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Abstract 

To ensure the preservation of grizzly bears in Alberta, the effect of environmental change 

on grizzly bear health must be understood. This thesis investigated the relationship 

between grizzly bear health and environment using regression models with a focus on 

modelling spatial dependence. Ordinary least squares (OLS) regression models tend to 

misestimate the variance of estimated parameters in the presence of spatial dependence. 

This can lead to faulty inferences. 

A variety of spatial neighbourhoods were created to detect spatial dependence in 

OLS regression models and to develop spatial autoregressive models as an alternative.   It 

was found that significant negative spatial dependence was present in the grizzly bear 

data and caused the variance of parameters to be overestimated in OLS models.  The use 

of spatial autoregressive models improved the fit of the models and increased the 

significance of the parameter estimates.  Those spatial neighbourhoods that grouped 

together known grizzly bear population groups were best able to detect spatial 

dependence. 
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Chapter One: Introduction  

1.1 Background 

If grizzly bears (Ursus arctos) are to prosper in the Alberta Rockies and foothills a 

thorough understanding of the effects of human activities on grizzly bears must be 

acquired. Only then can this multi-use landscape be managed to balance the needs of both 

humans and grizzlies.  This study hopes to contribute to this goal through an investigation 

of the relationship between grizzly bear health and environment, with a particular focus 

on modelling spatial dependence to improve the reliability of inferences from regression 

models. In the process, interesting behavioural, ecological and environmental processes 

may also be identified for further exploration. 

The protection of grizzly bears habitat is beneficial for the preservation of a great 

diversity of species. Although grizzly bears have the basic physiology common to all 

carnivores, they are omnivorous and eat a large volume of vegetative material (Schwartz 

et al., 2003).  They have often been considered an umbrella species due to their use of 

diverse habitat types to meet their dietary needs and large land-space requirements, thus 

the protection of grizzly bear habitat ensures that many other species are protected at the 

same time (Paquet & Hackman, 1995; Ross, 2002). Also, due to grizzly bear sensitivity 

to habitat disturbance and population perturbations, their presence is can indicator of 

ecosystem integrity (Ross, 2002; Stenhouse & Munro, 2000).  

Grizzly bears originally occupied most of western North America, but were 

extirpated from the south-western United States following the arrival and settlement of 

Europeans. This dramatic reduction in the grizzly bear range and overall population size 

was caused by the transformation of their natural habitat for human purposes and the 
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deliberate extermination of grizzlies (Brown, 1985; Mattson & Merrill, 2002; McLellan, 

1998; Storer & Trevis, 1955).  Nevertheless, grizzly bears have been able to survive in 

areas generally unfavourable to humans, primarily in the remote and mountainous regions 

of Alaska, Montana (USA) and western Canada. The Rocky Mountains and foothills of 

Alberta (CA) and Montana now form the eastern and southern fringe of the bears’ range 

(Mattson & Merrill, 2002; McLellan, 1998). The large-scale reduction of grizzly bear 

range can be seen in Figure 1-1, which shows the post-glacial (approximately 10,000 to 

13,000 years ago), historical (pre-European settlement) and current distribution of grizzly 

bears in North America.   

 

Figure 1-1. Shrinking distribution of the grizzly bear range during post-glacial, 
historic and present time (Adapted from Schwartz et al., 2003) 
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In contrast to carnivores such as the cougar and wolf, grizzly bears have a low 

resilience when confronted with anthropogenic disturbance. This is attributed mainly to 

the fact that grizzlies require high quality food in spring after den emergence and in fall 

before hibernation, and have low reproductive and dispersal rates (Weaver, Paquet, & 

Ruggiero, 1996). Grizzly bear populations have been predicted to continue to decline in 

Canada due to their inherent sensitivity to human disturbance (Ross, 2002). They are 

particularly vulnerable at the edge of their range and in the harsh environment of the 

Arctic (Ross, 2002). For these reasons grizzlies are listed as a species of Special Concern 

according to COSEWIC (Committee on the Status of Endangered Wildlife in Canada) 

(Government of Canada, 2002; 2009).   

The grizzly bear population of Alberta is small and occurs at the edges of the 

grizzly bear range making these bears particularly vulnerable to local extinction or range 

contraction (Mace et al., 2008; Proctor et al., 2004; Ross, 2002). The most recent 

population estimates indicate that as few as 580 grizzly bears remain in the area south of 

Grand Prairie, excluding most of the national parks (Government of Alberta, 2009).  

According to the World Conservation Union criteria for red listing taxon, a population 

with fewer than 2,500 mature individuals can be categorized as endangered. A population 

can be listed as critically endangered if fewer than 250 mature individuals remain in the 

wild (IUCN Standards and Petitions Subcommittee, 2010). A mature adult is defined as 

an individual capable of reproduction and excludes those living in areas of such low 

density that acquisition of a mate is precluded.  Furthermore, the Alberta and BC grizzlies 

are under increased stress as populations have been fragmented by the Trans-Canada 

Highway (Highway 1) and Highway 3, which pass through Banff National Park and 
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Crowsnest Pass respectively. These highways effectively reduce genetic flow between 

sub-populations (Ross, 2002).   

