

UCGE Reports

Number 20238

Department of Geomatics Engineering

Incremental Routing Algorithms

For

Dynamic Transportation Networks
(URL: http://www.geomatics.ucalgary.ca/research/publications/GradTheses.html)

by

Qiang Wu

January 2006

 II

UNIVERSITY OF CALGARY

Incremental Routing Algorithms

For

Dynamic Transportation Networks

by

Qiang Wu

A THESIS

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF SCIENCE

GEOMATICS ENGINEERING DEPARTMENT

CALGARY, ALBERTA, CANADA

January, 2006

© Qiang Wu 2006

 III

Abstract
Over the last decade, the rapidly growing population of mobile data terminals,

integrating GIS and GPS, has given rise to a new type of real-time spatiotemporal

service called Location-Based Service (LBS). Routing is an important function of

LBS and Geographic Information Systems for Transportation (GIS-T). It is used in

many land-based transportation applications, such as the Intelligent Vehicles

Navigation System (IVNS).

There are two common types of queries for navigation service. The first query deals

with finding an optimal route from the current location to the desired destination. The

other query allows users to locate the closest facility of a certain category, such as the

nearest hotel, hospital or gas station, without knowing the destination in advance. In

this case, the best destination and an associated optimal route need to be found based

on network distance. The challenge lies in the fact that traffic condition always

changes such that the optimal route has to be recomputed from time to time in order to

adapt to the dynamic environment. Since both traffic condition and the current

positions of mobile users change over time, existing shortest path algorithms are

either incapable of solving this problem, or are too complicated and time consuming.

To address the above challenge, two incremental shortest path algorithms have been

proposed to efficiently deal with the two types of queries. For the first query type, an

incremental A* algorithm is designed to adaptively derive the optimal path to the

desired destination by making use of previous search results. For the second query

type, a shortest path based dynamic network Voronoi diagram is devised to implement

a service area for each facility. The corresponding shortest path is derived and

maintained dynamically using the incremental approach. The experimental results

demonstrate that the proposed incremental search approach considerably outperforms

the traditional method which recomputes the shortest path from scratch each time

without utilization of the previous search results.

 IV

Acknowledgments

There are many people whom I would like to thank for their support and

encouragement during the process of writing this thesis.

I wish to thank my thesis supervisor, Professor Bo Huang, for his numerous insightful

comments which helped me improve the quality of the thesis and for his motivation

and support.

I am grateful to my friends Chenglin Xie and Qiaoping Zhang for their friendship and

advice. They provided some very useful information regarding my research.

Finally, I would like to thank my friend Matthew Reid for his editorial advice.

 V

Table of Content

Chapter 1: Introduction ..1

1.1 Dynamic Traffic Routing ... 1

1.2 The Role of GIS and Location Based Service .. 1

1.3 The Architecture of Navigation Service ... 3

1.4 Typical Routing Queries .. 4

1.5 Motivation of the Research.. 5

1.6 Outline of this Thesis.. 8

Chapter 2: Transportation Network Analysis ..9

2.1 Background of Graph Theory... 9

2.2 Network Data Models ...11
2.2.1 Incidence Matrix.. 11
2.2.2 Adjacency Matrix ..12
2.2.3 Adjacency List...13
2.2.4 Transportation Network Data Model ...13

2.3 Chapter Summary.. 17

Chapter 3: Shortest Path Problem..18

3.1 The Classification of the Shortest Path (SP) Problem .. 18

3.2 Analysis of the Searching Strategy ... 19
3.2.1 Breadth-First Search ..19
3.2.2 Depth-First Search...20
3.2.3 Best-First Search..20

3.3 Classical Shortest Path Algorithms for Static Networks..................................... 21
3.3.1 Dijkstra’s Algorithm ..22
3.3.2 A* algorithm..23
3.3.3 Comparison of Algorithms Based on Time Complexity..25

3.4 Dynamic Traffic Routing ... 27
3.4.1 Dynamic Transportation Network Scenario...27
3.4.2 Related Research for Dynamic Traffic Routing...28
3.4.3 Incremental Approach – RR Algorithm...31

3.5 Chapter Summary.. 32

Chapter 4: Dynamic Routing Algorithm to Known Destination...............................34

4.1 LPA* Algorithm.. 34

4.2 Improved LPA* Algorithm.. 38
4.2.1 Extend LPA* with Changing Starting Point ..38
4.2.2 Constrained Shortest Path Search..42

 VI

4.3 Software Implementation .. 45
4.3.1 Development of an Interactive Environment...46
4.3.2 C++ Class Implementation ..47
4.3.3 Priority Queue and Binary Heap..48

4.3.3.1 Priority Queue ...48
4.3.3.2 Binary Heap ..49

4.4 Experimental Studies ... 52
4.4.1 Experimental Dataset...52
4.4.2 Demonstration of En Route Queries for Known Destination ..53
4.4.3 Experimental Results for the Improved LPA* Algorithm..54

4.5 Chapter Summary.. 57

Chapter 5: Nearest Neighbor Problem...59

5.1 Indexing Approach... 59
5.1.1 Background Knowledge on the Spatial Index ...59
5.1.2 Nearest Neighbor Search Using Indexing Approach ...60

5.2 Voronoi Diagram Approach .. 62
5.2.1 Fundamental Knowledge of Voronoi Diagram ..62

5.2.1.1 Definition ..62
5.2.1.2 Network Voronoi Diagram..64

5.2.2 The Network Voronoi Diagram Construction -- Parallel Dijkstra's Algorithm..................65

5.3 Chapter Summary.. 67

Chapter 6: Dynamic Routing Algorithm for Unknown Destination.........................68

6.1 IP-Dijkstra's Algorithm Overview.. 68

6.2 Details of the IP-Dijkstra's Algorithm.. 72

6.3 Experimental Studies ... 75
6.3.1 En Route Query Demonstration for Unknown Destination ...75
6.3.2 Experimental Results of IP-Dijkstra’s Algorithm ..77

6.4 Chapter Summary.. 82

Chapter 7: Conclusion ..84

7.1 Summary of the Improved LPA* Algorithm ... 84

7.2 Summary of IP-Dijkstra Algorithm.. 85

References ...87

 VII

List of Figures
Figure 2.1: A diagram of a weighted graph with 6 nodes and 7 links.10

Figure 2.2: An Undirected Graph..12

Figure 2.3: An Adjacency List..13

Figure 3.1: Breadth-first Search..19

Figure 3.2: Depth-first Search...20

Figure 4.1: LPA* First Search ..36

Figure 4.2: LPA* Second Search ..37

Figure 4.3: Improved LPA* First Search ..39

Figure 4.4: Improved LPA* Second Search..40

Figure 4.5: Shortest Path Constrained by Ellipse ...43

Figure 4.6: MBR Constrained Search...44

Figure 4.7: Software Interface ..46

Figure 4.8: An Example of a Binary Heap..50

Figure 4.9: The Order of a Binary Heap ...51

Figure 4.10: Road Network of Calgary...52

Figure 4.11: Road Network of Singapore ...53

Figure 4.12: Optimal Route Update..54

Figure 4.13: Final Optimal Route ...54

Figure 4.14: Nodes Expansion VS. Proportion of Links Updated........................56

Figure 5.1: An example R-tree..60

Figure 5.2: Indexing Nearest Neighbor ..61

Figure 5.3: An Example of a Voronoi diagram...63

Figure 5.4: A Network Voronoi diagram...64

Figure 5.5: Parallel Dijkstra's Algorithm..66

Figure 6.1 First Search of IP- Dijkstra..70

Figure 6.2 Second Search of IP- Dijkstra ...71

Figure 6.3: Closest Facility Query in Calgary ..76

Figure 6.4: Closest Facility Query in Singapore...77

Figure 6.5: Nodes Expansion Comparison in two road maps...............................80

Figure 6.6: Running time for each dataset ..81

 VIII

List of Tables

Table 3.1 Time Complexity Comparison between Classical Algorithms26

Table 4.1 Nodes Expansion in Different Routes with 5% Links Updated............55

Table 4.2 Nodes Expansion in Different Routes with 10% Links Updated..........56

Table 6.1: Nodes Expansion for Dynamic Update in Calgary Road Network78

Table 6.2: Nodes Expansion for Dynamic Update in Singapore Road Network..78

 1

Chapter 1: Introduction

1.1 Dynamic Traffic Routing

In recent decades, road transportation systems have become increasingly complex and

congested. Traffic congestion is a serious problem that affects people both

economically as well as mentally. Moreover, finding an optimal route in an unknown

city can be very difficult even with a map. These issues have given rise to the field of

Intelligent Transport System (ITS), with the goal of applying and merging advanced

technology to make transportation safer and more efficient by reducing traffic

accidents, congestion, air pollution and environmental impact [1]. In working towards

this goal, dynamic traffic routing is required since the traffic conditions change over

time.

Up-to-date real-time information about traffic conditions can be collected through

loop detectors, probe vehicles and video surveillance systems. However, the

utilization of such information to provide efficient services such as real-time en route

guidance still lags behind. The objective of this research is to solve the dynamic

routing problem, which guides motor vehicles through the urban road network using

the quickest path taking into account the traffic conditions on the roads.

1.2 The Role of GIS and Location Based Service

Geographic Information Systems (GIS) represent a new paradigm for the organization

and design of information systems, the essential aspect of which is the use of location

as the basis for structuring the information systems. Transportation is inherently

geographic and therefore the application of GIS has relevance to transportation due to

the spatially distributed nature of transportation related data, and the need for various

types of network level analysis, statistical analysis and spatial analysis. GIS possesses

a technology with considerable potential for achieving dramatic gains in efficiency

 2

and productivity for a multitude of traditional transportation applications.

The impact of GIS technology in the development of transportation information

systems is profound. It completely revolutionizes the decision making process in

transportation engineering. As a good example, route guidance and congestion

management systems can be most suitably developed in a GIS environment. In this

application, GIS is used as a powerful tool for identifying and monitoring congestion

in urban areas, and planning optimal routes based on minimum time/distance/cost

paths. Its graphical display capabilities allow not only visualization of the different

routes but also the sequence in which they are built. This allows the user to

understand the logic behind the routing design [2].

The last decade has witnessed the rapid emergence of Internet-enabled mobile

terminals (smart phones, PDAs, in-car computers, etc), mobile/embedded computing

and spatial information technologies led by GIS and GPS. As a result, a new

generation of mobile services known as Location-Based Services (LBS) have been

developed, which are capable of delivering geographic information and

geo-processing power to mobile users via the Internet and wireless network in

accordance with their current location. The standardization work related to

location-based services was started by the OpenGIS Consortium [3], as well as global

industry initiatives, such as the Location Interoperability Forum (LIF), formed by

Motorola, Ericsson and Nokia [1].

The architecture of location based services consists of three parts:

• Positioning of mobile terminals based on either GSM/GPRS/UTMS mobile

communication systems or GPS/GLONASS/Galileo satellite positioning systems.

• Wireless communication networks based on GSM/GPRS/UTMS.

• Internet GIS that provides spatiotemporal data and services over the Internet.

 3

With the expansion and proliferation of LBS, location awareness and personal

location tracking become important attributes of the mobile communication

infrastructure and begin to provide invaluable benefits to business, consumer and

government sectors. Therefore, how to establish low-cost, reliable, and high-quality

services is the most important challenge in the LBS area. Navigation is perhaps the

most well known function of LBS and Geographic Information Systems for

Transportation (GIS-T). It is applied in many land-based transportation applications to

revolutionize human lives, such as the Intelligent Vehicles Navigation System

(IVNS), which is currently a must-have feature especially in the high-end car market.

1.3 The Architecture of Navigation Service

Navigation guidance can be discriminated between decentralized and centralized

route guidance. In the former, mobile clients derive their own paths using on-board

computers, based on either static road maps in CD-ROMs, or real-time traffic

information provided via wireless network. However, mobile networks have high

costs, limited bandwidth, and low connection stability making it expensive to deliver

detailed traffic information to all mobile users. As well, geo-processing is

time-consuming and mobile terminals usually have limited memory and

computational power. Therefore, it may take a long time to perform the computation

locally or may even be impossible in some cases. On the other hand, navigation

services are often used in time-critical circumstances (e.g. 911 Emergency Service)

which require near real-time query response and concise route guidance information

to facilitate decision making.

Centralized route guidance relies on traffic management centres (TMC) to answer

path queries submitted by mobile clients. In this case, the Client/Server architecture is

employed in order to reduce query response time. A centralized GIS server is used to

perform the geo-processing task and return query results instead of providing the

entire dataset. The service can provide users turn-by-turn navigation instructions

 4

about optimal routes to their desired destinations through text or a map display. It

can also alert the driver about problems ahead, such as traffic jams or accidents. To

deliver query results to mobile clients within a tolerable latency time, it demands an

efficient algorithm to retrieve desired navigation information quickly. Thus, it is

able to accommodate large numbers of mobile clients. In this thesis, I discuss the

algorithms that are feasible for centralized route guidance.

1.4 Typical Routing Queries

There are various types of routing queries that may be submitted to the centralized

GIS server. To answer the queries, many algorithms have been developed to satisfy

the conditions and requirements of these queries. I will focus my research on two

typical routing queries. The first query deals with finding the optimal route from the

current location to a known destination. The other query allows users to locate the

closest facility of a certain category (hotel, hospital, gas station, etc.), in terms of

travel time, without knowing the destination explicitly.

• Routing query for known destination

For this query, the mobile client has a definite destination in mind and desires to

acquire the optimal route leading to the destination. Since the traffic condition

changes continually over time, the optimal route will change during travel whenever

up-to-date traffic conditions are provided. For example, when we want to travel from

the airport to the conference centre, we can plan the entire optimal route prior to

departure according to the current condition of the transportation network. However,

it may not be the final optimal route due to frequent changes in the traffic conditions.

So, we have to modify our route midway and plan a new path from the current

location to the destination based on real-time traffic conditions. This case is more

complicated than the conventional dynamic concept because both the traffic

conditions and the query point (location of the mobile user) are dynamic. This type of

query is also defined as an en route query since it is submitted while the client is

 5

moving.

• Routing query for unknown destination

For this query, mobile clients may inquire about the location of the closest facility,

such as the nearest hotel, hospital or gas station, without knowing the destination in

advance. In this case, the closest facility is defined in terms of travel time within the

road network as opposed to travel distance. This query can be classified as the Nearest

Neighbor problem. Both the closest destination and an associated optimal route need

to be found based on travel time within the road network. Similarly, the optimal route

also has to be recalculated whenever up-to-date traffic conditions are provided. In

extreme circumstances, the closest destination may also change. For example, in an

unknown city, we may want to find the location of the closest post office after we

check into a hotel. From the query result, we are aware of the position and optimal

route to the closest post office. In this case, we expect the navigation service not only

to provide the adaptive route leading to it, but also to confirm the validity of the

closest post office while traveling. If the traffic conditions do not change significantly,

the optimal route may only need to be slightly modified. If the traffic conditions

change considerably or there are serious traffic congestions around the anticipated

post office destination, this post office may no longer be the closest one in terms of

traveling time. A new post office location and optimal route must then be determined

dynamically based on the current location and traffic conditions. In this scenario, the

query is an en route query. To solve this problem, a dynamic nearest neighbor and

route searching algorithm is required.

1.5 Motivation of the Research

It seems that little attention has been paid to the problems associated with the two

types of queries discussed in the previous section. Most existing dynamic algorithms

are either incapable of solving these problems, or too complicated and time

consuming. Considering the limitations of these dynamic algorithms, how to reuse

 6

previous searching results to answer en route queries is the emphasis of my research.

Next I will discuss the challenge to solving these problems and briefly describe my

solutions.

The main challenge to solving the problems associated with the above queries lies in

the fact that traffic conditions are not static. The optimal route has to be recalculated

from time to time in order to adapt to the dynamic environment. Because the traffic

conditions may only partially change between sequential time intervals, some

searching results stay the same and do not need to be recomputed. This fact makes it

is possible to use the unaltered portion of previous search results to facilitate

subsequent searches with minimal computational cost. Therefore the motivation of

my research is to try to devise an approach, which can reuse information from

previous searches to more efficiently perform path planning for a series of similar

routing queries than is possible by solving each path planning problem from scratch.

Some existing dynamic routing algorithms are capable of using previous search

results in subsequent searches in order to reduce computation time, but they only

compute the new optimal path for each time interval based on a fixed starting point. If

the starting point (query point) changes, the previous search results are invalid and

cannot be reused in subsequent searches. To compute the new optimal path based on

the current position, they have to search from scratch similar to static methods and

they lose their strength. Hence, they are not able to efficiently answer the en route

query.

The LPA* algorithm is a dynamic shortest path algorithm, which computes dynamic

shortest paths between a fixed origin and destination. In other words, it is able to

adjust the optimal route to adapt to the dynamic transportation network, but the origin

cannot be changed. To answer an en route query for a known destination, I improve

the existing LPA* algorithm and make it capable of handling the dynamic routing

queries based on the changing traffic conditions and current positions of mobile

 7

clients. In addition, my approach also improves the searching performance.

To deal with the routing queries about the closest facility, I take the advantage of the

Voronoi diagram to find the best destination (e.g., hotels, restaurants, etc.) and derive

the respective route dynamically and efficiently. Voronoi diagrams benefit the

transportation field in that it is easy to identify the closest facility for multiple mobile

users located in the same Voronoi cell constructed using network distance. Therefore,

Voronoi diagrams are able to provide batch service for nearest neighbor queries, and

the performance is not significantly affected by an increase in the number of mobile

clients.

