coherence 

are used to examine the unwrapping ability of the proposed method. In this experiment, 

the threshold is 0.3, and the quality map is in the range  1,0 ; this means that data with 

quality lower than 0.3 are classified as an invalid area; otherwise they are classified as 

valid data. 

 

 

     
(a)                  (b)                 (c)                 (d) 

Figure 5.4. The wrapped phase and unwrapping result of the PolInSAR data. In this 

experiment, PDV is used as a quality map; the quality map is thresholded and 

fattened by two pixels using the method in [127]. (a) Wrapped phase (we use the 

same phase data as [255]). (b) Unwrapping result using the original PCG method in 

[264], with weight. (c) Unwrapping result using the WRPCG method, 9000 , 

0002.0 , with weight,  and boundary condition one; the unwrapping result is 

inverted. (d) Unwrapping result using the WRPCG Method, 9000 , 0002.0 , 

with weight, and boundary condition two. 
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        In this experiment, we use the same phase data as [255]; the wrapped phase of the 

phase data set with the lowest coherence is shown in Figure 5.4(a). The unwrapping 

result of the weighted PCG method [264] [127] is illustrated in Figure 5.4(b): the PDV 

quality map is thresholded and fattened by two pixels using the method in [127]. In the 

unwrapping result of the weighted PCG method, several large scale unwrapping errors 

(the discontinuities in the unwrapped result [127]) occur. The unwrapping result of the 

WRPCG method with weight and using boundary condition one is shown in Figure 5.4 

(c). In Figure 5.4 (c), the unwrapping result is inverted in this figure because the 

unwrapping result is the inverted version of the correct unwrapping result. This inversion 

is believed due to the instability of boundary condition one. In Figure 5.4 (c), the large 

scale unwrapping errors are mostly eliminated. In this experiment, the boundary 

condition one is used, 9000 , 0002.0 , and the PDV quality map is fattened by two 

pixels using the method in [127]. Figure 5.4 (d) shows the unwrapping result of the 

WRPCG method with weight and using boundary condition two while the other 

parameters are the same as Figure 5.4 (c). Compare the unwrapping result of condition 

one and two, we found that boundary condition one and two have a similar unwrapping 

result apart from the inversion. In the unwrapping result of the WRPCG method with 

weight, the large scale unwrapping errors are mostly eliminated; this provides a better 

unwrapped phase than the weighted PCG method in [264]. 

 

5.6 Discussion and Conclusion 

    In this chapter, the WRPCG phase unwrapping method is proposed. The WRPCG 

method combines weights in the regularized PCG method as well the use of the fast 
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cosine transform to compute the preconditioner of the PCG method. By applying 

regularization and weights in the same unwrapping method, the WRPCG method not 

only reduces the large scale unwrapping errors that occur in the traditional weighted PCG 

method when some of the phase data are missing, but also improves the unwrapping 

accuracy in the valid area. Two boundary conditions are introduced in solving the 

boundary problem. Boundary condition one is a simplified boundary condition, and 

sometimes may cause unstable unwrapping results. Boundary condition two is 

completely symmetric and is more stable than condition one. 

    The unwrapping result of simulated data shows that the WRPCG method reduces the 

large scale unwrapping errors in the PCG method. Several quantitative evaluation 

methods are used to evaluate the proposed method. The WRPCG method further reduced 

the unwrapping errors in terms of relative error, standard deviation, RMSE, and visual 

evaluation.  

    The implementation of the WRPCG method for real InSAR data was also 

introduced. The WRPCG method is applied on the real PolInSAR phase unwrapping. The 

unwrapping results showed that the WRPCG method reduced the large scale phase 

unwrapping errors which exist in that of the traditional PCG method. 

        In summary, the WRPCG method achieves better unwrapping results than the 

traditional PCG method by combining the weights and regularization, at a cost of 

algorithm complexity and slightly more processing time. 
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CHAPTER 6:  USING SECOND ORDER RESIDUE IN 

POLINSAR PHASE UNWRAPPING
5
 

 

        In this chapter, the residue is extended to the second order, which is called second 

order residue. Second order residue is researched and applied in the interferometric 

synthetic aperture radar (SAR) phase unwrapping. Similar to the residue, the second 

order residue reflects the discontinuity in the wrapped phase. In phase unwrapping, the 

traditional residue is normally used to form the branch cut according to some criterions. 

The second order residue can be directly or indirectly used as quality map. The second 

order residue is used as quality map in the polarimetric interferometric SAR (PolInSAR) 

phase unwrapping. The experiments using real PolInSAR data show that the second order 

residue is a promising quality map in SAR phase unwrapping. 

 

6.1 Introduction 

  Phase unwrapping is a very important technique in the interferometric SAR (InSAR) 

processing. Although there are many phase unwrapping algorithms in the literature [276] 

[287] [288] [268] [289] [136] [290] [127] [278] [291] [142], the unwrapping problem is 

still not fully solved due to its complexity. For different applications, the phase 

unwrapping has different difficulties. The special characteristics of InSAR imaging 

                                                 

5
 © 2008 IEEE. Reprinted, with permission, from [Yong Bian and Bryan Mercer, “Using second order 

residue in PolInSAR phase unwrapping,” Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 

May 26-30, 2008, pp. 1-5.]. 
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determine its phase unwrapping to be a very tough problem. Due to the layover [134], 

shadow [138], noise [150], etc, many phase unwrapping algorithms failed in the 

unwrapping of InSAR data [127] [136]. In order to improve the robustness against these 

low quality data, many phase unwrapping algorithms use quality map to guide the phase 

unwrapping [268] [136] [127] [276]. Therefore, phase quality map plays a key role in 

many phase unwrapping methods. The correct usage of phase quality map determines the 

unwrapping accuracy of many phase unwrapping algorithms. There are many types of 

quality maps for many applications. In this research, the second order residue is 

introduced and applied as quality map on the InSAR phase unwrapping.  