Human disturbance and alteration of the natural environment can cause long-term 

stress in wildlife (Moberg & Mench, 2000), compromise their resilience, and eventually 

contribute to their decline (Paquet & Hackman, 1995; Weaver et al., 1996). Also, the 

reduction in availability of good quality food through habitat fragmentation and 

transformation can also lead to reduced body size, reproductive rates and ultimately 

population size (Schwartz et al., 2003, p. 556).   

 Alberta has also experienced rapid human population 

growth, with the population doubling in size since the 1970’s (Statistics Canada, 2009). 

This demographic trend has naturally been accompanied by a similar expansion in 

residential, industrial, agricultural, and recreational areas (Linke et al., 2008; McDermid 

et al., 2009; McLellan, 1998), which fragment, transform, and reduce the quality of 

grizzly bear habitats, as well as displace bears and increase human-caused mortalities 

(Benn & Herrero, 2002; McLellan, 1998). As a result of these threats, the Government of 

Alberta listed the Alberta grizzly bear population as Threatened under the Wildlife Act in 

2010 (The Calgary Herald, 2010).   

The long-term effect of environmental change on grizzly bear health in Alberta is 

being studied by the Foothills Research Institute Grizzly Bear Program (FRI). The FRI 

has a holistic conception of health and considers it to be the level of biological 

functioning with respect to stress, growth, reproduction, immunity, and movement (Cattet 

et al., 2007).  The study of grizzly bear health is an important component necessary to 

fulfil the FRI’s overarching goal to ensure the long-term survival of grizzlies in Alberta 
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through the provision of scientific knowledge and planning tools to resource managers 

(Stenhouse & Munro, 2000).     

Numerous datasets have been collected by the FRI to achieve this goal. These 

include various environmental maps produced from satellite imagery, detailed grizzly 

bear movement data acquired from GPS collars attached to grizzly bears, and various 

serum-based, physical and physiological measurements of individual bears.  The GPS 

data in particular can be used to identify the home ranges of individual bears.  

Natural resources and anthropogenic disturbance within home ranges can be 

quantified using environmental maps. Finally, serum-based, physical and physiological 

measurements can provide indicators for stress, growth, immunity, and overall health for 

individual bears (Cattet et al., 2007).  Altogether, these data can be used to develop 

models relating grizzly bear health to environmental conditions.   

This thesis looks at the development of multivariate regression models relating 

grizzly bear health and environment, with a particular focus on the use of spatial data and 

dependence in regression modelling. This is discussed further in the problem statement in 

section 1.2. 

 

1.2 Problem Statement 

Multivariate regression modelling is a commonly used technique to explore the 

relationship between a single dependent variable and several explanatory variables. This 

technique will be used to examine the relationship between grizzly bear health and 

environmental variables. However, the analysis of phenomenon and features distributed 
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over geographic space can present particular challenges and issues.  According to 

Griffith (1996): 

“Spatial statistics differs from classical statistics in that the 
observations analyzed are not independent; this single 
assumption violation is the crux of the difference.”  

The problem of non-independent data presents problems for many conventional 

statistical approaches such as ordinary least squares regression modelling. It is likely that 

spatial dependence exists in the grizzly bear datasets as is shown in Figure 1-2. The 

grizzly bear home ranges (black polygons) within the FRI study area appear highly 

clustered and overlapping. It is therefore possible to hypothesize that the environmental 

characteristics of these home ranges are spatially autocorrelated. If the environment does 

indeed have a significant effect on grizzly bear health, it is further hypothesized that 

grizzly bear health should be similar for bears occupying habitats close to one other. 

 

Figure 1-2. Overlapping home ranges 
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1.2.1 The nature of spatial data 

Tobler’s First Law of Geography (1970) states that, “Everything is related to everything 

else, but near things are more related than distant things.”  The occurrence of similar 

attribute values at nearby locations is also known as positive spatial dependence (Anselin 

& Bera, 1998). Negative spatial dependence may also occur in spatial data. This is the 

occurrence of dissimilar values in locations close to each other (Fortin & Dale, 2005).  

 Spatial dependence is an inherent characteristic of spatial phenomenon that arises 

from the continuity of space and the operation of spatial processes (Haining, 2003). 

Spatial dependence can also be induced in spatial data by the spatial sampling framework 

(shape, size, and extent of measurement units) chosen to observe reality. This occurs 

when the spatial sampling framework does not correspond to the scale, extent and/or 

orientation of underlying processes (Messner & Anselin, 2004).   

Consequently, the mean and standard deviation are no longer sufficient summary 

statistics in a spatially dependent geo-referenced sample, and additional statistics are 

required to characterise the geographic arrangement of observations, as well as the nature 

and degree of spatial dependence among them (Griffith, 1996).  