Although the majority of Voronoi diagram applications are based on Euclidian

distance in the 2-D plane, previous research has shown that there is a straightforward

equivalent in graph theory called the network Voronoi Diagram, which is based on the

shortest paths from Voronoi sites to other locations. Network Voronoi Diagrams can

be used to identify the closest facility in the road network. Since the closest facility

may vary for each time interval due to the mobility of mobile clients and changes in

traffic conditions, the challenge is how to frequently modify the network Voronoi

diagram to adapt to the dynamic environment without significant geo-computation.

Meanwhile, the adaptive shortest path trees from every location to their respective

closest facility (e.g., hotels, restaurants, etc.) need to be derived and adjusted. To date,

few researchers have discussed this problem and there no effective algorithm has been

proposed.

To solve this problem, I propose a novel Incremental Parallel Dijkstra’s algorithm

(IP-Dijkstra for short) to construct and maintain a shortest path based dynamic

Voronoi diagram for time-dependent traffic networks. As a result, I implement a

dynamic service area for each facility. The service areas can then be used to answer

the closest facility queries and provide adaptive route guidance based on current client

position and traffic conditions.

 8

1.6 Outline of this Thesis

The rest of the thesis is organized as follows: Chapter 2 introduces the background of

graph theory and discusses various network data models. Chapter 3 analyzes the

shortest path problem, the search strategies and describes some existing shortest path

algorithms for both static and dynamic networks. In Chapter 4, I first introduce the

existing LPA* algorithm and describe my improvement to answer the first type en

route query for known destination. Chapter 5 discusses the nearest neighbor problem

and the common used approaches. Chapter 6 illustrates my proposed method to

answer the second type en route query for unknown destination, including the

intuition, algorithm. Chapter 7 concludes the thesis.

 9

Chapter 2: Transportation Network Analysis

2.1 Background of Graph Theory

In this chapter, some fundamental concepts of graph theory are introduced and will be

referred to in subsequent discussions.

• Definition of a Graph

In mathematics and computer science, graph theory deals with the properties of

graphs. Informally, a graph is a set of objects, known as nodes or vertices, connected

by links, known as edges or arcs, which can be undirected (see Figure 2.1) or directed

(assigned a direction). It is often depicted as a set of points (nodes, vertices) joined by

links (the edges). Precisely, a graph is a pair, G = (V; E), of sets satisfying E∈[V] 2;

thus, the elements of E are 2-element subsets of V. The elements of V are the nodes

(or vertices) of the graph G, the elements of E are its links (or edges). In this case, E is

a subset of the cross product V * V which is denoted by E ∈[V] 2. To avoid notational

ambiguities, we shall always assume that V ∩E =∅ .

A connected graph is a non-empty graph G with paths from all nodes to all other

nodes in the graph. The order of a graph G is determined by the number of nodes.

Graphs are finite or infinite according to their order. In this thesis, the graphs are all

finite and connected. Furthermore, a graph having a weight, or number, associated

with each link is called a weighted graph, denoted by G = (V; E; W). An example of a

weighted graph is shown in Figure 2.1.

 10

1

2

5

3

4

6

2

2

22

3

3

2

Figure 2.1: A diagram of a weighted graph with 6 nodes and 7 links.

• Degree of a Graph

A node v is incident with a link e if v∈e; then e is a link at v. The two nodes incident

with a link are its end nodes. The set of neighbors of a node v in G is denoted by N (v).

The degree d (v) of a node v is the number |E (v)| of links at v. This is equal to the

number of neighbors of v. A node of degree 0 is isolated. The number δ (G) = min

{d (v) | v∈V} is the minimum degree of G, while the number Δ (G) = max {d (v) |

v∈V} is the maximum degree.

The average degree of G is given by the number

d (G) =
1

| |V
 ()

v V
d v

 ∈
∑ (2.1)

Clearly,

δ (G) ≤ d (G) ≤ Δ (G) (2.2)

The average degree globally quantifies what is measured locally by the node degrees:

the number of links of G per node. Sometimes it is convenient to express this ratio

directly, as ε (G) = |E|/|V|. The quantities d and ε are intimately related. Indeed, if

we sum up all of the node degrees in G, we count every link exactly twice: once from

each of its ends. Thus,

|E| = 1
2

()
v V

d v
 ∈
∑ = 1

2
d (G).|V|, (2.3)

and therefore

ε (G) = 1
2

d (G) (2.4)

 11

Graphs with a number of links that are roughly quadratic in their order are usually

called dense graphs. Graphs with a number of links that are approximately linear in

their order are called sparse graphs. Obviously, the average degree d (G) for a dense

graph will be much greater than that of a sparse graph.

• Definition of a Path

In a graph, a path, from a source node s to a destination node d, is defined as a

sequence of nodes (v0, v1, v2, ..., vk) where s = v0, d = vk, and the links (v0, v1), (v1,

v2), ..., (vk−1, vk) are present in E. The cardinality of a path is determined by the

number of links. The cost of a path is the sum of the link costs that make up the path,

i.e.,
1

k

i

W
=
∑ (vi−1, vi). An optimal path from node u to node v is the path with minimum

cost, denoted by (u, v). The cost can take many forms including travel time, travel

distance, or total toll. In my research, the cost or weight of a path stands for the travel

time which is needed to go through the path.

2.2 Network Data Models

Graph algorithms need efficient access to the graph nodes and links that are stored in

the computer's memory. In typical graph implementations, nodes are implemented as

structures or objects and the set of links establish relationships (connections) between

the nodes. There are several ways to represent links, each with advantages and

disadvantages. The data structure used depends on both the graph structure and the

algorithm used for manipulating the graph. Theoretically, one can distinguish between

list and matrix structures but in concrete applications the best structure is often a

combination of both. Among these data structures, graphs are commonly represented

using the incidence matrix, adjacency matrix and adjacency list.

2.2.1 Incidence Matrix

The incidence matrix of an undirected graph is a (0, 1)-matrix which has a row for

 12

each link and a column for each node. In this case, (v, e) = 1 if, and only if, node v is

incident upon link e and (v, e) = 0 otherwise [4]. For a directed graph, the incidence

matrix can be represented as (v, e) = 1 or -1, according to whether the link leaves node

v or it enters node v. The resulting incidence matrix for the undirected graph in Figure

2.2 is shown below.

1

2

3

4

Figure 2.2: An Undirected Graph

1 0 0
0 1 0
0 0 1
1 1 1

 1⎡ ⎤
⎢ ⎥ 0⎢ ⎥
⎢ ⎥ 1
⎢ ⎥ 0⎣ ⎦

2.2.2 Adjacency Matrix

The adjacency matrix of a graph is an n by n matrix stored as a two-dimensional array

with rows and columns labeled by graph nodes. A 1 or 0 is placed in position (u, v)

according to whether u and v are adjacent or not. Node u and v are defined as adjacent

if they are joined by a link. For a simple graph with no self-loops, the adjacency

matrix must have 0s in the diagonal. For an undirected graph, the adjacency matrix is

symmetric. Following is the adjacency matrix for Figure 2.2.

 13

0
0 0

0
1 1 1

0 1 1⎡ ⎤
⎢ ⎥ 0 1⎢ ⎥
⎢ ⎥1 0 1
⎢ ⎥ 0⎣ ⎦

2.2.3 Adjacency List

The adjacency list is another form of graph representation in computer science. This

structure consists of a list of all nodes in a given graph. Furthermore, each node in

the list is linked to its own list containing the names of all nodes that are adjacent to it.

In addition, the distances to those nodes are also stored. The adjacency list for Figure

2.2 can be described by Figure 2.3.

Figure 2.3: An Adjacency List

The above adjacency list is easy to follow and clearly illustrates the adjacent nature of

the four nodes. It is most often used when the graph contains a small to moderate

number of links.

2.2.4 Transportation Network Data Model

A transportation network is a type of directed, weighted graph. The use of GIS for

transportation applications is widespread and a fundamental requirement for most

1 3

2 4

3 1

4 1

4

4

2 3

 14

transportation GIS is a structured road network.

In developing a transportation network model, the street system is represented by a

series of nodes and links with associated weights. This representation is an attempt to

quantify the street system for use in a mathematical model. Inherent in the modeling

effort is a simplification of the actual street system. The network nodes represent the

intersections within the street system and the network links represent the streets. The

weights represent travel time between the nodes.

As a specialized type of graph, a transportation network has characteristics that differ

from the general graph. A suitable data structure is required to represent the

transportation network. Comparing the three data structures, an adjacency list

representation of the graph occupies less space because it does not require space to

represent links which are not present. The space complexity of an adjacency list is

(| | | |)O E V + , where | |E and | |V are the number of links and nodes respectively. In

contrast, incidence matrix and adjacency matrix representations contain too many 0s

which are useless and redundant in storage. The space complexity of incidence

matrices and adjacency matrices are (| | | |)O E V × and 2(| |)O V respectively. In

the following discussion, I will take a more detailed look at the three data models in

terms of storage space and suitable operations..

Using a naive linked list implementation on a 32-bit computer, an adjacency list for

an undirected graph requires approximately 16 × (| | | |)E V+ bytes of storage space.

On the other hand, because each entry in the adjacency matrix requires only one bit,

they can be represented in a very compact way, occupying only 2| |V /8 bytes of

contiguous space. First, we assume that the adjacency list occupies more memory

space than that of an adjacency matrix. Then

16 × (| | | |)E V+ ≥ 2| |V /8

 15

Based on equation (2.1.2) in section 2.1, we have,

2116 (() | | | |) | | / 8
2

d G V V V× × + ≥

where d (G) is the average degree of G. Finally,
| | 128()

64
Vd G −

 ≥ (2.5)

This means that the adjacency list representation occupies more space when equation

(2.5) holds.

In reality, firstly, most transportation networks are large scale sparse graphs with

many nodes but relatively few links as compared with the maximum number possible

(| | (| | 1)V V× − for maximum). That is, there are no more than 5 links (Δ (G) ≈ 5)

connected to each node. In most cases there are usually 2, 3 or 4 (δ (G) = 2) links,

although the maximum links is |V|-1 for each node. Secondly, road networks often

have regular network structures and a normal layout, especially for well planned

modern cities. Thirdly, most transportation networks are near connected graphs, in

which any pair of points is traversable through a route.

Assuming the average degree of a road network is 5, equation 2.5 holds only

if | |V ≤ 448 . In reality, most road networks contains thousands of nodes

where| |V >> 448 . As a result, equation 2.2.1 cannot hold. Thus, the adjacency list

representation occupies less storage space than that of an adjacency matrix. For

example, consider a road network containing 10000 nodes. If an adjacency matrix is

employed to store the network, at least 10 megabytes of memory space is required. It

will most likely take more computational power and time to manipulate such a large

array, and then it is impossible to conduct routing searches in some mobile data

terminals, such as smart phones and PDAs.

The comparison between the adjacency matrix and incidence matrix can give the

same result. Assuming an adjacency matrix occupies more storage space than that of

 16

an incidence matrix, then

2| | | | | |V E V≥ ×

From equation 2.2 in section 2.1, we obtain,

()d G ≤ 2 (2.6)

This means that the adjacency matrix representation occupies more space if and only

if equation 2.6 holds. Since the minimum degree of a transportation network is 2

(δ (G) = 2), then equation 2.6 is invalid. As a result, the adjacency matrix occupies

less storage space than that of the incidence matrix. Since the adjacency matrix cannot

compete with the adjacency list in terms of storage space (i.e., requires more space), it

follows that the incidence matrix will also not be able to compete.

Other than the space tradeoff, the different data structures also facilitate different

operations. It is easy to find all nodes adjacent to a given node in an adjacency list

representation by simply reading its adjacency list. With an adjacency matrix, we

must scan over an entire row, taking (| |)O V time, since all | |V entries in row v of

the matrix must be examined in order to see which links exist. This is inefficient for

sparse graphs since the number of outgoing links j may be much less than| |V .

Although the adjacency matrix is inefficient for sparse graphs, it does have an

advantage when checking for the existence of a link u → v, since this can be

completed in (1)O time by simply looking up the array entry [u; v]. In contrast, the

same operation using an adjacency list data structure requires ()O j time since each

of the j links in the node list for u must be examined to see if the target is node v.

However, the main operation in a route search is to find the successors of a given

node and the main concern is to determine all of its adjacent nodes. The adjacency list

is more feasible for this operation.

The above discussions demonstrate that the adjacency list is most suitable for

representing a transportation network since it not only reduces the storage space in the

 17

main memory, but it also facilitates the routing computation.

2.3 Chapter Summary

Since transportation networks are a specialized type of graph, some fundamental

knowledge of graph theory is required. Some basic concepts, such as the definition of

a graph, degree of a graph, and the definition of a path, are introduced at the

beginning of this chapter. In the discussion of the degree of a graph, the dense graph

and sparse graph are defined and used in data model discussion.

In the data model discussion, three types of data models for graph representation are

given: the incidence matrix, adjacency matrix and adjacency list. The discussion

includes a description of each model, an analysis of the space complexity, storage

space requirements and an examination of suitable operations for each model. Based

on the discussion, an adjacency list is regarded as the best representation of the

transportation network considering its own characteristics. In my research, I will

utilize an adjacency list to construct topology of the experimental road network in

order to implement my routing computations.

 18

Chapter 3: Shortest Path Problem

The computation of shortest paths has been extensively researched since it is a

fundamental issue in the analysis of transportation networks.

There are many factors associated with shortest path algorithms. First, there is the

type of graph on which an algorithm works - directed or undirected, real-valued or

integer link costs, and possibly-negative or non-negative link-costs. Furthermore,

there is the family of graphs on which an algorithm works - acyclic, planar, and

connected. All of the shortest path algorithms presented in this thesis assume directed

graphs with non-negative real-valued link costs.

3.1 The Classification of the Shortest Path (SP) Problem

Even though different researchers tend to group the types of shortest path problems in

slightly different ways, one can discern, in general, between shortest paths that are

calculated as one-to-one, one-to-all, or all-to-all.

Given a graph, one may need to find the shortest paths from a single starting node v to

all other nodes in the graph. This is known as the single-source shortest path problem.

As a result, all of the shortest paths from v to all other nodes form a shortest path tree

covering every node in the graph. Another problem is to find all of the shortest paths

between all pairs of nodes in the graph. This is known as the all-pairs shortest path

problem. One way to solve the all-pairs shortest path problem is by solving the

single-source shortest path problem from all possible source nodes in the graph.

Dijkstra's algorithm [5] is an efficient approach to solving the single-source shortest

path problem on positively weighted directed graphs with real-valued link costs.

Many of today's shortest path algorithms are based on Dijkstra's approach.

 19

There is also the relatively simple single-pair shortest path problem, where the

shortest path between a starting node and a destination node must be determined. In

the worst case, this kind of problem is as difficult to solve as single-source.

3.2 Analysis of the Searching Strategy

3.2.1 Breadth-First Search

A Breadth-First search (BFS) is a method that traverses a graph touching all of the

nodes reachable from a given source node. BFS starts at the source node, which is at

level 0. In the first stage, it visits all of the nodes at level 1. In the second stage, it

visits all of the nodes at level 2 that are adjacent to the nodes of level 1, and so on.

The BFS exhaustively searches the entire graph without considering the goal until it

finds it or terminates when every node has been visited. The BFS regards every link

as having the same length and labels each node with a distance that is given in terms

of the number of links from the start node. All child nodes obtained by expanding a

node are added to a FIFO queue (First in, First out). In typical implementations, a

container (e.g. linked list or queue) called "open" is used to store any nodes that have

not yet been examined by the search algorithm. Once the nodes have been examined,

they are placed in another container that is called "closed". A breadth-first search is

described in Figure 3.1.

Figure 3.1: Breadth-first Search

 20

3.2.2 Depth-First Search

Depth-First Search (DFS) starts at a start node S in G, which then becomes the current

node. The algorithm then traverses the graph by any link (u, v) incident to the current

node u. If the link (u, v) leads to an already visited node v, then the search backtracks

to the current node u. If, on the other hand, link (u, v) leads to an unvisited node v, the

algorithm moves to v and v then becomes the current node. That is, it will pick the

next adjacent unvisited node until it reaches a node that has no unvisited adjacent

nodes. The search proceeds in this manner until it reaches a dead-end. At this point,

the search starts backtracking and the process terminates when backtracking leads

back to the start node. Figure 3.2 shows a DFS applied to an undirected graph, with

the nodes labeled in the order they were explored.

Figure 3.2: Depth-first Search

3.2.3 Best-First Search

The Breadth-First search is able to find a solution without getting trapped in

dead-ends, while the depth-first algorithm finds a solution without computing all of

the nodes. The Best-First search allows us to switch between paths thus gaining the

benefit of both approaches. It is a combination of DFS and BFS, which optimizes the

search at each step by ordering all current adjacent nodes according to their priority as

determined by a heuristic evaluation function. The search then expands the most

promising node which has the highest priority. If the current node generates adjacent

nodes that are less promising, it is possible to choose another at the same level. In

 21

effect, the search changes from depth to breadth. The heuristic evaluation function

predicts how close the end of the current path is to a solution. Those paths that the

function determines to be close to a solution are given priority and are extended first.

A priority queue is typically used to order the paths for efficient selection of the best

candidate for extension.