    The residue [142] indicates the phase quality but can not be directly used as quality 

map. The branch cut method [142] connects the residue to avoid the integration path 

across the branch cuts which connects the residues [142]. Recently, more and more 

researches are focusing on the relationship between phase gradient and residue in order to 

get a better quality map [276] [291]. Also, second difference [289] [287] [288] was used 

to measure the phase quality in optical phase unwrapping but not used in the SAR phase 

unwrapping. In this paper, we propose the second order residue based on the second 

difference and use the second order residue as the quality map in the polarimetric InSAR 

(PolInSAR) [16] phase unwrapping. In PolInSAR, there are three wrapped phase in the 

output of coherence optimization [16]. Because these three wrapped phases have different 

levels of coherence and noise, we use these wrapped phases to test the noise immune 

ability of phase unwrapping.  
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      This chapter is organized as following. Section 6.2 is the introduction of second order 

residue. Section 6.3 is the application of second order residue in the PolInSAR phase 

unwrapping. The final section is the conclusion. 

 

 

6.2 Second Order Residue 

6.2.1 Review of First Order Residue 

        The residue theory [142] is based on the assumption that the closed loop summation 

of the gradient should equal zero when the phase quality is high [276]. We call the 

residue as the first order residue here in order to differentiate the second order residue. 

The residue is computed by the neighboring four pixels (see Figure 6.1 (a)) [276], the 

computation of residue is as the following equation [290]: 

 

           jijijijijiR f ,11,1,,1,   

         1,,1,11,  jijijiji ,                        (6.1) 

 

where  jiR f ,  means the first order residue,  ji,  denotes the wrapped phase at the pixel 

 ji, ,    means the wrapping processing to confine the phase difference to   ,  [278]. 

The residue value only equals 0, 1 or -1 [276]. The residue of spiral data which was 

distributed with book [127] was illustrated in the Fig. 3 (b) of [276]. 

6.2.2 Second Order Residue 

  The second difference [289] [287] [288] was originally used as the quality map in 
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optical phase unwrapping but not applied on the InSAR data phase unwrapping. Here, we 

define the second order residue based on the second difference. The second order residue 

is based on a similar assumption as residue: the summation of the closed loop in the 

phase map of the second difference should be zero when the phase quality is high, which 

is the following equation: 

 

  0sD ,                                                                    (6.2) 

 

where sD  means the second difference in the wrapped phase map. 

   The first order residue is the smallest circle in the phase map. The second order 

residue is the second smallest circle in the phase map, which is computed using the eight 

pixels surrounding the center pixel. The definition of the second order residue is the 

summation of the second differences in a closed circle formed by eight pixels 

surrounding the center pixel (see Figure 6.1 (b)), this can be formulated as the equation: 

            1,1,1,11,1,  jijijijijiRs  

          1,11,1,1,1  jijijiji  

          1,1,1,11,1  jijijiji  

          1,11,1,1,1  jijijiji ,                          (6.3) 

where  jiRs ,  denotes the second order residue in pixel  ji, ,    means the wrapping 

processing to confine the phase difference to   , . 

    Similar to the first order residue, the second order residue have positive or negative 

values. Different to the first order residue, the second order residue can have the values 
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within  1,1 . More important, the second order residue forms a structure similar to the 

residue vector which was proposed in [276] (See Figure 6.1 (c). Figure 6.1 (c) is the 

second order residue of the spiral data [127].), this is a very helpful characteristic in 

phase unwrapping. Similar to the residue vector, the second order residue shows the 

direction information of phase discontinuities. The residue vector needs the vertical and 

horizontal gradient maps to describe the residue vector in each direction respectively 

[276]. Differently, the second order residue uses one map to describe both the 

information of horizontal and vertical directions. 

 

 

 

(i,j) (i,j+1) 

(i+1,j+1) (i+1,j) 

   

 

(i,j) (i,j+1) 

(i-1,j+1) (i-1,j) (i-1,j-1) 

(i,j-1) 

(i+1,j-1) (i+1,j) (i+1,j+1) 

 

(a)                                    (b) 

  
(c) 

Figure 6.1. The first and second order residue. (a) The computation of first order residue 

[276]. (b) The definition of second order residue. (c) The second order residue of the 

spiral data, this data is distributed with [127].  
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         Although the residue reflects the phase quality, the residue map can only be used in 

the branch cut setting and can not be directly used as the quality map. Recently, a residue 

vector method [276] was proposed which can be directly used as quality map. Similar to 

the residue vector, the second order residue can be used directly or indirectly as quality 

map. The second order residue of the spiral data (this spiral data is distributed with [127]) 

as is shown in Figure 6.1 (c) can be directly used as the quality map in phase unwrapping 

after some slightly arrangement which will be discussed in the next section. Fig. 3 (b) of 

[276] shows the first order residue in the spiral data (this data is distributed with the book 

[127] and also was used to show the residue vector in [276]). From Figure 6.1 (c) and 

compare the so called residue vector in [276], we found the second order residue shows 

the low quality area directly. 

 

6.3 Phase Unwrapping Using Second Order Residue 

6.3.1 Unwrapping Method Using Second Order Residue 

   We use the quality guided path following method (QGPF) [127] to examine the 

performance of the second order residue as quality map. The QGPF method begins 

unwrapping at the highest quality area, and then unwrap the area with the modest quality, 

finally unwrap the area with the lowest quality [127] [289], this unwrapping sequence 

prevents the error propagation in the unwrapping result. The unwrapping path is very 

important in the QGPF method, and the generation of unwrapping path depends on the 

correctness of quality map, therefore the quality map is the key problem in this method. 