Positive spatial dependence effectively reduces the number of independent 

samples which can cause the variance of parameters calculated from the sample to be 

underestimated (Anselin & Bera, 1998; Haining, 2003; Schabenberger & Gotway, 2005).  

Conversely, in the presence of negative spatial dependence, parameter variances can be 

overestimated (Schabenberger & Gotway, 2005).  Significantly, it has been demonstrated 

in several studies that the variance of regression model coefficients estimated using 

ordinary least squares (OLS) can be substantially affected by the presence of spatial 
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dependence in the data, often leading to faulty inferences based on the significance of 

explanatory variables within the model (Anselin & Bera, 1998; Cliff & Ord, 1981; Cordy 

& Griffith, 1993; Griffith, 1996; Loftin & Ward, 1983).   This is caused by the violation 

of the OLS assumption of identically and independently distributed errors (Cliff & Ord, 

1981). 

To improve the reliability of parameter estimates and inferences, it is necessary to 

model the nature and degree of spatial dependence among observations. This can be 

achieved using a spatial weight matrix, wherein each row-column element represents the 

weight, i.e., covariance, between a pair of observations.  These weights are a function of 

the relationship between observations, and can be determined using a data-driven 

(empirical), or model-driven (theory/substantive) approach (Anselin, 1990).  For 

example, spatial weights can be a function of the distance between observations or the 

proportion of shared boundary in the case of aerial units (Anselin, 1984).  The 

formulation of the spatial weight matrix is the most important step in detecting spatial 

dependence (Odland, 1988).  

The spatial weight matrix can be incorporated into multivariate regression 

models, known as spatial autoregressive models, to improve the variance estimates of 

explanatory variables (Cliff & Ord, 1981; Haining, 2003).  However, the inaccurate 

specification of the weight matrix, i.e., which observations are spatially dependent and to 

what degree, can also influence the variance of regression estimates and cause bias in 

parameter estimates (Stetzer, 1982). Specification of the weight matrix can be 

problematic as there are many possible ways to define the spatial weights, especially 

when little substantive knowledge or theory is available to guide selection.  For these 
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reasons Griffith (1996) and Stetzer (1982) recommend that close attention be given to 

the specification of the spatial weights matrix in quantitative geographic research.   

 

1.3 Research Objectives 

Due to the proximity and overlap of grizzly bear home ranges as shown in Figure 1-2, it 

is hypothesized that spatial dependence exists in the FRI grizzly bear data, specifically 

the explanatory environmental variables, and possibly the dependent health variable. If 

the hypothesis is true, the residuals of an OLS regression model of grizzly bear health and 

environmental variables may be spatially dependent, thus violating a key assumption of 

identically and independently distributed errors, and thereby biasing the variances of the 

estimated coefficient parameters. If this is the case, it is necessary to develop spatial 

autoregressive models which incorporate a spatial weights matrix to improve estimates 

and inferences drawn from the multivariate regression model. The importance of 

accurately specifying the spatial weights matrix before developing a spatial 

autoregressive models has already been outlined in Section 1.2.1.  Considering the large 

number of possible spatial weight matrices that can be defined, and the sensitivity of 

spatial autoregressive models to the spatial weights matrix, the exploration and testing of 

a variety of spatial weight matrices is necessary.   

 

1.3.1 Objectives and tasks 

The primary objectives of this research are therefore to define a variety of spatial weight 

matrices, and evaluate these in terms of their ability to characterize spatial dependence 
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and improve model inferences, as well as their suitability in the context of this study. 

The specific objectives are to: 

1. Test the hypothesis of spatial dependence in the health variable of interest; 

2. Explore the relationship between the health variable and the environment through 

OLS regression models; 

3. Test the hypothesis of spatial dependence in the residuals of OLS health-

environment regression models; 

4. Develop spatial autoregressive models if necessary and evaluate these in 

comparison to OLS regression models; 

5. Evaluate the ability of different spatial weight matrices to capture spatial 

dependence in the data; and 

6. Demonstrate the significance of considering spatial dependence when developing 

grizzly bear health-environment regression models using spatial data. 

The specific tasks that must be conducted to meet these objectives are summarized 

below: 

1. Delineate the grizzly bear home range. The core home range will be used as the 

unit of analysis for this study. 

2. Define various spatial weight matrices for quantifying spatial dependence. 

3. Select an appropriate health variable for study. 

4. Develop a set of non-spatial health-environment regression models using OLS 

estimation. 

5. Test the residuals of the above OLS models for spatial dependence using the 

spatial weight matrices developed as part of this thesis. 



 

 

11 

6. If spatial dependence is found in the residuals, develop spatial autoregressive 

models and evaluate the effect of different spatial weight matrices on the 

estimation of parameters and overall fit, particularly in comparison to the OLS 

regression models. 

7. Determine which spatial weight matrices best characterize the spatial dependence 

which may be present in the data. 