In summary, since the DFS and BFS exhaustively traverse the entire graph until they

find the goal, they are categorized as uninformed searches. In contrast, the Best-First

search utilizes a heuristic to reduce the search space and is able to find the goal more

efficiently and is categorized as informed search.

3.3 Classical Shortest Path Algorithms for Static Networks

Because path finding is applicable to many kinds of networks, such as roads, utilities,

water, electricity, telecommunications and computer networks, the total number of

algorithms that have been developed over the years is immense, depending only on

the type of network involved. Labeling algorithms are the most popular and efficient

algorithms for solving the SP problem. These algorithms utilize a label for each node

that corresponds to the tentative shortest path length pk to that node. The algorithm

proceeds in such a way that these labels are updated until the shortest path is found.

Labeling algorithms can be divided into two sets: the label setting (LS) algorithms

and label correcting (LC) algorithms.

For each iteration, the LS algorithm permanently sets the label of a node as the actual

shortest path from itself to the start node, thus increasing the shortest path vector by

one component at each step. The LC algorithm does not permanently set any labels.

All of the components of the shortest path vector are obtained simultaneously; a label

is set to an estimate of the shortest path from a given node at each iteration. Once the

algorithm terminates, a predecessor label is stored for each node, which represents the

previous node in the shortest path to the current node. As a result, it only determines

 22

the path set, Pk= {p1,…, pk}, in the last step of the algorithm. Backtracking is then used

to construct the shortest paths to each node.

Typical label setting algorithms include Dijkstra’s algorithm and the A* algorithm.

The Floyd-Warshall algorithm is an example of a label correcting algorithms.

3.3.1 Dijkstra’s Algorithm

Dijkstra's algorithm, named after its inventor, has been influential in path computation

research. It works by visiting nodes in the network starting with the object's start node

and then iteratively examining the closest not-yet-examined node. It adds its

successors to the set of nodes to be examined and thus divides the graph into two sets:

S, the nodes whose shortest path to the start node is known and S’, the nodes whose

shortest path to the start node is unknown.

Initially, S’ contains all of the nodes. Nodes are then moved from S’ to S after

examination and thus the node set, S, “grows”. At each step of the algorithm, the next

node added to S is determined by a priority queue. The queue contains the nodes S’,

prioritized by their distance label, which is the cost of the current shortest path to the

start node. This distance is also known as the start distance. The node, u, at the top of

the priority queue is then examined, added to S, and its out-links are relaxed. If the

distance label of u plus the cost of the out-link (u, v) is less than the distance label for

v, the estimated distance for node v is updated with this value. The algorithm then

loops back and processes the next node at the top of the priority queue. The algorithm

terminates when the goal is reached or the priority queue is empty. Dijkstra's

algorithm can solve single source SP problems by computing the one-to-all shortest

path trees from a source node to all other nodes. The pseudo-code of Dijkstra's

algorithm is described below.

Function Dijkstra (G, start)

 23

1) d [start] = 0

2) S = ∅

3) S’ = V ∈ G

4) while S’ ≠ ∅

5) do u = Min (S’)

6) S = S U {u}

7) for each link (u, v) outgoing from u

8) do if d[v] > d[u] + w (u, v) // Relax (u, v)

9) then d[v] = d[u] + w (u, v)

10) previous[v] = u

3.3.2 A* algorithm

It is not feasible to use Dijkstra's algorithm to compute the shortest path from a single

start node to a single destination since this algorithm does not apply any heuristics. It

searches by expanding out equally in every direction and exploring a too large and

unnecessary search area before the goal is found. Dijkstra's algorithm is a version of a

BFS and although this algorithm is guaranteed to find the optimal path., it is not

extensively applied due to its relatively high computing cost. This has led to the

development of heuristic searches. In terms of heuristic searches, the A* algorithm is

widely regarded as the most efficient method.

The A* algorithm is a heuristic variant of Dijkstra's algorithm, which applies the

principle of artificial intelligence. Like Dijkstra's algorithm, the search space is

divided into two sets: S, the nodes whose shortest path to the start node is known and

S’, the nodes whose shortest path to the start node is unknown. It differs from

Dijkstra's algorithm in that it not only considers the distance between the examined

node and the start node, but it also considers the distance between the examined node

and the goal node.

 24

In the A* algorithm, g(n) is called the start distance, which represents the cost of the

path from the start node to any node n, and h(n) is estimated as the goal distance,

which represents the heuristic estimated cost from node n to the goal. Because the

path is not yet complete, we do cannot actually know this value, and h(n) has to be

“guessed”. This is where the heuristic method is applied.

In general, a search algorithm is called admissible if it is guaranteed to always find the

shortest path from a start node to a goal node. If the heuristic employed by the A*

algorithm never overestimates the cost, or distance, to the goal, it can be shown that

the A* algorithm is admissible [6]. The heuristic is called an admissible heuristic

since it makes the A* search admissible.

If the heuristic estimate is given as zero, this algorithm will perform the same as

Dijkstra's algorithm. Although it is often impractical to compute, the best possible

heuristic is the actual minimal distance to the goal. An example of a practical

admissible heuristic is the straight-line distance from the examined node to the goal in

order to estimate how close it is to the goal [6].

The A* algorithm estimates two distances g(n) and h(n) in the search, ranks each

node with the equation: f(n) = g(n) + h(n), and always expands the node n that has

the lowest f(n).Therefore, A* avoids considering directions with non-favorable results

and the search direction can efficiently lead to the goal. In this way, the computation

time is reduced. Thus, the A* algorithm is faster than Dijkstra's algorithm for finding

the shortest path between single pair nodes. The algorithm is an example of a

best-first search.

 25

3.3.3 Comparison of Algorithms Based on Time Complexity

The efficiency of a search algorithm is a critical issue in route planning since it relates

to the practicality and effectiveness of the search algorithm. Since a time consuming

search algorithm is inapplicable in real world applications, it is necessary to conduct a

complexity analysis for different algorithms.

The complexity analysis involves two aspects: time and space complexity. Algorithm

requirements for time and space are often contradictory with a saving on space often

being the result of an increase in processing time, and vice versa. However, advances

in computer hardware have made it possible to provide sufficient memory in most

computational environments and the main concern is now the time complexity of the

algorithm.

In shortest path computation, there are two essential operations: one is the additive

computation which gives the start distance of the current node based on previous

nodes and the link weight between them; the other is the comparison operation which

gives a possible shorter path to the start node. We assume the time cost for these two

operations is equivalent. The time complexity is measured by the frequency of the

most used operations in the above algorithms.

Observing the pseudo-code of Dijkstra's algorithm in section 3.3.1, the main loop

from steps 5 to 10 takes the most computational time. In step 5, the algorithm finds

the node with a minimum start distance. It requires | |V times comparison at first

time, | |V −1 times at second time and so on. Therefore the time complexity of the

node search is 2| | (| | (| |)V V O V+ −1) + ... +1 = . In steps 8 to 10, the algorithm

examines all links that are connected to the current node for the additive and

comparison operations. From the view of the entire search, it will examine all of the

links in the network, which takes | |E time. Therefore the final time complexity of

 26

Dijkstra's algorithm is 2 2(| | | |) (| |)O V E O V + = .

For the A* algorithm, its time complexity is calculated in a different way since it only

computes the shortest path between a single pair of nodes. If the average degree of a

network is denoted as d, and the search depth (i.e., the levels traversed in searching

the tree until the goal is found) is denoted as h, then the time complexity of the A*

algorithm is ()hO d . The time complexity comparison between these two algorithms

is shown in Table 3.1.

Table 3.1 Time Complexity Comparison between Classical Algorithms

 Dijkstra's

Algorithm

A*

Algorithm

Time Complexity 2(| |)O V ()hO d

In section 1.4, I suggest that the shortest path from the current location to a known

destination is a typical query for navigation services. Based on the above time

complexity comparison, A* is an efficient algorithm to solve the SP problem, because

d and h are much smaller than | |V . Thus, the time complexity of the Dijkstra

algorithms are far greater than A* in that they involve redundant computation for

solving the single pair SP problem. Since they are more applicable to other shortest

path problems, they may be employed in other scenario discussed later in the thesis.

Although A* can answer the first type of query proposed in section 1.4, it is not the

optimal solution as it is a static approach. In a dynamic environment, A* has to

recompute the shortest path from scratch every time there is a change in traffic

conditions. From this point of view, it must be improved in order to be adaptable to a

dynamic environment.

 27

3.4 Dynamic Traffic Routing

3.4.1 Dynamic Transportation Network Scenario

Time is an essential part of today’s mobile world. While long distance travel time

seems to be getting shorter each year, daily commuters have to spend more and more

time just getting to their office. A major reason for this situation is traffic congestion,

which results from high traffic flow, incidents, events or road construction. Traffic

congestion is perhaps the most conspicuous problem in the transportation network and

has become a crucial issue that needs immediate attention.

In the past, when drivers encountered traffic congestion, they had to queue up and

wait until the congestion cleared. Analysts were content with just studying the

queuing times and predicting waiting times, without making any attempt to actually

solve the problem. Current countermeasures for traffic congestion are oriented toward

a "local" optimum, i.e., a point-to-point diversion by using sign boards to divert traffic

flow around the point of congestion. The emergence of LBS gives a new paradigm for

applying GIS to transportation issues. As a key component, navigation services are

regarded as the most promising solution for solving this problem

In transportation network representations, the weigh of the links can be assigned as

the cost of travel time, along the links. Changes in traffic conditions are considered as

changes in link-weights, where the congestion occurs. Since traffic conditions always

change over time, the centralized navigation service has to monitor the traffic

fluctuations over a day-long interval and detect any congestion upstream in order to

allow drivers to take preventive action. By using dynamic shortest path algorithms,

navigation services can also help mobile clients to plan an alternative optimal route to

their destination based on the updated traffic conditions. In this sense, the solution

provided by the navigation service is closer to a "global" optimum. This feature also

encourages the possibility of deploying these algorithms in real-time traffic routing

software.

 28

3.4.2 Related Research for Dynamic Traffic Routing

Recent developments in LBS reflect a propensity for increased use of dynamic

algorithms for routing. Most of these algorithms have already been applied

successfully for routing in computer networks. As well, these algorithms can be

applied to transportation network management, especially in the context of the

centralized architecture of navigation services, where traffic flow would exhibit a

behavior close to that of “packets” in computer networks.

Motivated by theoretical as well as practical applications, many studies have

examined the dynamic maintenance of shortest paths in networks with positive link

weights, aiming at bridging the gap between theoretical algorithm results and their

implementation and practical evaluation.

In dynamic transportation networks, weight changes can be classified as either

deterministic or stochastic time-dependent. In the deterministic time-dependent

shortest path (TDSP) problem, the link-weight functions are deterministically

dependent on arrival times at the tail node of the link, i.e., with a probability of one. In

the stochastic TDSP problem, the link-weight is a time-dependent random variable

and is modeled using probability density functions and time-dependency. Here, link

weights take on time-dependent values based on finite probability values. Cooke and

Halsey [7] first proposed a TDSP algorithm in 1958. The algorithm they suggested is

a modified form of Bellman's label [8] correcting the shortest path algorithm. Hall [9]

worked on the stochastic TDSP problem and showed that one cannot simply set each

link-weight random variable to its expected value at each time interval and solve an

equivalent TDSP problem. Frank [10] derived a closed form solution for the

probability distribution function of the minimum path travel time through a stochastic

time-variant network. There were also a number of other works addressing similar

 29

problems. All of these are based on the model of a time-dependent network where

link length or link travel time is dependent on the time interval.

All of the research discussed above attempts to use probabilistic and statistical

approaches to determine the random change of link-weights and then derive the most

promising shortest path. To simplify the dynamic shortest path (DSP) problem, my

thesis research assumes that the link-weight changes are collected and updated by a

centralized navigation service. Based on the given link-weights for each time interval,

my research focuses on the DSP algorithm itself. The DSP algorithm utilizes current

traffic conditions to dynamically maintain the optimal path en route.

With a single weight change, usually only a small portion of the graph is affected. For

this reason, it is sensible to avoid computing the shortest path from scratch, but only

to update the portion of the graph that is affected by the link-weight change.

Incremental search methods are used to solve dynamic shortest path problems, where

shortest paths have to be determined repeatedly as the topology of a graph or its link

costs change [11]. A number of incremental search methods have been suggested in

the algorithms literature [17–28], which differ in their assumptions: whether they

solve single-source or all-pairs shortest path problems; which performance measure

they use, when they update the shortest paths; which kinds of graph topology and link

costs they apply to; and how the graph topology and link costs are allowed to change

over time [12]. An algorithm is referred to as fully-dynamic if both the weight

increment and decrement are supported and semi-dynamic if only the weight

increment (or decrement) is supported.

Among the algorithms proposed for the DSP problem, the algorithm of Ramalingam

and Reps [13] (RR for short, also referred to as the DynamicSWSF-FX algorithm)

seems to be the most used [14, 15, 16]. It is a fully-dynamic DSP algorithm which

updates the shortest paths incrementally. A more detailed description of the algorithm

 30

will be given in section 4.4.3.

In their work on algorithms for the DSP problem, Demetrescu et al. [29] proposed a

fully dynamic algorithm, which is a specialization of the RR algorithm for updating a

shortest path tree [16]. It is a modification of their previous work on a semi-dynamic

incremental algorithm.

In this chapter, I show that the RR algorithm is an efficient approach for solving the

DSP problem. One of its main advantages is that the algorithm performs efficiently in

most situations. First of all, it updates a shortest path graph instead of a shortest path

tree, although it can be easily specialized for updating a tree [29]. Even and Shiloach

[30] proposed a semi-dynamic incremental algorithm that works in cascades, which

can be computationally expensive for large link-weight increments. RR has good

performance independent of weight increments. For updating a shortest path tree,

Demetrescu's semi-dynamic incremental algorithm [31] performs well only if most of

the affected nodes have no alternative shortest paths. However, the RR algorithm

performs well even when there are alternative paths available. Even the algorithm of

Frigioni et al. [32], which is theoretically better than RR, was usually outperformed

by RR in computational testing [32].

Many theoretical studies of DSP algorithms have been carried out but few

experimental results are known. Frigioni et al. [33] compared the RR algorithm with

the algorithm proposed by Frigioni et al. [32] for updating a single-source shortest

path graph. They concluded that the RR algorithm is usually better in practice, with

respect to running times, but their algorithm has a better worst case time complexity

[34].

 31

3.4.3 Incremental Approach – RR Algorithm

In dynamic transportation networks, only portions of links change their weight

between each update. The start distances for some nodes stay the same as before and

thus do not need to be recomputed. This suggests that a complete re-computation of

the optimal route can be wasteful since some of the previous search results can be

reused. Incremental search methods, such as the RR algorithm, reuse information

from previous searches to find shortest paths for series of similar path-planning

problems potentially faster than is possible by solving each path-planning problem

from scratch.

The problem with reusing previous search results is how to determine which start

distances are affected by the cost update operation and need to get recomputed.

Assume S denotes the finite set of nodes of the graph and succ(s) ⊆ S denotes the set

of successors of node s∈S. Similarly, pred(s) ⊆ S denotes the set of predecessors of

node s∈S. In this case, 0 < w(s, s’) ≤ ∞ denotes the cost of moving from node s to

node s’∈succ(s) and g(s) denotes the start distance of node s∈S, that is, the cost of a

shortest path from s to its corresponding start node.

There are two estimates held by the RR algorithm in its lifetime. The first one is the

g(s) of node s which directly corresponds to the start distance in Dijkstra's algorithm.

It can be carried forward and reused from search to search. The second is another

estimate of the start distances, namely the rhs-value which is a one-step look-ahead

value based on the g-value and thus is potentially better informed than the g-value. Its

name comes from the RR algorithm where it is the value of the right-hand side (rhs)

of the grammar rules. It always satisfies the following relationship:

' ()

0 if
()

 ((') (, ')) otherwise
start

s pred s

s = s
rhs s

Min g s w s s∈

 ⎧
= ⎨ + ⎩

 (3.4.1)

 32

A new concept needs to be defined, called local consistency. A node is locally

consistent if its g-value equals its rhs-value. This concept is important because a local

consistency check can be used to avoid node re-expansion. Moreover, the g-values of

all nodes are equal to their start distances if all nodes are locally consistent. Whenever

link costs are updated, the g-value of the affected nodes will be changed. The nodes

become locally inconsistent. The RR algorithm maintains a priority queue that always

exactly contains the locally inconsistent nodes. These are the nodes whose g-value

potentially needs to be updated in order to make them locally consistent. In this way,

the shortest path tree can be adjusted dynamically.

3.5 Chapter Summary

In this chapter, the shortest path problem is well discussed. The chapter started with

the classification of the shortest path problem, which divided the shortest paths into

one-to-one, one-to-all, or all-to-all.

Commonly used search strategies, such as the breadth-first, depth-first and best-first

searches, were then introduced. Based on the search strategy analysis, two classical

shortest path algorithms are described as typical solutions to the shortest path

problems defined by the classification. They are Dijkstra's and the A* algorithms,

which are devised for static environments. Although the time complexity comparison

demonstrates that the A* algorithm is most suitable for calculating the shortest path

between single pair nodes due to its static property. The algorithm is inefficient in

dynamic transportation networks.

