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ABSTRACT 

 

Land use change modeling has been a topic of great concern in sustainable development 

research. It is a prerequisite to understanding the complexity of land use change. The 

primary objective of this research is to develop a novel approach for land use change 

modeling using Support Vector Machines (SVMs), with the capability to effectively 

address land use change data, which might be a mixture of continuous and categorical 

variables that might not be normally distributed. A SVMs land use change modeling 

framework was developed to classify land use change. Two enhancements were made to 

standard SVMs which improved the ability of SVMs to fit the characteristics and 

requirements of land use change modeling. The first improvement aimed to achieve high 

performance for unbalanced dataset and the second aimed to improve robustness. A case 

study of Calgary land use change demonstrated that the improved SVMs can achieve 

high and reliable performances. 
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CHAPTER 1: INTRODUCTION 

 

 

1.1 BACKGROUND 

 

In recent years, sustainable development has become a topic of great concern among 

various sectors of society. Sustainable development seeks to meet the needs and 

aspirations of the present without compromising the ability of future generations to meet 

their own needs (World Commission on Environment and Development, 1987). In order 

to maintain sustainable development, the whole ecosystem (air, water, land, energy, flora 

and fauna) needs to be taken care of. Amongst all of these, land is essential not only 

because it is the habitat of human beings and our food and raw materials originate from it, 

but also because any disturbance to land by way of change in land use (e.g. conversion of 

forestland, agricultural into built-up land) is very difficult to reverse. 

 

Under the umbrella of sustainable development, and stimulated by the joint international 

Land Use/Cover Change (LUCC) project of the International Geosphere-Biosphere 

Program (IBGP) and the International Human Dimensions Program on Global 

Environmental Change (IHDP) (Turner et al., 1995), detecting, monitoring, 

understanding, modeling, and projections of land use change from global to regional 

scale have attracted many research interests. In the past two decades, substantial work has 

been done in regards to land use change modeling (Baker, 1989; Agarwal et al., 2002). 

Various land use change models (VeldKamp and Lambin, 2001; Berling-Wolff and Wu, 

2004) have been developed to help ecologists, urban planners, sociologists, 

administrators and policy makers better understand the complexity of land use change 

and to evaluate the impact of land use change on the environment. 

 

A variety of techniques such as Markov chain analysis (Lopez et al., 2001), multiple 

regression analysis (Theobald and Hobbs, 1998), logistic regression (Wu and Yeh, 1997), 

artificial neural networks (ANNs) (Pajanowski et al., 2002; Li and Yeh, 2002), cellular 

automata (CA) (Wu, 1998; Wu, 2002), and genetic algorithm (GA) (Balling et al., 2004), 
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are employed in land use change research. These models have demonstrated different 

levels of success in their specific applications; however, their drawbacks limit their 

efficiency in land use modeling. Markov chain analysis uses a transition matrix to 

describe the change of land use but cannot reveal the causal factors and their significance 

(Taha, 1997). Multiple regression requires that the error term of the regression expression 

be normally distributed. Logistic regression allows the factors to be a mixture of 

continuous and categorical variables but it assumes that the occurrence probability is 

linearly and additively related to the causal factors on a logistic scale (Cheng and Masser, 

2003). If the assumption cannot be satisfied, the performance may significantly degrade. 

CA is limited by its simplicity and its inability to reveal causal factors (Torrens and 

O’Sullivan, 2001). Multi-agent system (MAS) is a microscopic simulation method and is 

therefore unable to fit the requirements of large scale modeling. Moreover, it is difficult 

to define the perception rule for the agent interactions in MAS (Parker and et al., 2001). 

Artificial neural network is a powerful method used to model nonlinear relationships but 

it is prone to overfitting the training data and cannot be relied upon to ensure the 

generalization performance (Sui, 1994; Karystinos and Pados, 2000). 

 

To overcome the above mentioned shortcomings and to better address some important 

issues in land use change modeling (e.g. the imbalance of changed/unchanged land 

parcels and the robustness of the model), this research will develop a novel approach for 

land use change modeling using support vector machines (SVMs) and improving 

standard SVMs to ensure high performance for unbalanced and noisy data. 

 

 

1.2 PROBLEM STATEMENT 

 

Previous land use studies have demonstrated different levels of success in their specific 

applications; however, there are still several problems that need to be addressed to 

effectively and efficiently model land use change. Solutions to these problems will 

greatly improve the accuracy and reliability of land use change modeling. 

 



 

 

3

First of all, land use change is a very complicated process through which humans and 

natural systems interact. Causal factors could be a mixture of continuous and categorical 

variables and dependent variables usually do not satisfy the normal distribution. The 

modeling methodology should be capable of incorporating these inputs and allowing 

them to deviate from the normal distribution (Cheng, 2003). 

 

Secondly, land use change is a time-varying process. Thus, changes are generally 

detected and modeled in a series of relatively short time intervals. During each of the 

time intervals, the changed land parcels only account for a small part of the total land. 

Therefore, the input data for land use modeling is an unbalanced dataset. The modeling 

methodology should be able to handle such an unbalanced dataset, and not only achieve 

good performances for all of the inputs but also reveal the rules embedded in the minority 

with high accuracy. 

 

Finally, land use change could be stimulated by a gamut of factors, ranging from spatial 

parameters to socioeconomic, political or even cultural factors. No single land use model 

can include all these factors. Hence, not all land use changes in the observed data are 

caused by the combination of the observed causal factors. Even some land parcels that 

are marked as low probability for change considering the causal factors in the land use 

change model may be affected by some unconsidered forces which might result in 

changed land use. These unconsidered forces may overwhelm the major factors in the 

model in some cases, but are not worthy to be considered in this particular model since 

they are not significant for the whole population or are too expensive to collect and 

quantify. Therefore, these samples should be treated as outliers if we only want to explore 

the relationship between land use change and the causal factor considered in the model. 

Outliers are quite common for land use change data. Special efforts should be made to 

take care of these outliers and give a reliable performance even when certain levels of 

disturbances exist in the sample data (noisy data). 
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1.3 RESEARCH OBJECTIVES 

 

This research aims to effectively and efficiently model land use change by using SVMs 

which can effectively reveal the relationship between a mixture of continuous and 

categorical causal factors and a categorical/continuous outcome and can guarantee high 

generalization performance without making any assumption on the underlying 

distribution of data. Specifically, the objectives are to: 

 

a. Investigate and assess causal factors for land use change. 

b. Formulate and implement SVMs for land use change modeling. 

c. Explore the optimal SVMs settings for land use change modeling, including 

regularization parameter selection, kernel selection, vector normalization, etc. 

d. Demonstrate the strength of SVMs by comparing its performance with that of a 

widely accepted land use change modeling approach, namely, spatial logistics 

regression (SLR) (Cheng and Masser, 2003). 

e. Improve SVMs to achieve better performance for unbalanced datasets. 

f. Improve the robustness of SVMs. 

 

 

1.4 RESEARCH SIGNIFICANCE 

 

The aim of this research is to develop a novel method for land use change modeling with 

the capacity to effectively address land use change data, which might be a mixture of 

continuous and categorical variables that are not normally distributed. Pattern classifiers 

that fit the characteristic of land use change data and with a number of attractive features, 

namely, support vector machines, are applied to model land use change in Calgary, 

Canada from 1985 to 2001. Some special issues regarding the implementation of SVMs 

(e.g. regularization parameter selection, kernel selection, vector normalization) are 

carefully studied. Land use change data is generally unbalanced, which leads to low 

performance of classifying the minority, namely, the changed land parcels. Improvement 

to standard SVMs is introduced to achieve uniform performance for both the changed and 
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unchanged data. A secondary improvement is also implemented which increases 

robustness and allows SVMs to cope with outliers in the land use change dataset thus 

providing reliable performance when there is a certain level of disturbance on land use 

change caused by other unobserved factors. 

 

This research will benefit urban planners and policy makers to effectively and efficiently 

understand the land use change process from the unbalanced and noisy historic data, 

make more precise projections of future land use, and thus help them generate scientific 

plans which will foster sustainable development. 

 

 

1.5 THESIS OUTLINE 

 

This thesis is divided into six chapters. The remainder of this thesis is organized as 

follows: 

 

Chapter 2 contains a methodological discussion that is relevant to land use change 

modeling. The significance of land use modeling is presented first. Then, the causal 

factors driving land use change adopted in the literature are summarized and discussed. 

Finally, there follows a literature review of prevalent methodologies for land use change 

modeling, such as spatial statistics, artificial neural network, multi-agent system, and 

cellular automata. The limitations and advantages of those techniques for land use change 

modeling are also presented. 

 

Chapter 3 provides a brief introduction to support vector machines. It begins with the 

theoretical basis of SVMs, namely, statistical learning theory. Then, maximal margin 

hyperplane is presented to achieve structural risk minimization (SRM) for linearly 

separable data. Following this, a soft margin hyperplane is introduced to deal with 

imperfect data. Moreover, kernel functions are used to enable SVMs to handle non-linear 

classification problems. Lastly, some extensions of the standard SVMs (e.g. one class 

SVMs, multi-class SVMs, etc) are briefly discussed. 
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Chapter 4 describes the implementation of SVMs for land use change modeling. The land 

use change in Calgary, Canada, is used as a case study. Both data preparation and model 

development are presented. Moreover, some practical issues of SVMs (e.g. regularization 

parameter selection, kernel function (KF) selection and input vector normalization) are 

carefully studied to find the optimal SVMs settings for land use change modeling. The 

performances of SVMs are evaluated and compared with that of a well studied land use 

change modeling approach; namely, spatial logistic regression. This comparison clearly 

demonstrates the superiority of SVMs, especially on the capacity and efficiency to 

classify the changed land parcels. 

 

Chapter 5 deals with the improvements made to standard SVMs to better model land use 

change. First, the motivations for necessary improvements to standard SVMs are 

discussed. Then, improvements on handling unbalanced and noisy data, which are two 

major characteristics of land use change data, are developed. Finally, the performances of 

the improved SVMs are evaluated to show their efficiency. 

 

Lastly, chapter 6 briefly summarizes the findings of the study with reference to the 

research objectives set out above, along with conclusions and recommendations for 

further research. 
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CHAPTER 2: LAND USE CHANGE MODELING 

 

 

2.1 INTRODUCTION 

 

The ecosystem, one of the most important systems for the survival of human beings, is 

continuously changing. Amongst its numerous components, land use/land cover is a key 

element in the study of global change (Henderson-Sellers and Pitman, 1992). Since 

World War II, humans have substantially altered the land use/land cover around the 

world, principally through agriculture, deforestation and urbanization. Land use changes 

produce significant economic and environmental effects with implications for a wide 

variety of policy issues, including maintenance of water quality, preservation of open 

space, and mitigation of global climate change. 

 

The most significant land use change in recent decades is urban growth, which converts 

vacant or agricultural areas into built-up land. Spurred by economic development and 

technological revolutions (transport, communication, information, etc), urban populations 

persistently increase at alarming rates and the migration from rural to urban areas 

continues to escalate. As a result, cities all over the world continue unabated expansion in 

order to cater to the needs of an ever-demanding population. 

 

Land use change from vacant or agricultural into built-up has two conflicting factors. On 

the one hand, cities act as engines of economic and social growth. Urban areas contribute 

significantly to a nation’s economy and continue to open doors for growth and 

development. Hence, the escalating urban growth has often been viewed as a sign of the 

vitality of the regional economy (Yang and Lo, 2003). On the other hand, rapid urban 

growth may cause environmental and ecological degradation. The expansion of urban 

areas results in the conversion of farmland or open space into urban land use, which 

encroaches onto numerous valuable agricultural, forest and natural land. Moreover, urban 

growth results in increasing surface temperatures in and around cities and this leads to 
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several other local and global climate changes. Therefore, land use change, if left 

unchecked, would considerably hinder sustainable development for the future. 

 

Scientific management and planning for land use change should be based on a proper 

understanding of the spatial and temporal processes of land use change. Understanding 

the complexity of land use change and evaluating its impact on the environment involves 

procedures of both detection and modeling. 

 

In recent years, progress in modern remote sensing and GIS techniques have been 

instrumental in opening this field for study, and significant success has already been 

achieved in monitoring and managing rapid land use change. With the on-going 

development of remote sensing techniques, image processing, artificial intelligence and 

machine learning, a wide variety of digital change detection algorithms have been 

developed over the last two decades (Zhao et al., 2004; Gong and Xu, 2003; Copppin et 

al., 2003). These algorithms range from frequently used univariate image differencing 

(Serneels et al., 2001), image ratioing (Hwarth and Wickware, 1981), post-classification 

comparison (Hall et al., 1991), and composite analysis (Sader, 1988), to less common 

algorithms such as image regression (Singh, 1989), and multi-temporal spectral mixture 

analysis (Adams et al., 1995). 

 

Detecting and monitoring land use change, however, is just the first step of sustainable 

growth management. A further step is to identify factors that drive the land use change 

and explore their relative importance, analyze the land use change pattern, understand the 

dynamic process of land use change, and simulate “what-if” decision making based on a 

variety of scenarios; that is, model land use change. Modeling land use change aims to 

support land use development planning and sustainable land management. It is a 

prerequisite to understanding the complexity of land use change and forecasting future 

trends of land use change and its ecological impacts. Only after accurately modeling land 

use change can decision makers generate scientific plans which cater to the needs of an 

ever-demanding population and still maintain ecological balance. 
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2.2 CAUSAL FACTORS 

 

Modeling means exploring the causal factors and describing the relationship between the 

causal factors and the outcome. Hence, exploring the causal factors driving land use 

change is an indispensable part in land use change modeling. 

 

Land use change is a complex process influenced by a variety of natural and human 

activities. Land-use change modeling aims to explore the dynamics and causal factors of 

land use change and to inform policies affecting such change. In general, land use change 

is influenced by a number of factors which may be social, economic, or spatial variables. 

Earlier studies (Baker, 1989; Agarwal et al., 2002) reveal that no single set of factors can 

explain the changes in different places, since each context is unique. More often than not, 

land use studies put forward different causal forces to explain land use trends in different 

places. Factor selection should take into account the context of the region and period to 

be modeled as well as the purpose of the model. 

 

Typically, land use changes are influenced by a few recurrent parameters that cannot be 

overlooked. Demographic factors (population size, population growth, and population 

density) are widely treated as major causal factors of land use change (Verburg et al., 

2001). It is obvious that a city will grow if its population increases. Consequently, new 

residential areas will emerge in close proximity to transportation facilities (roads, 

railways and bus lines) and commercial centers also develop concurrently. In the 

meantime, industrial buildings develop in the vicinity of those previously existing. On the 

whole, urban expansion will transform vacant or low rent areas into built-up land. 

Additionally, the agglomeration of developed areas and the availability of exploitable 

sites will significantly influence land use change patterns. 

 

Accessibility is often seen as a significant driver for land use change through its effect on 

transportation cost and ease of settlement (Geist and Lambin, 2001). Transport 

technology is an essential force for land use change from vacant or agricultural land use 

to urban land use. The widespread use of cars provides land parcels in proximity to 
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advanced transportation systems more possibility to change into built-up area. Moreover, 

proximity to towns/markets is reported to be an important factor related to land use 

change because of increased employment opportunities available to the population. The 

proximity to settlement is also reported to be an indispensable factor because of labor 

availability (Chomitz and Gray, 1996). 

 

In their case study on China, Cheng and Masser (2003) focused on land use change from 

rural to urban. Their literature review reported factors such as investment structure, 

industry structure, housing commercialization, land leasing and decentralization of 

decision-making. However, the model of Cheng and Masser (2003) included only the 

industry structure, the transportation networks and the existing developed areas. Cheng 

and Masser (2003) also took into consideration the constraints imposed by water and 

other places unfit for urban development. 

 

It was reported that spatial detail plays an important role in land use change process 

(White et al., 1997). A causal force analysis conducted by Yang (2000) found that 

highways and shopping malls generally promote urban development. Moreover, some 

site characteristics, such as soil quality and terrain conditions, were found to be 

significant factors driving landscape changes (Yang, 2000). Landis and Zhang (2000) 

investigated land use change near a railway station in their small-scale example. It 

included only four classes of information: proximity to the transportation network, 

proximity to the urban structure (residential, commercial, public and industrial buildings), 

locations available for change and locations where no change could occur because of 

constraints. It also demonstrated that explanatory factors do not need to be numerous, 

provided they are relevant. 

 

After examining a summary set of 250 relevant citations, Agarwal et al. (2000) gave a 

summarization of causal factors commonly used in different land use change models. 

They mentioned additional factors:  1) economic factors, such as returns to land use (cost 

and price), job growth, cost of land use change, and rent; 2) social factors, such as 
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affluence, human attitudes and values; 3) collective rule making factors, such as zoning 

and tenure; 4) and other factors such as technology level. 

 

Table 2.1 gives a summary of the causal factors discussed above. 

 

Table 2.1: Causal factors for land use change 

Category Causal factor 

Population size 
Population growth 

Demography 

Population density 
Distance to road (major road/street) 
Distance to town/market 
Distance to settlement 
Distance to shopping mall 

Proximity 

Proximity to the urban structure 
Investment structure 
Industry structure 
Housing commercialization 
Returns to land use (costs and prices) 
Job growth 
Cost of land use change 

Economic 

Rent 
Affluence Social 
Human attitudes and values 
Zoning Collective rule making 
Tenure 
Soil quality Site characteristics 
Slope 
Water body Constraints 
Environment sensitive area 
Availability of exploitable sites Neighborhoods 
Agglomeration of developed areas 

Others Technology level 
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2.3 LAND USE CHANGE MODELS 

 

A variety of techniques such as Markov chain analysis (Lopez et al., 2001), multiple 

regression analysis (Theobald and Hobbs, 1998), logistic regression (Wu and Yeh, 1997), 

artificial neural network (Pajanowski et al., 2002; Li and Yeh, 2002), cellular automata 

(Wu, 1998; Wu, 2002), and genetic algorithm (Balling et al., 2004), etc, are employed in 

land use change research.  

 

2.3.1 Spatial Statistics 

 

Traditional statistical methods, e.g. Markov chain analysis, multiple regression analysis, 

principal component analysis, and logistic regression, have been very successful in 

interpreting socio-economic activities. They were also employed in land use change 

modeling and demonstrated great successes in their specific applications. 