 

1.4 Significance of research 

This research hopes to demonstrate that the presence of spatial dependence should be 

considered when developing regression models relating grizzly bear health to 

environmental variables in the Alberta Rocky Mountains and foothills.  If spatial 

dependence is not considered inferences about the significance of explanatory variables 

based on the estimated parameter variances could be mistaken. It is possible that incorrect 

explanatory variables would be identified as significant for grizzly bear health or vice 

versa.  If the aim is to improve our understanding of which variables affect grizzly bear 

health so that this multi-use landscape is managed to conserve grizzlies in the long-term, 

it is essential that important variables are correctly identified.  

It is also hoped that appropriate spatial weight matrices will be determined for 

quantifying spatial dependence in the data so that FRI researchers will have a good basis 

for selecting spatial weight matrices for further studies. 

Finally, if interesting spatial patterns are detected, these could provide the basis of 

future research into the ecological and environmental spatial processes that may be their 

cause. 
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To the best of the author’s knowledge modelling spatial dependence in 

regression models of grizzly bear health has not been conducted as part of any FRI 

project or any other grizzly bear studies in North America at this stage. 

 

1.5 Organisation of Thesis 

This chapter has provided the contextual background of grizzly bear status and 

conservation in Alberta that is necessary for understanding the significance of this 

research. The specific research problem of spatial dependence in the FRI data has also 

been described, and the objectives of this research have been defined. 

Chapter two examines two common home range estimation algorithms and their 

strengths and weaknesses in different contexts. 

Chapter three presents a comprehensive treatment of the occurrence of spatial 

dependence in spatial data. This section describes the formulation of various spatial 

weights and explains how to proceed in testing spatial data for spatial dependence. 

Finally, various means of incorporating spatial weight matrices into regression models 

are presented. 

Chapter four details the study area and data used for this study, as well as the 

research methodology. This section includes home range estimation, spatial 

neighbourhood development, and the creation of linear and autoregressive models. 

Chapter five presents the results and offers a discussion of these. The final 

conclusions taken from this research and suggestions for future research are provided in 

Chapter six. 



 

 

13 

Chapter Two:  Grizzly bear home ranges and home range estimation 

 

Chapter two provides essential material for conducting the first step of this research, i.e. 

the delineation of grizzly bear home ranges. The delineation of the home range is critical 

as it determines what is included and/or excluded for analysis.  The aim is to delineate 

home ranges that encapsulate those environmental resources and human disturbances 

which may have the biggest effect on grizzly bear health. 

This chapter will present a brief overview of the biological theory of animal home 

ranges and a description of grizzly bear ecology that is relevant to home range size and 

shape. Further, it details two of the most commonly used home range estimators today: 

the minimum convex polygon and the kernel density estimator.   

 

2.1 Home ranges and territories 

Burt’s (1943) definition of the home range, 

“[the] area traversed by the individual in its normal 
activities of food gathering, mating, and caring for young. 
Occasional sallies outside the area, perhaps exploratory in 
nature, should not be considered as part of the home 
range,” 

has provided the theoretical basis for many home range studies (Powell, 2000).   The 

establishment of a home range allows animals to more efficiently exploit their landscape 

through increased familiarity with it (McLellan, 1985; Powell, 2000).  It is posited that 

many animals have cognitive maps of their home range and surrounding areas, such as 

the location of features and resources, corridors between resources, escape routes, and 

home ranges of conspecifics and other species (Powell, 2000). The boundary of a home 
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range cannot be clearly defined in space as animals perceive well beyond their actual 

location through sight, hearing and smell. This total area of perception and awareness 

could well be considered part of an animal’s home range. It is believed that animals 

however, are generally more concerned about the interior of their home range where they 

carry out the majority of their life activities (Powell, 2000, p. 69). It is these areas that 

provide information that may suggest how an animal lives and why it is in that place.  

Nevertheless, these areas do not always represent the best habitat for animals that may be 

relegated into less suitable areas as a result of human settlement and transformation of the 

environment (Schwartz et al., 2003, p. 565). 

Although Burt’s (1943) definition of the home range is clear and broad enough to 

be applicable to most animal species, it does not help the biologist quantify the home 

range, i.e., it is not an operational definition.  The scientist cannot view an animal’s 

cognitive map of its home range directly, only the locations where it actually visits. These 

observations are obtained sequentially such that an idea of the home range is built up 

only after some period of time has passed. It is important therefore that enough time 

passes so that the full behaviour of the animal can be observed. However, the cognitive 

maps of animals may change with changes in the environment, and, the longer an animal 

is observed the more likely it is that the home range may shift (Powell, 2000).   

Home ranges should not be confused with territories. Many species have home 

ranges but no territory. Territories, which may be a subset of the home range, are 

specifically defended by fighting, scenting, marking, calling and/or displays (Powell, 

2000, p. 70). Territories are usually required if and when there is some limited resource 

such as food (Powell, 2000, pp. 71 - 74). 
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The size and shape of home ranges are dependent on specific characteristics of 

the species, such as movement patterns (Nathan et al., 2008; Turchin, 1998) and foraging 

strategy (Stephens et al., 2007), as well as environmental context, e.g., topography, food, 

competitors and predators (Stephens et al., 2007).  Movement patterns can be influenced 

by food, breeding, reproductive status, dominance, security and human disturbance. 