To satisfy the requirement of applications for real-world traffic networks, the dynamic

shortest path (DSP) problem is addressed. Firstly, the scenario of the dynamic traffic

network is provided to illustrate the past and present solutions in the real-world and

demonstrate the importance of DSP research. Secondly, some related research on the

time-dependent shortest path (TDSP) problem is briefly introduced in order to

 33

identify the research area in this thesis, which assumes the link-weight changes have

been given. Based on this assumption, some previous algorithms are explored. Among

them, the RR algorithm is shown to be the efficient approach in most dynamic

environments. It plays a major role in my solution to the DSP problem. Nevertheless,

all of the dynamic approaches discussed in this chapter are still not capable of

answering the first query type proposed at the beginning of this thesis, i.e., trying to

find the adaptive route from the current location to a known destination. These

algorithms can only calculate the dynamic shortest path between fixed start and goal

nodes for different time intervals. This means that they are not able to deal with

changes in the position of the start node as a mobile user moves along the initial

optimal path and makes an en route query for a new shortest path in accordance with

traffic condition changes.

 34

Chapter 4: Dynamic Routing Algorithm to Known

Destination

To answer a dynamic routing query to a known destination, an efficient and dynamic

algorithm is required to solve the single pair shortest path problem. Most dynamic

algorithms cannot answer the en route query in a dynamic environment, in which both

the traffic conditions and the query point position change over time. My solution is

based on modifying the existing LPA* algorithm to make it capable of handling this

problem. This modification will also improve the search performance of the algorithm.

In this chapter, I will give a detailed description of the LPA* algorithm and the

changes I have made to modify the existing algorithm for use in a dynamic routing

environment.

4.1 LPA* Algorithm

The Lifelong Planning A* (LPA*) algorithm is an incremental version of A* that uses

a heuristic, h(s), to control its search. The first search of LPA* is the same as that of

A*, but all subsequent searches are much faster because it reuses those parts of the

previous search tree that are identical to the new search tree. The main principle of the

LPA* algorithm is described in the following statements. Assume S denotes the finite

set of nodes of the graph and succ(s) ⊆ S denotes the set of successors of node s∈S.

Similarly, pred(s) ⊆ S denotes the set of predecessors of node s∈S. In this case, 0 <

c(s, s’) ≤ ∞ denotes the cost of moving from node s to node s’∈succ(s) and g(s)

denotes the start distance of node s∈S, i.e., the cost of a shortest path from sstart to s.

As for A*, the heuristic approximates the goal distances of the nodes s. They need to

be consistent, i.e., satisfy h(sgoal) = 0 and h(s)< c(s, s’)+ h(s’) for all nodes s∈S and s’

∈succ(s) with s≠sgoal.

 35

There are three estimates held by LPA* in its lifetime. The first one is the g(s) of the

start distance of each node s, which directly corresponds to the g-values of A* and can

be reused in subsequent searches. The second one is the h(s) of the approximate

distance to sgoal, which has the same meaning as the h-value in A* and is used to drive

the search in the goal direction. The last one is another estimate of the start distance,

namely rhs-values which are one-step look-ahead values based on the g-values and

thus are potentially better informed than the g-values. They always satisfy the

following relationship: rhs(s) = 0 when s is the start node or rhs(s) = Mins’∈pred(s)

(g(s’) + c(s, s’)) otherwise. As with the A* algorithm, each node is locally consistent

if its g-value equals its rhs-value. This concept is important because the g-values of all

nodes equal their start distances if all nodes are locally consistent. Actually, there is no

need to make every node locally consistent in LPA*. Instead, it uses the h(s) heuristic

to converge the search and update only the g-values involved in the shortest path

computation from sstart to sgoal [35].

LPA* maintains a priority queue that always exactly contains the locally inconsistent

nodes. These are the nodes whose g-value may need to be updated in order to make

them locally consistent. The node keys in the priority queue correspond to the f-values

used by A*. Similar to A*, LPA* always expands the node in the priority queue with

the smallest key (f-value). The key, k(s), of node s is a vector with two components:

k(s) = [k1(s); k2(s)], where k1(s) = Min (g(s), rhs(s)) + h(s) and k2(s) =Min(g(s),

rhs(s)). Similar to A*, LPA* always expands the node in the priority queue with the

smallest k1-value (f-value). Any ties are broken by favoring the node with the smallest

k2-value (g-value). The resulting behavior of LPA* and A* is also similar. LPA*

expands nodes until sgoal is locally consistent and the key of the node set for expansion

is no less than the key of sgoal.

As shown in Figure 4.1, the goal is to find the shortest path from A to K in the graph.

The upper-left graph gives the weight for each link. For illustration convenience, the

start distance and heuristic are also given in the brackets near each node. When LPA*

 36

performs the first search, it initializes the g-value and rhs-value of all nodes as infinity.

Actually, we cannot initialize all of the nodes in a large map and only initialize each

node whenever we encounter it while searching. In the following iterations, there is

also a bracket for each node: the two values denote the k1-value and k2-value

respectively. The number above the bracket is the start distance (g-value). Any single

values in the brackets denote the g-value of the nodes which are locally consistent.

The black square indicates a node that is being visited in the current iteration. In this

example, I use the Manhattan distance between any node and goal node as the

heuristic for LPA*.

A

D E

F G H

I J K

B C

(14,30)

(24,20)
(28,10)

(30,20) (34,10) (38,0)
Iteration #1

(50,10) (44,14)

(20,30)

(10,40)
10

10

10

10

10

10

10

10

10

10
10

10

20

14 14

14

10

10 A

D E

F G H

I J K

B C A

D E

F G H

I J K

B C
(50,0)

∞ ∞

∞ ∞

∞

∞

∞ ∞

∞ ∞

(50,10) (10,40) (20,30) (0,50)
∞ ∞

∞

(0)
∞

∞

∞

∞ ∞

∞ ∞

∞

Iteration #2 Start Distance / Heuristics

A

D E

F G H

I J K

B C
(50,20)

(44,24)

(50,10) (14)

(50,10) (0)

(38,28)

∞

∞

∞

∞

∞

∞
∞

∞ ∞
Iteration #3

A

D E

F G H

I J K

B C
(50,20)

(44,24)

(50,10) (14)

(50,10)

∞

(0)

∞

∞

∞

∞

(28)

(38,38)
Iteration #4

∞

A

D E

F G H

I K

B C

Shortest Path
J

∞ ∞

Figure 4.1: LPA* First Search

In iteration #1, the search expands from start node A, finds three successors (B, E and

D), assigns their keys and inserts them into a priority queue. They are ordered in the

queue based on the value of their keys. Next, the node with the smallest priority is

taken (popped) from the priority queue. In our example, the node with the smallest

 37

priority is node E (k1=44). The node is now locally consistent and has been popped

from the priority queue. In the same way, the search expands to the nodes C, H, and G.

In this iteration, rhs(C) has been updated by 20 because the smallest g-value of its

neighbors is g (B) =10, and its parent is assigned as B. Hence, we maintain the

shortest path from the start node to each visited node. Finally, H (k1=38) is popped

from the priority queue. The search terminates when node K is reached and it is

locally consistent, as any node expanded from K does not have a smaller key than that

of K.

Iteration #1

(50,10) (14)

A

D E

F G H

I J K

B C
(50,10)

∞

(0)

∞

∞

∞

∞

∞
Iteration #2

A

D E

F G H

I J K

B C
(50,20)

(24)

(50,10) (14)

(50,10)

∞

(0)

∞

∞ ∞

(44,34)

Iteration #4
∞

A

D E

F G H

I K

B C

Shortest Path
J

∞

Weight +=10

(38,28)
38

(14)

(50,20)

(44,24)
(44,34)

38

(38,38)
∞

∞

∞

(64,34) ∞

(44,34)

A

D E

F G H

I J K

B C
(50,20)

(24)

(50,10) (14)

(50,10)

∞

(0)

∞

∞ ∞

(34)

Iteration #5

∞

(64,34)

(44,34) (44,44)

(38)

∞∞

E

H

I J K

(50,20)

(44,24)

(50,10)

(50,10) (0)

∞

BA C A

D

G

I J

B C

∞

Iteration #3
∞

F

∞

D

F G

∞

∞

∞

∞

∞

E

F H

K

(50,20)

(44,24

(50,10) (14)

(50,10) (0)

∞

∞

∞

∞ ∞∞∞

Figure 4.2: LPA* Second Search

Figure 4.2 is an example showing what happens when the weight of any link

arbitrarily changes. In this case, the weight of the link EH increases by 10. To adapt to

this change, we first check the estimates (g, rhs) of the nodes around the Link EH,

which have the most potential to be affected by this change. They are nodes E and H.

Here, node E is not affected by this change, but the start distance of node H changes

(g(H)=38) and its rhs-value changes to 34 after updating. The next step is to update

 38

node K, and then it becomes locally inconsistent. Next, node G is popped from the

priority queue. By expanding nodes G to H and J, the search is led to the current

shortest path without visiting many unnecessary nodes that are not affected by the

changes. In this way, LPA* reuse the calculation result coming from the last search

and facilitate faster route recalculation by incrementally updating the locally

inconsistent node.

The main advantage of LPA* is the capability of carrying forward the start distances

(g-value) and reusing them from search to search. Although the LPA* can efficiently

manage dynamic environments, it cannot deal with start node positions changing over

time. While the mobile user is moving along the previous shortest path and querying

new optimal routes to adapt to changes in the environment, the LPA* is not able to

perform an incremental search as the start distances (g-value) are no longer valid for

the current start node. With the current method, it is impossible to rebuild the g-values

for these nodes unless an independent search is performed from scratch which loses

the power of LPA*.

4.2 Improved LPA* Algorithm

4.2.1 Extend LPA* with Changing Starting Point

The start distance (g-value) of a node is very important in LPA*. In order to utilize the

advantages of LPA*, the key issue is how to retain the start distance of a node that

was assigned in the last search. It is important to note that the destination does not

change when the start node changes. Inspired by this, I have modified the original

LPA* to this way. Now, when a user will move from node v to w (v, w∈S) and intend

to compute the shortest path between them, we can switch the search direction. In

other words, we do not search from node v to w, but assign w as the source and search

from w to v. In this situation, the start node will not change, but the goal always

changes. Hence, the start distance of a node can be carried forward and reused from

 39

search to search. With the goal changing, the heuristic of each node should be

modified according to the new goal. No matter what metrics are employed as

heuristics, either the Manhattan distance or Euclidean distance, they are can be easily

updated for each node in the priority queue. Note that one should adopt the weight of

the opposite direction in a directed graph to ensure that the final shortest path leads

from the true start node to the goal when calculating the start distance for each node.

Therefore, my contribution is extending LPA* to a new application.

A

D E

F G H

I J K

B C

(24,20)

(20,30)
(10,40)

(20,30) (10,40) (0,50)
Iteration #1

(50,10)

(30,20)

(34,10)
10

10

10

10

10

10

10

10

10

10
10

10

20

14 14

14

10

10 A

D E

F G H

I J K

B C A

D E

F G H

I J K

B C

(50,0)

∞ ∞

∞ ∞

∞

∞

∞ ∞

∞ ∞

(50,10)

(34,10) (30,20) (38,0)
∞ ∞

∞

∞

∞

∞

∞ ∞

∞

∞

Iteration #2 Start Distance / Heuristics

A

D E

F G H

I J K

B C
(50,30)

(50,20)

(50,10)

(44,24)

(0)

(10)

∞

∞

∞

∞

∞

∞

∞

∞

∞

Iteration #3

A

D E

F G H

I J K

B C
(50,30)

(50,20)

(44,34) (24)

(44,34)

∞

(0)

∞

∞

∞

∞

(10)

Iteration #4

∞
A

D E

F G H

I K

B C

Shortest Path
J

∞ ∞

(0)

∞

(50,10)

(38,38)

Figure 4.3: Improved LPA* First Search

 40

Iteration #1

(44,34) (30,30)

A

D E

F G H

I J K

B C
(44,34)

∞

(0)

∞

∞

∞

∞

Iteration #2

Iteration #4

A

D E

F G H

I K

B C

Shortest Path
J

Weight +=10

(54,30)

(30,20)
(10)

(44,34) (24)

A

D E

F G H

I J K

B C
(44,34)

∞

(38,38)

∞

∞

∞

∞

(50,30)

(50,20)
(10)

(0) (50,10)

(52,38)∞

(50,10)

34

Iteration #3
(50,10)
∞

(0)

(52,38)

(30,20)

∞

(44,34) (30,30)

A

D E

F G H

I

B C
(44,34)

∞

∞

∞

(50,30)

(20)
(10)

(52,38) ∞

K (0) ∞ (50,10) J

∞

D

F

I

B C

∞

∞

(44,34)

A

E

G H

J K

(44,34)

∞

∞

(50,30)

(10)

∞ ∞ ∞ ∞ ∞

Figure 4.4: Improved LPA* Second Search

I will illustrate my approach using the graphs in Figure 4.3 and Figure 4.4. Imagine

that a mobile user wants to move from A to K. In the first LPA* search (see Figure

4.3), we follow the reversed direction to perform an LPA* search from K to A and

acquire the start distance of the involved nodes.

As shown in Figure 4.4, the mobile user starts from A moving along the designed

optimal route. When the user reaches node E, current traffic conditions are provided

with information of a traffic jam in the link EH. In this graph, it is represented with an

increase of 10 in the link cost. To determine the optimal path in this case, we need to

update the g-value and rhs-value for node E because its g-value comes from H.

Obviously, it is locally inconsistent. Node G is then popped from the priority queue

and again expanded to E. Thus the new route is successfully recalculated. The actual

 41

details of my algorithm are described below.

The pseudo-code uses the following functions to manage the priority queue:

U.TopKey() - returns the smallest priority of all nodes in priority queue U. (If U

 is empty, then U.TopKey() returns [∞ ; ∞].)

U.Pop() - deletes the node with the smallest priority in priority queue U and

 returns the node

U.Insert(s, k) - inserts node s into priority queue U with priority

U.Remove(s) - removes node s from priority queue U.

Swap(sstart, sgoal) - switch the start and goal node to perform reversed search

Procedure CalculateKey(s)

return [min(g(s), rhs(s)) + h(s);min(g(s), rhs(s))];

Procedure Initialize()

U = ∅;

for all s∈S rhs(s) = g(s) = ∞ ;

rhs(sstart) = 0;

U.Insert(sstart, [h(sstart); 0]);

Procedure UpdateNode(u)

if (u ≠ sstart) rhs(u) = Mins’∈pred(u)(g(s’) + c(s’, u));

if (u ∈ U) U.Remove(u);

if (g(u) ≠ rhs(u)) U.Insert(u, CalculateKey(u));

Procedure ComputeShortestPath()

while (U.TopKey() ˙<CalculateKey(sgoal) OR rhs(sgoal) ≠ g(sgoal))

{

 u = U.Pop();

 if (g(u) > rhs(u))

 g(u) = rhs(u);

 for all s ∈ succ(u) UpdateNode(s);

 42

 Else

 g(u) = ∞ ;

 for all s ∈ succ(u) ∪ {u} UpdateNode(s);

}

Procedure Main()

Initialize();

Swap(sstart, sgoal);

while (sstart ≠ sgoal)

{

 ComputeShortestPath();

 sstart =Top(Pathlist).next

 Move to sstart

 Detect the weight change in graph

 If any change occurs

 for all directed links (u, v) with changed link costs

 Update the link cost c(u, v);

 UpdateNode(v);

 for all s∈ U

 U.Update(s, CalculateKey(s));

}

4.2.2 Constrained Shortest Path Search

To further improve the efficiency of my proposed method, I also apply additional

constrained conditions to converge the search space for the LPA* algorithm. Since an

ellipse is the simplest geometric shape we can employ besides a circle to deal with

distance, I use some of the features of an ellipse to restrict the search space while the

LPA* is performing subsequent searches.

 43

An ellipse is the trajectory of all points whose distances to two specific points (i.e.,

the two foci of that ellipse) are fixed and equal to the length of the major axis. All

points inside the ellipse are nearer to the two foci than those on the ellipse, while all

points outside the ellipse are farther from the two foci. As you can see in Figure 4.5, if

we know the network distance d between two nodes s and g in the graph, we can use

d as the major axis, take the position of the two nodes s and g as foci and draw an

ellipse. We can assert that if there is a shortest path existing between s and g, this path

must lie in the ellipse. To prove it, we assume that there is a node v that belongs to the

shortest path (s, g) and is located outside the ellipse, then (s, v) + (v, g) > d. Even if

there are straight-line paths existing between (s, v) and (v, g) respectively, the length

of this route must be greater than d. Therefore, node v cannot lie in the shortest path

between s and g.

Figure 4.5: Shortest Path Constrained by Ellipse

Based on this theorem, we can use an ellipse during searching to prune the nodes

which do not belong to the expected shortest path. The next issue is how to determine

the size of the ellipse. From the first LPA* search, we are aware of the shortest path

along which the mobile user travels. While the mobile user will try to find another

optimal path if the weight of any link changes, it is easy to derive the network

distance between the current node and the goal based on the new weight value. It is

possible to define an ellipse by using this network distance as the major axis and

 44

employing the goal and current node as foci. Thus, if there is an existing shorter

alternative path, it must lie in the ellipse. Any node beyond this ellipse can be safely

pruned from the search space and thus the efficiency of the LPA* can be improved

with the assistance from a constrained ellipse.

However, using an ellipse directly as a constraint condition is less efficient since it

involves many power and evolution computations. To solve this problem, we utilize

the Minimum Bounded Rectangle (MBR) of the constrained ellipse to simplify the

calculation as shown in Figure 4.6. The following example will present how to

compute the MBR for a given ellipse. Suppose an ellipse has two foci (x1; y1) and (x2;

y2), and a major axis, the ellipse can be represented by equation 4.1. If partial

derivatives of x and y for the ellipse equation are used, we can obtain the extreme

values of xm and ym from equation 4.3.