In terms of these analyses, QGPF method is an ideal method to test the 
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(a)              (b)            (c)            (d) 

Figure 6.3. Unwrapping result of the QGPF method using the coherence and second order 

residue as quality map, the data is the second optimization data. (a) Wrapped phase of the 

second optimization. (b) Unwrapping result of QGPF method using coherence as quality 

map. (c) Unwrapping result of QGPF method using second order residue as quality map 

(Method One). (d) Unwrapping result of QGPF method using second order residue as 

quality map (Method Two). 

 

    

(a)          (b)              (c)             (d) 

Figure 6.2. Unwrapping result of the QGPF method using the coherence and second order 

residue as quality map, the data is the third optimization data. (a) Wrapped phase of the 

third optimization. (b) Unwrapping result of QGPF method using coherence as quality map. 

(c) Unwrapping result of QGPF method using second order residue as quality map (Method 

One). (d) Unwrapping result of QGPF method using second order residue as quality map 

(Method Two). 
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performance of the phase quality map. 

   The second order residue can be easily used as quality map. In order to reduce the 

influence of noise in the wrapped phase, the second order residue should be averaged 

when it is used directly as quality map. The second way is to use the variance of second 

order residue to reduce the influence of noise. 

     Method One: The first way is to average the second order residue in a window, 

which is: 

 

    





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
2/
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s jiR
W

jiR ,                                        (6.4) 

 

where  jiR
average

s ,  is the averaged second order difference in a WW  window. The average 

is used to reduce the influence of noise in the wrapped phase. 

    Method Two: The second method is to compute the variance of the second order 

residue. The variance of second order residue can be computed using a method similar to 

the computation of phase derivative variance [127] [268], which is computed using the 

equation: 
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s jiRnmR
W

jiR ,                               (6.5) 

 

where  jiRs ,


 is the averaged second order residue in the WW   window,  jiR
iance

s ,
var  is 

the variance of second order residue centered at pixel  ji, . 
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6.3.2 Unwrapping Experiment and Result 

   In this experiment, we use the PolInSAR data to examine the performance of second 

order residue when it is used as quality map. The PolInSAR is using the coherence 

optimization [16] technique to improve the coherence and reduce the noise in the 

wrapped phase. In this experiment, we use the PolInSAR data acquired by the TOPOSAR 

system developed by Intermap Technologies Corp. as the test data. We use the wrapped 

phase after coherence optimization [16] to examine the performance of phase 

unwrapping. After coherence optimization, there are three new wrapped phases with 

    

(a)             (b)           (c)            (d) 

Figure 6.4. Unwrapping result of the QGPF method using the coherence and second 

order residue as quality map, the data is the first optimization data. (a) Wrapped phase of 

the first optimization. (b) Unwrapping result of QGPF method using coherence as 

quality map. (c) Unwrapping result of QGPF method using second order residue as 

quality map (Method One). (d) Unwrapping result of QGPF method using second order 

residue as quality map (Method Two). 
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different coherence values which are illustrated in Figure 6.2 (a), Figure 6.3 (a), and 

Figure 6.4 (a) respectively. The first optimization (see Figure 6.4 (a)) has the lowest 

coherence and highest noise level, the second optimization (see Figure 6.3 (a)) has the 

moderate coherence and modest noise level, the third optimization (see Figure 6.2 (a)) 

has the highest coherence and lowest noise level. In the real application of PolInSAR 

system, only the wrapped phase with the highest coherence (here is the third 

optimization) is used to acquire the digital elevation model. Because the three 

optimization data have different levels of noises, these three optimization data can be 

used as a dataset to examine the unwrapping ability of phase unwrapping methods in 

different noise levels. Here we use these three wrapped phases to test the noise immune 

ability of the phase unwrapping algorithm using different phase quality maps.  

    The wrapped phase for the three optimizations are illustrated in Figure 6.2 (a), 

Figure 6.3 (a), and Figure 6.4 (a) respectively. The third, second, and first optimization 

data have 59374, 112495, and 239058 residues, respectively. The differences in the 

number of residues are due to the different levels of noises in the wrapped phases after 

coherence optimization [292]. In Method One, we use a 33  window in averaging. In 

Method Two, we use a 33  window in computing the variance of the second order 

residue. Several experiments are conducted to examine the unwrapping performance of 

the second order residue based QGPF method. We conduct experiments on Method One 

and Method Two respectively in order to compare their performances. Firstly, Method 

One is used to average the second order residue. The averaged second order residue is 

used as quality map in the QGPF method. This second order residue based QGPF method 

is used in the phase unwrapping of the three optimization dataset. The unwrapping result 
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of third, second, and first optimization data are illustrated in Figure 6.2 (c), Figure 6.3 (c), 

and Figure 6.4 (c) respectively. Secondly, we use the Method Two to compute the 

variance of second order residue and used it as quality map in the QGPF method. The 

unwrapping results of third, second, and first optimization data are showed in Figure 6.2 

(d), Figure 6.3 (d), and Figure 6.4 (d) respectively. 

     Coherence is widely used as quality map in InSAR phase unwrapping [136], 

therefore we use the coherence as quality map to compare the performance with the 

second order residue. In order to examine the performance of second order residue, we 

conduct several experiments using the coherence as quality map on the same dataset. 

Figure 6.2 (b), Figure 6.3 (b), and Figure 6.4 (b) show the unwrapping result of QGPF 

method using coherence as quality map for the third, second, and first optimization data 

respectively. In computing the coherence, the data should be smoothed in the range and 

azimuth direction in order to reduce the influence of noise [127]. In these experiments, 

we smooth the data 13 pixels in range direction and 19 pixels in azimuth direction. 