These factors will determine the pattern and extent of the landscape used by an animal 

(Burt, 1943).   

 

2.2 Grizzly bear home range characteristics 

It is necessary to have an understanding of grizzly bear ecology before choosing a home 

range estimation technique. This allows the selection of the technique with the most 

appropriate assumptions that would more likely produce realistic results.  Ross (2002) 

and Schwartz, et al. (2003) summarised the general habitat characteristics of grizzly bears 

in Canada and North America. Grizzlies are habitat generalists, occurring naturally in a 

wide variety of habitats from the arctic tundra to boreal and coastal forests, to mountain 

forests/grassland ecotones. Although they have the digestive physiology of carnivores, 

they are omnivorous and many eat a diet consisting primarily of vegetation.  Due to their 

dependence on vegetation, habitat associations are strongly seasonal following local 

phenology.  This is particularly prominent in mountainous regions where grizzly bears 

may move substantially between lower and higher elevations.   If food availability is low 

during hyperphagia in autumn, bears are known to roam widely in search of high-quality 

food resources to ensure survival through the winter.  
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The size of home ranges will generally vary with the quantity and quality of 

food available.  A concentration of high quality food resources allows bears to meet their 

energetic requirements in smaller areas with less movement in search of food (Craighead 

& Mitchell, 1982).  Due to the demand for large volumes of high-quality food, combined 

with the need to move between seasonally available food sources, grizzlies, in addition to 

establishing large home ranges, are multimodal, or have multiple centres of activity.  

There is a close relationship between food availability, home range size and 

population density. The less food that is available, the larger home ranges tend to be and 

the lower the population density (Schwartz, et al., 2003).  However, population density 

itself can influence the home range area of individuals independently from food 

availability. When population density is decreased from human-caused mortalities, 

competition for resources is reduced, thus enabling larger home range areas (Nagy & 

Haroldson, 1990).     

The sex and reproductive class of bears also influences home range size (Ross 

2002, p 32).  Male bears tend to have home ranges several times larger than females, 

most likely due to their breeding activity and larger energetic requirements. Females with 

young cubs will have the smallest due to the reduced mobility of cubs and the need to 

keep them secure (Schwartz, et al. 2003).  

Some environments do not provide resources to grizzly bears. Grizzlies will 

generally avoid these areas, except to traverse between two locations.  High elevation 

areas consisting of rock, snow, and glaciers do not provide food resources or shelter to 

bears (Munro et al., 2006; Nielsen et al., 2006). Other areas of potential suitable habitat 

may also be avoided if they are near to areas of human activity (Ross, 2002, p. 25).  
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Grizzlies are not territorial and their home ranges often overlap (McLellan & 

Hovey, 2001). The home ranges of adult males may overlap with several females, and 

related females tend to have overlapping home ranges with each other (Schwartz et al., 

2003, p. 566). 

 

2.3 Home range estimation 

Schwartz, et al. (2003) note that the use of home range estimation techniques can cause 

confusion when trying to generalise and compare animal home ranges between studies.  

Differences among home ranges can arise due to the estimation techniques used rather 

than actual biological differences.  For this reason it is important to understand the effects 

of and differences between home ranges estimation techniques and their parameters. 

Some home range estimators (e.g. minimum convex polygon) generate only a 

single polygon boundary delineating the home range. However, this assumes a hard edge 

and an even use of space within the home range. As described in section 2.1, this is 

unlikely in reality. An alternative approach is to generate a density or utility distribution 

surface which maps the intensity of use within different areas of the home range (Powell, 

2000). Thus, higher density or utility is assigned to areas which have higher 

concentrations of observations. These are the areas where the animal spends more time, 

and are useful for identifying habitat use and preference (Seaman & Powell, 1996). This 

approach assumes that those areas where the animal spends most of its time are of 

primary importance, which is not always true (Powell, 2000, p. 90). At this stage, this 

problem is shared by all estimators that generate utility distribution surfaces.     
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A variety of point and line-based, parametric and nonparametric home range 

estimation methods exist.  However, a recent review by Laver and Kelly (2008) of 141 

papers on home range studies, published between 2004 and 2006, found that the majority 

of these studies employed minimum convex polygon (96), kernel density estimators (84) 

or both (51). For this reason, the minimum convex polygon (MCP) and kernel density 

estimation (KDE) will be explained in the following section. 

 

2.4 Minimum Convex Polygon 

The minimum convex polygon (MCP) is the simplest home range estimator and is 

generated by drawing the smallest possible polygon that encloses all observed locations 

of the animal in such a way as to create a convex polygon (Mohr, 1947). The area of the 

MCP will increase asymptotically as points are added (Arthur & Schwartz, 1999; Belant 

& Follmann, 2002). 