2 2

2 2

[() ()] [() ()] 1c c c cCos x x Sin y y Sin x x Cos y y
a b

θ θ θ θ− + − − − + −
+ =

(4.1)

Where
2 1

2 1
arctan()y y

x x
θ −

=
−

1 2

2
c

x xx =
+

1 2

2
c

y yy =
+ 2 2

2 1 2 1() ()
2

y y x xc =
− + −

2 2a cb = −

(4.2)

and 2 2 2 2cos sinm cx x a bθ θ= ± + 2 2 2 2sin cosm cy y a bθ θ= ± + (4.3)

Figure 4.6: MBR Constrained Search

 45

The ellipse is bounded by the MBR with corner coordinates of (xm, ym). When

combined with the LPA*, the pseudo-code described above should be modified as

follows:

Procedure UpdateNode(u)

if (not check(u,MBR)) return;

if (u ≠ sstart) rhs(u) = Mins’∈pred(u)(g(s’) + c(s’, u));

if (u ∈ U) U.Remove(u);

if (g(u) ≠ rhs(u)) U.Insert(u, CalculateKey(u));

Procedure Main()

Initialize();

Swap(sstart, sgoal);

while (sstart ≠ sgoal)

{

 ComputeShortestPath();

sstart =Top(Pathlist).next

 Move to sstart

Detect the weight change in graph

 If any change occurs

 calculate_MBR(sstart, sgoal);

 for all directed links (u, v) with changed link costs

 Update the link cost c(u, v);

 UpdateNode(v);

 for all s∈ U

 U.Update(s, CalculateKey(s));

 }

4.3 Software Implementation

 46

4.3.1 Development of an Interactive Environment

Since it is inconvenient to examine the performance of my algorithms utilizing

existing GIS software, such as ArcGIS, I implemented the algorithms using the VC++

programming language. This software is designed to load datasets directly from

shapefiles and to provide a user-friendly interactive interface to facilitate experimental

studies. The interactive interface allows user to select the start point and destination

arbitrarily in order to perform shortest path computations. After a shortest path is

obtained, the user can then select an intermediate point randomly or manually along

the path as a stop and assign a percentage weight change. The stop is used to simulate

the situation of a mobile user submitting an en route query for a new optimal route in

order to adapt to the arbitrary change in traffic conditions.

Figure 4.7: Software Interface

 47

4.3.2 C++ Class Implementation

The key elements of any object-oriented software design is the use of structured,

efficient data structures, referred to as objects. These objects are implemented in

practice using class definitions. One advantage of using objects to model the problem

domain is that they mirror the physical reality. In my program, the topology of the

network is stored in a linked list which is implemented as a class. In addition, all

algorithms are also implemented as classes, including A*, LPA*, IP- Dijkstra.

As an example, the node class is described below. To accommodate all algorithms,

the class definition includes all variables which are used to support the different

algorithms.

 class _asNode {

 public:

 _asNode(double a = -1,double b = -1) : x(a), y(b), Id(0), ChildrenNum (0)

 {

 parent = next = NULL;

 memset(children, 0, sizeof(children));

 }

 ~_asNode();

 int Id; // Node Id

 double x, y; // coordinates

 double f, g, h, rhs; // estimates for A*, LPA*, IP- Dijkstra

 _asNode *parent; // predecessor of the node

 int ChildrenNum;_ // Number of Children

 asNode *children[5]; // 5 Children allowed, the maximum degree

 double weight[5]; // link weights

 double Key; // measure the priority of the node in LPA*

 int V_Id; // corresponding Voronoi site in IP- Dijkstra

};

 48

4.3.3 Priority Queue and Binary Heap

4.3.3.1 Priority Queue

For all algorithms mentioned in this paper, a priority queue is needed to determine the

search strategy and optimize the shortest path computation. In general, the priority

queue is called an open list, which contains the not-yet-examined nodes. At each

iteration, the top node is retrieved and expanded. Meanwhile, this node also needs to

be removed from the queue. In my implementation, I adopt the binary heap to realize

the priority queue. This will be discussed in more detail later in the thesis. In

following discussion, I use the term “key” to denote the priority of the node, which

may have a different meaning for different algorithms. In Dijkstra's and IP- Dijkstra's,

it refers to the start distance g(s) of node s; for A*, it is the estimates f = g(s) + h(s);

in LPA*, it has two components: key = [k1(s); k2(s)], where k1(s) =Min(g(s),

rhs(s))+h(s) and k2(s) =Min(g(s), rhs(s)). The critical issue is how to save and

retrieve nodes according to its key.

A simple way to save an open list is to keep the list sorted. This speeds up node

removal. We just need to grab the first node from the list that has the lowest key.

However, every time we add a node to the list, we need to insert it in the proper place.

A naive approach would be to start at the beginning of the list every time we need to

add a new node and then successively compare the key of the current node we are

adding to the list with each node already in the list. Once we find a node in the open

list with an equal or higher key value, we could insert the new node before that node

in the list. There are many methods to keep the list sorted, such as selection sorts,

bubble sorts, quick sorts, etc.

This approach could be improved by keeping track of the average key value of the

nodes already in the list, and using that to decide whether to start at the beginning of

the list (insertion of new nodes with a lower key than the average) or to start at the

end of the list and work toward the front of the list (insertion of new nodes with a

 49

higher key than the average). This approach will save the search time in half.

A more complicated, but faster approach could be to use a quick sort algorithm, which

basically starts by comparing the key of the new node to the node at the middle of the

list. If the new node has a lower key, we would then compare it to the node 1/4 of the

way through the list. If the key was lower than this key, we would compare it to the

one 1/8 of the way through the list, and so on. This algorithm successively divides the

list in half and compares the new node to the current nodes in the list until it finds the

proper place for the new node.

4.3.3.2 Binary Heap

A binary heap is very similar to the quick sort method described above. Using a

binary heap can significantly speed up path searches, especially on large road maps

with many nodes

In a sorted list, every node in the list is in its proper order, lowest-to-highest. This is

helpful, but it is actually more than we really need. We don’t actually care about the

order of the entire list. All we really need is the node with the highest priority (lowest

key) to be easily accessible at the top of the list and the rest of the list can be unsorted.

Always keeping the rest of the list properly sorted is not necessary until the next node

is needed.

In general, a binary heap is a bunch of items where either the lowest or highest key

item is at the top of the heap. Since we are looking for the lowest key node, we will

put that at the top of our heap. This node has two children, each of which has a key

equal to, or a little higher than itself. Each of these children has two children of its

own that has a key that is equal to, or a little higher than it, and so on. Figure 4.8 is an

example of a binary heap.

 50

10

30 20

34 38 30 24

Figure 4.8: An Example of a Binary Heap

Notice that the lowest node in the list (10) is at the top and the second lowest (20) is

one of its children. The third lowest node in the list is 24, which is two steps down

from the top. It is also lower in the list than 30, which is only one step from the top on

the left side. It doesn’t matter what the value of the other nodes are in the heap, each

individual node in the heap needs only to be equal to or higher than its parent, and

equal to or lower than both of its children. Those conditions are met here, so this is a

valid binary heap.

The major reason to use a binary heap is that it is very easy to use. It can be saved in a

simple, one dimensional array. In this array, the node at the top of the heap would be

in the first position of the array (position 1, not position zero, which is possible in an

array). Its two children would be in positions 2 and 3. The four children of these two

nodes would be in positions 4-7. Figure 4.9 describes the order of a binary heap.

10

30 20

34 38 30 24

10 30 20 34 38 30 24

 51

Figure 4.9: The Order of a Binary Heap
In general, the two children of any node in the heap can be found in the array by

multiplying the node’s current position in the array by two (to find the first child) and

adding one (to find the second child). For example, the two children of the third node

in the heap (with a key of 20), can be found in positions 2*3 = 6, and 2*3 +1 = 7 of

the array. In this case, the nodes in these positions are 30 and 24, respectively.

• Adding a node to the Heap

In order to add a node to the heap, we place it at the very end of the array. We then

compare it to its parent, which is at location (node's number in the heap)/2, rounding

all fractions down. If the new node’s key is lower, we swap these two nodes. We then

compare the new node with its new parent, which is at location (current position in the

heap)/2, rounding all fractions down. If its key is lower, we swap again. This process

is repeated until the node's key is not lower than its parent, or until the node has

bubbled all the way to the top, which is position #1 in the array.

• Removing a node from the Heap

Removing a node from the heap involves a similar process, but in reverse. First, we

remove the node in slot #1, which is now empty. We then take the last node in the

heap and move it up to position #1. This node is then compared to each of its two

children, which are at locations (current position * 2) and (current position * 2 + 1). If

it has a lower key than both of its two children, it remains in its current position. If not,

we swap it with the lower of the two children. This process is repeated until we have

reached the bottom level of the heap.

Since a binary heap uses a hierarchical data structure to store nodes, it can

considerably reduce the computational cost of the comparison operations. In terms of

the insertion and deletion operations in the priority queue, my algorithms are able to

greatly benefit from the binary heap.

 52

4.4 Experimental Studies

4.4.1 Experimental Dataset

To justify the universal validity of my approach, without the favor of certain

circumstances or topological structures, the experiments are performed using two

real-world road networks: Calgary and Singapore. The Calgary road map contains

about 8000 nodes and 12500 links, while the Singapore road map contains about 7000

nodes and 11800 links. For each map, we have a facilities datasets which consists of a

set of points representing shopping malls, hotels, restaurants and gas stations. Figure

4.10 and Figure 4.11 show the road maps for Calgary and Singapore that I used in my

research.

Figure 4.10: Road Network of Calgary

 53

Figure 4.11: Road Network of Singapore

.

4.4.2 Demonstration of En Route Queries for Known Destination

In Figure 4.12, a mobile client submits a query, prior to departure, for the shortest

path from B to A and the shortest path is returned (depicted by a blue line). The

mobile client then starts traveling along the path. Assuming that the client is informed

there is traffic congestion ahead, upon arriving at point C the client can submit a new

query and receive an alternative route from C to A (depicted by a red line) in order to

avoid any delays. This happens again when point D is reached. The route planner

sends the client another optimal route solution (depicted by a black line) based on the

user's new position, D, and current traffic conditions. The final path actually traveled

by the user is shown in Figure 4.13. The whole process demonstrates how the

improved LPA* algorithm works.

 54

Figure 4.12: Optimal Route Update

Figure 4.13: Final Optimal Route

4.4.3 Experimental Results for the Improved LPA* Algorithm

In my experiment, I compare the performance of the improved LPA* algorithm with

the A* static algorithm. That is, for each path computation, the improved LPA* can

partially reuse previous search results and the A* has to compute the optimal route

 55

from scratch. To characterize the efficiency of LPA*, first we need to select different

routes by their approximate length to examine to what extent LPA* is superior to A*.

Next, I utilize my software to simulate a dynamic environment and make the

link-weights change with different proportions, from 5% to 40%. For the improved

LPA*, we test its performance with and without the assistance of the constrained

ellipse respectively. To avoid biasing the experimental results in favor of any single

approach, we use a binary heap to implement a priority queue for both A* and LPA*.

For comparison purposes, the number of nodes expanded is taken as a benchmark to

test the efficiency. The first search of LPA* is not involved because it is the same as

A* if the new heuristic is not applied.

Table 4.1 illustrates the varying performance with various path cardinalities. The

cardinality of a path refers to the number of nodes contained in the final shortest path.

In general, the difference in cardinality stands for the difference in path length

between each shortest path computation; a longer path may contain more nodes. From

Table 4.1, we can discern that these paths contain between 10 and 60 nodes. In this

test, only 5% of the links have been modified with a new weight value. Table 4.2

shows the experimental result from a dynamic environment where the weights of 10%

of the links of the entire graph have been updated. Figure 4.14 illustrates the node

expansion in a dynamic environment influenced by different proportions of weight

being updated. This route contains about 40~50 nodes.

Table 4.1 Nodes Expansion in Different Routes with 5% Links Updated

Cardinality of the path
 Approach

11

19 33 43 52

Original A* 34 75 156 284 497
Improved LPA* without constrained ellipse 7 20 32 73 128

Improved LPA* with constrained ellipse 5 16 25 55 98

 56

Table 4.2 Nodes Expansion in Different Routes with 10% Links Updated

Cardinality of the path
Approach

11

19 33 38 55

Original A* 32 78 165 280 512
Improved LPA* without constrained ellipse 9 28 37 72 134

Improved LPA* with constrained ellipse 6 19 26 59 104

0

50

100

150

200

250
300

350

400

450

500

5% 10% 20% 30% 40%
Percentage of Links Cost

Changed

Nu
m

be
r o

f N
od

es
 e

xp
an

si
on

Original A*

LPA* without
constrained ellipse
LPA* with
constrained ellipse

Figure 4.14: Nodes Expansion VS. Proportion of Links Updated

From the evaluations of the experiment, we can observe that the improved LPA*

approach is significantly superior to A*. Table 4.1 demonstrates that with increased

path length, LPA* greatly reduces computational costs as compared to A*. In some

cases, the reductions are in the order of 70-80%. This means that in a navigation

service area, a service provider may incur considerable computation costs on the

shortest path queries for clients who start a long trip and frequently recalculate the

optimal route. If the number of queries gets too large, the service may be degraded..

By reusing previous search results, the improved LPA* approach can handle vast

numbers of query requests.

Table 4.1, Table 4.2 and Figure 4.14 prove that, with the assistance of a constrained

ellipse, the LPA* can be more efficient for route optimization without missing any

useful nodes. Although this improvement is not large, the innovation may reduce

search costs by 10~20%.

 57

Table 4.2 and Figure 4.14 show that our approach works well if the link-weights do

not change significantly. If the link-weights change significantly, the performance of

LPA* algorithm will approach that of the A* algorithm. This means that only a small

portion of the previous search information can be reused by LPA* and it may lose its

advantage. In extreme condition, it has to search from scratch like A*.

4.5 Chapter Summary

In the beginning of this chapter, the existing LPA* algorithm is described in detail.

LPA* is a dynamic shortest path algorithm which combines the A* and RR algorithm

to answer similar routing queries. This algorithm employs a heuristic to prune

unnecessary nodes and reduce the search space oriented to the goal. In addition, the

integrated RR approach provides an incremental method to dynamically adjust the

shortest path. It only modifies the portion of the route that is affected by changes in

the link-weights.

The drawback of LPA* is that, like most other dynamic methods, it can only perform

the dynamic route recalculation between a fixed start point and goal, and cannot

satisfy the requirement of en route routing queries. To overcome this problem, I

propose an improvement based on LPA*, which reverses the searching direction from

the goal toward the start point. In cases where the start point changes due to the

mobility of the user, the previous search results can still be reused since all nodes are

labeled with the goal distance, instead of the start distance. Therefore, the only thing

that should be done is establish a new heuristic for all involved nodes, which is easy

to calculate.

To test the performance of my algorithms, I developed experimental software for all

routing algorithms. The main software functions and the class implementations are

briefly described. The emphasis of this chapter is on discussing the data structure and

 58

manipulation of the priority queue, which may strongly affect the performance of the

search algorithms.

To efficiently access the priority queue, a well-known data structure, the binary heap,

is employed to facilitate insertion and deletion operations in the queue. The discussion

illustrates its basic principle, algorithms and superiority. By using a binary heap, the

performance of all the search algorithms can be improved.

The experimental results demonstrate that, in most cases, the improved LPA* is

significantly superior to A*. In the worst case, i.e., if the weight of the network

significantly changes, its performance approaches that of A*. Therefore, in most cases,

my algorithm can preserve the strength of the LPA* algorithm and solve the en route

query. As well, the performance of the improved LPA* can be further improved with

the help of a constrained ellipse.

 59

Chapter 5: Nearest Neighbor Problem

As mentioned in section 1.4, the second type of query deals with finding the closest

facility, such as the nearest hotel, hospital or gas station, without knowing the

destination in advance. This is defined as the nearest neighbor query, which retrieves

the data point that is closest to a query point. In this chapter, I discuss some traditional

methods for solving the problem. The main limitation of these methods is that they

can only be applied in a static environment, i.e., they cannot answer en route queries

in a dynamic environment.

Traditionally, there are two commonly used methods to solve the nearest neighbor

problem: the indexing approach and the Voronoi diagram based method.

5.1 Indexing Approach

5.1.1 Background Knowledge on the Spatial Index

Because of the large volumes of spatial data and time-consuming geometric

algorithms, which need underlying systems with extended features involving query

languages, data models and indexing methods, extensive research has been conducted

in this context on the design of efficient index structures to accelerate access to spatial

data. The purpose of the spatial index structure is to reduce the set of objects which

are examined when processing a query. R-tree is the most popular spatial index

structure used widely in GIS and its structure is illustrated as follows.

R-tree is a spatial access method which utilizes hierarchically nested (and possibly

overlapping) boxes to separate space. The tree is height-balanced; that is, all of the

leaves are at the same level. The structure handles objects by means of their

conservative approximation. The simplest approximation of an object’s shape is the

 60

Minimum Bounding Rectangle (MBR). Each node of the tree corresponds to exactly

one disk page. The point is that only the MBRs are stored, not the objects themselves.