 

2.3.1.1 Markov chain analysis 

 

Markov chain models regard land use change as a stochastic process, and different land 

use categories are the states of a chain. A Markov chain is defined as a stochastic process 

having the property that the value of the process at time t , tX , depends only on its value 

at time 1t − , 1tX − , and not on the sequence of values 2 3 0, , ,t tX X X− − …  that the process 

passed through in arriving at 1tX − . That is, the future is only dependent on the present. 

Past and future are conditionally independent. It can be expressed as: 

 

0 0 1 1 1 1( | , ,..., ) ( | )t j t i t j t iP X a X a X a X a P X a X a− −= = = = = = =               (2.1) 

 

In Markov chain analysis, land use change is treated as discrete in time ( 0,1,2,...t = ). 

The probability of a land use change from a land use category (state) ia  to a land use 
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category (state) ja   in one time period, known as one step transition probability, 

is 1( | )t j t iP X a X a−= = .  

 

Generally, homogeneous Markov chain with discrete time is used in Markov chain 

analysis, in which the transition probability is stationary. That is, the transition 

probability from one state to another state 1( | )t j t iP X a X a−= =  is independent of time 

and dependent only upon states ia and ja . In this case, the transition probability can be 

expressed as: 

 

1( | )t j t i ijP X a X a P−= = =                                                  (2.2) 

 

The transition probability can be estimated from historic land use change data by 

tabulating the number of times the land use changed from state i  to j , ijn , and by 

counting the number of times that land use category ia  occurred, in . 

 

ij
ij

i

n
P

n
=                                                               (2.3) 

 

Combining all the transition probabilities between all states 1 2, ,..., ma a a  results in the 

transition matrix: 

 

11 12 1

21 22 2

1 2

...

...
( )

m

m
ij

m m mm

P P P
P P P

P

P P P

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

P
# # #

"

                                            (2.4) 

 

It is obvious that: 1) P  is a square matrix; 2) each element is non-negative; and 3) the 

sum of any row is equal to one. Matrices with these properties are called stochastic. 
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The probability of a land use change from a land use category (state) ia  to a land use 

category (state) ja   after l  time periods, ( )l
ijP , is known as l steps transition probability. 

All l  steps transition probabilities compose l  steps transition matrix. According to the 

Chapman-Kolomogorov equation: 

 
( )

0 0

0

0 0

0

( ) ( )

( ) ( ) ( )

( | ) ( , | )

( , | )

( | , ) ( | )

( | ) ( | )

n s
ij n s j i n s j n k i

k

n s j n k i
k

n s j n k i n k i
k

n s j n k n k i
k

n s
ik kj

k

n s n s

P P X a X a P X a X a X a

P X a X a X a

P X a X a X a P X a X a

P X a X a P X a X a

P P

+
+ +

+

+

+

+

= = = = = = =

= = = =

= = = = = =

= = = = =

=

=

∑

∑

∑

∑

∑
P P P

                (2.5) 

 

The  l  steps transition matrix can be easily calculated by the one step transition matrix: 

 
( )n n=P P                                                                 (2.6) 

 

Therefore, the land use state of a period  l  steps after the current time can be easily 

predicted by the current land use state and  l  steps transition matrix. 

 
( ) ( ) ( ) ( ) (0) (0) (0)

1 2 1 2( , ,..., ) ( , ,..., )l l l l
m ma a a a a a= P                              (2.7) 

 

In Markov chain analysis, the transition probabilities are estimated as proportions of cells 

that have changed state from one point in time to another. It is a useful way of estimating 

these probabilities despite the development of procedures for estimating transition 

probabilities on the basis of more complex scientific consideration. However, the Markov 

chain model lacks explanatory power as the causal relationships underlying the transition 

studies are left unexplored (Baker, 1989). 
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2.3.1.2 Multiple regression analysis 

 

Regression analysis is used to investigate the association of a dependent variable with 

one or more independent variables. In multiple regression analysis, a linear relationship is 

used to represent the association of the causal factors with the probability of land use 

change. 

 

The coefficients of a linear equation, corresponding to multiple causal factors, are 

estimated to best predict the probability of land use change. Ordinary least squares (OLS) 

estimation is widely used to estimate the coefficients. 

 

Multiple regression requires that: 1) all causal factors are interval, ratio or dichotomous, 

and the dependent variable (land use change) is continuous; 2) the errors are normally 

distributed; 3) errors are independent of the causal variables; and 4) for computational 

stability, multiple regression does not allow multicollinearity. The generalization 

performances of multiple regression models are unreliable when these assumptions 

cannot be satisfied. Unfortunately, land use change data usually violates most of the 

abovementioned assumptions. Accordingly, multiple regression models cannot ensure 

high generalization performances for projecting future land use change (Hiroshi and et al. 

1998; Frayman and et al., 2002). 

 

2.3.1.3 Logistic regression analysis 

 

Logistic regression is widely used to model the outcomes of a categorical dependent 

variable while the independent variables can be a mixture of continuous and categorical 

variables. Hence, it is a suitable approach to estimate the coefficients of causal factors 

from the observation of land use change because the land use change process does not 

usually follow normal assumption and its determinants are usually a mixture of 

continuous and categorical variables. 

 

The general form of logistic regression is given by: 
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0 1 1 2 2 K Ku x x xβ β β β= + + + +"                                               (2.8) 

log( ) ( )
1

Pu logit P
P

= =
−

                                                  (2.9) 

1

u

u

eP
e

=
+

                                                               (2.10) 

 

where P  refers to the probability of occurrence of a new unit, u  is a linear-in-parameters 

utility function, 1 2, ,..., kx x x  are K  causal variables and 0 2, , , Kβ β β…  are 1K +  

parameters to be estimated. 

 

Logistic regression is a frequently used methodology in land use/land cover research 

(Serneels and Lambin, 2001; Schneider and Pontius, 2001; Verburg et al., 2004). Besides 

the binary form, logistic regression also can be extended to cope with multiple land use 

categories. Multinomial logistic regression can be used for cases involving multiple land 

use change analysis (Jobson, 1992; Mertens et al., 2002). 

 

Although logistic regression allows the causal factors to be a mixture of continuous and 

categorical variables, which fit land use change data quite well, it assumes that the land 

use change probability is linearly and additively related to the causal factors on a logistic 

scale. This assumption is not always valid. If the assumption cannot be satisfied, the 

generalization performance of logistic regression may dramatically degrade.  

 

To summarize, traditional statistical approaches (e.g. multiple regression analysis and 

logistic regression) can readily identify the influence of the independent variables in the 

modeling process and also provide some degree of confidence regarding their 

contribution. They have demonstrated different levels of success in their specific 

applications. However, they are criticized as less effective in modeling spatial and 

temporal data since the spatial and temporal data often violated basic assumptions such as 

the normal distribution, appropriate error structure of the variables, independence of 

variables, and model linearity (Olden and Jackson, 2001). 
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2.3.2 Cellular Automata 

 

Cellular automata are an effective bottom-up simulation tool for dynamic process 

modeling (Webster and Wu, 2001). It is a dynamic discrete space and time system. A 

classic cellular automaton system consists of four primary components: cell, state, 

neighborhoods and transition rule. The basic units in a cellular automaton system are a 

regular grid of cells, each of which can be in one of a finite number of k possible states. 

All cells update synchronously in discrete time steps according to a local identical 

transition rule in relation to its neighboring cells. 

 

The idea of CA is closely associated with that of microscopic simulation in which the 

behavior at a local scale gives rise to an emerging global organization (Webster and Wu, 

2001). Global structure in a CA system is often seen to emerge out of purely local 

interactions between cells. This is attractive because it matches our intuitive sense that 

much human spatial activity is not centrally planned or organized, but arises from the 

responses of various actors, residents, developers, planners, politicians and local 

circumstances (O'Sullivan, 2001). 

 

CA has been receiving more and more attention in land use change modeling due to its 

simplicity, transparency, strong capacities for dynamic spatial simulation, and innovative 

bottom-up approach (Clarke and Gaydos, 1998). CA has many advantages for modeling 

urban phenomena, including their decentralized approach, the link they provide to the 

complexity theory, the connection of form with function and pattern with process, the 

relative ease with which model results can be visualized, their flexibility, their dynamic 

approach, and also their affinities with geographical information systems and remotely 

sensed data (Torrens and O'Sullivan, 2001). Perhaps the most significant of their qualities, 

however, is their relative simplicity. Research has shown the great potential of CA for 

discovering the complexity (in particular spatial complexity) of an urban system or its 

subsystems. 
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Nevertheless, CA models focus on the simulation of spatial patterns rather than on the 

interpretation or understanding of the spatio-temporal processes of land use change. 

Generally, CA models do not explicitly deal with causal factors, such as population, 

policies and economic impacts on land use change. They are weak in interpreting causal 

factors in a complete process model. Moreover, CA models are constrained by their 

simplicity and their ability to represent real-world phenomena is often diluted by their 

abstract characteristics (Torrens and O'Sullivan, 2001). As a consequence, there are many 

unexplored research possibilities regarding urban growth complexity based on CA. 

 

Fortunately, many research efforts have been made in order to improve the intricacies of 

cellular automata model construction, particularly in the modification and expansion of 

transition rules to include such notions as hierarchy, self-modification, probabilistic 

expressions, utility maximization, accessibility measures, exogenous links, inertia, and 

stochasticity (Torrens and O’Sullivan, 2001). These innovative technological advances 

have enabled cellular modeling to grow out of an earlier game-like simulator and to 

evolve into a promising tool for urban growth prediction and forecasting, as demonstrated 

by recent research (Batty and Xie, 1994; Couclelis, 1997; White et al., 1997; Clarke and 

Gaydos, 1998; Wu and Webster, 1998; Li and Yeh, 2000; Sui and Zeng, 2001). 

Nevertheless, further research attention needs to be shifted from technical modifications 

to models in several emergent key applied areas such as explorations in spatial 

complexity, infusing cellular automata with urban theory, new strategies for validating 

cellular urban models, and scenario design and simulation in relation to urban planning 

practices (Torrens and O’Sullivan, 2001). 

 

2.3.3 Multi-agent System 

 

Multi-agent systems are designed as a collection of interacting autonomous agents. All 

agents have their own internal data representations (state) and means for modifying their 

internal data representations (perceptions). Agents relate to a common environment and 

have abilities to modify their environment (behavior). Agents interact with each other via 
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their environment. This interaction can involve communication, i.e. the passing of 

information from one agent and environment to another. 

 

The basic unit of activity in an agent-based model is the agent. Usually, agents explicitly 

represent actors in the situation being modeled, often at the individual level. For example, 

an agent may represent a land manager who combines individual knowledge and values, 

information on soil quality and topography, and an assessment of the land management 

choices of neighbors to calculate a land use decision. Agents also may represent higher-

level entities or social organizations such as a village assembly, local governments, or a 

neighboring country. Agents are capable of effective independent action, and their 

activity is directed towards the achievement of defined tasks or goals. They share an 

environment through agent communication and interaction, and they make decisions that 

tie behavior to the environment. 

 

Multi-agent systems contain rules that define the relationship between agents and their 

environment and rules that determine sequencing of actions in the model. Agents can 

translate both internal and external information into internal states, decisions, or actions 

based on these rules. 

 

Multi-agent systems offer a high degree of flexibility that allows researchers to account 

for heterogeneity and interdependencies among agents and their environment. Besides, 

multi-agent systems have some attractive features (White and Engelen, 2000): (1) as a 

tool to implement self-organizing theory such as a straightforward way of representing 

spatial entities or actors having relatively complex properties or behaviors; (2) an easy 

way to capture directly the interactive properties of many natural and human systems, as 

well as the complex system behavior that emerges from this interaction. The approach is 

useful for examining the relationship between micro-level behavior and macro outcomes. 

 

Multi-agent systems, however, are initially designed for microscopic simulation and have 

difficulty meeting the requirement of large scale modeling. Furthermore it is difficult to 
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define the perception rule that determines the agent interactions. Multi-agent systems 

cannot guarantee a satisfactory performance if good perception rules cannot be defined. 

 

2.3.4 Artificial Neural Network 

 

An artificial neural network is a system composed of many simple processing and 

parallel operating elements, whose function is determined by network structure, 

connection strengths, and the processing performed at computing elements or nodes. It is 

a powerful tool that uses a machine learning approach to quantify and model complex 

behavior and patterns. 

 

Artificial neural networks were developed to model the brain’s interconnected system of 

neurons so that computers could be made to imitate the brain’s ability to sort patterns and 

learn from trial and error, thus observing relationships in data. The development of a 

neural network model requires the specification of a "network topology", a learning 

paradigm and algorithm. 

 

Artificial neural networks consist of layers and neurons which simulate the structure of 

human brains and allow ANN to have learning and recall abilities like humans, especially 

for non-linear mapping. A neural network consists of one input layer, one output layer, 

and no or some hidden layers between them. The former is named a simple neural 

network and the latter is called a multi-layer neural network (Figure 2.1). 
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(a) Simple neural network 

 

 
(b) Multi-layer neural network 

Figure 2.1: Basic structure of artificial neural network 

 

A neural network can be used to classify a set of inputs, 1 2[ , ,..., ]T
nX x x x= , which consist 

of n causal variables. The input can be propagated through the hidden layers and the 

output layer in a feed-forward manner. Neurons, the basic units to process signals, are 

arranged in layers. The signals propagate from neurons in a sender layer (input layer or 

hidden layer) to neurons in a receiver layer (hidden layer or output layer) and are 

modified by weights associated with each neuron-neuron connection.  

 

Each neuron in an input layer accepts a single value which corresponds to an element in 

X. Then each neuron generates an output value and the output value may be used as the 

input for all the neurons in the next layer. Weights are used to address the strengths of 

network interconnection between associated neurons. Each neuron in a receiver layer can 
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receive signals from a sender layer. The receiving neuron sums the weighted inputs from 

all of the nodes connected to it from the previous layer as: 

 

j ij i
i

I w S= ∑                                                              (2.11) 

 

where iS  is the signal emitted from neuron i  in the sender layer, jI  is the input for 

neuron j  in the receiver layer, and ijw  is the weight associated with the connection from 

neuron i  to neuron j . 

 

After collecting signals from the sender layer, a neuron in the receiver layer creates 

activation in response to the input jI  and emits an output signal. The output is computed 

as the function of its input, called the activation function. The most widely used 

activation function is the sigmoid function: 

 

1
1 jj IS

e−=
+

                                                             (2.12) 

 

where jI  is the input for neuron j  in the receiver layer, and jS  is the signal emitted 

from neuron j  to next layer.  

 

The signals move forward from neuron to neuron.  Equations (2.11) and (2.12) can be 

used to process the signal collection and activation. The collection and activation 

processes continue until the final signals are obtained by the output layer. 

 

Artificial neural networks can be used for pattern recognition or classification. Each 

neuron in the output layer is associated with a class. When a signal (e.g. a set of causal 

variables associated with a land parcel) is presented to the network, each output neuron 

will generate a value that indicates the similarity between the input signal and the 
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corresponding class (e.g. certain kind of land use changes). An input signal can be 

classified into the class that is associated with the neuron of the highest activation level. 

 

The determination of weights is critical to successes of applications involving artificial 

neural networks. Weights are determined by using a training algorithm, the most popular 

of which is the back propagation algorithm. This algorithm randomly selects the initial 

weights, and then compares the network output for a given training dataset with the 

expected output. The difference between the expected and network outputs across the 

whole training dataset is summarized using the mean squared error. Then, the weights are 

modified according to a generalized delta rule (Rumelhart et al., 1986), so that total error 

is distributed among the various neurons in the network. This process feeding forward 

signals and back-propagating the errors is repeated iteratively until the error stabilizes at 

a low level. 

 

Unlike the more commonly used analytical methods, the ANN is independent of 

particular functional relationships, makes no assumptions regarding the distributional 

properties of the data, and requires no prior understanding of variable relationships. This 

independence makes the ANN a potentially powerful modeling tool for exploring 

nonlinear complex problems (Olden and Jackson, 2001). ANN has greater predictive and 

non-linear power than traditional approaches. It is an ideal method of understanding non-

linear spatial patterns, on which short-term prediction may be based. Its strength lies in 

prediction and performing "what-if" types of experiment (Corne et al., 1999). 

 

ANN, however, has a static nature, in which causal factors are not dynamic. Moreover, 

ANN’s property of a "black box" provides little explanatory insight into the relative 

influence of the independent variables in the prediction process. This lack of explanatory 

power is a major concern in spatial pattern analysis because the interpretation of 

statistical models is desirable for gaining knowledge of the causal factors driving spatial 

phenomena. Furthermore, ANN might suffer difficulties with generalization and produce 

models that may overfit the data (Sui, 1994; Karystinos and Pados, 2000). These major 

drawbacks make ANN of limited value for modeling the urban growth process. 
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2.4 CHAPTER SUMMARY 

 

This chapter presented the background and significance of land use change modeling. 

Land use change modeling is a prerequisite to learning the complexity of land use change 

process and evaluating its impact on the environment. The importance of land use change 

modeling for sustainable development is widely accepted. 

 

Causal factors driving land use changes reported in the literature were also summarized, 

which ranged from social, economic, technological factors to site specified spatial 

variables. It has been found that no single set of factors can explain all the changes in 

different places. Factor selection should consider the specific context in the area to be 

modeled.  

 

A variety of techniques for land use change modeling, which included Markov chain 

analysis, multiple regression analysis, logistic regression, cellular automata, multi-agent 

system, and artificial neural network, were briefly reviewed. The advantages and 

limitations of these techniques were also presented. Due to the complexity of the land 

development process and differences in modeling objectives, there was no clearly 

superior approach. Each method had its strengths, weaknesses, and application domains. 

Therefore, the selection of methods for land use change modeling should depend on the 

demands of the analysis, the feasibility of the techniques and the availability or limitation 

of the data framework. 
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CHAPTER 3: SUPPORT VECTOR MACHINES 

 

 

3.1 INTRODUCTION 

 

To overcome the shortcomings of current land use change modeling methodologies and 

better address the research problems, a new method for land use modeling using support 

vector machines was developed for the purpose of this study.  