   From these unwrapping results, we found: 

1) For the third and second optimization data, both the Method One and Method Two 

outperforms the coherence quality map. In the unwrapping result of coherence, many 

large scale areas are wrongly unwrapping, which are the abrupt transition areas in the 

unwrapping result. Both unwrapping results of Method One and Method Two only 

have slightly errors. This means the second order residue is good in the unwrapping 

of low and moderate noise level data. 

2) In the first optimization data, both the second order residue method and coherence 

have few large scale unwrapping errors. Method One has less unwrapping errors than 
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Method Two. This means in high noise level, the Method One is better than Method 

Two. In high noise level, second order residue has the similar performance with the 

coherence. 

3) Compare the unwrapping errors in the three optimization data when using the 

coherence as quality map, we found the noise level do not influence very much the 

performance of phase unwrapping when coherence is used as quality map. 

      All in all, the second order residue outperforms the coherence as quality map when 

the noise level is low or moderate. The second order residue has the similar performance 

with coherence when the noise level is high. 

 

6.4 Conclusion 

    In this chapter, the first order residue is extended to the second order residue. The 

second order residue can be directly used as the quality map in phase unwrapping 

because the more information is provided than the first order residue. The second order 

residue is a method to describe discontinuities in the wrapped phase. When the second 

order residue is directly used as quality map to guide the unwrapping, some 

preprocessing should be conducted such as compute the averaged values or the variance 

of the second order residue. 

       The unwrapping experiments on the PolInSAR data are conducted using the second 

order residue as quality map and QGPF method. The unwrapping experiments show that 

the second order residue as quality map outperforms the coherence as quality map in low 

and moderate noise level. When the noise level is high, large scale errors occurred in both 

the unwrapping results of second order residue and coherence. 
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CHAPTER 7:  POLINSAR STATISTICAL ANALYSIS AND 

COHERENCE OPTIMIZATION USING FRACTIONAL 

LOWER ORDER STATISTICS
6
 

 

        In this chapter, the polarimetric synthetic aperture radar (SAR) interferometry 

(PolInSAR) statistical model is studied using the alpha-stable distribution. Based on this 

model, a vector coherence formulation using fractional lower order statistics (FLOS) is 

proposed. This vector coherence is the generalization of the vector coherence in [16] 

when the PolInSAR data are non-Gaussian and conform to the symmetrical form of the 

alpha-stable distribution. The standard coherence optimization method in [16] is modified 

based on this generalized vector coherence. Results were demonstrated using a small L-

band PolInSAR data set and suggest that this proposed coherence optimization method 

reduces artifacts in the optimized phases in certain areas. 

 

7.1 Introduction 

        Polarimetric synthetic aperture radar (SAR) interferometry (PolInSAR) is being 

studied in a number of application areas, including tree-height estimation [23], 

agricultural parameter estimation [296], urban area mapping [31], and digital-elevation-

model extraction [297]. In the PolInSAR context, the coherence is a complex vector 

                                                 

6
 © 2010 IEEE. Reprinted, with permission, from [Yong Bian and Bryan Mercer, “PolInSAR statistical 

analysis and coherence optimization using fractional lower order statistics,” IEEE Geoscience and Remote 

Sensing Letters, vol. 7, no. 2, pp. 314-318, April 2010.]. 
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quantity, as described, for example, in [16] and [23]. The biophysical or geophysical 

parameters of interest are usually recovered by inversion from the phase and magnitude 

elements of this vector through the intermediary of an appropriate model [23], [91]. For a 

distributed target, the elements of the scattering matrix are stochastic variables. The 

extraction of information from this matrix requires that statistical parameters need to be 

estimated. However, estimation uncertainty introduces bias into the derived parameters 

[7], [300] due to the limited number of samples that can be used in the estimation. It is 

often assumed that the stochastic properties of the complex SAR images can be described 

by independent bivariate Gaussian distribution [143], and this assumption has been 

generalized to polarimetric channels and to each of the interferometric channels [298]. 

While this is supported by observation in many cases, there are circumstances in which 

the underlying assumptions of Gaussian statistics are not supported [298]. 

       In this chapter, we introduce into the PolInSAR context the simplified form of the 

alpha-stable distribution, which allows for “heavy-tailed” distributions. It has been 

suggested by some authors [299], [160] that this type of distribution may be appropriate 

for areas consisting of nonhomogeneous scatterers, perhaps urban mixtures. Such an 

example was demonstrated for polarimetric L-band data in [199], and in this chapter, we 

extend the analysis to the PolInSAR case. Coherence optimization is fundamental to the 

application of PolInSAR technology, particularly in the context of separation of the 

underlying scattering mechanism, as first proposed in [16]. Several alternative 

approaches also appear in the literature including [293] [294] [295]. For purposes of this 

chapter, we will follow the approach of [16] in the context of the alpha-stable 

distribution. 
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       This chapter is organized in the following manner. In Section 7.2 of this chapter, the 

statistical characteristics of PolInSAR data will be discussed using the alpha-stable 

distribution. Then, in Section 7.3, we apply fractional lower order statistics (FLOS) to the 

computation of the standard coherency matrices ( 12Ω , 11T , 22T ), based upon the alpha-

stable distribution. Based on these new coherency matrices, the vector coherence in [16] 

is generalized to a formulation which can be used when the PolInSAR data conform to 

the alpha-stable distribution. We then formulate, in Section 7.4, a coherence optimization 

process based upon this generalized vector coherence and FLOS, by analogy with [16]. 

Experimental results for a particular data set are presented in Section 7.5 and conclusions 

are given in Section 7.6. 