Internal nodes contain entries of the form (R, child-ptr), where R is the MBR that

encloses all of the MBRs of its descendants and child-ptr is the pointer to the specific

child node. Leaf nodes contain entries of the form (R, object-ptr) where R is the MBR

of the object and object-ptr is the pointer to the object’s detailed description. Figure

5.1 is an example of an R-tree.

Figure 5.1: An example R-tree

5.1.2 Nearest Neighbor Search Using Indexing Approach

Roussopoulos et al. [36] propose a branch-and-bound algorithm that searches the

R-tree in a depth-first manner. The basic idea of this algorithm is that the Euclidian

distance between the query point and any node is always less than the network

distance. The search starts from the root where all entries are sorted according to their

minimum Euclidian distance (mindist) from the query point. The entry with the

smallest value is visited first. The process is repeated recursively until the algorithm

reaches the leaf level where the first potential nearest neighbor is found. It then

employs a one-to-one shortest path algorithm to compute the shortest path to the most

promising candidate in terms of network distance and stores this distance as the

shortest path distance found so far. The algorithm then backtracks to the upper levels

of the tree only visiting those entries whose mindist is smaller than the shortest path

distance to the nearest neighbor already found. The search terminates once the known

shortest path is less than the mindist of the next entry. In the worst case, the algorithm

will search all objects in a certain category.

 61

E1 E2

E3

E5

E4

E6

E7

E8 E9

a
b

c

d

e f g

h
i

Mindist (E1)

Mindist (E2) =
Mindist (E8)

Mindist (E4) =
Mindist (a)

Query Point

Figure 5.2: Indexing Nearest Neighbor

In the example shown in Figure 5.2, the algorithm first visits the root entry E1 since it

has the smallest mindist, and then E4, where the first candidate node, a, is retrieved.

When backtracking to the previous level, entries E5 and E6 are excluded, since their

mindist is greater than the path distance to a. Then E2 and E8 are accessed, where the

actual nearest neighbor (node h) is found. Samet and Hjaltason [37] develop an

improved nearest neighbour algorithm. To determine what node should be examined

next, it selects the node with the smallest distance in the set of nodes, which have

been visited. This means that the algorithm uses a priority queue to track the nodes to

be visited, instead of using a stack or a plain queue. The distance from the query

object to each node is used as a key. Although the improved algorithm has performs

better than Roussopoulos’ algorithm, the search principle is similar. Both of them

follow the filter and refine strategy. These two steps are time consuming since many

unnecessary shortest path computations are involved before the actual nearest

neighbor is found.

Consider an alternative situation where a user with a location-aware mobile device

submits a continuous query with respect to his/her current position (e.g., the user

 62

wants to know the closest restaurant while traveling). Due to the mobility of the user,

the result may be immediately invalidated as the user's position changes. The

conventional approach to attain current information is to submit a new query to the

server after a position update, which could lead to high network overhead and extra

processing effort.

To solve this problem, Zhang et al [38] suggest that, if a client remains in an area

around the initial position, called the validity region, the result remains the same. In

addition to the query result, the server has to return the validity region of the query.

The clients use the validity region to determine whether a new query should be issued

by verifying whether their current position is still inside the validity region. To derive

the validity region, a Voronoi diagram is used to partition the data space.

5.2 Voronoi Diagram Approach

5.2.1 Fundamental Knowledge of Voronoi Diagram

The Voronoi diagram is a well known data structure extensively investigated in the

domain of computational geometry [39]. Originally, it characterized regions of

proximity for a set of k sites in a 2-D plane where the distance between points is

defined by their Euclidean distance. In the following sections, we review the

principles of the Voronoi diagrams, starting with the Voronoi diagram for 2-D

Euclidean space. We then discuss the network Voronoi diagram where the distance

between two objects in space is their shortest path in the network rather than their

Euclidean distance. These diagrams can be used for spatial networks. Okabe et al.

present a thorough discussion on regular and network Voronoi diagrams [35].

5.2.1.1 Definition

Consider a set containing a limited number of points, called Voronoi sites, in the

Euclidean plane. We associate all locations in the plane to their closest Voronoi sites.

 63

The set of locations assigned to each Voronoi site form a region called the Voronoi

region or Voronoi cell, of that Voronoi site. The set of Voronoi regions associated

with all the Voronoi sites is called the Voronoi diagram with respect to the Voronoi

sites set. The Voronoi regions of a Voronoi diagram are collectively exhaustive

because every location in the plane is associated with at least one Voronoi site. The

regions are mutually exclusive, although they share boundaries. The boundaries of the

regions, called Voronoi edges, are the set of locations that can be assigned to more

than one Voronoi site. The Voronoi regions that share the same edges are called

adjacent regions and their Voronoi sites are called adjacent Voronoi sites. The

Voronoi region and Voronoi diagram can be formally defined by the following:

Assume a set of Voronoi sites P = {p1,…,pn} ⊂R2,where 2 < n < ∞ and pi ≠ pj for i

≠ j; i, j∈In={1,…,n}. The region given by:

VP (pi) = {p |d (p, pi) ≤ d (p, pj)} for i ≠ j; i, j∈In, (5.1)

where d(p, pi) specifies the minimum distance between p and pi (e.g., length of the

straight line connecting p and pi in Euclidean space), is called the Voronoi Region

associated with pi. The set given by:

VD (P) = {VP (p1),…,VP (pn)}, (5.2)

is called the Voronoi Diagram generated by P. Figure 5.3 shows an example of a

Voronoi diagram, its regions and Voronoi sites.

Figure 5.3: An Example of a Voronoi diagram

The nearest neighbor search method proposed by Zhang et al [38], and many other

researchers, involves pre-computing Voronoi diagram to construct Voronoi cells for

each point of interest. Each Voronoi region is the validity region of the corresponding

 64

point of interest. Thus, if the query point remains in this region, its nearest neighbor

remains the same. The main problem of this method is that the Voronoi diagram is

constructed based on Euclidean distance. It cannot be applied to road networks in that

the shortest network distance (e.g., shortest path, shortest time) between objects (e.g.,

the vehicle and the restaurant) depends on the connectivity of the network rather than

the objects' locations.

.

5.2.1.2 Network Voronoi Diagram

A network Voronoi diagram is a specialization of Voronoi diagrams where the

location of objects is restricted to the links that connect the nodes of the network. The

distance between objects is defined as the length of the shortest link distance (e.g.,

shortest path or shortest time) instead of the Euclidean distance.

For a network Voronoi diagram, any node located in a Voronoi region has a shortest

path to its corresponding Voronoi site that is always less than that to any other

Voronoi site. In this way, the entire graph is partitioned into several subdivisions as

shown in Figure 5.4, where p1, p2 and p3 are the Voronoi sites. We can assume that

the set of Voronoi sites is the set of facilities (e.g., hotels, restaurants, etc.) and p4 to

p16 are the road network intersections that are connected to each other by the set of

streets, L.

P16

P1

P2

P4

P5

P6

P7

P8

P9

P11

P10

P12

P13

P14

P3

P15

Figure 5.4: A Network Voronoi diagram

For the network Voronoi diagram depicted in Figure 5.4, the network Voronoi edges

 65

usually intersect with the links in most cases. This means that a link may be divided

into two parts and placed into two adjacent Voronoi regions. Although this

partitioning is very precise, it is not necessary in vehicle navigation services since

vehicles are constrained by the road network, i.e., they cannot change direction until

they reach certain points such as U-turn points or intersections. Therefore, we are not

concerned with which Voronoi region a link belongs to, we just need to know the

Voronoi regions for the two nodes connected by the link. In real-world applications,

any location that lies on a road can be referred to by the location of the intersection

ahead for vehicles, or the nearest intersection for pedestrians. Hence, all locations in a

network are further restricted to the nodes and the construction of a network Voronoi

diagram is simplified as partitioning only the nodes, instead of the entire graph. For a

directed graph, there are two types of network Voronoi diagrams: inward and outward

Voronoi diagrams. This means that the Voronoi diagram is based on the shortest paths

which lead toward the Voronoi sites (inward) or come from the Voronoi sites

(outward). In this thesis, we concentrate on the inward Voronoi diagram for

accessibility analysis since we are only concerned with the movement toward a

facility.

5.2.2 The Network Voronoi Diagram Construction -- Parallel Dijkstra's

Algorithm

As described in [40], a variation of Dijkstra's algorithm, Parallel Dijkstra's algorithm,

was proposed to construct the network Voronoi diagram. The search starts from the

nodes which are closest to the Voronoi sites. These start nodes are initialized with

their Voronoi region label. Like Dijkstra's algorithm, all successors of these start

nodes are inserted into the priority queue, labeled by their start distance and Voronoi

region. The difference between the two algorithms is that the distance label for the

Parallel Dijkstra's algorithm is the start distance with respect to the different start

nodes. Similarly, for node u, if the distance label of u plus the cost of the out-edge (u,

 66

v) is less than the distance label for v, then the estimated distance for node v is updated

with this new value, even if the nodes u and v are expanded from different start nodes.

Thus there is no need to keep the original start node of v. The predecessor and Voronoi

region of v is updated in accordance with u. Since no destinations are specified for

these start nodes, the search terminates when the priority queue is empty.

Consequently, Parallel Dijkstra's algorithm derives a collection of one-to-some

shortest path trees for each node group respectively. This algorithm is called Parallel

Dijkstra's algorithm because the shortest path trees starting from each seed (i.e.,

Voronoi sites) grow simultaneously. Figure 5.5 demonstrates the growth of a network

Voronoi diagram constructed by Parallel Dijkstra's algorithm.

Figure 5.5: Parallel Dijkstra's Algorithm

By using the network Voronoi diagram, the road network is partitioned into several

contiguous subdivisions without overlapping or disjunction. Each subdivision can be

 67

regarded as a service area of its respective Voronoi site (e.g., hotels, hospitals, gas

stations etc.). In addition, the algorithm builds a shortest path tree for each Voronoi

site in the Voronoi diagram from which the shortest path from any node located in a

service area to its Voronoi site is derived. In this way, it is easy to determine the

nearest neighbor and associated path for any position in the transportation network.

5.3 Chapter Summary

In this chapter, a possible solution for the second query type is discussed. To find the

nearest facility, indexing technique and Voronoi diagram are the most popular

approaches. Indexing method use an index to filter the potential candidates and

compute the shortest path to each candidate online. In a dynamic transportation

environment where traffic conditions change over time, this approach has to search

for the nearest neighbor and constantly recalculate the optimal route. Therefore, it is

inefficient and may result in long latency time, especially for large number of clients.

Voronoi based methods solve the nearest neighbor problem by constructing a Voronoi

region for each facility. This Voronoi region works as a validity region or service area

for the mobile client. As long as the client remains within the validity region, the

nearest neighbor to the client is always the same. Because the nearest neighbor of the

clients located in a Voronoi region is the same, the Voronoi diagram has the potential

to provide batch services to many clients. However, most previous research has

focused on constructing Voronoi diagram based on Euclidian distance in a 2-D plane,

which is not feasible for transportation networks and is not capable of answering

closest facility queries. Even though some researchers adopted network distance to

construct Voronoi diagrams, see [40] and [41], their approaches can only be used in a

static environment. Therefore, there is a need to dynamically maintain the network

Voronoi diagram.

 68

Chapter 6: Dynamic Routing Algorithm for Unknown

Destination

To answer the en route query about the closest facility, both the best destination and

an associated optimal route need to be searched, based on network distance. If traffic

conditions change, the optimal route also needs to be adjusted to adapt to the dynamic

changes. Furthermore, the query result of the closest facility may vary over time due

to the mobility of the user and the change in traffic conditions. On the other hand, the

query result may vary over time even if the queries are submitted from the same

position.

Since the facilities used in my research are denoted by the Voronoi sites, the closest

facility is easily identified for any location by using a dynamic network Voronoi

diagram. To maintain the dynamic network Voronoi diagram and derive adaptive

shortest paths from the user's current location to the nearest facility, I combine the

Parallel Dijkstra's algorithm and RR approach as a novel algorithm, namely the

Incremental Parallel Dijkstra's algorithm (IP-Dijkstra for short). The proposed new

algorithm is my contribution from this research.

6.1 IP-Dijkstra's Algorithm Overview

Similar to Dijkstra's algorithm, IP-Dijkstra always expands the node in the priority

queue with the smallest key value, which is defined as: For node u,

 k (u) = Min (g (u), rhs (u)) (6.1)

The priority of a node in the priority queue is always the same as its key. We use the

heap-based implementation of a priority queue for IP-Dijkstra, i.e., we have available

the operations insert (u; h), which inserts the node u into the heap h by its key value

k(u), and pop(h), which removes the minimal element from h and return the element.

 69

In the first search, the behavior of IP-Dijkstra is almost the same as the Parallel

Dijkstra's algorithm. The only difference is that IP-Dijkstra labels the rhs-value for

each node. At the beginning, IP-Dijkstra inserts the start nodes into the priority queue,

which are the closest nodes from the Voronoi sites. Because their key values are all

zero, the order is not important. Once a node is popped up from the priority queue, it

is marked and deleted from the priority queue. Its successors are initialized as infinity

for both the g-value and rhs-value, and then inserted into the priority queue. The

search terminates once the priority queue is empty. Finally, all nodes of the graph

have been traversed and assigned to a Voronoi site. Note that we desire an inward

Voronoi diagram to ensure that the final shortest path leads from any node toward its

Voronoi site with the correct cost value to evaluate the accessibility. However, the

search is expanded from the Voronoi sites to the outer nodes; therefore we must adopt

the link-weight of the opposite direction for node expansion in the directed graph.

Then, for each node, one can trace back a shortest path to the corresponding Voronoi

site by starting at the node and always decreasing the start distance to its predecessor.

Thus, the shortest path based network Voronoi diagram is constructed.

The first search of IP-Dijkstra is illustrated in Figure 6.1. For simplicity, I assume

there are only two Voronoi sites, A and H, symbolized by a blue and a red circle

respectively. The left-upper graph gives the weight for each link. In the following

iterations, there is a bracket around each node which encloses two values denoting the

key value and the start distance (g-value) respectively. These are given a color in

accordance with their corresponding Voronoi sites. A single value in a bracket denotes

the g-value of the nodes which are locally consistent. The black square indicates the

node that is expanded in the current iteration.

Observing Figure 6.1, IP-Dijkstra starts from node A and H. In iteration #3, node B

holds the minimum key and is expanded first. Node E is then given a start distance of

6. In the next iteration, the start distance of node E is updated as 5 after node C is

 70

expanded. The shortest path between A and E now changes to {E, C, A}, instead of {E,

B, A}. In iteration #5, the expansion of node G causes the start distance of E to be

updated. The new start distance is further smaller than before, which has the

consequence of changing its corresponding Voronoi site to H. As a result, the new

shortest path is {H, G, E}. This update also occurs for node D in iteration #6. As a

result, the nodes, like D and E, help form the boundary of the Voronoi region.

A

B

C

D F

G

H
5

1

3 2

5

1

3

1

4

3

(4, ∞)

(0)

(0)(1, ∞)

E
2

4

A

B

C

D F

G

H

E
A

B

C

D F

G

H

E (2, ∞)
(3, ∞)

(0)

(1, ∞)

(2, ∞)

(4, ∞)

(0)

A

B

C

D F

G

H

E (3, ∞)
(0)

(1)

(2, ∞)

(6, ∞)

(6, ∞)

(4, ∞)

(0)

A

B

C

D F

G

H

E (3, ∞)
(0)

(1)

(2)

(6, ∞)

(5, ∞)

(4, ∞)

(0)

A

B

C

D F

G

H

E (3)
(0)

(1)

(2)

(6, ∞)

(4, ∞)

(4)

(0)

A

B

C

D F

G

H

E (3)
(0)

(1)

(2)

(5)

(4)

Iteration #1 Iteration #2 Links Weight

Iteration #4 Iteration #5 Iteration #3

Iteration #7 Final Network Voronoi DiagramIteration #6

(4)

(0)

A

B

C

D F

G

H

E (3)
(0)

(1)

(2)

(5, ∞)

(4, ∞)

(4)

(0)

A

B

C

D F

G

H

E
(3)

(0)

(1)

(2)

(5, ∞)

(4)

Figure 6.1 First Search of IP- Dijkstra

Since the network Voronoi diagram was constructed in the first search, it is easy to

identify which Voronoi site is the desired destination (i.e., the nearest facility) for any

location. We assume this Voronoi diagram is valid in time T1 and that a mobile client

located in node D submits a nearest neighbor query. Because H is the corresponding

Voronoi site for node D, the mobile client is navigated to H along the route {D, F, H}.

However, in a dynamic environment, the weight of any link may change arbitrarily.

For example, when the mobile client arrives at node F along the designated route

heading to H, the client is provided with current traffic conditions for time T2. The

new information indicates that there is a traffic jam in the link FH. As can be seen in

Figure 6.2, the traffic jam is represented as an increase of 3 in the weight of link FH.

 71

For this time interval, the original network Voronoi diagram and the optimal path may

no longer be valid and may need to be modified.

To adapt to this change, we first check the estimates (g, rhs) of the nodes around the

Link FH, which have the most potential to be affected by this change. Here, nodes F

and H are taken into account. In fact, node H is not affected by this change, but the

tentative start distance of node F does change (g(F) =7). Node F now becomes locally

inconsistent due to its g-value not being equal to its rhs-value. In iteration #1, the

rhs-value of node F is updated to 6 by searching its neighbors while its g-value is

assigned as infinity. In iteration #6, we expand node F and make it locally consistent

again. So far, the route to H has been modified from {F, H} to {F, G, H}. In this sense,

IP-Dijkstra is capable of continually providing en route navigation service during

travel in that it is able to deliver a new optimal route to mobile clients based on their

current location. In extreme circumstances, the new route may lead to a different

Voronoi site.