 

Support vector machines, which were originally developed by Vapnik (1995), are a new 

generation of machine learning algorithms that take their inspiration from statistical 

learning theory (Gunn, 1998). Unlike traditional methods which minimize the empirical 

training error, SVMs aim at minimizing an upper bound of the generalization error 

through maximizing the margin between the separating hyperplane and the data. This can 

be regarded as an approximate implementation of the Structural Risk Minimization (SRM) 

principle, which endows SVMs with good generalization performances independent of 

underlying distributions (Joachims, 1999). 

 

SVMs are a system for efficiently training the linear learning machines in the kernel-

induced feature space (Cristianini and Shawe-Taylor, 2000). SVMs were originally 

designed as a linear classifier, but they are easily extended to nonlinear classifiers by 

mapping the space { }S = x of the input data into a high-dimensional feature 

space { ( )}F = Φ x . By choosing an adequate mapping ( )Φ x , the data points that cannot be 

linearly separated in the input space become linearly separable or mostly linearly 

separable in the high-dimensional feature space, so that one can easily apply the structure 

risk minimization. 

 

Compared with the traditional way of implementing mapping functions, SVMs have 

incomparable advantages. We need not compute the mapped patterns ( )Φ x  explicitly, and 

instead we only need the dot products between mapped patterns. They are directly 

available from the kernel function which generates ( )Φ x  (Amari and Wu, 1999). 
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SVMs are an elegant and highly principled learning method for classifying nonlinear 

input data. SVMs are gaining increasing popularity due to a number of attractive features 

including (Cristianini and Shawe-Taylor, 2000): 

 

1. SVMs are statistics-based models rather than loose analogies with natural learning 

systems. SVMs are theoretically related to a wide variety of study fields related to 

regularization theory and sparse approximation. 

2. SVMs do not incorporate problem-domain knowledge. No assumption for input 

data distribution or error structure is needed in SVMs. 

3. SVMs have a promising generalization performance. The formulation embodies 

the structural risk minimization (SRM) principle, as opposed to the empirical risk 

minimization (ERM) approach commonly employed within statistical learning 

methods. SVMs provide a method for controlling model complexity 

independently of dimensionality. It is this difference which equips SVMs with an 

excellent potential to generalize. 

4. SVMs have the ability to model non-linear relationships in an effective and 

efficient way. SVMs operate in a kernel induced feature space. By using a 

suitable inner-product kernel, SVMs allow for constructing non-linear classifiers 

using only linear algorithms. 

5. SVMs have the property of condensing information in the training data and 

providing a sparse representation by using a very small number of data points, 

namely, support vectors (SVs). Therefore, computations can be performed 

efficiently. This is especially true for huge datasets. 

6. SVMs can guarantee a global and in general unique optimum. SVMs use 

quadratic programming to achieve maximized margin separation, which provides 

global minima only. The absence of local minima is a significant difference from 

the neural network classifiers. 

7. SVMs have an extra advantage regarding automatic model selection in the sense 

that both the optimal number and locations of the support vectors are 

automatically obtained during training (Schölkopf et al., 1999). 
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8. SVMs are a robust tool for classification and regression in noisy, complex 

domains. 

 

Owing to these prominent features, SVMs have gained growing popularity in recent years 

and have been successfully applied to a variety of fields such as text categorization, 

image recognition, hand-written digit recognition, potential disease spread prediction 

(Guo et al., 2005) and land cover classification (Huang et al., 2002). 

 

 

3.2 STATISTICAL LEARNING THEORY 

 

To describe the idea of SVMs, the issue of structural risk minimization principle has to be 

addressed first. Therefore, we will start with posing a generic statistical learning problem. 

 

3.2.1 Statistical Learning Problem 

 

Consider a binary classification problem: suppose we are given an empirical observations 

(thereafter called training set), 

 

1 1 2 2( , ), ( , ),..., ( , ) , , { 1, 1}n
m my y y ∈ × = = − +x x x X Y X R Y                    (3.1) 

 

where X is the input space of potential observations, and Y is the possible decision space.  

 

Assume that the training set is drawn independently from an unknown (but fixed) 

probability distribution ( , )P X Y . This is a standard assumption in learning theory. Data 

generated this way is commonly referred to as IID (independent and identically 

distributed). The goal of classification problem is to find a classifier ( )y f= x , which is a 

map from X  to Y  based on data in T . Any future case (outside training set T ) that is 

also generated from ( , )P X Y  will be classified correctly by the map found. Of course, no 
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classifier can classify every unseen example perfectly. Correctness of the classification is 

then measured by a loss function ( , , ( ))L y fx x . 

 

3.2.2 Loss Function 

 

Definition 3.1 (Loss Function) Denoted by ( , , ( )) : , , ( )y f y f∈ ∈ ∈x x x X Y x Y  the triplet 

consisting of a pattern x , an observation y  and a prediction ( )f x . Then the map 

: [0, )L × × → ∞X Y Y  with the property ( , , ) 0L y y =x  for all ∈x X  and y ∈ Y  will be 

called a loss function. 

 

The well-known loss functions are squared loss used in least square algorithm and 

logistic loss used in logistic regression.  

 

Squared loss:  2( , , ( )) ( ( ) )L y f f y= −x x x                                        (3.2) 

Logistic loss:  ( )( , , ( )) ln(1 )y fL y f e− ⋅= + xx x                                      (3.3) 

 

The former uses the square of the amount of mis-prediction to determine the quality of 

the estimate. It satisfies the assumption that we have additive normal noise corrupting the 

observations. The latter uses the product ( )yf x  to assess the quality of the estimate, 

where the sign of the prediction sgn( ( ))f x  denotes the class label, and the absolute value 

( )f x  describes the confidence of the prediction. No penalty occurs if ( )yf x is 

sufficiently large, i.e. if the patterns are classified correctly with large confidence. The 

logistic loss is used in order to associate a probabilistic meaning with prediction ( )f x . 

 

In a binary classification problem, another kind of loss function, namely, zero-one loss 

function is generally used: 

 
1( , , ( )) ( )
2

L y f f y= −x x x                                                 (3.4) 

 
Note that the loss is 0 if the sample ( , )yx is classified correctly and 1 otherwise. 
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3.2.3 Risk Function 

 

To sum up the total expected loss for any mapping :f × →X A Y , where A  is the 

parameter space for the mapping function, a risk function comprising the loss and the 

underlying probability distribution is used: 

 

1( ) ( , , ( , )) ( , ) ( , ) ( , )
2

R L y f dP y f y dP yα α α= = −∫ ∫x x x x x                   (3.5) 

 

where ( , )f αx  is a classifier from a fixed parametric family{ ( , ) : }f α α ∈x A . 

 

Any choice of a particular α  produces a classifier. The goal of statistical learning is to 

find a classifier with the minimal expected risk (or simply called risk). The difficulty of 

the task stems from the fact that we are trying to minimize a quantity that we cannot 

actually evaluate: since the underlying probability distribution ( , )P X Y  is usually 

unknown, it is impossible to compute the integral (3.5) and thus to achieve the risk 

minimization directly. 

 

We do not know the probability distribution ( , )P X Y  that potential observations will be 

generated from. We do know, however, the training set T  is generated from ( , )P X Y . 

Thus, we can try to infer a classifier ( , )f αx  from the training set that is, in some sense, 

close to the one minimizing the risk (3.5). 

 

3.2.4 Empirical Risk Minimization 

 

One way to proceed is to use the empirical distribution of the training set to approximate 

the underlying probability distribution ( , )P X Y  and thus to calculate an approximation 

for the integral in (3.5). This leads to the empirical risk: 

1 1

1 1R ( ) ( , , ( , )) ( , )
2

m m

emp i i i i i
i i

L y f y f
m m

α α α
= =

= = −∑ ∑x x x                  (3.6) 
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Most traditional methods, e.g. least square estimate, maximum likelihood estimate, and 

artificial neural network, aim to achieve empirical risk minimization. This makes some 

sense since according to the theory of uniform convergence in probability: 

 

{ }lim sup( ( ) ( )) 0, 0empm
P R R

α
α α ε ε

→∞ ∈
− > = ∀ >

A
                          (3.7) 

 

The empirical risk will infinitely approximate the expected risk when the size of training 

set increases. However, the size of the training set is limited. We are not sure how well 

the empirical distribution of the training set can approximate the unknown probability 

distribution ( , )P X Y . Therefore, minimizing the empirical risk does not always imply a 

small expected risk. For example, consider the 1D classification problem shown in Figure 

3.1, with a training set of three points (marked by circles), and three test inputs (marked 

on the x-axis). Classification is performed by thresholding real-valued functions ( )g x  

according tosgn( ( ))g x . Note that both classifiers represented using dotted line and solid 

line can perfectly explain the training data, but they give opposite predictions on the test 

inputs. That is, both classifiers can achieve empirical risk minimization but lead to quite 

different expected risks. Lacking any further information, the training data alone provides 

no means to tell which of the two functions is to be preferred. 

 

 
Figure 3.1: A 1D classification problem 
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3.2.5 Structural Risk Minimization 

 

Although we cannot calculate the expected risk if the underlying probability is unknown, 

it is possible to find an upper bound for the expected risk and pose a problem for its 

minimization. Instead of empirical risk minimization, statistical learning theory (or 

Vapnik-Chervonenkis theory) aims to find a learning machine (classifier) with the 

minimum upper bound on the expected risk. This leads us to a method of choosing an 

optimal classifier for a given task. This is the essential idea of the structural risk 

minimization. 

 

Prior to discussing SRM, we need to introduce the notion of function set capacity and 

define some means of measuring that capacity. The term capacity can be introduced as 

the ability of a machine (a parametric family or function set) to learn any training set 

without an error. Suppose we have a training set of m  samples that can be assigned 

labels +1 or -1. Clearly, there are 2m  ways to label the training set. If, for each labeling, 

there is a classifier in the function set{ ( , ) : }f α α ∈x A  that can correctly assign those 

labels, we say that the training set can be shattered by the function set. Maximum 

cardinality of the training set that can be shattered by { ( , ) : }f α α ∈x A is called the 

Vapnik-Chervonenkis (VC) dimension of that function set. VC-dimension is clearly a 

property of the parametric family and can then be used as a measure of capacity of a 

particular learning machine belonging to that family (Vapnik, 1995; Cristianini and 

Shawe-Taylor, 2000). 

 

The VC dimension sounds a little abstract. A simple example might be helpful in 

explaining it clearly. Considering a parametric family of hyperplanes in 2R , as shown in 

Figure 3.2, it is capable of correctly classifying 3 samples with labels +1 or -1. There are 
32 8= ways of assigning 3 samples to two classes. For the displayed samples in 2R , all 8 

possibilities can be realized using separating hyperplanes, in other words, the function 

class can shatter 3 samples. This would not work if we were given 4 points, no matter 

how we placed the hyperplanes. Therefore, the VC dimension of the class of separating 
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hyperplanes in 2R  is 3. It is easy to extend this conclusion to nR : the VC dimension of 

hyperplanes in nR is ( ) 1nVCdim H n= + . 

 

 
Figure 3.2: A simple VC dimension example 

 

Vapnik and Chervonenkis applied the probably approximately collect (PAC) model to 

statistical inference and gave the following theorem (Vapnik, 1995) to determine the 

upper bound for the expected risk: 

 

Theorem 3.1: Supposing{ ( , ) : }f α α ∈x A is a parametric family for binary classification 

with adjustable parametersα . Then the following bound holds with a probability of at 

least1 δ− for any underlying distribution provided h m< : 

(ln(2 ) 1) ln( 4)( ) ( )emp
h m hR R

m
δα α + −

≤ +                                (3.8) 

where ( )R α  is the expected risk, ( )empR α  is the empirical risk, m  is the size of the 

training set, and h  is the VC dimension of the parametric family{ ( , ) : }f α α ∈x A . 

 

The second term of (3.8) is called VC confidence interval. Given a training set of finite 

size, we can always come up with a learning machine which achieves zero training error 

(provided no examples contradict each other, i.e., whenever two patterns are identical, 
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then they must come with the same label). To correctly separate all training examples, 

however, this machine will necessarily require a large VC dimension h . Therefore, the 

VC confidence interval, which increases monotonically with h, will be large. The bound 

(3.8) shows that the small training error does not guarantee a small test error. To achieve 

good generalization performance, that is, small expected risk, both the empirical risk and 

VC dimension of the parametric family have to be small. 

 

Figure 3.3 shows the relationships between VC dimension versus the empirical risk, VC 

confidence interval, and upper bound on the risk. Suppose we have a sequence of nested 

parametric families 1 2 ... ...nS S S⊂ ⊂ ⊂ ⊂  such that their VC dimensions satisfy 

1 2 ... ...nh h h< < < < . With the increase of the VC dimension, it is possible to find a 

classifier in the parametric family to better fit the training set with finite size. Therefore, 

the empirical risk is usually a decreasing function of VC dimension h . As shown on (3.8), 

the VC confidence interval will monotonously increase with the increase of VC 

dimension h . As a result, for a given size of training set, there is an optimal value of VC 

dimension which can achieve a minimal upper bound on the expected risk. 

 

 
Figure 3.3: VC dimension vs. empirical risk, VC confidence, and the risk  

(reprinted from Vapnik, 1995) 

Upper bound on the risk

Error 

VC confidence interval 

Empirical risk 
h 

Parametric 
families 

S1 S* Sn 
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The choice of an appropriate VC dimension, which in some techniques is controlled by 

the number of free parameters of the model, is crucial in order to get good generalization 

performance, especially when the size of the training set is small. The objective of SRM 

then is to find an optimal VC dimension for which the upper bound on the expected risk 

is minimal. That is to minimize the empirical risk and VC confidence interval 

simultaneously, which can be achieved through the following two-stage process: 

 

1. For each VC dimension ih , identify a classifier *( , )f αx  with minimal ( )empR α  

2. In all the classifiers identified, choose the classifier, for which ( )empR α  + VC 

confidence interval is minimal 

 

However, finding a trade off between reducing training error and limiting model 

complexity is not easy because the VC dimension of a parametric family can be hard to 

compute and there are only a small number of parametric families for which we know 

how to compute the VC dimension. Moreover, even if the VC dimension of a parametric 

family is known, it is difficult to solve the optimization problem of minimizing the 

empirical risk. Hence, we usually do not follow the above steps directly but rather use 

some more effective and efficient strategies. Support vector machines are able to achieve 

the goal of minimizing the upper bound of ( )R α  by efficiently minimizing a bound on 

the VC dimension h  and ( )empR α  at the same time. 

 

 

3.3 LINEAR SVMS 

 

Support vector machines are an approximate implementation of structural risk 

minimization. Based on the discussion of section 3.2, each particular choice of parametric 

families gives rise to a learning algorithm, consisting of performing SRM on the 

classifiers in parametric families of different VC dimensions. SVMs algorithms are based 

on parametric families of separating hyperplanes of different VC dimensions. SVMs can 
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effectively and efficiently find the optimal VC dimension and an optimal hyperplane of 

that dimension simultaneously to minimize the upper bound of the expected risk. 

 

Consider the problem of separating the training set of two separable classes of m  

examples: 

 

1 1 2 2{( , ), ( , ),..., ( , )}, , { 1,1}n
m my y y y= ∈ ∈ −T x x x x R                          (3.9) 

 

with a hyperplane parameterized by w andb , ( , ) nb ∈ ×w R R , 

 

' 0b⋅ + =w x                                                              (3.10) 

 

where ix  is a data point in n-dimensional space, iy is a class label, w  is n-dimensional 

coefficient vector ( 'w  is the transpose of w ), and b is the offset. The discriminant 

function of the optimal hyperplane (classifier) is: 

 

( ) sgn( ' )f b= ⋅ +x w x                                                  (3.11) 

 

As shown in Figure 3.4, there exist many hyperplanes that can separate the examples 

perfectly. That is, many classifiers can achieve minimized empirical risk. Apparently, the 

generalization performances of these hyperplanes are quite different. Some hyperplanes, 

e.g. 1H  and 4H , have very poor generalization performance. Based on only the training 

set, how can we select a hyperplane which works well in general? According to structural 

risk minimization principle, we should select a hyperplane with a minimal VC confidence 

interval: that is, select a hyperplane with minimal VC dimension. 
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Figure 3.4: Hyperplanes perfectly separating two separable classes 

 

Vapnik (1995) formulated another theorem to determine a separating hyperplane with the 

minimal VC dimension. 

 

Theorem 3.2: Let R  be the radius of the smallest ball ( ) { : | }RB R= ∈ − ≤ ∈a x T x a a T  

containing the training set 1 1 2 2{( , ), ( , ),..., ( , )}, , { 1,1}n
m my y y y= ∈ ∈ −T x x x x R , and let 

, ( ) sgn( ' )bf b= ⋅ +w x w x                                             (3.12) 

be a canonical hyperplane decision function defined on the training set T . Then the set of 

separating hyperplanes ,{ : }bf A≤w w  has the VC dimension h  bounded by 

2 2min( , ) 1h R A n≤ +                                             (3.13) 

 

According to theorem 3.2, in order to find a hyperplane with minimal VC dimension, we 

need to minimize the norm of the canonical hyperplane w . A canonical separating 

hyperplane satisfied: 

 

  , 1,...,
: min | ' | 1,b i ii m

f b
=

⋅ + = ∈w w x x T                                   (3.14) 

 

H1 

H2 

H3 H4
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Specifically, we can find two hyperplanes parallel to the separating hyperplane and equal 

distances to it, 

 

1 : ' 1H y b= ⋅ + = +w x                                                      (3.15) 

2 : ' 1H y b= ⋅ + = −w x                                                      (3.16) 

 

with the condition that there are no data points between 1H  and 2H . For any two parallel 

hyperplanes separating the data points, we can always scale the coefficient vector w and 

offset b  so that they can be expressed as (3.15) and (3.16). As shown in Figure 3.5, the 

data points need to satisfy, 

 

' 1i b⋅ + ≥ +w x , for positive examples 1, 1,2, ,iy i k= + = …                 (3.17) 

' 1i b⋅ + ≤ −w x , for negative examples 1, 1,2, ,iy i k= − = …                (3.18) 

 

Conditions (3.17) and (3.18) can be combined into a single condition, 

 

( ' ) 1i iy b⋅ + ≥w x                                                         (3.19) 

 

 
Figure 3.5: Optimal separating hyperplane between two classes of separable samples 

' 1b⋅ + = +w x

H1 

H2 

' 1b⋅ + = −w x

' 0b⋅ + =w x

Margin 
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The distance of a point ix  from the hyperplane ' 0b⋅ + =w x  is, 

 

'
( , ; ) i

i

b
d b

⋅ +
=

w x
w x

w
                                                     (3.20) 

 

Therefore, the distance between 1H  and 2H is given by, 

 

1 2 : 1 : 1

: 1 : 1

( , ) min ( , ; ) min ( , ; )

1 ( min ' min ' )

2

i i i i

i i i i

i iy y

i iy y

d H H d b d b

b b

=− =+

=− =+

= +

= ⋅ + + ⋅ +

=

x x

x x

w x w x

w x w x
w

w

                          (3.21) 

 

Consequently, minimizing the norm of the canonical hyperplane w  is equal to 

maximizing the margin between 1H  and 2H . That is: the purpose of implementing SRM 

for constructing an optimal hyperplane is to find an optimal separating hyperplane that 

can separate the two classes of training data with maximum margin. Hence, there will be 

some positive examples on 1H  and some negative examples on 2H . Only these examples 

determine the optimal separating hyperplanes. Other examples have no contribution to 

the definition of the optimal separating hyperplanes and thus can be removed from the 

training set. Therefore, the examples located on 1H  and 2H are called support vectors. 