 

7.2 PolInSAR Statistical Analysis Using Alpha-stable Distribution 

7.2.1 Review of Alpha-Stable Distribution 

      Since the probability density function (pdf) of the alpha-stable distribution does not 

generally exist in closed form [179], [176], it is approached through its characteristic 

function  , which represents the Fourier transform of its pdf. The full expression of  t  

is characterized by four parameters related to the mean location (  ), the skewness (  ), a 

scale parameter ( g ), and its characteristic exponent ( ). For analytical simplicity, we 

limit ourselves to the “isotropic symmetric” case [179], [176], equivalent to a zero-mean 

symmetric distribution. The characteristic function of isotropic symmetric alpha-stable 

distribution of complex data is then reduced to [182] 

   tt g exp  .                                                 (7.1) 
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In the special case 2 , the distribution becomes Gaussian, but as   gets smaller, the 

distribution function becomes “heavier tailed” and more strongly peaked. For the 

isotropic symmetric alpha-stable distribution, 0  and 0 . Moreover, because of 

these characteristics, the second and higher order moments do not exist [179], [176] when 

2 . Therefore, a different, but analagous approach, based upon FLOS is introduced in 

Section 7.3 to obtain the equivalent vector coherence. 

7.2.2 PolInSAR Statistical Analysis Using Isotropic Symmetric Alpha-Stable 

Distribution 

    The observed PolInSAR data set includes eight single-look complex images or 

channels, denoted as HHiZ , HViZ , VHiZ , and VViZ , where 2,1i  refers to antennas 1 and 2, 

respectively. Assuming reciprocity [295], VHHV  , and the eight channels are reduced to 

six. The modeling of polarimetric SAR data as four-channel isotropic symmetric-

distributed random complex variables was introduced in [199], and based on this scheme, 

we generalize the analysis of [199] to the PolInSAR case. We assume the PolInSAR data 

to be six-channel isotropic symmetric alpha-stable-distributed complex random variables 

Z , with ik  vectors for antennas 1i  and 2 written as 
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where 1HHZ , 1HVZ , and 1VVZ  are the master images in the HH, HV, and VV polarizations, 

respectively;  2HHZ , 2HVZ , and 2VVZ  are the slave images in the HH, HV, and VV 

polarizations, respectively; and the symbol  0,,0, gS   defines the parameters of the alpha-

stable distribution. 
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         In this model, there are 12 parameters that define the stochastic properties. We 

assume that the distributions associated with the two antennas are similar so that we can 

simplify to six parameters as follows: 21 HHHH   , 21 HVHV   , 21 VVVV   , 21 HHHH gg  , 

21 HVHV gg  , and 21 VVVV gg  . In the following, only the characteristic exponents   are 

relevant to the proposed coherence optimization method based on FLOS and are 

estimated using the six input data channels. 

 

7.3 Vector Coherence Based on FLOS 

7.3.1 Review of Vector Coherence 

   In this chapter, “*”, “T ”, and “†” denote complex conjugate, transposition, and 

complex conjugate transposition, respectively. With  TVVHVHH ZZZ 2k  in 

lexicographic basis (for the Pauli basis, we can obtain a similar result), the standard 

vector coherence is given by [16], [295]: 

 
Figure 7.1.  L-band PolInSAR image. Master image of HH. 
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where i  is the polarization choice for antennas 1 and 2, and the cross- and copolar 

matrices are given by 

 †
2112 kkΩ E ,  †

1111 kkT E ,  †
2222 kkT E ,                               (7.4) 

where E  denotes the expectation operator. 

    As noted earlier, this representation is defined based on the second-order statistics 

[294] and is not applicable to isotropic symmetric alpha-distributions, where 2 , 

because the second-order moment becomes infinite [176]. 

7.3.2 Vector Coherence Based on FLOS 

    For alpha-stable distributions, the second-order moments do not exist when 2  

[179], and therefore, the matrix elements in (7.4) cannot be computed. If we assume that 

the PolInSAR data follow the alpha-stable distribution, then our approach is to use 

fractional lower order moments. In this chapter, we use the fractional lower order 

covariance as expressed in [165] to calculate the fractional lower moments, which are 

here defined as FLOS

12Ω , FLOS

11T , and FLOS

22T  by analogy with (7.4). (These converge to 

standard Gaussian-based covariance elements when 2 ). We then define new k  

vectors based upon the transformed Z  variables: 
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which are defined in (7.5a)-(7.5c), respectively.  
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      The limiting choices of u  are described in [183]. In [199], it is further argued that 

2/u  for each of the channels. Therefore, in (7.5), we have  

2/llu                                                           (7.6) 

where  2,2,2,1,1,1 VVHVHHVVHVHHl . The estimator of alpha will be discussed in 

Section 7.4.2. 

    Finally, the vector coherence based upon the isotropic symmetric alpha-stable 

distribution and FLOS is represented as 

  
 FLOSFLOS

FLOSFLOS

FLOS

FLOS j




 exp

222
†
2111

†
1

212
†
1 

TT

Ω
.                         (7.7) 

This vector coherence is the generalized version of the vector coherence described in [16] 

and shown in (7.3) and is valid for the case of an isotropic symmetric alpha-stable 

distribution. 
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(a1)                          (b1)  

      
(a2)                        (b2) 

      
(a3)                      (b3)  

       
(a4)                       (b4)  

Figure 7.2.  (a1)-(a3) are the optimized coherences of the first, second, and third 

optimizations of the standard method in [16], respectively. (b1)-(b3) are the optimized 

coherences of the first, second, and  third optimizations of the proposed method, 

respectively. (a4) is the mask of (a1) shown in white when the optimized coherence is 

higher than 0.9. (b4) is the mask of (b1) shown in white when the optimized coherence 

is higher than 0.9. 
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7.4 Coherence Optimization Based on FLOS 