MCP, however, has several problems which can make it unreliable and/or biased, 

and these preclude it from comparison with other studies (Laver & Kelly, 2008).  Powell 

(2000) and Laver and Kelly (2008) summarise some criticisms of MCP.  MCP is 

sensitive to number of location estimates/sample size (Bekoff & Mech, 1984) and 

extremely sensitive to spatial outliers. It often includes areas never used by the animal 

and does not take into account interior points at all, thereby assuming uniform use 

throughout the home range. Areas of home ranges can be greatly inflated as shown by 

Belant and Follman (2002). In their study grizzly bear home range areas estimated by 

MCP were up to seventeen times larger than areas estimated by fixed kernel estimators 

using the same data. 
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2.5 Kernel density estimators 

Silverman (1986) provided the methodological basis of KDE approaches, while Worton 

(1989) was the first to publicize its use for home range estimation in ecology (Seaman & 

Powell, 1996). The kernel density estimator (KDE) is a probabilistic nonparametric 

approach to home range estimation. Nonparametric approaches offer the advantage of not 

having to make unrealistic assumptions about the use of space by animals.  KDE assumes 

that an animal has a fixed surface over the landscape which it uses and traverses in a non-

random fashion in some time frame (Calhoun & Casby, 1958). It estimates a utility 

surface which can be transformed into a probability density surface. This new probability 

surface then provides the probability that an animal is in a particular area of its home 

range (Powell, 2000, p. 75). Using this approach, Worton (1995) offers an operational 

definition of the home range as “the minimum area in which an animal has some 

specified probability” of “being located”.  In practice this is achieved by selecting a 

particular probability density contour derived from the utilization distribution.   A 

polygon representing a particular probability contour can be derived by estimating the 

probability for each cell (i.e., the volume of the probability distribution function for that 

cell) and then selecting the smallest number of cells whose probability (volume under the 

density surface) is equal to the probability contour of interest, e.g. 95 %.  The most 

frequently used probability contour is the 95 %, though this choice is essentially arbitrary 

and not supported by biological evidence (Powell, 2000, p. 76). 
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2.5.1 Calculating the KDE home range 

KDE estimates the intensity of utilisation by overlaying a grid on the observation points 

and calculating the weighted density of observed locations in a moving window.  The 

contribution of each observation within the window to the density is a function of 

distance between the evaluation point (center of window) and that observation. The 

weights are based on a hill-shaped probability distribution function, such as the Gaussian, 

Biweight, Epanechnikov or Triangular.  The greater the distance between an observation 

point and the evaluation point, the less it contributes to the average density computed. 

The kernel density estimator can be expressed mathematically as: 
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where h represents the bandwidth or the radius of the moving window (Silverman, 1986). 

K is the kernel and gives the shape of the probability function used to weight 

observations within the window. X is the vector of x and y coordinates of the 

observations within the window, and x is the x, y position of the evaluation point 

(Seaman and Powell, 1996). The width of the window, or bandwidth h, determines the 

degree of smoothing (Worton, 1989). 

Commonly used probability density functions are the bivariate normal and 

Biweight functions. The bivariate normal density kernel is defined as follows (Worton, 

1989) 
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The Biweight kernel is  
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where x΄x is the distance between the evaluation point and every observation in the 

window divided by h (Seaman & Powell, 1996).   

It has been shown that the shape of the probability density distribution function 

has little effect on the final shape and size of the home range (Worton, 1989) provided it 

is hill-shaped and rounded (Silverman, 1986). The results of KDE have been found to be 

most affected by the choice of h (Harris et al., 1990; Silverman, 1986).   

 

2.5.2 Estimating the bandwidth, h 

The reference bandwidth, href

 

, of a set of location observations can be obtained by 

assuming the location data is normally distributed in x and y, where    
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and 2
xs and 2

ys are estimates of the variances of the x and y coordinates respectively 

(Worton, 1989).  However, very few home ranges are bivariate normal in reality (Horner 

& Powell, 1990; Seaman & Powell, 1996). For multimodal home ranges href

Least-squares cross validation (LSCV), described in Silverman (1986, p. 87) and 

Worton (1989), is another automated method to determine appropriate bandwidth (h

 will be 

upwards biased, causing the utilisation surface to be over-smoothed (Worton, 1995).   

lscv) 

which can be used for multimodal home ranges.  Laver and Kelly (2008) found that 
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LSCV was the most commonly used technique for estimating bandwidth in home 

range papers published between 2004 and 2006. 

LSCV selects hlscv so that it minimizes the difference between the estimated 

density and the unknown true density (Worton, 1995).  The minimum of this function 

must be found through numerical methods.  The LSCV-estimated bandwidth, like href

Due to the bias associated with h estimation, KDE may be better suited to 

describing intensity of use within the home range rather than estimating home range size 

(Harris et al., 1990; Worton, 1995).   