The name Support Vector Machines originated from the name of support vector: that is, 

learning machines for finding support vectors. 

 

Hence, the optimal hyperplane separating the training data of two separable classes is the 

hyperplane that satisfies, 

 

1: ( ) '
2

: ( ' ) 1, 1, 2,...,i i

Minimize F

subject to y b i m

= ⋅

 ⋅ + ≥ =

w w w

w x
                               (3.22) 
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This is a convex, quadratic programming (QP) problem with linear inequality constraints. 

Problems of this kind are called constrained optimization problems. It is hard to solve the 

inequality constraint optimization problem directly. The most common way to deal with 

optimization problems with inequality constraints is to introduce Lagrange multipliers to 

convert the problem from the primal space to dual space and then solve the dual problem 

(please refer to Appendix A for more information on Dual Theorem). 

 

 Introducing m  nonnegative Lagrange multipliers 1 2, , , 0mα α α ≥… associated with the 

inequality constraints in (3.22), we have the following Lagrangean function, 

 

1

1( , , ) ' [ ( ' ) 1]
2

m

i i i
i

L b y bα
=

= ⋅ − ⋅ + −∑w α w w w x                              (3.23) 

 

Solving the saddle point of Lagrangean function (which is unconstrained) is equivalent to 

solving the original constrained problem. At the saddle point of Lagrangean function, the 

gradient of ( , , )L bw α  with respect to the primal variables w and b vanish, 

 

1
0

m

i i i
i

L yα
=

∂
= − =

∂ ∑w x
w

                                                  (3.24) 

1

0
m

i i
i

L y
b

α
=

∂
= − =

∂ ∑                                                       (3.25) 

 

Since these are equality constraints in the dual formulation, we can substitute them into 

( , , )L bw α  to yield, 

 

1 1 1

1( ) '
2

m m m

i i j i j i j
i i j

L y yα α α
= = =

= − ⋅∑ ∑∑α x x                                  (3.26) 

 

Therefore, solving the constrained optimization problem (3.22) is converted to solving 

the dual optimization problem: 
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1 1 1

1

1: ( ) '
2

: 0

0, 1,2,...,

m m m

i i j i j i j
i i j

m

i i
i

i

maximize L y y

subject to y

i m

α α α

α

α

= = =

=

= − ⋅

 =

≥ =

∑ ∑∑

∑

α x x

                                 (3.27) 

 

This is a quadratic optimization problem. Over the years, a number of optimization 

techniques have been devised to solve the quadratic optimization problem. They range 

from the simple gradient ascent (the steepest ascent) algorithm to more efficient 

algorithms, namely, the Newton method, conjugate gradient method, and primal dual 

interior-point method. These methods can be applied in SVMs to solve the above 

mentioned optimization problem. However, many of these methods require that the 

matrix 'i j i jy y ⋅x x is stored in memory. This implies that the space complexity of the 

algorithm is quadratic in the sample size. For large size problems, these approaches can 

be inefficient and sometimes impossible. 

 

A novel algorithm called Sequential Minimal Optimization (SMO) (Platt, 1998) was 

designed to solve large size quadratic optimization problems. The strategy of SMO is to 

decompose the problem into a series of small tasks that optimize a minimal subset of just 

two variables at each step. An analytical solution for the two variables optimization 

problem is given and the original problem can be solved using iteration. For more details 

about SMO, please refer to Appendix B. 

 

After obtaining an optimal solution * * * *
1 2( , , , )mα α α=α …  for the dual problem, the solution 

of an optimal coefficient vector for the primal problem can be obtained from (3.24): 

 

* *

1

m

i i i
i

y α
=

= ∑w x                                                           (3.28) 

 

The offset b  does not appear in the QP problem and the optimal solution *b  must be 

solved from the primal constraints, 
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*

: 1 : 1

1 ( min ' max ' )
2 i i i i

i iy y
b

=+ =−
= − ⋅ − ⋅

x x
w x w x                                          (3.29) 

 

Generally, we do not need to calculate *w explicitly. A new example x  can be classified 

using: 

 

* * * * * *

1 0

( ) sgn( ' ) sgn(( ) ' ) sgn( ' )
m m

i i i i i i
i i

f b y b y bα α
= =

= ⋅ + = ⋅ + = ⋅ +∑ ∑x w x x x x x          (3.30) 

 

Karush-Kuhn-Tucker (KKT) complementarity conditions (Taha, 1997) of optimization 

theory require that: 

 
* * *[ ( ' ) 1] 0, 1,2,...,i i iy b i mα ⋅ + − = =w x                                (3.31) 

 

Therefore, only examples ix  that satisfy the equalities in (3.19) can have non-zero 

coefficients *
iα . Such examples lie on the two parallel hyperplanes separating two classes 

and thus are support vectors. Therefore, support vectors are examples whose related 

coefficients *
iα  are non-zero. 

 

Since only a small part of examples are located on the two parallel hyperplanes, most 

examples satisfy the inequalities in (3.19), i.e., most *
iα  solved from the dual problem are 

null. Therefore, the coefficient vector w  is a linear combination of a relatively small 

percentage of examples (support vectors). This leads to a sparse solution and it is very 

efficient in classifying new examples. Since only support vectors have non-zero 

coefficients *
iα . The new example can be classified according to only support vectors, 

 
* *

support vector

( ) sgn( ' )i i if y bα= ⋅ +∑x x x                                           (3.32) 
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3.4 SOFT MARGIN SVMS 

 

In practice, not all training sets can be perfectly linearly separated by a hyperplane 

(Figure 3.6). In the case that the training set T is not linearly separable or we want to 

consider a general case and simply ignore whether or not the set T is linearly separable, 

the algorithm discussed in section 3.3 needs to be extended to solve imperfect separation 

problems. In that case, SVMs do not strictly require that there are no examples between 

separating hyperplanes 1H  and 2H . Instead, a penalty for the examples that cross the 

boundaries is introduced to take into account the misclassification errors. 

 

 
Figure 3.6: Optimal separating hyperplane between two classes of inseparable samples 

 

This makes sense from the structural risk minimization point of view. Based on (3.8) in 

section 3.2, a good generalization performance can be reached when both the empirical 

risk and the VC confidence interval are small. In the linear SVMs discussed in section 3.3, 

a perfect separation is supposed. That means the empirical risk is set to be zero. 

Therefore, minimizing the VC dimension of the classifier by maximizing the margin can 

lead to a minimal VC confidence and thus a minimal upper bound for the expected risk 

given that (3.19) has to be met. Then, the question rises: is it possible to allow for a small 

number of misclassified points in order to achieve better generalization performance? 

' 1b⋅ + = +w x

H1 

H2 

' 1b⋅ + = −w x

' 0b⋅ + =w x

Margin 

iξ
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The answer is quite obvious. If the decrease in the VC confidence interval caused by a 

simpler classifier is larger than the increase of empirical risk caused by the 

misclassification error of imperfect separation, the upper bound of the expected risk will 

decrease and thus lead to a good generalization performance. Actually, this is a 

generalized optimal separating hyperplane (OSH) problem. Perfect separation problems 

discussed in section 3.3 are sub-optimal for certain training sets. 

 

Soft margin SVMs aim to minimize the upper bound of the expected risk by minimizing 

the trade-off between margin (VC dimension, or VC confidence interval) and training 

error (empirical risk). To handle imperfect separation problems, non-negative slack 

variables iξ  are incorporated into constraints (3.19) to consider misclassification errors: 

 

( ' ) 1 , 1, 2, ,i i iy b i mξ⋅ + ≥ − =w x …                                    (3.33) 

0, 1,2, ,i i mξ ≥ = …                                            (3.34) 

 

Moreover, a penalty is added to the objective function to form a generalized expression 

for the upper bound of the expected risk, 

 

1

1( , ) ' ( )
2

m
l

i
i

F C ξ
=

= ⋅ + ∑w ξ w w                                           (3.35) 

 

The first term in (3.35) is related to the VC dimension of the classifier and thus 

corresponds to the VC confidence interval in (3.8). The second term in (3.35) is related to 

the misclassified points for the training set and thus corresponds to the empirical risk in 

(3.8). The regularization parameter C  is used to control the trade-off between the 

empirical risk and the model complexity. A large C  corresponds to stronger penalties for 

errors and will lead to a complex model to minimize the number of misclassified points. 

On the contrary, a small C  corresponds to stronger penalties for complexity and will lead 

to a simple model to maximize the margin 2
w

. 
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Usually, l  is set to be 1. Hence the optimization problem becomes, 

 

 
1

1: ( , ) '
2

: ( ' ) 1 0, 1, 2, ,
0, 1, 2, ,

m

i
i

i i i

i

minimize F C

subject to y b i m
i m

ξ

ξ
ξ

=

= ⋅ +

 ⋅ + + − ≥ =
≥ =

∑w ξ w w

w x …
…

                           (3.36) 

 

Introducing Lagrange multipliers α  andβ , we have the following Lagrangean function, 

 

1 1 1

1( , , , , ) ' [ ( ' ) 1]
2

m m m

i i i i i i i
i i i

L b C y bξ α ξ β ξ
= = =

= ⋅ + − ⋅ + + − −∑ ∑ ∑w ξ α β w w w x           (3.37) 

 

Similar to the linear separable case, we must now minimize ( , , , , )L bw ξ α β  with respect 

to , ,bw ξ  and simultaneously maximize ( , , , , )L bw ξ α β  with respect to ,α β . Applying 

gradient vanishing conditions and simplifying yields, 

 

1

0
m

i i i
i

L yα
=

∂
= − =

∂ ∑w x
w

                                                 (3.38) 

1

0
m

i i
i

L y
b

α
=

∂
= − =

∂ ∑                                                         (3.39) 

0i i
i

L C α β
ξ

∂
= − − =

∂
                                                    (3.40) 

 

Substituting (3.38)-(3.40) into (3.37) yields the dual problem: 

 

1 1 1

1

1: ( ) '
2

: 0

0 , 1,2,...,

m m m

i i j i j i j
i i j

m

i i
i

i

maximize L y y

subject to y

C i m

α α α

α

α

= = =

=

= − ⋅

 =

≤ ≤ =

∑ ∑∑

∑

α x x

                              (3.41) 
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The only difference between perfectly separating case and the imperfectly separating case 

is that, the Lagrange multipliers i sα  are bounded above by C  in an imperfectly 

separating case instead of unbounded in a perfectly separating case. 

 

After the optimum Lagrange multipliers iα  have been determined, we can compute the 

optimum coefficient vector *w  and the optimal offset *b . The solution is given by: 

 

* *

1

m

i i i
i

y α
=

= ∑w x                                                           (3.42) 

The offset *b  can be found from: 

 
* * *( ( ) 1) 0i i iy bα ⋅ + − =w x                                                (3.43) 

 

for any i  such that *
iα  is not zero. 

 

Based on the new KKT conditions: 

 
* * * *( ( ) 1 ) 0i i i iy bα ξ⋅ + − + =w x                                       (3.44) 

* *( ) 0i iC α ξ− =                                                  (3.45) 

 

The points in the training set can be classified into three categories: 

 

1. * 0iα = : normal points (non-support vectors) 

2. * 0iα > : support vectors 

a. *0 i Cα< < : margin vectors 

• * 0iξ =  

• The support vectors lie at a distance 1
w

 from the OSH 
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b. *
i Cα = : non-margin vectors 

• * 1iξ > : misclassified points 

• *0 1iξ≤ ≤ : correctly classified within margin 

 

Figure 3.7 visually shows these three kinds of points in the training set. 

 

 
Figure 3.7: Three kinds of points in the training set 

 

 

3.5 NON-LINEAR SVMS 

 

In most practical applications, the two classes cannot be linearly separated. To extend the 

linear learning machine to work with non-linear cases, SVMs use a kernel method to map 

the non-linearly separable classes from input space to a high dimensional feature space, 

in which the non-linearly separable classes can be separated by a linear optimal 

hyperplane. 

 

As shown in Figure 3.8, a mapping function ( )Φ x  (quadratic transform) is used to map 

examples in the input space 2⊂S R  into a high dimensional feature space 3⊂F R . The 

' 1b⋅ + = +w x

H1 

H2 

' 1b⋅ + = −w x

' 0b⋅ + =w x

Margin 

iξ

jξ Normal points 

Margin vectors
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training set, which cannot be linearly separated in the input space, now become linearly 

separable in the feature space. 

 

 
Figure 3.8: Mapping from input space to feature space (reprinted from Smola et al., 1999) 

 

From the above example, we can find that appropriate choice of mapping function ( )Φ x , 

that is, appropriate construction of feature space, leads to linear separability. However, 

explicit use of such a mapping function would cause some efficiency problems. The 

dimension of the feature space is usually much higher than that of the input space, which 

will dramatically increase the number of parameters need to be solved. For example, 

polynomial transformation of degree d  over N  attributes in the input space leads to 

1 ( 1)!
!( 1)!

d N d N
d d N

+ −⎛ ⎞ + −
=⎜ ⎟ −⎝ ⎠

 attributes in the feature space. Moreover, the transformation 

operator ( )Φ x  might be computationally expensive. 

 

After checking the optimal separating hyperplane problem, however, it is easy to find that: 

an example x  in the input space can be represented as ( )Φ x  in the feature space. Since the 

linear separation is performed in the feature space, the optimization problem shown in 

(3.41) can be rewritten as: 

 

1 1 1

1: ( ) ( ) ' ( )
2

m m m

i i j i j i j
i i j

maximize L y yα α α
= = =

= − Φ ⋅Φ∑ ∑∑α x x                       (3.46) 

 

1 2

2 2
1 1 2 2

: ( , )

( , 2 , )

x x

x x x x

Φ ⇒x1 
z1 

z2 

z3 

Input Space

Feature Space 

x2 
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Since only the dot product of two vectors in the feature space appears in the optimization 

problem, we can define a kernel function K as, 

 

( , ) ( ) ' ( )i j i jK = Φ ⋅Φx x x x                                             (3.47) 

 

Hence, we do not need to know explicitly the mapping function, but can simply use a 

kernel function (KF) of the input space to represent the dot product in the high 

dimensional feature space. All the previous derivations in linear SVMs hold (substituting 

dot product with the kernel function), since we are still doing a linear separation, but in a 

different space. 

 

The use of the kernel function greatly simplifies the mapping problem and improves the 

computational efficiency. While the mapping function needs to map nR  to lR  (usually 

n l<< ), the kernel function can map n n×R R  to R  and thus reduce the computational 

burden dramatically. For example, consider the following map: 

 
2 2
1 2 1 2 1 2( ) ( , , 2 , 2 , 2 ,1)x x x x x xΦ =x                                       (3.48) 

2( , ) ( ) ' ( ) ( ' 1)i j i j i jK = Φ ⋅Φ = ⋅ +x x x x x x                                    (3.49) 

 

Using the kernel function, we can greatly simplify the computation. The kernel (3.49) is 

known as second order polynomial kernel. 

 

Hence the optimization problem can be rewritten as, 

 

1 1 1

1: ( ) ( , )
2

m m m

i i j i j i j
i i j

maximize L y y Kα α α
= = =

= −∑ ∑∑α x x                       (3.50) 

 

Thus the new example can be classified according to, 
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* *

support vector

( ) ( ( , ) )i i if sign y K bα= +∑x x x                                    (3.51) 

 

The existence of a kernel function and an appropriate feature space is problem-dependent 

and has to be established for each new problem. The following lists some commonly used 

kernels: 

 

• Dot kernel: ( , ) 'i j i jK = ⋅x x x x  

• Polynomial kernel: ( , ) ( ' 1)d
i j i jK = ⋅ +x x x x  

• Radial basis kernel: 
2 2| | /( , ) i j

i jK e σ− −= x xx x  

• Sigmoid kernel: ( , ) tanh( ' )i j i jK cγ= ⋅ +x x x x  

 

According to the definition of kernel function (3.47), it should be able to be expressed as 

dot product in a high dimensional space. According to Mercer’s condition (Cristianini 

and Shawe-Taylor, 2000), any positive definite function ( , )K x y can be expressed as a 

dot product in a high dimensional space. Therefore, any kernels that meet Mercer’s 

condition can be used to construct SVMs: 

 
2( , ) ( ) ( ) 0, : ( )K g g d d g g d> ∀ < ∞∫∫ ∫u v u v u v u u                    (3.52) 

 

A kernel can also be constructed by combining other kernels. Assume 1K  and 2K  are 

kernels, then the following expressions can generate a valid new kernel: 

 

• 1( , ) ( , )i j i jK aK=x x x x  

• 1 2( , ) ( , ) ( , )i j i j i jK K K= +x x x x x x  

• 1 2( , ) ( , ) ( , )i j i j i jK K K=x x x x x x  

• 1 ( , )( , ) i jK
i jK e= x xx x  
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3.6 EXTENDED SVMS 

 

SVMs have been extended to meet the requirements of different applications. Some 

important extensions of SVMs are: 

 

• One-class SVMs (Schölkopf et al., 2001): One extension of SVMs to handle one-

class classification problem in which only the training data of one class is 

available and the target class is modeled by fitting a hypersphere with minimal 

radius around it. 