7.4.1 Definition 

    Much effort has been addressed to the problem of coherence optimization [16] [293] 

[294] [295], based upon underlying Gaussian statistics. In this chapter, we generalize the 

methods in [16] using the FLOS-based vector coherence. Using the proposed vector 

coherence definition in (7.7), the coherence optimization based on FLOS can be 

formulated as 

   BA FLOSFLOSFLOS  222
†
22111

†
11212

†
1  TTΩM .                     (7.8) 
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Figure 7.3.  Coherence magnitude histograms of the results in Figure 7.2. Histograms 

represent the first, second, and third optimized coherences using (thick lines) the 

standard method in [16] and (thin lines) the proposed method.  
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    The other parts of the FLOS coherence optimization are the same as the standard 

method described in [16], which leads to the final result as  

 

      2
*
21212
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†
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ΩTΩT                             (7.9a) 

      1
*
211

†

12

1

2212

1

11  
 FLOSFLOSFLOSFLOS
ΩTΩT .                           (7.9b) 

 

7.4.2 Implementation       

        Both for the calculation of the generalized vector coherence and the coherence 

optimization based on FLOS, (7.5a)-(7.5c) need to be calculated first. In order to 

calculate 12Ω , 11T , and 22T , the parameter u  needs to be calculated using (7.6). The task 

then is to estimate the alpha parameters from the observational data. In this method, we 

use the alpha estimator of complex data which was proposed in [164] and used in [199]. 

This alpha estimator is related to the observed mean and variance of the logarithm of the 

absolute value of the complex SAR data lZ  and is expressed as [164] 

 

   




 

2
loglog6/ˆ ll ZEZE                                           (7.10) 

 

where  2,2,2,1,1,1 VVHVHHVVHVHHl  refers to the six channels of PolInSAR data. It 

should be noted that g , which is the scale parameter, drops out of the calculations of the 

k  vectors and subsequent computations. 
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(a1)                             (b1) 

     
(a2)                               (b2) 

     
(a3)                                   (b3)  

Figure 7.4. (a1)-(a3) are the optimized phases of the first, second, and third 

optimizations of the standard method in [16], respectively. (b1)-(b3) are the 

optimized phases of the first, second, and third optimizations of the proposed 

method, respectively. 
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7.5 Experimental Results 

   In order to examine the performance of the proposed coherence optimization method 

based on FLOS, several experiments are conducted using real PolInSAR data. The single-

look complex data set used in this experiment was obtained by Intermap Technologies 

Corporation, using its PolInSAR system described in [297]. An HH amplitude image is 

shown in Figure 7.1. The area includes forest (upper right), pasture (dark areas), and a 

mixture of low buildings, single trees, clusters of trees, and roads (left side). Thus, they 

are basically a mixture of strong and weak scatterers.  
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Figure 7.5.  Phase histogram of the result in Figure 7.4. Phase histogram of the first 

optimized coherence using the method in [16] and the proposed method. The histogram 

of solid line is from the standard method, and the dotted line is from the proposed 

method. The horizontal axis is the phase in radians. 



 

 

215 

 

        In Figure 7.2 and Figure 7.4, we show the amplitude and phase of the optimized 

coherence derived from the two methods, respectively. From top to bottom, they 

represent the first, second, and third optimizations: On the left side, the standard 

optimization method of [16] was applied, while on the right side, the FLOS-based 

method is applied. A 1515  moving window was used in each implementation. In this 

chapter, we use the first, second, and third optimizations as the output from the highest, 

second highest, and third highest eigenvalues, respectively. Upon comparative inspection 

of these results, there appear to be artifacts (which are the squares around the strong 

scatterers, particularly of the first optimization) in the optimized coherence and optimized 

phase of the method in [16], probably introduced by the moving window. In the proposed 

method, these artifacts are largely reduced from all the three optimization results, 

particularly for the first optimization. Figure 7.2 (a4) and (b4) show the masked area 

where the coherence amplitudes greater than 0.9 are shown as white. From these two 

figures, we observe that the proposed method reduces the blockiness of the coherence 

images and that the coherence has a more natural shape than the standard method. The 

coherences greater than 0.9 occur mostly around strong scatterers.  

        Histograms of these coherences are shown in Figure 7.3 for comparative inspection. 

In general, the histograms exhibit better separation of the first and second optimizations 

using the proposed approach than the standard method. This reflects a better separation of 

the scattering mechanisms in the relevant areas. The biggest difference between the 

methods is revealed in the peak region of the coherence associated with the first 

optimization. Whereas the standard method reveals a double peak, the proposed method, 

based upon the alpha-stable distribution, shows a single peak. A similar double peak 
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occurs for the second optimization derived by the standard process. One interpretation is 

that some portions of the targets, particularly near strong scatters, are alpha-stable 

distributed, causing the double peak in the standard optimization but resulting in a single 

peak for the proposed method. This may be due to a sharp transition from Gaussian-

dominated to alpha-stable statistics near these strong scatterers. This would result in 

corresponding changes of the optimized coherence values (standard method) in the local 

area and the appearance of artifacts. However, we suggest that the transformed data are 

effectively corrected under the alpha-stable distribution model, and therefore, the artifacts 

are reduced if not removed. More work is needed to clarify this interpretation. 

         In Figure 7.4, we show the phases associated with the three optimized coherences. 