In iteration #3, node D is expanded and its start distance changes to 6, which comes

from node B. This causes the Voronoi site for node D to be changed to A. Due to this

change, if any other mobile clients submit queries from node D, they will be

navigated to A instead of H. This illustrates the main advantage of the IP-Dijkstra

algorithm. It can dynamically derive the accessibility region for each Voronoi site.

A

B

C

D F

G

H
5

1

3 2

5

1

3

1

7

3
E

2

4

Update Node Iteration #1 Link Weigh Changes

Iteration #3 Final Network Voronoi Diagram

Weight+=3

A

B

C

F

G

H

E (3)
(0)

(1)

(2)

(5)

(4)

(4, 7)

(0)

D

A

B

C
G

H

E (3)
(0)

(1)

(2)

(5)

(4)

(0)

D

A

B

C

F

G

H

E (3)
(0)

(1)

(2)

(6)

(4)

(6)

(0)

D

Iteration #2

A

B

C
G

H

E (3)
(0)

(1)

(2)

(7, ∞)

(4)

D (6) F

(4)
A

B

C

F

G

H

E (3)
(0)

(1)

(2)

(6) (6)

(0)

D

(0)

(6, ∞)F

 Figure 6.2 Second Search of IP- Dijkstra

 72

6.2 Details of the IP-Dijkstra's Algorithm

In previous sections, I have given some details on how the IP-Dijkstra algorithm

works. Now I will give some details about the algorithm pseudo-code. In the code

given below, Vor denotes the node sets that are closest to the Voronoi sites and are

used as start nodes, while V(u) denotes the respective Voronoi site of u. The following

functions are employed to manage the priority queue.

U.TopKey() - returns the smallest priority of all nodes in the priority queue U. (If

 U is empty, then U.TopKey() returns [∞ ; ∞].)

U.Pop() - deletes the node with the smallest priority in the priority queue U

 and returns the node.

U.Insert(s, k) - inserts node s into the priority queue U with priority k.

U.Remove(s) - removes node s from the priority queue U.

Procedure CalculateKey(s)

(01) return min(g(s), rhs(s));

Procedure Initialize()

(02) U = ∅;

(03) for all s∈S rhs(s) = g(s) = ∞ ;

(04) for all v∈Vor

(05) rhs(v) = 0;

(06) V(u)= NULL;

(07) U.Insert(v,0);

Procedure UpdateNode(u)

(08) if (u ∉ Vor) rhs(u) = Mins’∈pred(u)(g(s’) + w(s’, u));

(09) Update(V(u));

 73

(10) if (u ∈ U) U.Remove(u);

(11) if (g(u) ≠ rhs(u)) U.Insert(u, CalculateKey(u));

Procedure ComputeVoronoi()

(12) while (U.TopKey()≠∞) // while U is not empty

(13) u = U.Pop();

(14) if (g(u) > rhs(u))

(15) g(u) = rhs(u);

(16) for all s ∈ succ(u) UpdateNode(s);

(17) Else

(18) g(u) = ∞ ;

(19) for all s ∈ succ(u) ∪ {u} UpdateNode(s);

Procedure Main()

(20) Initialize();

(21) while(true)

(22) ComputeVoronoi();

(23) Detect the weight change in graph

(24) If any change occurs

(25) for all links (u, v) with changed link weights

(26) Update the link cost W(u, v);

(27) UpdateNode(v);

In this pseudo-code, the main function, Main(), first calls Initialize() {line 20} to set

the initial g-values of all nodes to infinity and their rhs-values according to Equation

3.4.1 {lines 03-05}. Thus, the initial start nodes are locally inconsistent and inserted

into the empty priority queue with a key {line 07}. Next, ComputeVoronoi() is called

{line 22}, which expands the nodes in the well-known manner until the heap is empty.

When updating a node's tentative start distance, g(v), where the update was caused by

 74

link (u,v), we additionally set V(v) = V(u) {line 09}. The IP-Dijkstra has now

constructed the network Voronoi diagram and derived the shortest path trees for all

nodes. After this, the algorithm waits for changes in link-weights. If some

link-weights have changed, the pseudo-code calls UpdateNode() {line 27} to update

the rhs-values and keys of the nodes that are potentially affected by the changed

link-weights as well as their membership in the priority queue if they become locally

consistent or inconsistent. It also updates the network Voronoi diagram, as well as any

associated shortest path trees, by calling ComputeVoronoi() {line 22}. This procedure

repeatedly expands locally inconsistent nodes in the order of their priorities.

A locally inconsistent node s is called locally overconsistent if, and only if, g(s) >

rhs(s). When ComputeVoronoi() expands a locally overconsistent node, it sets the

g-value of the node to its rhs-value, which makes the node locally consistent {line 15}.

A locally inconsistent node s is called locally underconsistent if, and only if, g(s) <

rhs(s). When ComputeVoronoi() expands a locally underconsistent node, it sets the

g-value of the node to infinity {line 18}. This makes the node either locally consistent

or overconsistent. If the expanded node was locally overconsistent, the change of its

g-value can affect the local consistency of its successors {line 16}. Similarly, if the

expanded node was locally underconsistent, it and its successors can be affected {line

19}.

The above discussion verifies that the IP-Dijkstra algorithm is able to efficiently

manage the nearest neighbor queries, especially for large number of mobile clients. Its

superiority lies in the fact that all nodes of the graph are dynamically labeled with

their corresponding Voronoi sites and need not involve another geo-computation to

determine their Voronoi regions. Whenever a query for the nearest facility is

submitted, it can be answered immediately based on the current network Voronoi

diagram. Another prominence of IP-Dijkstra is that the network Voronoi diagram and

associated shortest path trees are constructed together without additional

computational overhead.

 75

6.3 Experimental Studies

6.3.1 En Route Query Demonstration for Unknown Destination

In this type of query, the mobile client is trying to find the optimal route to the closest

facility without knowing the destination in advance, e.g., the closest shopping mall.

The 10 colored squares depicted in Figure 6.3 (a) and Figure 6.4 (a) stand for the

shopping malls.

We assume that the initial network Voronoi diagram for these two road maps are

constructed in time T1 as shown in Figure 6.3 (b) and Figure 6.4 (b), and the areas

with different colors stand for the respective service area for each mall. With these

service areas, one can evaluate the accessibility of the malls and find the closest mall

as well as the optimal route in real time. To examine the validity of our algorithm, the

simulated traffic conditions are updated in time T2 and T3. Based on the changing

traffic condition, IP-Dijkstra not only modifies the partition of the service areas, but

also adjusts the shortest path trees within each service area. In Figure 6.3 (c, d) and

Figure 6.4 (c, d), there are several circles that are used to identify where the service

areas have been modified compared with previous time slices. In addition, the shortest

path to the nearest mall has also been updated for each location. Observing the yellow

area in Figure 6.3 and the light brown area in Figure 6.4, assume the mobile client has

submitted a query at location B in time T1 and learned that the nearest mall is A. The

initial optimal route was derived as shown in Figure 6.3 (b) and Figure 6.4 (b). In time

T2, the mobile client arrived at location C and had to recalculate the optimal route due

to changing traffic conditions. The new optimal route is depicted in Figure 6.3 (c) and

Figure 6.4 (c). Similarly, the traffic condition changed again in time T3 when the

mobile client arrived at location D. Figure 6.3 (d) and Figure 6.4 (d) show the final

optimal path. Therefore, queries submitted at different time may give different

optimal solutions, including the best destination and the optimal route.

 76

 (a) Facilities Distribution (b) Service Area Partition in T1

 (c) Service Area Partition in T2 (d) Service Area Partition in T3

Figure 6.3: Closest Facility Query in Calgary

 (a) Facilities Distribution (b) Service Area Partition in T1

 77

 (c) Service Area Partition in T2 (d) Service Area Partition in T3
Figure 6.4: Closest Facility Query in Singapore

6.3.2 Experimental Results of IP-Dijkstra’s Algorithm

In my experiment, we first compare the performance of my new IP-Dijkstra’s

algorithm with the Parallel Dijkstra’s algorithm. That is, for each closest facility query

and path search, IP-Dijkstra can partially reuse previous search results, and Parallel

Dijkstra has to re-construct the network Voronoi diagram and derive the optimal route

from scratch. I also use my software to simulate a dynamic environment and make the

link-weights change with different proportions from 1% to 20%. In addition, I

perform 50 time trials with each proportion and get an average performance, which is

listed in Table 6.1 and Table 6.2. For comparison purposes, the number of nodes

expanded is taken as a benchmark to test the efficiency. The first search of IP-Dijkstra

is not involved because it is the same as Parallel Dijkstra.

Since Parallel Dijkstra is a static method, it has to construct the network Voronoi

diagram from scratch by expanding all nodes whenever the traffic condition changes.

Therefore, we only need to count the nodes expanded by IP-Dijkstra in each update.

Table 6.1 and Table 6.2 give the experimental results regarding the number of nodes

expanded by IP-Dijkstra in the Calgary and Singapore datasets respectively.

 78

Table 6.1: Nodes Expansion for Dynamic Update in Calgary Road Network

Links Change with Different Percentage Percentage

Dataset
1% 3% 7% 12% 20%

Facilities Qty Number of Nodes Expansion
 (Percentage of Nodes Expansion)

Shopping Malls 10 534
(6.4%)

1026
(12.3%)

1867
(22.4%)

2793
(33.5%)

4135
(49.6%)

Hotels 36 428
(5.1%)

837
(10.0%)

1454
(17.4%)

2287
(27.4%)

3192
(38.3%)

Restaurants 84 271
(3.2%)

539
(6.5%)

851
(10.2%)

1288
(15.4%)

2236
(26.8%)

Gas Stations 162 172
(2.1%)

365
(4.4%)

533
(6.4%)

815
(9.8%)

1314
(15.8%)

Table 6.2: Nodes Expansion for Dynamic Update in Singapore Road Network

Links Change with Different Percentage Percentage

Dataset
1% 3% 7% 12% 20%

Facilities Qty Number of Nodes Expansion
(Percentage of Nodes Expansion)

Shopping Malls 10 651
(9.4%)

1210
(17.5%)

2298
(33.2%)

3305
(47.8%)

5123
(74.1%)

Hotels 33 538
(7.8%)

1066
(15.4%)

1873
(27.1%)

2891
(41.8%)

4002
(57.9%)

Restaurants 79 316
(4.6%)

659
(9.5%)

1031
(14.9%)

1687
(24.4%)

2568
(37.1%)

Gas Stations 158 202
(2.9%)

435
(6.3%)

643
(9.3%)

1134
(16.4%)

1622
(23.5%)

As is evident from Table 6.1 and Table 6.2, we observe that IP-Dijkstra significantly

outperforms Parallel Dijkstra in node expansion as it visits fewer nodes than Parallel

Dijkstra, which has to search 100% of the nodes in each update. The experimental

result illustrates that the search performance can be improved by a factor of up to 50. I

can then state that IP-Dijkstra is able to efficiently adapt to changes in the

link-weights. Table 6.1 and Table 6.2 also show a disadvantage of IP-Dijkstra, that is,

it works perfectly only if the link-weights do not change significantly. If a large

 79

proportion of the link-weights have been changed, its performance will drastically

degrade. It means, in this case, that little previous information can be reused by

IP-Dijkstra, and our approach may lose its advantage. In extreme circumstances, the

algorithm may have to search from scratch similar to Parallel Dijkstra. The motivation

for developing a dynamic routing algorithm is to be able to handle the situation where

traffic conditions update frequently, but the change is not significant for each update,

which is the usual case for real-world scenarios. This precondition gives the basis for

most incremental approaches used to answer routing queries in real-time by reusing

previous search results. IP-Dijkstra is suitable for solving the dynamic routing

problem.

On the other hand, comparing the performance of IP-Dijkstra with different facility

datasets, we observe that IP-Dijkstra is more efficient for large datasets, such as the

gas station dataset in Table 6.1 and Table 6.2. The reason lies in the fact that a dataset

with a large number of facilities will also have a large number of service areas

(Voronoi cells). Thus, each service area will cover less area than those of a smaller

dataset and fewer nodes will be contained by each service area. In other words, the

average route length for all nodes leading to a corresponding facility will be fairly

short. As a result, if a node is affected by the change in link-weights and has been

updated, there are no too many successors of the node will be influenced accordingly.

In real life, the number of facilities of most categories tends to be large. Hence,

IP-Dijkstra is suitable for real-world applications.

Comparing the performance of IP-Dijkstra in the two maps, it is obvious that

IP-Dijkstra is more efficient in the Calgary map, as demonstrated in Figure 6.5, which

utilizes the gas station dataset to compare the performance in the different road

networks. This difference comes from the characteristics of the two networks in terms

of connectivity and topological structure. Let N and L denote the number of nodes and

links respectively. We can calculate L / N as a ratio for the two maps to identify their

link density. Since the number of links of the Calgary map is less than that of the

 80

Singapore map, with respect to the number of nodes, the road network of Calgary is

relatively simpler than that of Singapore, with low connectivity. It shows that the

performance of IP-Dijkstra can be affected by the density of links and their

connectivity. Nonetheless, Figure 6.5 shows that the performance difference is minor

between different road networks, especially for the cases where link-weights do not

significantly change. We can conclude that the incremental approach utilized in

IP-Dijkstra is universally effective.

0
200
400
600
800

1000
1200
1400
1600
1800

1% 3% 7% 12% 20%
Percentage of Link Weights Changed

N
um

be
r o

f N
od

es
 E

xp
an

si
on

Cal gar y
Si ngapor e

Figure 6.5: Nodes Expansion Comparison in two road maps

Next, we compare the performance of IP-Dijkstra with its competitor, which employs

an indexing approach to perform a nearest neighbor search. In general, the indexing

method involves two steps. First, it filters a small subset of a possibly large number of

objects as the candidates for the closest neighbors of a query point based on Euclidian

distances. Secondly, it requires a refinement step to compute the actual network

distances between a query point and the candidates to find the actual nearest neighbor.

The main disadvantage of the indexing approach is that it does not offer any solution

for how to efficiently compute the distances between a query point and the candidates.

It has to borrow algorithms from graph theory. For distance computations, the

indexing method either pre-computes the shortest path trees for all node pairs, or

 81

computes the shortest path online. Obviously, the first method will result in very large

storage overhead, although it can notably speed up the searching. The second method

involves several shortest path computations for all candidates and, thus, is not

efficient. We implement the index approach using R-tree for the filter step and the

pre-computation method for the refinement step in our experimental studies. In this

experiment, we perform 1000 queries using each facility dataset in the Calgary map

with a randomly selected query point, and then the sum of the running time is used as

a benchmark. Figure 6.6 gives the result of the performance comparison.

0
2
4
6
8

10
12
14
16
18
20

Shop
pin

g M
all

s
Hotel

s

Rest
au

ran
ts

Gas
Stat

ions

R
un

nu
ng

 T
im

e
of

 S
ea

rc
h

Indexing
Method
IP-Dijkstra

Figure 6.6: Running time for each dataset

From Figure 6.6, we learn that IP-Dijkstra does not need to visit any nodes to answer

queries, as all nodes have been labeled with their respective nearest facility once the

network Voronoi diagram is constructed or modified. To answer queries, one only has

to allocate the query point to its closest node in the road network, and the query can

then be answered immediately with information about the closest facility and optimal

route, which is obtained from that node. Therefore, its performance will not be

affected by different datasets when used to answer queries. In contrast, the index

approach has to visit many nodes due to the filter and refinement steps. Consequently,

it takes a longer time than IP-Dijkstra. Considering that the shortest path trees for all

node pairs have been pre-computed and they cannot be recomputed for each

 82

link-weight update, this approach can be only used in a static environment. Even

though the indexing approach computes the shortest path online in a dynamic

environment, it will perform poorly when it searches the shortest paths to different

targets in the refinement step, especially in the case where facilities are not densely

distributed in the network. It is then required to retrieve a large portion of the network

for distance computation. Alternatively, if only a few mobile clients submit queries,

this approach may be a better solution than IP-Dijkstra, as IP-Dijkstra involves

complex computations in its first search. Unfortunately, the computational cost of this

index approach will increase in proportion to the increase in the number of clients and

will result in long latency time. The efficiency of IP-Dijkstra has been discussed

above and its performance is not significantly affected by an increase in the number of

mobile clients. In addition, IP-Dijkstra has the potential to provide batch service for

groups of clients located in the same service area. The indexing approach cannot

compete with IP-Dijkstra in accommodating large number of mobile clients in a

dynamic environment.

6.4 Chapter Summary

In this chapter, I propose a novel routing algorithm, namely IP-Dijkstra's algorithm,

which integrates Parallel Dijkstra's algorithm and the RR algorithm to construct a

network Voronoi diagram and maintain it dynamically. In the network Voronoi

diagram, the Voronoi sites denote the facilities, such as hotels, hospitals, restaurants,

etc. Thus, each Voronoi region is the service area for each facility. The closest facility

for the clients located in a region is the same. From the standpoint of the mobile user,

this region also can be regarded as the validity region of that facility; the query results

for the closest facility should remain the same until the mobile user moves out of this

region. Moreover, IP-Dijkstra's algorithm builds a shortest path tree from each facility

to all nodes within a certain service area. Then, the shortest path heading to the

facility from any node is derived for each service area.