• Multi-class SVMs: SVMs are extended to deal with K -class pattern classification 

problem. Multi-class SVMs are usually implemented by combining several binary 

SVMs to solve a given multi-class problem. Popular methods are: one-versus-all 

method using winner-takes-all strategy (Hastie and Tibshirani, 1998), which 

constructs K  hyperplanes between class k and the 1K − other classes; and one-

versus-one method implemented by max-wins voting (Platt, 1999), which 

constructs ( 1)
2

K K −  hyperplanes between any pairwise of two classes. 

• Support Vector Regression (SVR) (Smola, 1996): One extension of SVMs to 

apply to regression task by the introduction of an alternative loss function—

ε intensive loss. 

• Reduced SVMs (Lee and Mangasarian, 2000): The reduced support vector 

machine (RSVM) is proposed to avoid the computational difficulties in 

classifying massive dataset by selecting a small random subset from the entire 

dataset to generate a reduced kernel (rectangular) matrix without sacrificing the 

prediction accuracy. 

• Least Squares SVMs (Suykens and Vandewalle, 1999): Least squares support 

vector machines (LS-SVMs) are re-formulations to the standard SVMs by using a 

regularized least squares cost function with equality constraints, leading to linear 

Karush-Kuhn-Tucker systems. The solution can be solved efficiently by iterative 

methods like the conjugate gradient algorithm. 
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3.7 CHAPTER SUMMARY 

 

This chapter presented a brief introduction to support vector machines: their basic idea, 

unique characteristics, and attractive advantages. This was followed by a detailed 

discussion of SVMs’ mathematic foundation, namely, statistical learning theory. A 

statistical learning problem of binary classification was put forward, the lost function was 

introduced to measure the quality of prediction, and then the risk function was employed 

to describe the regularization performance of the classification method. The empirical 

risk minimization principle, which is used in most traditional methods, was discussed and 

its shortcomings were analyzed. A more superior principle, namely, structural risk 

minimization, was then introduced to circumvent these shortcomings. 

 

As an approximate implementation of structural risk minimization principle, SVMs were 

discussed in detail: from a specific case, namely, linear separable optimal separating 

hyperplane problem, to a more general case, namely, soft margin SVMs, which allow 

misclassification errors. Then, kernel function was introduced to extend the linear SVMs 

to cope with nonlinear separation problem. Finally, some extended SVMs were listed. 
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CHAPTER 4: MODELING LAND USE CHANGE USING STANDARD SVMS 

 

 

4.1 INTRODUCTION 

 

Owing to its incomparable generalization performance, SVMs have steadily been gaining 

research attention and have been increasingly used in a wide variety of application 

domains ranging from pattern recognition, time series prediction, to signal processing. 

The great success that SVMs have achieved in these applications has attracted increased 

efforts by researchers to extend their applications. 

 

However, SVMs are relatively new for the GIS community. Although some progressive 

researchers have attempted to introduce SVMs to GIS applications (Zhu and Blumberg, 

2002; Guo et al., 2005), SVMs’ power has not been fully recognized by researchers in the 

GIS community. For land use studies, SVMs have been used in land cover classification 

from remote sensing data and have shown better and more stable accuracy than 

traditional methods (Huang et al., 2002; Pal and Mather, 2003). However, to our 

knowledge, SVMs on land use change modeling is a new topic to be more fully explored. 

 

This research aims to apply SVMs on land use change modeling. Land use change in 

Calgary, Canada from 1985-2001 is used as case study. This chapter will cover the model 

development and implementation. Some practical issues needed to be solved when 

applying SVMs on a specific application, namely, regularization parameter selection, 

kernel selection, and input vector normalization, are discussed. Performance evaluation is 

also addressed. The performance of SVMs is compared with that of a well studied land 

use change modeling approach, namely, spatial logistic regression. The comparison 

clearly demonstrates the superiority of SVMs, especially on the capacity and efficiency to 

classify the changed land parcels. 
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4.2 STUDY AREA 

 

Calgary is located in southern Alberta on the eastern edge of the Rocky Mountain 

Foothills at the merging of the Bow and Elbow rivers (Figure 4.1). Calgary covers an 

area of about 720 square kilometers and thus a 25 km x 35 km rectangle should be 

sufficient to include it. 

 

 
Figure 4.1: Location of Calgary City 

 

Calgary was originally established as a frontier settlement by the Northwest Mounted 

Police (NWMP) in 1875. The arrival of the Canadian Pacific Railway transcontinental 

line in 1883 brought growth and development to Calgary. Thousands of settlers, 

businessmen and tourists poured into this area. The newly introduced economic grazing 

land leasing policy, which encouraged large ranching operations, turned Calgary into the 

center of Canada’s cattle marketing and meatpacking industries. Agriculture was the key 

component of Calgary’s economy until the discovery of oil and gas in 1914 in the Turner 

Valley area 30 miles south of Calgary. From then on, Calgary became the “oil and gas 

capital of Canada”. After more than one hundred and thirty years of growth, the 
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population in Calgary has grown from 1,000 to nearly 1,000,000, and Calgary has 

become the largest city in Alberta and the fifth largest in Canada. 

 

In the past two decades, Calgary has experienced tremendous economic growth. This 

growth does not only express itself in a substantial increase in the urban population, but 

also in the fast expansion of the urban area. The expansion indicates a transformation of 

vacant and agricultural land use to construction of urban fabrics including residential, 

industrial and infrastructure developments. 

 

 

4.3 DATA PREPARATION 

 

Considering previous literature, the context of Calgary, and the data availability, this 

study included the following data in the land use change model: chronological land use 

data, demographic data, and transportation data (major roads and LRT lines), elevation 

data, community map, city amenity map, community service center map, and shopping 

center distribution map. Other factors, such as social and economic data, are very 

important for driving land use change. However, they are not considered in this study due 

to the difficulty in obtaining and quantifying. 

 

4.3.1 Land Use Data 

  

Land use data was classified from Landsat TM (thematic mapper) and ETM+ (enhanced 

thematic mapper plus) images using eCognition 2.1 software. Six Landsat TM and ETM+ 

images are available for the study area for the years of 1985, 1990, 1992, 1999, 2000, and 

2001. The images were obtained from the Maps, Academic Data, Geographic 

Information Center (MADGIC) in the University of Calgary Library and from the 

internet. Detailed information for these six images is listed in Table 4.1. 
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Table 4.1: Detailed information of Landsat TM and ETM+ images 

Acquisition Data Format Spatial Resolution Projection 

1985-07-26 TM 28.5m NAD83 UTM Zone 12N 

1990 TM 30m None 

1992-08-14 TM 28.5m NAD83 UTM Zone 12N 

1999-07-09 ETM+ 28.5m NAD83 UTM Zone 12N 

2000-08-28 ETM+ 28.5m NAD83 UTM Zone 12N 

2001-08-15 ETM+ 28.5m NAD83 UTM Zone 12N 

 

The land use classification was implemented using eCognition 2.1 software. A hybrid 

classification scheme (Table 4.2) was employed according to the US Geological Survey 

Land Use/Land Cover Classification System (Jensen, 1996). 

 

Table 4.2: Land use classification scheme 

Level I Level II 

Built-up Residential and Commercial 

 Industrial 

 Transportation 

Non Built-up Parks 

 Vacant area 

Water Bodies Water 

 

The purpose of this study is to apply a novel method, namely, SVMs, to land use change 

modeling, to solve the problems that occur when implementing SVMs in a new 

application, and to improve the ability of SVMs to better fit the characteristics of land use 

change data. Therefore, a simple binary land use change modeling problem was adopted, 

which would serve the research objective and where the findings of binary land use 

change modeling can be easily extended for modeling multinomial land use change by 

using one of the multi-class SVMs strategies discussed in section 3.6. 
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Specifically, only land use change from non built-up land to built-up land is considered in 

this study. Water bodies are treated as constraints that are not suitable for development.  

The 1990 land use data was re-sampled to a raster layer with cell size 28.5m x 28.5m to 

be consistent with other land use data. All classified land use layers were projected to the 

Calgary_3TM_WGS_1984_W114 coordinate system, which served as the coordinate 

system of all the data used in this study. Figure 4.2 (a) ~ (f) are land use maps of 1985, 

1990, 1992, 1999, 2000, and 2001 respectively. 

 

       
(a) 1985                                     (b) 1990                                    (c) 1992 

       
(d) 1999                                     (e) 2000                                    (f) 2001 

Figure 4.2: Calgary land use maps 
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4.3.2 Demographic Data 

 

The demographic data was obtained from multiple sources: Statistics Canada, the City of 

Calgary, and MADGIC at the University of Calgary Library. Census tract maps and 

census profiles for 1991, 1996, 2001, and 2003 were available. In order to use the 

available demographic data in this research, we needed to solve spatial and temporal 

discrepancy problems. 

 

The spatial problem involved in analyzing data gathered from the four different census 

years is the change in various attributes of each Census Tract (CT) between each year. 

These changes may include alterations in boundary shape and size; the population within 

each CT; and amalgamations or segmentations of CTs in previous years. The changes 

within the CTs will cause difficulty for the traditional population density calculation 

method, in which the population densities of land parcels in the same CT are considered 

to be uniform and take the value of: 

 

( )_ ( )
( )

i
i

i

Pop CTPop Dens CT
Area CT

=                                           (4.1) 

 

Where _ ( )iPop Dens CT , ( )iPop CT and ( )iArea CT  are the population density, total 

population, and area of census tract i respectively. 

 

Since the population densities in two sides of a CT boundary vary greatly, the population 

density of a specific site will be artificially affected if it is located in different CTs in 

different years because of the changes to CTs. Spatial interpolation is suggested to 

address this problem and to help achieve a smooth population density distribution 

(Goodchild et al., 1993). This process involves interpolating over discrete points 

representing each of the CTs and constructing a point surface which represents the 

population density of each point in the given area. Several techniques are available for 

interpolation: Spline, Kriging, Inverse Distance Weighting (IDW) and finally, Triangular 

Irregular Networks (TIN). To determine which method is more appropriate for Calgary’s 
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population distribution, we tried all the methods mentioned above and compared the 

results of each method with the actual data in some testing area where the population 

density data is available. After extensive analysis, it has been determined that the best 

interpolation function for modeling the population density within Calgary was IDW. 

Therefore, IDW was used to construct population density maps for the four census years. 

 

The temporal problem is that the census years are not consistent with the years that the 

land use maps were generated. The land use data we want to model is in the year 1985, 

1990, 1992, 1999, 2000, and 2001 but the detailed census data we have is in the year 

1991, 1996, 2001, and 2003. Therefore, temporal interpolation (Martin and Bracken, 

1991) is also needed. First, an average annual population growth rate was computed 

between two consecutive years: 

 

( )
ln( )

( )
j

i
ij

j i

Pop t
Pop tr
t t

=
−

                                                            (4.2) 

 

where ( )iPop t is the total population of year it  and ijr is the annual population growth rate 

between year it  and year jt . 

 

Then, the weighted average annual population growth rate from 1991 to 2001 was 

calculated using the time span of each period as the weight: 

 

( )
( )

j i ij

j i

t t r
r

t t
−

=
−

∑
∑

                                                  (4.3) 

 

Thirdly, the weighted average annual population growth rate r can be applied to estimate 

the population density of each cell from the population density of the corresponding cell 

in every census year and the estimated values were weighted to get the final population 

density for each cell according to: 
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( )_ ( ) /( )
_ ( )

1/( )

ir t t
i i

i

Pop Dens t e t t
Pop Dens t

t t

− −
=

−
∑

∑
                            (4.4) 

 

To verify the accuracy of the temporal interpolation, the total populations of each 

expected year was calculated and compared with the actual populations (Table 4.3). The 

results showed that the interpolation scheme worked quite well. 

 

Table 4.3: Interpolated population vs. actual population 

Population 1985 1990 1992 1999 2000 2001 

Interpolated  617,664 691,902 721,281 834,800 856,445 878,150

Actual 625,143 692,885 717,133 842,388 860,749 876,519

Difference -7,479 -983 -4,148 -7,588 -4,304 -1,631

 

4.3.3 Other Data 

 

Other data, including major road shape file, LRT lines and stations shape files, elevation 

raster layer, community boundary shape file, city amenities shape file, community service 

centers shape file, and shopping centers shape files, were collected from different sources: 

the Alberta Department of Transportation, the City of Calgary, MADGIC in the 

University of Calgary Library, and the internet. 

 

All these shape files/raster layers were compiled in ESRI ArcMap v9.1®. All layers were 

projected to the Calgary_3TM_WGS_1984_W114 coordinate system. Raster layers were 

re-sampled using a cell size of 28.5 meters and snapped to the grid of land use data. Slope 

raster was generated from the elevation raster using the ArcMap spatial analyst extension. 

Sequential shape files of the modeled years for road networks, LRT lines/stations, city 

amenities, community service centers, and shopping centers were generated according to 

the construction years of each utility. Then the ArcMap spatial analyst extension was 

used to generate distance raster layers to these utilities in each modeled year according to 

the Euclidian distance. 
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4.4 MODEL DEVELOPMENT 

 

4.4.1 Causal Factors 

 

Like most land use change models, the model used in this study is also cell-based. Based 

on the causal factor discussion in section 2.2 and our previous land use change modeling 

research, nine causal factors were considered in this study. A summary of these causal 

factors are shown in Table 4.4. 

 

Table 4.4: Summary of causal factors for the land use change model 

Causal Factor Description 

Pop_Dens Population density of the cell 

Slope Slope of the cell 

Dist_LRTSta Distance from the cell to the nearest LRT station 

Dist_Road Distance from the cell to the nearest major road 

Dist_CityCen Distance from the cell to the downtown area 

Dist_Amenity Distance from the cell to the nearest city amenity 

Dist_CommServ Distance from the cell to the nearest community service center 

Dist_Shopping Distance from the cell to the nearest shopping center 

Per_Avail Percentage of avail land in the surround area within 114m radius 

 

Three categories of causal factors were employed: (1) site specific characteristics, (2) 

proximity, and (3) neighborhood characteristics. Since population is a leading force 

propelling global land use change, it is considered to be a chief predictor of land use 

change. Slope has great impact on the construction feasibility and cost. As well, slope is 

also an important site specific characteristic which affects land use change probability. 

Proximity is a prime cause of urban expansion. Proximity variables measure the 

minimum Euclidean distances to the nearest transportation network (road/LRT), 

downtown area, city amenities, community service centers, and shopping malls 

respectively. For neighborhood characteristics, the distance decaying mechanism of 

various factors is signified by the type and size of the selected neighborhood. In this 
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study, an extended Moore neighborhood with a four cells (about 114 meters) radius was 

selected after considering the effect of neighboring impacts in current land use 

distribution.   

 

4.4.2 SVMs Modeling Framework 

 

A SVMs land use change modeling framework was developed using C++ programming 

language. The modeling framework was integrated into ArcMap as an extension so as to 

make use of ArcMap’s powerful spatial data processing and visualization capacity. 

 

Figure 4.3 gives an overview of the main components of the SVMs land use change 

modeling framework. 

 
Figure 4.3: General structure of the SVMs land use change modeling framework 

Land use change 
detection module

Causal factors 
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The land use data and causal factor data were imported into ArcMap. Then land use 

layers of different years were sent to the land use change detection module. A post-

classification comparison method was developed to detect land use changes between 

1985-1990, 1990-1992, 1992-1999, 1999-2000 and 2000-2001. Bi-temporal change maps 

were generated by overlaying individual classifications. The cells remained in non built-

up land use and the cells that changed their land use from non built-up to built-up were 

collected for the binary land use changing modeling. 

 

Different kinds of causal factor layers for different years were sent to the causal factors 

assembling module. The causal factors assembling module linked the related cells in 

different layers of the same year together and constructed an attribute vector for each cell. 

Then the attribute vectors were able to be combined with the land use changes detected to 

generate a set of labeled vectors. Each vector had a label to indicate its category: -1 refers 

to cells remaining in non built-up land use; +1 refers to cells changing their land use from 

non built-up to built-up. The vectors were candidates for model training and evaluation. 

 

A small set of vectors was selected from the candidates as the training set for the land use 

change model. Nevertheless, the selection procedure cannot be performed arbitrarily. 

Although SVMs do not need to assume the distribution or error structure of the data, 

which is quite common for most statistical traditional methods, it does need to satisfy a 

basic condition: the data should be statistically independent and identically distributed. 

Land use change modeling, however, involves substantial amounts of spatial variables, 

and spatial land use data have the tendency to be dependent, a phenomenon known as 

spatial autocorrelation. This can be defined as the property of random variables to take 

values over distance that are more or less similar than expected for randomly associated 

pairs of observations, due to geographic proximity. Therefore, specific approaches should 

be considered to remove spatial autocorrelation. Otherwise, unreliable parameter 

estimation or inefficient estimates and false conclusions will result. 

 

A spatial sampling scheme was employed in this study. On one hand, spatial sampling 

can expand the distance interval between sampled sites and thus mitigate the spatial 
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autocorrelation since spatial autocorrelation should be subject to distance decay 

theoretically. On the other hand, spatial sampling leads to a smaller sample size that loses 

certain information. Nevertheless, it is a sensible approach to remove spatial 

autocorrelation and a reasonable design of the spatial sampling scheme will allow for a 

perfect balance between the two sides. 

 

This study used the regular sampling technique of a non-overlapping moving window. 

The center cell was retained for each window. To examine whether observations 

proximate in space were spatially autocorrelated, as defined by sequential occurrences of 

like land use change, a check of joins was determined each time by comparing land use 

change types of “adjacent” cells, which are those center cells and cells to the east, west, 

north, and south of the center cell. A plot showing the number of joins with increasing 

window size is provided in Figure 4.4. A 7×7 sampling window, or sampling distances of 

199.5 meters, was ultimately chosen to sample the data. At this distance, we effectively 

filtered out much of the spatial autocorrelation and yet had enough samples for regression 

analysis. 
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Figure 4.4: Number of joins by sampling window size 
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After spatial sampling, an independent and identically distributed training set was 

obtained. The labeled training set was sent to the SVMs classification module to find an 

optimal separating hyperplane in kernel incurred high dimensional feature space. 