While much of the test area shows similar phase characteristics, inspection of the 

subareas where differences in the optimized coherence magnitudes were observed also 

reveals differences in the phase determined by the two methods. A histogram of the 

phases associated with the first optimization, as derived by the two methods, is shown in 

Figure 7.5. While superficially similar, these distributions show that the peak of the 

histogram is shifted by about 0.05 rad. These show up in the phases from standard 

optimization as probable artifacts in the vicinity of strong scatters. The phase histograms 

of the second and third optimizations show less dissimilarity between the methods and 

are not reproduced here. 

 

7.6 Conclusion 

        In this chapter, we have proposed a formalism that allows the generalization to 

PolInSAR methodology of the isotropic symmetric version of the alpha-stable 
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distribution, of which the Gaussian distribution is a special case. A method for obtaining 

the vector coherence was presented based upon FLOS. An approach for the optimization 

of the coherence magnitude, based upon this approach, was then developed by analogy 

with a well-known standard method in [16]. An experimental data set of L-band 

PolInSAR was analyzed comparatively with respect to the merits of this standard method 

and the proposed FLOS-based method. The two methods show overall similarity but with 

important differences. The FLOS-based method shows better separation of the optimized 

coherence and appears to remove phase artifacts near strongly scattering targets, although 

this is to be further clarified. A range of scattering situations and other optimization 

approaches will be addressed in future work. 
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CHAPTER 8:  SUMMERY AND OUTLOOK OF FUTURE 

RESEARCH 

       

         In this Chapter, the research contributions and results of this thesis will be 

summarized, and the topics of future research will be provided. 

 

8.1 Summary 

        A PolInSAR system includes polarimetric SAR and interferometric SAR as its 

subsystems. This thesis addresses the statistical analysis and some important signal 

processing issues that are included in this system. In this thesis, we started with the 

statistical analysis and signal processing of the polarimetric SAR subsystem. Then, we 

studied the signal processing methods of the interferometric SAR subsystem, such as 

coherence estimation, phase filtering, phase unwrapping, and phase quality 

representation. Finally, we addressed the PolInSAR statistical analysis and signal 

processing. Some signal processing methods, such as coherence estimation, phase 

filtering, phase unwrapping, are discussed using the InSAR subsystem as examples. 

However, since the PolInSAR system is the combination of PolSAR and InSAR 

subsystems, these methods are also applicable to the whole PolInSAR system. In this 

research, we mostly addressed these issues in the following manner: First, we started with 

the theoretical analysis or model establishment. Then, we proposed the related methods 

based on the results of theoretical analysis. Finally, the proposed methods were validated 

by the experiments conducted on simulated data and/or real SAR data. 
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      In this thesis, the following issues have been addressed: 

1) In Chapter 2, three major issues have been addressed. First, the statistical analysis of 

polarimetric SAR data has been studied. In this study, the multichannel isotropic complex 

symmetric alpha-stable ( SS ) distribution has been used to model the multichannel 

complex polarimetric SAR data. Polarimetric SAR data need to be described by a 

distribution which can cover the different statistical characteristics of various types of 

scenes. From the experiments of Chapter 2, we found that alpha-stable distribution is not 

only suitable for modeling the poalrimetric SAR data of all the four polarizations and 

different type of targets, but also suitable for modeling the data obtained from SAR 

systems that work at different wavelengths. This is because the pdf of alpha-stable 

distribution ranges from non-heavy-tailed to very heavy-tailed when different input 

parameters are used. Therefore, it can obtain a more accurate statistical description of the 

polarimetric SAR data than the Gaussian distribution. 

       Second, using the proposed statistical model and based on the result of theoretical 

analysis, the covariance matrix based on fractional lower order statistics (FLOS) has been 

proposed in Chapter 2. Several related theoretical issues of this new covariance matrix 

definition have been discussed. The traditional covariance matrix estimation is inaccurate 

when the SAR data is non-Gaussian distributed due to the model deviation. This 

proposed covariance matrix definition incorporates the statistical information estimated 

from the observed data, and thus may solve this aforementioned problem. 

       Finally, using this FLOS-based covariance matrix, the revised adaptive optimal 

despeckling method based on the original method in [144] has been proposed in Chapter 
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2. The experimental results demonstrated that the proposed despeckling method obtains a 

better edge preservation ability than the original method in [144]. 

       However, it is well known that the alpha-stable distribution does not have the closed-

form probability density functions for most of the alpha values [176]. Therefore, it is 

difficult to apply this model to the applications that require the closed-form pdf. 

   2) Chapter 3 discusses the issues related to coherence estimation, which is a very 

important measurement in the InSAR subsystem, PolSAR subsystem, and whole 

PolInSAR system. However, the sample coherence estimation based on Gaussian 

distribution suffers from two sources of bias. First, it is statistically biased when the input 

data is non-Gaussian distributed. This statistical bias under alpha-stable model 

assumption has not been widely discussed before. Second, it is biased because only 

limited samples can be used in the estimation. In order to reduce both the statistical and 

sample biases, the coherence calculation based on fractional lower order statistics has 

been proposed in Chapter 3. This definition has been validated by mathematical proofs. 

The experimental results of real InSAR data show that the proposed coherence 

calculation method can reduce both the statistical bias and the sample bias.  

      3) In Chapter 4, wavelet-domain phase-filtering method has been studied. The 

wavelet domain phase filtering has been formulated as a simultaneous signal detection 

and estimation problem. The closed-form detector and estimator of this formulation have 

been derived based on the statistical modeling of the wavelet coefficients. Applying this 

derived detector and estimator, two new wavelet-domain phase-filtering methods using 

simultaneous detection and estimation technique have been proposed. Simultaneous 

detection and estimation technique considers the detection and estimation at the same 
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time; therefore, it can obtain accurate signal estimation and thus achieve robust filtering. 