 83

Similar to what the RR algorithm does in LPA*, this incremental approach is used to

maintain the one-to-some shortest path trees. Changes in link-weights may affect the

tree structure for all trees. As a result, the boundary of each service area will also

changee. Queries submitted from the same position may give different answers for

each time interval, although the shortest path from any node to the closest facility is

updated. This implies that mobile clients can submit en route queries from any

position.

The experimental results demonstrate that IP-Dijkstra’s algorithm is superior to both

Parallel Dijkstra and the indexing approach in that Parallel Dijkstra cannot maintain a

dynamic network Voronoi diagram and the indexing approach has to compute the

shortest path online. Therefore, they are not as efficient.

 84

Chapter 7: Conclusion

7.1 Summary of the Improved LPA* Algorithm

In this research, I explore a novel approach based on the existing Lifelong Planning

A* algorithm (LPA*) to solve the dynamic shortest path problem in navigation where

the users have to recalculate the optimal route while traveling in a dynamic

environment. Most previous research does not provide an efficient approach for

dealing with the shortest path problem for a moving object.

LPA* deals with the dynamic shortest path problem, combining an incremental search

method and heuristic concept. Optimal solutions can be found to series of similar path

planning problems potentially faster than is possible by solving each path-planning

problem from scratch. LPA* reaches this goal by using information from previous

search results to speed up later searches. Originally, this algorithm is not capable of

solving our problem, in which both the start node and link costs always change over

time. My research extends this algorithm by reversing the search direction from the

goal to the source and by dynamically modifying the heuristic. In this way, LPA* can

be applied to this situation. The experimental result shows that, in most cases, it is

more efficient than A*.

In addition, I employ a constrained ellipse to further restrict the search so the

performance can be further improved. With the assistance of a constrained ellipse, the

improved LPA* can save up to 70~80% in computational costs as compared with A*,

which performs independent searches whenever the environment changes.

My proposed approach can be widely used in many areas, such as mobile robotics, in

which a robot moves to a set of goal coordinates in unknown terrain. In this case, the

robot has to detect any obstacles and recalculate its optimal route before moving to its

next position. In future research, I will extend my approach into other application

 85

areas and investigate its suitability.

7.2 Summary of IP-Dijkstra Algorithm

In this research, I proposed a novel approach, IP-Dijkstra, based on the existing

Parallel Dijkstra’s algorithm and RR approach to solve the dynamic routing problem

in navigation where the users have to query the best destination and recalculate the

optimal route while traveling in a dynamic environment. Most previous research does

not provide an efficient solution to deal with the dynamic routing problem for mobile

clients. Nor do they provide a scaleable solution for large numbers of users.

IP-Dijkstra handles the dynamic routing problem by pre-computing the shortest

path-based network Voronoi diagram to partition the road network into a set of service

areas with respect to the location of facilities, and adjusting the service areas with

current traffic conditions. To efficiently construct and maintain the dynamic service

areas, I combine a parallel search algorithm and an incremental approach as a hybrid

solution to fulfill these requirements. This algorithm can find optimal solutions to

series of similar nearest neighbor queries and path planning problems potentially

faster than is possible by solving each routing problem from scratch. It reaches this

goal by using information from previous search results to speed up later searches.

The experimental result shows that, in most cases, the algorithm can work more

efficiently than either Parallel Dijkstra’s algorithm or the indexing approach.

Compared with static methods, IP-Dijkstra is 3 to 50 times faster than Parallel

Dijkstra if less than 10% of the link-weights change. The experimental results also

demonstrate that, although the performance of IP-Dijkstra may vary slightly in

different networks depending on the connectivity and topological structure, this will

not affect its superiority with respect to a static algorithm. The comparison between

IP-Dijkstra and the indexing approach shows that, no matter how the indexing

approach manages the shortest paths computation, IP-Dijkstra is always superior,

 86

especially in dealing with large number of queries.

Finally, the success of this research satisfies the urgent need in the navigation service

area for a search algorithm that can efficiently adapt to the dynamic traffic

environment. In future research, I hope to extend this approach to solve the K-nearest

neighbor problem by utilizing the properties of Voronoi diagram and heuristic

searching algorithms. In this way, the mobile clients may have more than one choice

as the best destination.

 87

References

[1] Husdal, J. (2000). Fastest Path Problems in Dynamic Transportation Networks,

 http://www.husdal.com/mscgis/research.htm, last accessed November 22,

2005.

[2] Vonderohe, A. P., Travis, L., Smith, R. L. and Tasai, V. (1993). NCHRP Report

 359, Adoption of Geographic Information System for Transportation,

 Transport Research Board, National Research Council, Washington, DC.

[3] OpenGIS - A Request for Technology - In Support of an Open Location Services

 (OpenLSTM) Testbed, 2000.

[4] Skiena, S. (1990). Implementing Discrete Mathematics: Combinatorics and Graph

 Theory with Mathematica. Reading, MA: Addison-Wesley, page. 135-136.

[5] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs.

 Numerische Mathematik 1, page. 269-271.

[6] Hart, P. E., Nilsson, N. J., Raphael, B. (1972). Correction to "A Formal Basis for

 the Heuristic Determination of Minimum Cost Paths", SIGART Newsletter,

 37, page. 28-29.

[7] Cooke, K. L. and Halsey, E. (1966). "The Shortest Route Through a Network

 with Time-Dependent Inter-nodal Transit Times", Journal of Mathematical

 Analysis and Applications 14, page. 493-498.

[8] Bellman, R. (1958). "On a routing problem", Quarterly of Applied Mathematics

 16, page. 87-90.

[9] Hall, R. W. (1986). "The Fastest Path through a Network with Random

 Time-Dependent Travel Times", Transportation Science 20, page. 182-188.

[10] Frank, H. (1969). “Shortest Paths in Probabilistic Graph”, Operations Research,

 17(4), page. 583-599.

[11] Ramalingam, G. and Reps, T. (1996), "On the computational complexity of

 dynamic graph problems", Theoretical Computer Science 158 (1–2), page.

 233–277.

[12] Frigioni, D., Marchetti-Spaccamela, A., Nanni, U. (1998). "Semidynamic

 88

 algorithms for maintaining single source shortest path trees", Algorithmica

 22 (3), page. 250–274.

[13] Ramalingam, G. and Reps, T. (1996). "An incremental algorithm for a

 generalization of the shortest-path problem", Journal of Algorithms 21, page.

 267–305.

[14] Buriol, L.S., Resende, M.G.C., Ribeiro, C.C., Thorup, M. (2003). A hybrid

 genetic algorithm for the weight setting problem in ospf/is-is routing.

 Networks, under review.

[15] Fortz, B. and Thorup, M. (2000). Increasing internet capacity using local search,

 Technical report, AT&T Labs, Research, 180 Park Avenue, Florham Park,

 NJ 07932 USA.

[16] Frigioni, D., Marchetti-Spaccamela, A., Nanni, U. (1998). Semi-dynamic

 algorithms for maintaining singlesource shortest path trees. Algorithmica,

 22(3), page. 250–274.

[17] Terrovitis, M., Bakiras, S., Papadias, D., Mouratidis, K. (2005). "Constrained

 Shortest Path Computation", SSTD 2005, LNCS 3633, page. 181–199.

[18] Ausiello, G., Italiano, G., Marchetti-Spaccamela, A., Nanni, U. (1991).

 "Incremental algorithms for minimal length paths", Journal of Algorithms 12

 (4), page. 615–638.

[19] Even, S. and Shiloach, Y. (1981). "An on-line edge deletion problem", Journal of

 the ACM 28 (1).

[20] Feuerstein, E. and Marchetti-Spaccamela, A. (1993). "Dynamic algorithms for

 shortest paths in planar graphs", Theoretical Computer Science 116 (2), page.

 359–371.

[21] Franciosa, P, Frigioni, D., Giaccio, R. (2001). "Semi-dynamic breadth-first

 search in digraphs", Theoretical Computer Science 250 (1–2), page.

201–217.

[22] Frigioni, D., Marchetti-Spaccamela, A., Nanni, U. (1996). "Fully dynamic output

 bounded single source shortest path problem", in: Proceedings of the

 Symposium on Discrete Algorithms, page. 212–221.

 89

[23] Goto, S. and Sangiovanni-Vincentelli,A. (1978). "A new shortest path updating

 algorithm", Networks 8 (4), page. 341–372.

[24] Italiano, G. (1988). "Finding paths and deleting edges in directed acyclic graphs",

 Information Processing Letters 28 (1), page. 5–11.

[25] Klein, P. and Subramanian, S. (1993). "Fully dynamic approximation schemes

 for shortest path problems in planar graphs", in: Proceedings of the

 International Workshop on Algorithms and Data Structures, page. 443–451.

[26] Lin, C. and Chang, R. (1990). "On the dynamic shortest path problem", Journal

 of Information Processing, 13 (4), page. 470–476.

[27] Rohnert, H. (1985), "A dynamization of the all pairs least cost path problem", in:

 Proceedings of the Symposium on Theoretical Aspects of Computer Science,

 page. 279–286.

[28] Spira, P. and Pan, A. (1975). "On finding and updating spanning trees and

 shortest paths", SIAM Journal on Computing 4, page. 375–380.

[29] Demetrescu, C., Frigioni, D., Marchetti-Spaccamela, A., Nanni, U. (2000).

 Maintaining shortest paths in digraphs with arbitrary arc weights: An

 experimental study. Algorithm Engineering, page. 218–229.

[30] Even, S. and Shiloach, Y. An On-Line Edge-Deletion Problem, Journal of the

 ACM (JACM), v.28 n.1, p.1-4, Jan. 1981

[31] Demetrescu, C. (2001). Fully Dynamic Algorithms for Path Problems on

 Directed Graphs. PhD thesis, Department, of Computer and Systems Science,

 University of Rome “La Sapienza”.

[32] Frigioni, D., Marchetti-Spaccamela, A., Nanni, U. (1996). Fully dynamic output

 bounded single source shortest path problem. Proceedings of the 7th annual

 ACM-SIAM Symposium on Discrete Algorithms (SODA), page. 212–221.

[33] Frigioni, D., Ioffreda, M., Nanni, U., Pasqualone, G. (1998). Experimental

 analysis of dynamic algorithms for the single source shortest path problem.

 ACM J. of Exp. Alg., 3, article 5.

[34] Ramalingam, G. and Reps, T. (1996). On the computational complexity of

 dynamic graph problems. Theoretical Computer Science, 158, page.

 90

233–277.

[35] Okabe, A., Boots, B., Sugihara, K., Chiu, S.N. (2000). "Spatial Tessellations,

 Concepts and Applications of Voronoi Diagrams", John Wiley and Sons Ltd.,

 2nd edition.

[36] Roussopoulos, N., Kelly, S., Vincent, F. (1995). Nearest Neighbor Queries.

 SIGMOD.

[37] Samet, H. and Hjaltason, G. (1999). Distance Browsing in Spatial Databases.

 ACM TODS.

[38] Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D. (2003). Location-based spatial

 queries,. SIGMOD.

[39] Preparata, F.P. and Shamos, M.I. (1985). "Computational geometry",

 Springer-Verlag, Berlin.

[40]. Erwig, M. (2000). "The Graph Voronoi Diagram with Applications", Networks,

 Vol 36, No. 3, page. 156-163.

[41] Kolahdouzan, M. and Shahabi, C. (2004). "Voronoi-Based K Nearest Neighbor

 Search for Spatial Network Databases", Proceedings of the 30th VLDB

 Conference, Toronto, Canada.

[42] Preygel, A. (1999). "Pathfinding: A Comparison of Algorithms", Magnet Science

 page 3.

[43] Chabini, I. (1997). "A new algorithm for shortest paths in discrete dynamic

 networks", as presented at the 8th IFAC/IFIP/IFORS Symposium on

 transportation systems, Technical University of Crete, Greece, 16-18 June.

[44] Cooke, K.L. and Hasley, E. (1966). "The shortest route through a network with

 time-dependent intermodal transit times", Journal of Mathematical Analysis

 and Applications, vol. 14, page. 493-498.

[45] Dreyfus, S.E. (1979). "An appraisal of some shortest path algorithms",

 Operations Research, vol. 17, page. 395-412.

[46] Koenig, S., Likhachev, M., Furcy, D. (2004). "Lifelong Planning A*", Artificial

 Intelligence Journal, 155, (1-2), page. 93-146.

[47] Koenig, S. and Likhachev, M. (2002). "Incremental A*", In Advances in Neural

 91

 Information Processing Systems (NIPS).

[48] Djidjev, H., Pantziou, G., Zaroliagis, C. (2000). "Improved Algorithms for

 Dynamic Shortest Paths", Algorithmica, Vol. 28, No 4, page. 367-389.

[49] Adusei, I.D., Kyamakya, K., Erbas, F. (2004). "Location-based services-

 advances and challenges", In Proceeding Of the ITCC 2004 Mobile

 Enterprises : Enabling Applications/Enabling, USA.

[50] Buriol, L.S., Resende, M.G.C., Thorup, M. (2003). "Speeding up dynamic

 shortest path Algorithms", AT&T Labs Research Technical Report

 TD-5RJ8B.

[51] Frigioni, D., Marchetti-Spaccamela, A., Nanni, U. (2000). "Fully dynamic

 algorithms for maintaining shortest paths trees", Journal of Algorithms, 34

 (2), page. 251–281.

[52] Gupta, P., Jain, N., Sikdar, P.K., Kumar, K. (2003). Geographical Information

 Systems in Transportation Planning, Map Asia Conference.

[53] Singh, A. K., Sikdar, P. K., Dhingra, S. L. (1999). Geographic Information

 System: Information Technology for Planning and Management of Transport

 Infrastructure in the Next Millennium, 59th Annual Session of the Indian

 Roads Congress, Hyderabad, 31st January to 3rd February.

[54] Zwick, U. (2001). Exact and approximate distances in graphs - a survey. In

 Proc. ESA 2001, vol. 2161 of Lecture Notes in Computer Science, page.

 33-48.

[55] Pearl, J. (1984). Heuristics: Intelligent Search Strategies for Computer

 Problem Solving. Addison-Wesley. p. 48

	UCGE Reports
	Number 20238
	Department of Geomatics Engineering
	
	Qiang Wu
	January 2006

	Chapter 1: Introduction
	1.1 Dynamic Traffic Routing
	1.2 The Role of GIS and Location Based Service
	1.3 The Architecture of Navigation Service
	1.4 Typical Routing Queries
	1.5 Motivation of the Research
	1.6 Outline of this Thesis

	Chapter 2: Transportation Network Analysis
	2.1 Background of Graph Theory
	2.2 Network Data Models
	2.2.1 Incidence Matrix
	2.2.2 Adjacency Matrix
	2.2.3 Adjacency List
	2.2.4 Transportation Network Data Model

	2.3 Chapter Summary

	Chapter 3: Shortest Path Problem
	3.1 The Classification of the Shortest Path (SP) Problem
	3.2 Analysis of the Searching Strategy
	3.2.1 Breadth-First Search
	3.2.2 Depth-First Search
	3.2.3 Best-First Search

	3.3 Classical Shortest Path Algorithms for Static Networks
	3.3.1 Dijkstra’s Algorithm
	3.3.2 A* algorithm
	3.3.3 Comparison of Algorithms Based on Time Complexity

	3.4 Dynamic Traffic Routing
	3.4.1 Dynamic Transportation Network Scenario
	3.4.2 Related Research for Dynamic Traffic Routing
	3.4.3 Incremental Approach – RR Algorithm

	3.5 Chapter Summary

	Chapter 4: Dynamic Routing Algorithm to Known Destination
	4.1 LPA* Algorithm
	4.2 Improved LPA* Algorithm
	4.2.1 Extend LPA* with Changing Starting Point
	4.2.2 Constrained Shortest Path Search

	4.3 Software Implementation
	4.3.1 Development of an Interactive Environment
	4.3.2 C++ Class Implementation
	4.3.3 Priority Queue and Binary Heap
	4.3.3.1 Priority Queue
	4.3.3.2 Binary Heap

	4.4 Experimental Studies
	4.4.1 Experimental Dataset
	4.4.2 Demonstration of En Route Queries for Known Destination
	4.4.3 Experimental Results for the Improved LPA* Algorithm

	4.5 Chapter Summary

	Chapter 5: Nearest Neighbor Problem
	5.1 Indexing Approach
	5.1.1 Background Knowledge on the Spatial Index
	5.1.2 Nearest Neighbor Search Using Indexing Approach

	5.2 Voronoi Diagram Approach
	5.2.1 Fundamental Knowledge of Voronoi Diagram
	5.2.1.1 Definition
	5.2.1.2 Network Voronoi Diagram

	5.2.2 The Network Voronoi Diagram Construction -- Parallel Dijkstra's Algorithm

	5.3 Chapter Summary

	Chapter 6: Dynamic Routing Algorithm for Unknown Destination
	6.1 IP-Dijkstra's Algorithm Overview
	6.2 Details of the IP-Dijkstra's Algorithm
	6.3 Experimental Studies
	6.3.1 En Route Query Demonstration for Unknown Destination
	6.3.2 Experimental Results of IP-Dijkstra’s Algorithm

	6.4 Chapter Summary

	Chapter 7: Conclusion
	7.1 Summary of the Improved LPA* Algorithm
	7.2 Summary of IP-Dijkstra Algorithm

	 References
	