Sequential minimal optimization (please check Appendix B for details) was implemented 

to solve the quadratic optimization problem in SVMs to calculate the optimal Lagrange 

multipliers for each vector in the training set. A small set of support vectors with non-

zero Lagrange multipliers can be detected to represent the boundary between two classes 

and to predict the possible label of any unseen vector from the same distribution of the 

training set. 

 

Evaluation of the model’s classification accuracy based on the training set itself can only 

demonstrate the model’s ability to describe the pattern of the training set. In order to 

evaluate the stability and the generalization performance of SVMs for land use change 

modeling, several groups of data other than the training set were used to evaluate the 

classification accuracy. In this study, ten sets of non-overlapped samples were randomly 

selected from the candidate vectors of each year. Each of these ten sets accounted for 5% 

of the related candidate vectors. 

 

The percentage of correct prediction (PCP), which measures the overall concordance 

between a classification and the actual land use conversion, was used to assess the 

goodness-of-fit of the models. An efficient way to assess the goodness-of-fit of 

classification was used in this study, which cross tabulates predictions with observations 

and calculates the overall concordance, change detection capacity, and change detection 

efficiency. Table 4.5 shows an example of the cross evaluation table used in this study. 

 

Table 4.5: An example of the cross evaluation table 

Predicted 
Observed 

Non built-up Built-up 
Total 

Non built-up Num(NN) Num(NB) Num(O-N) 

Built-up Num(BN) Num(BB) Num(O-B) 

Total Num(P-N) Num(P-B) Num(Total) 
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In table 4.5, ( )Num NN  is the number of cells with a label of -1 (non built-up) and was 

classified as non built-up. ( )Num NB  is the number of cells with a label of -1 (non built-

up) but was classified as built-up.  ( )Num BN  is the number of cells with a label of +1 

(built-up) but was classified as non built-up. ( )Num BB  is the number of cells with a label 

of +1 (built-up) and was classified as built-up. ( )Num P N−  and ( )Num P B− are the 

number of cells with a label of -1 and +1 respectively. ( )Num O N−  and ( )Num O B−  are 

the number of cells that were classified as non built-up and built-up respectively. 

( )Num Total  is the size of the training set/evaluation set. Based on the cross evaluation 

table, three important indicators can be calculated: 

 

( ) ( )
( )

Num NN Num BBPCP
Num Total

+
=                                              (4.5) 

( )1
( )

Num BBPCP
Num O B

=
−

                                                    (4.6) 

( )2
( )

Num BBPCP
Num P B

=
−

                                                   (4.7) 

 

PCP  indicates the overall accuracy of the classifier. 1PCP  is measured by the 

percentage of changed land parcels whose land use changed can be predicted by the 

model. It reveals the capacity of the classifier to detect the land use change. The higher 

the 1PCP , the more the changed land parcels can be correctly predicted. 2PCP  is 

measured by the percentage of correctly predicted changed land parcels over the total 

land parcels classified as changed. It exhibits the efficiency of the classifier to detect the 

land use change. A higher 2PCP  means the model can predict the changed land parcels 

with less incorrect predictions and thus a higher efficiency. 
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4.5 REGULARIZATION PARAMETER SELECTION 

 

The performance of SVMs is very sensitive to its configuration, which includes 

regularization parameter C, kernel function type and parameter. However, configuration 

of SVMs is problem-dependent and has to be established for each new application. 

Although some efforts have been made to establish some theoretical basis for 

determining optimal SVMs configuration (Cherkassky and Ma, 2004; Ustun et al., 2005), 

no widely accepted theory is available for choosing good SVMs parameters. 

 

Regularization parameterC is used to control the trade-off between the empirical risk and 

the model complexity. A large C  will lead to a complex model and thus tends to overfit 

the training set. On the contrary, a small C  will lead to a simple model and thus cannot 

model the underlying pattern effectively. Therefore, an optimal regularization 

parameter C  should be identified to better trade off the model complexity and the 

empirical risk, and thus gain the best generalization performance. 

 

It is suggested that a reasonable starting point and/or default value for the regularization 

parameterC is (Vapnik and Chapelle, 1999): 

 

1
( , )def

i j

C
K

=
∑ x x

                                                     (4.8) 

 

Cross-validation should be used to search for the optimal C  on a log-scale, for example: 
3 2 310 ,10 ,...,10def def defC C C C− −= . In this research, 0.1,1,10,100,1000,10000C =  were 

tested to explore the impact of different regularization parameters on the performance of 

SVMs. Figure 4.5 shows the PCPs of the standard SVMs with dot kernel and different 

regularization parameters in different time periods. 
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PCP versus Regularization Parameter
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Figure 4.5: PCP versus regularization parameter 

 

From Figure 4.5, it is clear that the standard SVMs with regularization parameter 10C =  

have the best PCP. However, one must recognize that the optimal regularization 

parameter is not only dependent on the special application, but also on the selection of 

kernel function type and its parameter. Therefore, cross-validation over regularization 

parameter and kernel function (with different types and parameters) should be performed 

to obtain an optimal SVMs setting for the application. 

 

 

4.6 KERNEL SELECTION 

 

According to the discussion in section 3.5, kernel function maps the input space into a 

high dimensional feature space and converts the non-linear boundary between two classes 

in the input space into a linear one in the feature space. Hence, the efficiency of the 

kernel function to convert the non-linear boundary to a linear one will greatly affect the 

performance of SVMs. The proper selection of kernel function relies on the 

understanding of the data pattern, which requires in-depth domain knowledge. Currently, 

the most commonly used kernel function and parameter selection approach is a grid 

search approach. That is trying different kernel functions with different parameter 

settings and comparing their performance. This study uses a similar strategy.  First, we 

compared the performances of SVMs for different parameter settings of two widely used 
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kernel functions, namely, polynomial kernel and radial basis function (RBF), and found 

the best parameter setting for each kernel type. Then, the performances of different kernel 

functions, which included dot kernel, polynomial kernel, and RBF kernel, were evaluated. 

 

The parameter of the polynomial kernel, ( , ) ( ' 1)d
i j i jK = ⋅ +x x x x , is a polynomial of order 

d  (degree). Figure 4.6 shows the impact of d  on the SVMs performance. No obvious 

trend could be observed when the polynomial order d  increased from 1 to higher values. 

When the polynomial order was increased, the performance of the SVMs oscillated 

slightly (PCPs varied about 2%±  for each training set). Since the PCPs for the tested 

polynomial orders in all five data sets were fairly high, we could say that the polynomial 

kernel gained steady high performance for the experiment data sets and no obvious trend 

can be found for polynomial order selection. 
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Figure 4.6: Performance of polynomial kernel as a function of polynomial order 

 

The parameter of the RBF kernel,
2| |( , ) i j

i jK e γ− −= x xx x , is the gamma valueγ . Figure 4.7 

shows the impact of the gamma value on the SVMs performance. The performance of 

RBF kernel changed greatly when the gamma value varied. There were obvious trends of 

improved accuracy as the gamma value increased. When the gamma values increased 

from 0.5 to 15, the overall PCP of the SVMs model for the three data sets changed from 

around 72% to almost 99%. 
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PCP versus Gamma Value

70%

80%

90%

100%

0 4 8 12 16 20

Gamma value

PC
P 

(%
) 85-90

90-92

92-99

99-00

00-01

 
Figure 4.7: Performance of RBF kernel as a function of gamma value 

 

Figure 4.8 shows a comparison of the performances of dot kernel, polynomial kernel, and 

RBF kernel with optimal parameter settings. It can be seen that the performances of each 

kernel function were quite different. The RBF kernel with gamma = 15 could achieve 

PCPs higher than 96% for all land use change training data between 1985-1990, 1990-

1992, 1992-1999, 1999-2000 and 2000-2001. Thus, it can be treated as the optimal kernel 

setting for the land use change modeling for Calgary during period 1985-2001. 
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Figure 4.8: Comparison of the performances of different kernel functions 
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4.7 VECTOR NORMALIZATION 

 

Normalization of the input data is a very common preprocessing technique widely used 

by different kinds of linear programming methods to improve the numerical stability. 

Previous studies (Herbrich and Graepel, 2001; Arnulf et al., 2003) have shown that 

normalization is a preprocessing type which plays an important role in SVMs for some 

applications. This study tried to figure out whether normalization could improve the 

performance of SVMs for land use change modeling. 

 

The most frequently used normalization methods are: normalization to make features 

equally important; and normalization to bring feature vectors onto the same scale. The 

former regularizes the input vector by mean and variance: 

 

( )
var( )norm
mean−

=
x Xx

X
                                                     (4.9) 

 

The latter regularizes the input vector by normalizing the length of the vector according 

to some norm: 

 

norm =
xx
x

                                                     (4.10) 

 

SVMs are designed to find the optimal separating hyperplane in the feature space which 

is obtained by a nonlinear mapping from the input space. If we do the normalization in 

the input space, in most cases we will lose the normalization in the feature space 

considering the nonlinearity of such a mapping (Vapnik, 1995).  

 

As suggested by Herbrich and Graepel (2001), normalization in the feature space is a 

possible solution. Unlike in linear programming methods where normalization acts on 

rows or columns of the design matrix, normalization in SVMs can be applied to kernel 

functions so as to simultaneously rescale rows and columns to obtain a matrix with all 
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diagonal entries set to one. Therefore, any kernel function can be revised to its 

normalized form: 

 

( , )
( , )

( , ) ( , )
i j

i j
i i j j

K
K

K K
=

x x
x x

x x x x
�                                           (4.11) 

 

It is easy to see that ( , ) 1i iK =x x� . That means all vectors in the feature space lie on a unit 

hypersphere, showing that the length of the vector in the feature space is normalized. 

Clearly, normalized kernels satisfy Mercer’s condition. They are still valid kernels for 

SVMs. In addition, the normalization of kernels is a conformal transformation of the 

original kernels. Thus, the angles between vectors of the feature space are invariant with 

respect to normalization of the kernel functions. 

 

Figure 4.9 shows the comparison of the performances of SVMs with and without 

normalization for RBF kernel with gamma = 15, which was proved to be the optimal 

kernel for land use change modeling in Calgary. For comparison, we found that 

normalization cannot help to improve the performance of SVMs when applying it to 

model the land use change in Calgary from 1985 to 2001. 
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Figure 4.9: Comparison of SVMs performance with/without normalization 
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4.8 PERFORMANCE COMPARISON AND EVALUATION 

 

The experiment results (Figure 4.8) clearly showed the high performance of SVMs on 

modeling land use change in Calgary. However, before drawing a conclusion on the 

suitability of a new method for a specific application, it is important to compare its 

performance with other widely accepted methods in the same application. 

 

Spatial logistic regression, a statistical method widely used in land use change modeling 

for many years, was selected to be compared with SVMs. There were two main reasons 

for selecting spatial logistic regression. The first was that SLR has received extensive 

study and shown great success in land use change modeling (Wu and Yeh, 1997; Xie et 

al., 2005; Xie et al., 2006). The second reason is due to SLR’s close relation to SVM. 

Both methods aim to solve binary classification problems and use similar loss functions. 

The major difference is that SLR just aims to minimize the empirical risk and SVMs aim 

to minimize the upper boundary of expected risk which includes the empirical risk and 

the model complexity. 

 

The performances of SVMs with optimal configuration (regularization parameter 10C = ; 

RBF kernel with gamma = 15) were compared with those of SLR. Figure 4.10 shows the 

comparison of overall prediction accuracy. The comparison clearly shows SVMs were 

superior to SLR regarding overall prediction accuracy.  
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Figure 4.10: Performance comparison for SVMs and SLR (PCP) 
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Another important indicator, standard deviation, can show the stability of performance 

and was used to demonstrate the superiority of SVMs in this study. In this research, the 

standard deviation of PCP is calculated from the results of ten sets of non-overlapped 

testing data. Figure 4.11 shows that SVMs achieved a more stable performance than SLR. 
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Figure 4.11: Performance comparison for SVMs and SLR (standard deviation) 

 

Besides overall PCP, land use change modeling also attaches importance to the model’s 

capacity and efficiency to predict the land use change. The former is measured by 1PCP . 

The higher the 1PCP , the more the changed land parcels can be correctly predicted. The 

latter is measured by 2PCP . A higher 2PCP  means the model can predict the changed 

land parcels with less incorrect predictions and thus has higher efficiency. Figure 4.12 

and Figure 4.13 show that SVMs are better than SLR in both change prediction capacity 

and efficiency. To summarize, SVMs is superior to SLR when they are used to model the 

land use change in Calgary from 1985 to 2001. 
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Change Modeling Capacity Comparison
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Figure 4.12: Performance comparison for SVMs and SLR (PCP1) 
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Figure 4.13: Performance comparison for SVMs and SLR (PCP2) 

 

 

4.9 CHAPTER SUMMARY 

 

In this chapter, SVMs were used to model the land use change in Calgary from 1985 to 

2001. The study area was briefly introduced. This was followed by a description of both 

data collection and processing procedures. Then, the model development was discussed. 

The discussion included: the selection of causal factors which determined the main 

components of the land use change model; and the development of SVMs modeling 
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framework, which was used to generate an optimal model. The performance evaluation 

system was also presented in this chapter. 

 

After the development of the modeling framework, cross-validation tests were performed 

to find the optimal setting for the SVMs algorithm, which included selection of 

regularization parameter, selection of kernel function and its parameter, and the validity 

of normalization. Then the performances of SVMs with optimal configuration were 

compared with those of SLR from different points of view: overall prediction accuracy, 

standard deviation, change prediction capacity, and change prediction efficiency. The 

comparison showed that SVMs were superior to SLRs in all aspects. 
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CHAPTER 5: IMPROVEMENTS OF STANDARD SVMS 

 

 

5.1 INTRODUCTION 

 

In chapter 4, a SVMs modeling framework was developed to model the land use change 

in Calgary from 1985 to 2001. Implementation issues, e.g. data processing, framework 

development, and optimal algorithm configuration were discussed and solved. A SVMs 

modeling framework with RBF kernel (gamma = 15) was found to achieve a high 

performance for all land use change training data. 

 

In this chapter, we attempt to tailor SVMs to better fit the characteristics and 

requirements of land use change modeling by improving the standard SVMs, which 

includes improvement for unbalanced datasets and improvement for robustness. These 

improvements can effectively address two important issues in land use change modeling, 

namely, the unbalance of change/unchanged land parcels and the robustness of the model, 

which were frequently overlooked in previous studies. 

 

 

5.2 MOTIVATION 

 

The performance comparison in section 4.8 not only revealed that SVMs were superior to 

SLR but also gave us some other information. One obvious finding was that: unlike 

SVMs that give similar performances on PCP , 1PCP  and 2PCP , SLR gave quite 

different performances. The PCP  of SLR was comparable to that of SVMs and was 

relatively high. However, the 1PCP  of SLR was rather low. After careful checking of the 

training datasets, we credited the unbalanced performance of SLR to the imbalance of 

positive/negative data in the training set. 

 

Land use change is a long-drawn-out process. Generally, land use changes gradually as a 

whole, except in some special situations (e.g. war, plague, etc.) However, in order to 
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reduce time-varying impacts and to accurately grasp the land use change pattern, most 

land use change studies adopt a relatively short time period. During a short time period to 

be modeled, only a very small amount of land parcels experience land use changes. It 

leads to a rare positive data (changed land parcels) situation in the binary land use change 

classification. Table 5.1 shows the details of candidate land parcels in each modeling 

time period. The unbalance of positive/negative data is quite apparent. 

 

Table 5.1: Details of candidate land parcels 

Time Period 1985-1990 1990-1992 1992-1999 1999-2000 2000-2001 

Changed cells 50,208 32,080 70,181 25,899 45,343

Unchanged cells 492,187 477,795 434,488 423,666 401,523

Total cells 542,395 509,875 504,669 449,565 446,866

Positive rate 9.26% 6.29% 13.91% 5.76% 10.15%

 

Since the amount of unchanged cells (negative data) is much larger than that of changed 

cells (positive data), the objective function of the optimization problem will initially be 

dominated by the negative data. The optimization process will sacrifice the performance 

of positive data (change modeling capacity) in order to minimize the overall loss. This 

can explain why the PCP1 is much lower than PCP for SLR. Apparently, such cases are 

not only applied to SLR, but also impact SVMs. Since rare positive data is one inherent 

nature of land use change modeling, the impacts of unbalanced data on the performance 

of SVMs and the way to eliminate such impacts require careful study. 

 

Another inherent nature of land use change modeling is its complexity. Land use change 

is caused by a gamut of factors, ranging from spatial parameters to socioeconomic, 

political or even cultural factors. No single land use model can include all these factors. 

Hence, not all land use changes in the observed data are the result of the combination of 

the observed causal factors. Some land parcels that are marked as low probability for 

change considering the causal factors in the land use change model, might be affected by 

previously unconsidered forces. This in turn will impact their land use. These 

unconsidered forces, although might overwhelm the major factors of the model in some 
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cases, is not worthy to be considered in the model since they are not significant for the 

whole population or are too expensive to collect and quantify corresponding variables. 

Therefore, these samples should be treated as outliers. Outliers are quite common to land 

use change data. Special effort should be made to take care of these outliers and to give a 

reliable performance even when certain levels of disturbance exist within the sample data. 

 

 

5.3 IMPROVEMENT FOR UNBALANCE DATASET 

 

In section 5.2, we discussed the unbalanced performance of SLR due to the imbalance of 

positive/negative data in the training set. Although the SVMs with optimal configuration 

demonstrated quite uniform performances on PCP, PCP1, and PCP2, it is worthy to 

investigate the impacts of unbalanced data on the performance of SVMs. 

 

The literature study showed that, although SVMs are known to perform well regarding 

misclassification error, they also have been recognized to provide skewed decision 

boundaries for unbalanced classification losses (Grandvalet et al., 2005). Recall the 

objective function of SVMs optimization problem: 

 

1

1( , ) '
2

m

i
i

F C ξ
=

= ⋅ + ∑w ξ w w                                                (5.1) 

 

The upper bound of the expected risk of the model consists of two parts: the first term is 

the VC confidence interval determined by the complexity of the model; and the second 

term is the empirical risk caused by the misclassification error. When the training set can 

be linearly separated or approximately be linearly separated in the feature space, the 

second term equals or is close to zero. The model complexity dominates the optimization 

problem. The unbalanced dataset has no impact or just a slight impact on the performance. 