First, the phase filtering method using simultaneous detection and estimation and wavelet 

packet has been proposed. Second, the phase filtering method using undecimated wavelet 

and simultaneous detection and estimation has been proposed. Some related 

implementation issues such as function calculation and the selection of wavelet 

decomposition levels have been discussed. 

       The experiments of simulated and real InSAR data have been conducted. First, the 

experiments with simulated phase data have been conducted. The experimental results 

show that the two proposed methods obtain better filtering results than the other tested 

methods in terms of RMSE and visual evaluation. Second, experiments with real InSAR 

data have been conducted. The experimental results indicate that the two proposed 

methods remove more residues than several other tested methods when applied to a noisy 

phase map. The proposed wavelet-packet method is not only a relatively fast method, but 

also outperforms the proposed undecimated wavelet method when filtering the phase data 

of high fringe densities. The proposed undecimated wavelet method outperforms the 

proposed wavelet-packet method when the phase fringes are not very dense at the cost of 

higher computational and memory requirements. 

       However, the proposed filtering method that uses the undecimated wavelet requires a 

large amount of CPU time and memory. How to improve the computational efficiency is 

a topic of future research. 

       4) In Chapter 5, a phase unwrapping method using the weighted regularized PCG 

technique has been proposed. When valid phase data are missing in some areas, there 

may be holes in the phase map. The regularization operation can interpolate through these 
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holes and obtain a smooth phase map. A weighting operation can suppress the phase 

noise during unwrapping. This method incorporates the regularization and weights in one 

phase unwrapping method. Therefore, the proposed method can not only smooth out the 

holes in the phase map, but also reduce the unwrapping errors due to noise. First, the 

experiments on the simulated phase data have been conducted. The experimental results 

show that the proposed WRPCG method obtains a better unwrapping result than the other 

tested methods in terms of several error metrics. Second, the experiments of real InSAR 

data have been conducted. The experimental results show that the proposed method 

reduces the large scale errors that often occur in the other tested methods. 

        All in all, the proposed phase unwrapping method not only benefits from the 

regularization operation which can smooth through the holes where the valid data are 

missing due to shadow or other reasons, but also benefits from the weighting operation 

which can obtain a robust result in the areas of noisy data. 

        However, the proposed WRPCG method is still a global method. The performance 

of this method is not as stable as the local method, and the global errors in the results of 

this method are only reduced but not completely eliminated. This is an inevitable 

drawback of the global phase unwrapping methods. How to further reduce these errors 

will be the topic of future study.  

        5) In Chapter 6, the concept of second order residue has been proposed. The second 

order residue is an extension of the first order residue concept. First order residue cannot 

be directly used as a quality map. However, second order residue can be directly used as 

quality map after simple arrangements. Therefore, the second order residue is suitable as 

the input for many quality-guided or weighted phase unwrapping methods. From the 
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experimental results using real PolInSAR data, we found that the proposed method is 

promising in the description of phase quality. 

        6) In Chapter 7, three issues associated with the PolInSAR system have been 

studied. First, the multichannel complex PolInSAR data have been modeled as following 

a multichannel isotropic complex symmetric alpha-stable distribution. Then, the 

PolInSAR coherence formulation has been studied using this statistical model, and the 

PolInSAR vector coherence based on fractional lower order statistics has been proposed. 

Finally, using this FLOS-based vector coherence, the FLOS-based coherence 

optimization method has been proposed. Coherence optimization experiments using L-

band PolInSAR data have been conducted. In the optimized coherence amplitude and 

phase of the proposed method, the artifacts around the strong scatterers are significantly 

reduced. The experimental results also demonstrate that the proposed method can obtain 

a better separation of the optimized results due to the better modeling of the PolInSAR 

data. 

 

 

8.2 Outlook of Future Studies 

       PolInSAR technology involves the application and combination of many successful 

SAR techniques. Therefore, it is a very complex system involving a variety of signal 

processing techniques. These signal processing techniques can be developed under the 

assumption of various statistical models due to the development of modern statistical 

theory. This thesis tried to shed some light on the statistical models and signal processing 

methods of PolInSAR and obtained some promising results. However, this thesis can 
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only be considered as the tip of the iceberg comparing to the huge amount of research 

work that needed to be done in the related areas. Therefore, many topics and much more 

work need to be done in the future. 

        The polarimetric and interferometric SAR is a very important research topic, which 

has various research areas. Some of the future PolInSAR research topics that relate to 

statistical analysis and signal processing are as follows: 

1) With the development of new statistical models in the statistical theory, the 

application of these models to the modeling of PolInSAR data will be the topic of 

future research. 

2) Sometimes, if we consider the specific applications during the development of the 

signal processing methods, it would be easier to obtain a successful method. 

Therefore, the PolInSAR signal processing methods which tailor to the specific 

applications will be the topic of future research.  

3) With the growing demand of accurate geographical information, the accuracy and 

processing ability of the signal processing methods of PolInSAR need to be 

significantly improved. The research that improves the accuracy of the signal 

processing methods will be the topic of future research. 

4) With the advancement of modern statistical theory, the development of successful 

signal processing methods will become more and more depending on the research 

of statistical model selection and simplification. 

5) With the advancement of PolInSAR techniques, the new data obtained from these 

new PolInSAR systems require the development of new signal processing 

methods. 
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6) In statistical signal processing, the more complex the statistical model, the more 

difficult is to obtain a closed-form method. The signal processing without closed-

form expression will generally be carried out through the implementation of 

numerical methods, which increases its computational complexity. How to 

simplify these models to obtain a closed-form expression is the topic of future 

study. 

      All in all, the statistical analysis and signal processing of PolInSAR is an important 

research area. With the emerging new applications of PolInSAR, the new signal 

processing methods need to be developed to solve the increasingly complex problems. 
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