, 

tends to be biased upwards in datasets with smaller sample sizes, although less so 

(Worton, 1995, p. 797, Seaman and Powell, 1996).  

The value of h may be fixed over the entire dataset (fixed kernel), or varied 

(adaptive kernel) so that areas with a lower density of points will have a higher value of h 

and those areas with a greater density of points will have a smaller h.  When an adaptive 

kernel is used the local smoothing parameter can be formulated as hi = hλi, where h is a 

global or pilot parameter, which can be estimated using the reference, LSCV, or other 

bandwidth estimation methods (Silverman, 1986, p. 101).  It had been assumed that 

adaptive bandwidths would be better than fixed kernel estimators (Silverman, 1986); 

however, several studies have shown that the fixed kernel can be at least as good or better 

than the adaptive (Seaman et al., 1999; Seaman & Powell, 1996).  Seaman and Powell 

(1996) recommend fixed smoothing, and Laver and Kelly (2008) found that the fixed 

kernel is more commonly used than the adaptive kernel. 
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2.5.3 Standardizing and scaling data 

If a single parameter for bandwidth is chosen, this implies that the points are equally 

distributed in both the x and y directions (Silverman 1986, p. 77). Therefore both 

Silverman (1986, p. 77) and Worton (1989) suggest standardising data in x and y if the 

variances are unequal in these two directions.  This can be achieved by dividing x and y 

coordinates by the standard deviation of x and y respectively to obtain unit variances.   

After applying the KDE to the transformed data, the results can be rescaled back to their 

original x and y range. 

 

2.5.4 Sample size 

KDE, like MCP, is sensitive to the number of observation points. When there are two few 

points the KDE home ranges tend to overestimate the home range size since the 

smoothing bandwidth tends to be large when selected by methods such as LSCV 

(Seaman & Powell, 1996).   The reliability and precision of KDE home ranges increases 

as more points are used (Arthur & Schwartz, 1999). According to Arthur and Schwartz 

(1999) and Beland and Follmann (2002), 80 points or more are required to ensure that 

annual grizzly bear home ranges are accurate (i.e,. ≤ 1 % change per additional point 

added) and precise (the coefficient of variation (CV) ≤ 50 %) when using fixed kernel 

estimation.  The CV in fact tends to be lower for MCP than kernel estimators when the 

same data is used, or, in other words, the CV in MCP stabilises before the CV in KDE 

home ranges (Belant & Follmann, 2002). 

The exact number of points required to achieve a stable home range may vary 

between different populations of bears or individual bears, and may be dependent on 
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environmental conditions. Hence, Laver and Kelly (2008) recommend determining 

when home ranges reach an asymptote.  

 

2.5.5 Cores 

An advantage of kernel density estimation is that it allows the identification of areas 

within the home range that have a greater intensity of use than expected by random use 

(Harris et al., 1990; Powell, 2000, p. 91).  This is useful as not all areas within the home 

range are of equal importance to the animal as resources are usually distributed in patches 

across the landscape. Areas which have a greater intensity of use are known by biologists 

as cores (Burt, 1943, p. 91; Powell, 2000; Seaman & Powell, 1990).  The core can be 

extracted from the utilisation distribution surface by choosing a low probability threshold 

such as 25 % and selecting the smallest number of cells that sum to that probability. 

However, the choice of a probability threshold is essentially arbitrary and even home 

ranges with random or even use will have “cores” by this definition (Powell, 2000, p. 92). 

Fortunately, Seaman and Powell (1990) introduced an objective method for 

selecting a probability contour to delineate the core area. Areas of intensive use occurring 

within the home range can be observed by plotting the percentage area of the total home 

range area against the equivalent percentage probability of the maximum probability of 

use, as illustrated in Figure 2-1.  Here, 100% of the home range area is equivalent to 0 % 

probability of use and, at 0 % area the percentage probability is 100 %. This is because 

the maximum probability of use is associated with the smallest area within the core range 

and the probability of use decreases as home range area extends beyond this area.   If the 

use of space were random, this plot would be a straight line with a gradient of -1 or – 45˚ 
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(Figure 2-1a). If the plot is concave (Figure 2.1b), it indicates core areas which are 

used more than outlying areas and, if the graph is convex (c), there is even (dispersed) 

use of the home range. For the concave plot, the inflection point (where the slope 

(derivative) is equal to – 1) indicates the probability contour that delineates the core of 

the home range.  

 

Figure 2-1. Percentage of maximum probability of use. (Adapted from Powell, 2000, 
p. 93) 
 

2.5.6 Advantages of KDE 

Due to the fact that KDE is nonparametric, it can be used to estimate home ranges for a 

large variety of multimodal non-normal home ranges if the smoothing parameter is 

selected appropriately (Seaman & Powell, 1996).  KDE is also unaffected by grid size 

and its placement unlike several other estimators such as the harmonic mean estimator 

(Silverman, 1986). KDE also allows the identification of core areas from the utilization 

distribution surface (Seaman & Powell, 1990). 
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KDE does have some shortcomings. Like most point-based home range 

estimators, KDE ignores the sequencing information within position data (White & 

Garrot, 1990, in Powell, 2000, p. 89).  It can also generate islands that look unrealistic, 

and objective bandwidth estimation is difficult and sensitive to the number of points.  