This explains why the SVMs with RBF kernel (gamma = 15) can achieve uniform 

performances for classifying the unbalanced land use change data in Calgary from 1985 

to 2001. 
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However, when the training data is non-separable or the kernel used is not effective in 

mapping the input space to a separable feature space, there exists a mixed range with 

positive points (changed land parcels) and negative points (unchanged land parcels). Thus 

misclassification is significant and might account for an major part in the objective 

function. Similar to the case of SLR, if the amount of negative data is much larger than 

that of positive data, the objective function of the optimization problem will be 

dominated by negative data. The optimization process will sacrifice the performance of 

positive data in order to minimize the overall loss. 

 

Huang et al. (2002) suggested that replicating the samples of the smaller class such that 

the two classes have approximately the same size can avoid the performance degradation 

for an unbalanced dataset. However, the replication of the samples will result in an 

increase of the size of the training set and thus increase the computational burden. 

Therefore, an elegant approach is preferred to handle this case. In this research, an 

optimal separating hyperplane using different losses for positive and negative examples 

(Morik et al., 1999) was adopted to address unbalanced training data. Figure 5.1 visually 

explains the main idea of this approach. 

 

 
Figure 5.1: Optimal separating hyperplane for unbalanced training set 
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In Figure 5.1, hyperplane 1H  is the optimal separating hyperplane obtained from the 

standard SVMs. Using such a classifier, the number of misclassified positive data (false 

positive) and that of misclassified negative data (false negative) are comparable. 

However, since the data is unbalanced, the misclassified positive data accounts for a large 

percentage of the positive data and thus leads to a low performance for classifying 

positive data. By changing the objective function and giving higher weight for the losses 

caused by positive data, we can make the same amount of positive data play a more 

important role than the negative data and thus push the optimal separating hyperplane 

move from 1H  to a new position 2H , which is closer to the negative side. Therefore, 

more samples are classified to be positive. From Figure 5.1, we find that the false 

negatives increase and the false positives decrease. Although the total number of 

misclassifications increase, the increase in the false negative only accounts for a very 

small part of the large negative data and thus causes the accuracy of classifying negative 

data to decrease slightly. Contrarily, for the positive data, the decrease of the false 

positive data will greatly improve the accuracy of classifying positive data. Therefore, a 

higher weight for the losses caused by positive data will lead to a slight decrease of the 

overall classification accuracy but will greatly improve the change modeling capacity. 

This is worthwhile for land use change modeling since revealing the pattern of change is 

very important in land use study. 

 

Considering different weights for positive loss and negative loss, the optimization 

problem of SVMs is changed to: 
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And its dual form is: 
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(5.3) 

 

The new problem can be solved using a technique similar to the standard SVMs. Another 

issue for the improved SVMs concerning unbalanced data is the selection of the trade-off 

between the loss of positive data and negative data. Based on the Bayes’ decision theory, 

Lin et al. (2002) suggested that the ratio of the coefficients C+  and C−  should be equal to 

the ratio of both the false positive and negative losses. An approximate setting is to let the 

ratio of the coefficients C+  and C−  equal that of the ratio of the number of negative and 

positive samples. 

 

Figures 5.2—5.4 show the performance comparisons of the standard SVMs and the 

unbalanced SVMs, both of which used dot kernel. From these figures, it is easy to tell 

that the overall PCPs of the unbalanced SVMs are slightly lower than those of the 

standard SVMs. However, the change modeling capacities (PCP1) of the unbalanced 

SVMs are greatly improved. The change modeling efficiencies (PCP2) might increase or 

decrease slightly, depending on the specific dataset. For the RBF kernel (gamma = 15), 

since the kernel function can effectively map the input space to a feature space in which 

the training set can be linearly separated with few misclassifications. The dominant 

component in the objective function is the model complexity. Both the losses caused by 

the false positive and negative classification are insignificant. Hence, the performance of 

the standard SVMs and the unbalanced SVMs are very close. Both of them can achieve 

uniform performance on overall classification accuracy, change modeling capacity, and 

efficiency. 
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Overall Prediction Accuracy Comparison
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Figure 5.2: Performance comparison for standard SVMs and unbalanced SVMs (PCP) 
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Figure 5.3: Performance comparison for standard SVMs and unbalanced SVMs (PCP1) 
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Figure 5.4: Performance comparison for standard SVMs and unbalanced SVMs (PCP2) 
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5.4 IMPROVEMENT FOR ROBUSTNESS 

 

As discussed in section 5.2, land use change data is apt to be contaminated with noise. 

Hence a good method for land use change modeling should be robust. That is, small 

deviations in the data do not cause dramatic performance degeneration. 

 

SVMs are well-known in regards to robustness (Malossini et al., 2004). Strictly speaking, 

the robustness of an algorithm should be estimated by its Influence Function (IF) (Huber, 

1981). However, the non-differentiable characteristic of SVMs loss function makes it 

hard to evaluate its robustness using normal approach. It would be meaningful to analyze 

its loss function against the misclassification error and some behavior to get an indication 

of the SVMs’ robustness. From SVMs’ objective function (3.36), it is easy to know the 

loss corresponding to the misclassification error: 

 

( ( ' )) max{0,1 ( ' )}i i i iL y b y b⋅ + = − ⋅ +w x w x                                        (5.4) 

 

It can be shown from (5.4) that SVMs loss is linear. Therefore, it is less sensitive to 

extreme data points compared with squared loss which is widely used in various 

statistical methods including the famous least squares method. As well, the solution of 

SVMs is only dependent on the support vectors and the influences of support vectors are 

bounded. Therefore, SVMs are insensitive to small noise and thus are robust in noisy, 

complex domains. 

 

In order to test the robustness of SVMs, a controlled experiment was conducted under 

different noise settings. We randomly performed the flipping of the original training set 

for percentages of 1%, 2%, 5% and 10% to simulate different noise levels. Figure 5.5 

shows the performance of the standard SVMs under different noise levels. Figure 5.6 

shows the performance of SLR under different noise levels, which was used as a 

reference to show the robustness of the standard SVMs. 
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Classification Accuracy vs. Noise Level
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Figure 5.5: Performance of the standard SVMs under different noise levels 
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Figure 5.6: Performance of SLR under different noise levels 

 

Figure 5.5 and Figure 5.6 show that the degradation of performance is less for the 

standard SVMs than that of SLR. Moreover, previous studies (Zhang and Yang, 2003) 

indicated that the loss function of SLR is close to linear and thus, SLR is not very 

sensitive to outliers. Therefore, the robustness of SVMs was confirmed. 

 

However, we also noticed that the degradation of performance for SVMs increased when 

the noise level was greater than 2%. This might be due to the way we manipulated the 

data. The flipping of negative data would overwhelm the amount of remaining positive 

data when the data was unbalanced. The noise’s impact on the positive and negative data 
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was quite different. The smaller class suffered more from a certain level of noise. It was 

very hard to identify the pattern correctly for the smaller class, which led to the 

increasing degradation of performance. In order to solve this problem, a specific method 

needs to be introduced to detect the outliers and remove them from the support vectors, 

which were used to determine the boundary between positive and negative data. In this 

study, the Robust Support Vector Machines (RSVMs) earlier developed by Song et al. 

(2002) was introduced to tackle the outlier problems and improve the robustness of 

SVMs for unbalanced data. 

 

The basic idea of RSVMs was to use an adaptive separation margin and to minimize only 

the margin of the weights w  instead of minimizing the sum of the margin and 

misclassification error in the standard SVM training. A new slack variable 2 *( , )
ii yDλ x x  

was introduced in place of iξ  in the standard SVM training. Then the optimization 

problem became: 

 

2 *
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2
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ii i i y

minimize F
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                        (5.5) 

 

where 0λ ≥  was a user-defined regularization parameter measuring the influence of 

averaged distance to the class center, and 2 *( , )
ii yD x x  was the normalized distance from 

each sample ix  to the center of the respective class *( , { 1, 1})
iy iy ∈ − +x  in the feature space, 

which was calculated by: 
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where ( )iΦ x  was the transformation function mapping the input space to the feature 

space, ( , ) ( ) ' ( )i j i jK = Φ ⋅Φx x x x  was the kernel function, 2
maxD was the maximum 

distance between the center *
iyx  and training data points of the respective class in the 

kernel space. 

 

Using Lagrange multipliersα , the dual problem of (5.6) can be obtained: 
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Comparing with the dual problem in the standard SVM, the only difference lies in the 

additional part 2 *( , )
ii yDλ− x x  in the maximization function. Therefore, the optimization 

problem (5.7) can be solved using the program of the standard SVMs with small changes. 

 

The mechanism of RSVMs is to detect the outliers and to remove them from the support 

vectors. The support vectors are those particular samples with 0iα > . Based on the KKT 

complementarity condition, these samples satisfy the equalities in the constraint of (5.5): 

 
2 *( ' ) 1 ( , )

ii i i yy b Dλ⋅ + = −w x x x                                            (5.8) 

 

For each sample, the separation margin can be thought of as an adaptive value 
2 *1 ( , )

ii yDλ− x x . Suppose a sample is an outlier that is located on the wrong side and far 

away from the separable hyperplane. The distance between this sample and the center of 

the class is longer than that of the other normal sample in the same class. The augmented 

term 2 *( , )
ii yDλ x x  is relatively large. Therefore, the inequality in (5.5) is satisfied and the 
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coefficients associated with the sample should be toward zero. Therefore, this outlier may 

not become a support vector. 

 

Figure 5.7 shows the performance of the RSVMs under different noise levels. Compared 

to Figure 5.5, the performance degradation with the noise level is much slower. Therefore, 

the RSVMs’ improvement in the robustness is quite obvious. 
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Figure 5.7: Performance of the RSVMs under different noise levels 

 

 

5.5 CHAPTER SUMMARY 

 

In this chapter, two improvements towards the standard SVMs were discussed. The 

motivation for making necessary improvements to standard SVMs was provided. This 

was followed by a detailed discussion of the two improvements: improvement to deal 

with an unbalanced dataset and improvement for robustness. 

 

For improvement in dealing with unbalanced datasets, the impacts of unbalanced datasets 

were analyzed. Then, methods to eliminate these impacts were provided. The 

implementation of an efficient approach was discussed in detail. After that, experimental 

results showing the significant performance improvement validated the unbalanced 

SVMs on tackling unbalanced datasets. 
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In regards to the robustness improvement, theoretic analysis and experimental tests on the 

robustness of the standard SVMs were performed. Then the limitation of its robustness on 

the land use change dataset was given after analyzing the experiment results. An efficient 

approach was then introduced to remove the outliers and thus improve robustness. Finally, 

this was followed by experimental results which validated the improvement. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

 

6.1 SUMMARY AND CONCLUSIONS 

 

In an effort to better address some important issues in land use study, this research aimed 

to develop a novel method for land use change modeling using support vector machines. 

Modeling land use change is a prerequisite to understanding the complexity of land use 

change, forecasting future trends of land use change, and evaluating the ecological 

impacts of land use change. This research will benefit urban planners and policy makers 

in their efforts to effectively and efficiently understand the land use change process from 

the unbalanced and noisy historic data, to make more precise projections for future land 

use, and thus ensure the generation of scientific plans which will foster sustainable 

development. 

 

A review of previous land use change modeling studies was done in this research. The 

causal factors driving land use change reported in literature was discussed and 

summarized. Then a variety of techniques widely used in land use change modeling were 

introduced. Advantages and limitations of a variety of techniques were also given. It was 

found that some important issues which have great impact on the accuracy and reliability 

of land use change modeling, still need to be further addressed in order to effectively and 

efficiently model land use change. Two of these problems were: how to achieve uniform 

high performance for the unbalanced land use change dataset and how to retain high 

performance when different levels of noise appear in the training data.   

 

This research presented a detailed discussion on a novel method, namely, SVMs, which 

have the potential to effectively address the research problem. SVMs are an elegant 

classification algorithm based on statistical learning theory. Minimizing the upper bound 

of structural risk instead of minimizing just the empirical risk endows SVMs with a good 

generalization performance without assuming the underlying distribution of data to be 

classified. Using kernel tricks, SVMs are able to handle nonlinear situations in an easy 
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and computationally efficient way. Moreover, the optimization problem in SVMs can be 

transformed to a quadratic programming problem, which can be solved using a highly 

efficient algorithm that can ensure global minima. Furthermore, SVMs can condense 

information in the training data and use just a very small number of data points to 

determine the model. All these attractive features make SVMs a promising approach for 

land use change modeling. 

 

To investigate the performance of SVMs on land use change modeling, a SVMs land use 

change modeling framework was implemented and applied to a case study of modeling 

land use change in Calgary from 1985 to 2001. Data regarding Calgary land use change 

modeling was collected and processed. Raster layers including land use data and different 

causal factors were compiled using ESRI ArcMap. A SVMs land use change modeling 

framework, which consisted of a land use change detection module, a causal factor 

assembling module, a spatial sampling module, a SVMs classification module and a 

performance evaluation module, were developed and integrated in ArcMap to perform 

land use change modeling. Three implementation issues for SVMs, namely, 

regularization parameter selection, kernel function selection, and vector normalization, 

were carefully addressed. The performance of SVMs was compared with that of a well-

studied land use modeling approach, namely, spatial logistic regression. The comparison 

showed that SVMs were superior to SLR. 

 

Two improvements of standard SVMs were developed to tailor SVMs to better fit the 

characteristics and requirements of land use change modeling. The first improvement 

aimed to improve the accuracy of classifying smaller class when the training set was 

unbalanced. By changing the objective function and giving different weights for positive 

and negative data, the improvement proved to be effective in providing uniform high 

performance for unbalanced land use change data. The other improvement aimed to 

improve the robustness of SVMs especially in the case of unbalanced data. A robust 

SVMs algorithm that detected outliers and removed them from the support vectors was 

introduced and tested. The result showed that the robust SVMs could efficiently improve 

robustness. 
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The research has led to the following findings: 

 

1. There is a need for a novel land use modeling approach to better address some 

important issues specific to land use data, namely, a mixture of continuous and 

categorical causal factors, non-normal distribution of causal factors, imbalance of 

the training dataset, and the existence of outliers in the training dataset. Moreover, 

a good land use change modeling approach should promise a high generalization 

performance regardless of the underlying distribution of data. 

2. SVMs can be applied to land use change modeling applications and have 

demonstrated high overall concordance, stable performance, high land use change 

modeling capacity and high land use change modeling efficiency when the 

optimal model configuration was employed. For land use change modeling in 

Calgary, the optimal SVMs settings are: regularization parameter 10C =  and 

RBF kernel with gamma = 15. 

3. A land use change modeling framework developed with C++ and closely related 

to ArcMap cannot only achieve high computational efficiency but also make use 

of ArcMap’s powerful spatial data processing and visualization capacity. It is a 

promising framework for spatial analysis. 

4. Standard SVMs may suffer degradation on land use change modeling capacity 

when the optimal kernel is not adopted and the training data is unbalanced. By 

assigning different weights to the positive and negative classes, SVMs can be 

improved to effectively handle unbalanced datasets. This improvement enabled 

SVMs to provide uniform high performances for separating both classes. 

5. Standard SVMs demonstrate certain level of robustness when the noise level is 

small but the robustness will degrade when the noise level in unbalanced data 

exceeds a certain threshold. By introducing a new slack variable describing the 

distance from a sample to its class center, RSVMs can effectively detect the 

outliers, remove them from support vectors, and thus achieve a robust 

performance. 
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6. The improved SVMs can greatly improve the accuracy and reliability of land use 

change modeling especially when the underlying data distribution is unknown and 

the dataset is significantly unbalanced. 

 

We also recognize that the above mentioned conclusions are drawn from the results of a 

case study using Calgary’s land use change data from 1985 to 2001. Limited by the data 

availability, we didn’t consider some factors that might be important for land use change, 

e.g. social factors, economic factors, etc. The land use model we built in this study might 

be biased due to the incompleteness of the causal factors. Therefore, experiments with 

more complete causal factors and case studies in other cities/regions are needed in order 

to draw a more general conclusion. 

 

 

6.2 RECOMMENDATIONS FOR FUTURE WORK 

 

While SVMs have been applied for land use modeling in this study, there are still a 

number of unanswered questions regarding the application of SVMs for land use change 

modeling: 

 

Although the standard SVMs are designed to solve binary classification problems, they 

can also be extended to multi-class SVMs which are capable of classifying multiple class 

data. Future work on extending SVMs to modeling multinomial land use change is 

recommended. 

 

Future work should also include introducing new elements in SVMs modeling framework 

to model the temporal complexity of land use change. Alternative solutions may include 

exploring an effective way to combine several bi-temporal SVMs models along the time 

axis to form a smoothed model or employing a time-varying model. Such a model with a 

temporal complexity modeling capacity could achieve higher accuracy when projecting 

future land use. 
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A challenging task deserving future study is the incorporation of spatial and temporal 

correlations in the SVMs model. Building a complex autogressive structure to model the 

autocorrelation could provide more relevant information in the model and thus prove 

superior to using spatial sampling to remove the autocorrelation. 
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APPENDIX A: DUALITY THEORY 

 

 

A Linear Program (LP) is an important branch of applied mathematics. It is a linear 

optimization problem which aims to optimize (maximize or minimize) a linear objective 

function subject to linear constraints (inequalities or equalities). The standard inequality 

form of a maximum LP is the following: 

 

0

Tmaximize
subject to

    
     ≤

≥

c x
Ax b

x
                                                    (A.1) 

 

where x  is a n -dimension variable 1( , , )T
nx x… , c  is a n -dimension coefficient 

determines the objective function. The m n×  matrix A  and the n -dimension vector b  

determine the m  linear constraints, which are here only inequalities. Furthermore, all 

variables ix are assumed to be nonnegative. 

 

Every LP problem that aims to maximize the objective function gives rise to a related 

problem, called dual problem, which aims to minimize an objective function, and vice 

versa. The dual of an LP is motivated by finding an upper bound to the objective function 

of the given LP (which is called the primal problem). In general, the dual LP for the 

primal LP (A.1) is obtained as follows: 

 

• Multiply each primal inequality by some nonnegative number iy . 

• Add each of the n  columns and require that the resulting coefficient of jx  

for 1,...,j n= ,
1

m

j ji
i

y a
=
∑ , be at least as large as the coefficient jc  in the objective 

function. Since 0jx ≥ , this will set an upper bound for the objective function. 

• Minimize the resulting right hand side 1 1 m my b y b+ +" . 
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So the dual problem of the primal problem (A.1) is: 

 

0

T

T T

minimize
subject to

     

     ≥
≥

y b
y A c
y

                                                (A.2) 

 

Theorem A.1 (Weak LP Duality) If x  is a feasible solution of the primal LP (A.1) and 

y  is a feasible solution of the dual LP (A.2), then their objective functions satisfy: 
T T≤c x y b  

If T T=c x y b  (equality holds), these two solutions are optimal for both LPs. 

 

Proof.  

, 0
, 0

T T
T T T

T T T T

⎫≤  ≥  ⇒ ≤
⇒ ≤ ≤⎬

≥  ≥  ⇒ ≥ ⎭

Ax b y y Ax y b
c x y Ax y b

y A c x y Ax c x
 

 

Theorem A.2 (Strong LP Duality) If a standard LP is bounded feasible, its dual LP is 

also bounded feasible. They have optimal solutions with equal value of objective 

functions. 

 

The above theorem is the central theorem of duality theory. Its proof is not simplistic and 

is provided in this thesis. 

 

Duality is of great theoretical importance. Some LP problems, which are difficult to solve 

directly, may be solved much more easily by converting them to their dual form. For 

computational and other reasons, LP is often considered in equality form: 

 

0

Tmaximize
subject to
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≥

c x
Ax b

x
                                                  (A.3) 
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LP in equality form is a more generalized case. Any LP in inequality form (A.1) can be 

converted to equality form by introducing a slack variable iz  for each constraint: 

 

max

0
0

Timize
subject to

    
     + =

      ≥
     ≥

c x
Ax z b

x
z

                                                 (A.4) 

 

This amounts to extending the constraint matrix A  to the right by an identity matrix and 

by adding coefficients 0 in the objective function for the slack variables. 

 

A dual problem should be considered for the LP in a more general equality form.  

 

From the steps of constructing the dual LP, it is obvious that, since the equality constraint 

is preserved even when multiplied with a negative number, the corresponding dual 

variable is unrestricted in sign for any primal equality constraint. An LP in general form 

has inequalities and equalities as constraints, as well as nonnegative and unrestricted 

variables. In the dual LP, the inequalities correspond to nonnegative variables and the 

equalities correspond to unrestricted variables and vice versa. The full definition of an LP 

in general form is as follows. Let M  and N  be finite sets (whose elements denote rows 

and columns, respectively), I M⊆ , J N⊆ , M N×∈A R , M∈b R , N∈c R . 

 

Here the indices in I  denote primal inequalities and corresponding nonnegative dual 

variables, whereas those in M I− denote primal equality constraints and corresponding 

unconstrained dual variables. The sets J  and N J− play the same role with “primal” and 

“dual” interchanged. The feasible sets for primal and dual LP can be defined as follows: 

 

{ ,

,

| ,

,

0, }.

N
ij j i

j N

ij j i
j N

j

P i I

i M I

j J

∈

∈

= ∈ ≤      ∈

     =      ∈ −

≥      ∈

∑

∑

x R a x b

a x b

x

                                    (A.5) 
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Any x  belonging to P  is called primal feasible. The primal LP is the problem: 

 
Tmaximize

subject to P
    

     ∈
c x
x

                                                       (A.6) 

 

Then, the feasible set of the corresponding dual LP can be expressed as: 

 

{ ,

,

| ,

,

0, }.

M
i ij j

i M

i ij j
i M

i

D j J

j N J

i I

∈

∈

= ∈ ≥      ∈

      =      ∈ −

  ≥        ∈

∑

∑

y R y a c

y a c

y

                                   (A.7) 

 

and the corresponding dual LP is: 

 
Tminimize

subject to D
     

     ∈
y b
y

                                                 (A.8) 

 

Then, the duality theorem of linear programming states: a) for any primal and dual 

feasible solutions, the corresponding objective functions are mutual bounds; and b) if the 

primal and the dual LP both have feasible solutions, then they have optimal solutions 

with the same value of their objective functions. 

 

Theorem A.3 (General LP duality) Consider the primal-dual pair of LPs (A.6), (A.8). 

Then 

(a) (Weak duality) T T≤c x y b for all P∈x and D∈y . 

(b) (Strong duality) If P ≠ ∅ and D ≠ ∅ , then T T=c x y b for some P∈x and D∈y . 
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APPENDIX B: SEQUENTIAL MINIMAL OPTIMIZATION 

 

 

Sequential Minimal Optimization (SMO) is a simple algorithm used to efficiently solve 

the QP problem in SVMs. It decomposes the overall QP problem into sub-problems, 

which involve only two Lagrange multipliers. At every step, SMO chooses two Lagrange 

multipliers to jointly optimize, finds the optimal values for these multipliers, and updates 

the SVMs to reflect the new optimal values. Since the solving of two Lagrange 

multipliers is done analytically, the numerical QP optimization and any extra matrix 

storage are avoided. Therefore, the computational and storage efficiencies of SMO are 

very good. The following sections discuss the main components in SMO: an analytic 

method of solving the two Lagrange multipliers optimization problem, updating after a 

successful optimization, and a heuristic for choosing two multipliers to optimize. 

 

B.1 SOLVING OF TWO LAGRANGE MULTIPLIERS 

 

The SMO algorithm searches through the feasible region of the dual problem and 

maximizes the objective function: 

 

1 1 1

1( ) '
2

0 , 1,...,

m m m

i i j i j i j
i i j

i

L y y

C i m

α α α

α
= = =

= − ⋅

≤ ≤ =

∑ ∑∑α x x
                              (B.1) 

 

SMO decomposes the problem into a set of smallest possible optimization problems and 

works by optimizing only two Lagrange multipliers at a time with the other Lagrange 

multipliers fixed. In order to solve the two Lagrange multipliers optimization problem, 

SMO first computes the constraints on the multipliers and then solves the constrained 

minimum. 

 

Initially, we can set 0, 1,...,i i mα =  = , which is a feasible solution. Without loss of 

generality, suppose we are optimizing 1α and 2α  from an old set of a feasible solution: 
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1
oldα , 2

oldα , 3α , …, mα . Considering the bound constraints on the multipliers:
1

0
m

i i
i

y α
=

=∑ , 

we have: 

 

1 1 2 2 1 1 2 2
3

m
old old

i i
i

y y y y y Constα α α α α
=

+ = + = − =∑                                     (B.2) 

 

This confines the optimization to lie on a diagonal line segment, as shown in Figure B.1: 

 

  
Figure B.1: Two Lagrange multipliers optimization problem 

 

Bearing in mind that { 1, 1}y ∈ − + , let 1 2s y y=  and multiply (B.2) by 1y , and we have 

 

1 2sα γ α= −                                                      (B.3) 

 

where 1 2 1 2
old olds sγ α α α α= + = +  is a constant. 

 

Fixing the other '
i sα , the objective function now can be written as: 

 

2 2
1 2 1 1 1 1 1 1 2 2 2 2 2

1 2 1 2 1 2 1 1 1 2 2 2 2
3

1( ) (
2

2 2 ( ) )

T T

m
T T

i i i
i

L Const y y y y

y y y y y Const

α α α α

α α α α α
=

= + + − ⋅ + ⋅

⎛ ⎞+ ⋅ + ⋅ + +⎜ ⎟
⎝ ⎠
∑

α x x x x

x x x x x
                (B.4) 

2 Cα =  

1 Cα =

2 0α =  

1 0α =

1 2 1 2y y Constα α= ⇒ + =  

2 Cα =

1 Cα =

2 0α =

1 0α =

1 2 1 2y y Constα α≠ ⇒ − =
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To be convenient, denote 11 1 1
TK = ⋅x x , 22 2 2

TK = ⋅x x , 12 1 2
TK = ⋅x x , and 

 

3

1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

( )

m
T

j i i i j
i

T old old T old T
j j j

T old old old old T old T
j j j

old old old T old T
j j j

v y

y y

b b y y

u b y y

α

α α

α α

α α

=

= ⋅

= ⋅ − ⋅ − ⋅

= ⋅ + − − ⋅ − ⋅

= − − ⋅ − ⋅

∑ x x

x w x x x x

x w x x x x

x x x x

                      (B.5) 

 

where old T old old
j ju b= +x w is the output of jx under old parameters. Therefore, the 

objective function can be expressed as: 

 

( )2 2
1 2 11 1 22 2 12 1 2 1 1 1 2 2 2

2 2
2 2 11 2 22 2 12 2 2

1 1 2 2 2 2

2 2
2 11 2 22 2 12 2 2 1 1 2

2 2 2

1( ) 2 2 2
2

1 ( ( ) 2 ( )
2

2 ( ) 2 )
1 1(1 ) ( ) ( ) ( )
2 2

L K K sK y v y v Const

s K s K sK s

y v s y v Const

s K s K sK s y v s

y v Con

α α α α α α α α α

γ α α γ α α γ α α

γ α α

α γ α α γ α α γ α

α

= + − + + + + +

= − + − − + + −

+ − + +

= − − − − − − − −

− +

2 2 2 2 2 2
2 11 11 2 11 2 22 2 12 2 12 2

1 1 1 1 2 2 2 2

1 1 1(1 )
2 2 2

st

s K sK K s K sK s K

y v sy v y v Const

α γ γα α α γα α

γ α α

= − − + − − − +

− + − +

     (B.6) 

 

Since 2 2 2 2
1 2 1 2( ) 1s y y y y= = =  and 2

1 1 2 2sy y y y= = , we have: 

2 2 2
2 11 2 11 2 22 2 12 2 12 2 2 1 2

2 2 2

2
11 22 12 2 11 12 2 1 2 2 2

2
12 11 22 2 11 12 2 1 2 2 2

1 1( ) (1 )
2 2

1 1( ) (1 )
2 2

1 (2 ) (1 )
2

L s sK K K sK K y v

y v Const

K K K s sK sK y v y v Const

K K K s sK sK y v y v Const

α α γα α α γα α α

α

α γ γ α

α γ γ α

= − + − − − + +

− +

= − − + + − + − + − +

= − − + − + − + − +

   (B.7) 
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Let 12 11 222K K Kη = − −  is the coefficient of the second order term. The coefficient of the 

first order term is: 

 

11 12 2 1 2 2

11 1 2 12 1 2 2 1 1 1 11 2 2 12

2 2 1 1 12 2 2 22

11 1 11 2 12 1 12 2 2 1 2

1

1 ( ) ( ) ( )

( )

1

old old old old old old old old

old old old old

old old old old old old

s sK sK y v y v

s sK s sK s y u b y K y K

y u b y K y K

s sK K sK K y u y b

ρ γ γ

α α α α α α

α α

α α α α

= − + − + −

= − + + − + + − − −

− − − −

= − + + − − + − 11 1 12 2

2 2 2 12 1 22 2

11 12 11 12 1 11 12 22 2 2 1 2
2
2 1 2 11 12 22 2 2 1 2

2 2 1 1 2 2

2

1 ( ) ( 2 ) ( )

( 2 ) ( )

( )

((

old old

old old old old

old old old old

old old old

old old old

sK K

y u y b sK K

s sK sK sK sK K K K y u u

y y y K K K y u u

y y y u u

y u

α α

α α

α α

α

ηα

− −

− + + +

= − + − − + + − + + −

= − + − + + −

= − + − −

= 1 1 2 2 2

2 1 2 2

) ( ))

( )

old old old

old old old

y u y

y E E

ηα

ηα

− − − −

= − −

  

(B.8) 

where old old
i i iE u y= −  is the prediction error on jx under old parameters. 

 

Hence, the objective function can be simply expressed as: 

 

2
2 2 1 2 2 2

1( ) ( ( ) )
2

old old oldL y E E Constα ηα ηα α= + − − +                          (B.9) 

 

The first and second derivatives of the objective function are: 

 

2 2 1 2 2
2

( ) ( ( ) )old old olddL y E E
d

α ηα ηα
α

= + − −                               (B.10) 

2

2
2

( )d L
d

α η
α

=                                                        (B.11) 

 

Since 2
12 11 22 2 1 2 1 2 12 ( ) ( ) || || 0TK K Kη = − − = − − ⋅ − = − − ≤x x x x x x , the second derivative 

is always negative or null. To maximize the objective function, let the first derivative to 

be null, and we have: 
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2 1 2 2 2 2 1
2 2

( ) ( )old old old old old
new oldy E E y E Eηαα α

η η
− − −

= − = +                        (B.12) 

 

If 0η < , the above equation gives us the unconstrained maximum point 2
newα . The 

constrained maximum is found by clipping the unconstrained maximum to the feasible 

range 20 new Cα≤ ≤ , which is determined as follows: 

 

• If 1s = , then 1 2α α γ+ = . 

o If Cγ > , then the range of 2α  is [ , ]C Cγ −  (Figure B.2.a). 

o If Cγ < , then the range of 2α  is [0, ]γ  (Figure B.2.b). 

• If 1s = − , then 1 2α α γ− = . 

o If 0γ > , then the range of 2α  is [0, ]C γ−  (Figure B.2.c). 

o If 0γ < , then the range of 2α  is [ , ]Cγ−  (Figure B.2.d). 

 

 
Figure B.2: Constrained maximum point under different conditions 

 

1α  
 d) 1 2 , 0andα α γ γ− =   <  

( , )Cγ−
2α

( , )Cγ  

(0, )C γ−

1α
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 c) 1 2 , 0andα α γ γ− =    >

( ,0)γ

(0, )γ

1α  

2α

 b) 1 2 , and Cα α γ γ+ =    <  

( , )C Cγ −

( , )C Cγ −  

1α

2α

 a) 1 2 , and Cα α γ γ+ =    >

(0, )C γ+
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Since the second derivative is always negative or null, the ( )L α  curve is convex. Let the 

minimum feasible value of 2α be L , maximum be H . We have: 

 

2
,

2 2 2

2

,
,

,

new

new clipped new new

new

H if H
if L H

L if L

α
α α α

α

⎧  <
⎪=  ≤ ≤⎨
⎪  <⎩

                                    (B.13) 

 

To summarize, given 1α , 2α  and the corresponding 1y , 2y , 11K , 12K , 22K , 2 1
old oldE E− , we 

can optimize the two '
i sα by the following procedure: 

 

1. 12 11 222K K Kη = − −  

2. If 0η < , 

 2 2 1
2

( )old oldy E Eα
η

−
Δ =                                             (B.14) 

and clip the solution within the feasible region. Then 

1 2sα αΔ = − Δ .                                                (B.15) 

3. If 0η = , we need to evaluate the objective function at the two endpoints of the 

feasible region, and set 2
newα to be the one with larger objective function value. 

 

 

B.2 UPDATING AFTER A SUCCESSFUL OPTIMIZATION 

 

When 1α , 2α are changed by 1αΔ , 2αΔ , we can update the prediction error ( , )E yx , the 

coefficient vector w (for linear kernel), and the offsetb . The prediction error ( , )E yx is: 

 

1
( , )

m
T

i i i
i

E y y b yα
=

= ⋅ + −∑x x x                                        (B.17) 

 

The change in E is 
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1 1 1 2 2 2( , ) T TE y y y bα αΔ = Δ ⋅ + Δ ⋅ + Δx x x x x                              (B.18) 

 

Obviously, when the new
iα is not at the bounds, the output of ix  is forced to be iy . Hence, 

the change in the offset b  can be computed by forcing 1 0newE = if 10 new Cα< < (or 

2 0newE = if 20 new Cα< < ): 

 

1 1 1 2 2 2

0 ( , )
( , ) ( , )
( , )

new

old

old T T

E y
E y E y
E y y y bα α

=

= + Δ

= + Δ ⋅ + Δ ⋅ + Δ

x
x x
x x x x x

                         (B.19) 

 

Therefore, we have 

 

1 1 1 2 2 2( , )old T Tb E y y yα αΔ = − − Δ ⋅ − Δ ⋅x x x x x                                 (B.20) 

 

If 1 0α = , we can only say 1 1 0newy E ≥ ; similarly, if 1 Cα = , we have 1 2 0newy E ≤ . If both 1α  

and 2α take values 0  or C , the SMO algorithm computes two values of the new b for 

1α and 2α using (B.20), and takes the average. 

 

For the coefficient vector of linear kernels, 

 

1

m

i i i
i

yα
=

= ∑w x                                                     (B.21) 

1 1 1 2 2 2y yα αΔ = Δ + Δw x x                                          (B.22) 

 

B.3 CHOOSING TWO LAGRANGE MULTIPLIERS TO OPTIMIZE 

 

There are two separate heuristics for choosing two Lagrange multipliers for optimization: 

one for the first Lagrange multiplier and the other for the second Lagrange multiplier. 
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The choice of the first Lagrange multiplier provides the outer loop of the SMO algorithm. 

It first iterates over the entire training set, determining whether each example violates the 

KKT conditions: 

 

0 1
0 1

1

i i i

i i i

i i i

y u
C y u

C y u

α
α

α

=  ⇔ ≥
< <  ⇔ =
=  ⇔ ≤

                                                   (B.23) 

 

If an example violates the KKT conditions, it is then eligible for optimization. 

 

Once the first Lagrange multiplier 1α  is chosen, the inner loop looks for a non-boundary 

example ( 20 Cα< < ) that maximizes 2 1| |E E− . Under unusual circumstances, SMO 

cannot make positive progress using the second heuristic described above. If SMO does 

not make positive progress, it starts a sequential scan through the non-boundary examples, 

starting at a random position, and searches for a second example that can make positive 

progress. If none of the non-bound examples make positive progress, SMO starts a 

sequential scan through all the examples, also starting at a random position, until a 

second example is found that can make positive progress. In extremely degenerate 

circumstances, none of the examples will make positive progress. In this case, the first 

example is skipped and SMO continues with another potential first example. 
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