Despite these disadvantages, KDE has been one of the most successful home range 

estimators since its introduction by Worton in 1989 (Laver & Kelly, 2008; Schwartz, et 

al. 2003; Seaman & Powell, 1996). KDE is recommended by several authors as the best 

nonparametric home range estimation technique for point data and has been widely 

implemented (Belant & Follmann, 2002; Powell, 2000; Seaman et al, 1998; Seaman et 

al., 1999; Steiniger et al., 2010; Worton, 1995, etc.).  

 

2.6 Summary 

In summary, this chapter has provided a general background to home range theory and a 

description of grizzly bear home range characteristics. In addition, two popular home 

range estimation techniques, the minimum convex polygon and the kernel density 

estimation, were described in detail.  Based on this review the kernel density estimation 

technique was chosen as the most appropriate home range estimator for grizzly bears. 

The home range estimation process and choice of parameters is described in detail in 

section 4.3.1. 
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Chapter Three: Spatial dependence and modelling 

 

This chapter provides a review of the theory of spatial dependence. Section 3.1 provides 

an understanding of what spatial dependence is, why it occurs in spatial data, and the 

challenges this poses; section 3.2 shows how spatial dependence can be modelled through 

spatial neighbourhood relationships and spatial weight matrices; section 3.3 describes 

how to quantify spatial dependence and test its significance using the spatial weights 

defined in the previous section; and finally, section 3.4,  demonstrates how structures of 

spatial dependence can be included into spatial autoregressive models. 

This review forms the theoretical basis necessary to carry out several of the tasks 

outlined in chapter one. These are to: 

• Define various spatial weight matrices for quantifying spatial dependence. 

• Test the residuals of OLS regression models for spatial dependence using the 

spatial weight matrices developed as part of this thesis. 

• Develop spatial autoregressive models and evaluate the effect of different spatial 

weight matrices on the estimation of parameters and overall fit, particularly in 

comparison to the OLS regression models. 

• Determine which spatial weight matrices best characterize any spatial dependence 

present in the data. 
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3.1 Spatial dependence in spatial data 

 

3.1.1 Spatial data and spatial stationarity 

Spatial data can be interpreted as an incomplete sample of a single realisation of a 

stochastic process as defined by  

} :)({ dDZ R⊂∈ ss ,        3.1 

where Z(s) is the attribute value of Z at location s, and D is a subset of real numbers with 

d dimensions consisting of a set of spatial coordinates s = [s1, s2, . . . , sd

A stochastic process exhibits strict (or strong) spatial stationarity when the joint 

probability distributions are the same through any translation of spatial coordinates as 

shown in the equation below 

].  d usually 

equals two in spatial data representing the x and y coordinates of the mapping surface.  A 

spatial stochastic process is commonly referred to as a random field.  By the Daniell-

Kolmogorov theorem a stochastic process can be specified by defining the joint 

distributions of any finite subset (Sui, 2004).   

{ } { }kkkk zZzZzZzZzZzsZ <+<+<+=<<< )s(,,)s(,)s(Pr)s(,,)s(,)(Pr 22112211 hhh   

3.2 

for all k and h, where h is a vector displacement (Cressie, 1993, p. 43; Schabenberger & 

Gotway, 2005, p. 53).  However, this strict condition is usually not able to be met with a 

spatial dataset, hence a weaker requirement is that the moments of the distribution, rather 
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than the distribution itself, are invariant under translation (Cliff & Ord, 1981, p. 43; 

Schabenberger & Gotway, 2005).   

Second-order or weak stationarity occurs when the mean and variance is 

independent of location, but the covariance between two observations is dependent on 

their relative positions (Schabenberger & Gotway, 2005, p. 142).  This can be written 

formally as follows: 

E[Z(s)] = μ,  Var[Z(s)] = σ2

and 

,      3.3 

  Cov[Z(si), Z(sj)] = C(si - sj) = σ2R(si - sj

where C is a covariance function or covariogram, and R is a correlation function (Cressie, 

1993, p. 53). s

), 

i – sj

[ ]( ) [ ]( )[ ])(E)()(E)(E)( h  sh  sssh +−+−= ZZZZC

, is the vector separation between points and is replaced by h. If C(h) 

is only a function of the distance, ||h||, then the covariance is isotropic. In anisotropic 

processes, the covariance between observations is dependent on direction as well as 

distance. The covariance and correlation function are formulated as (Schabenberger & 

Gotway, 2005, pp. 25, 26):  
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C(0) is equal to the variance of Z(s), hence the above equation can also be expressed as 

)(
)()(

0
hh

C
CR = .         3.6 

An important property of a subset of second-order stationary processes is 

ergodicity, which allows the estimation of the mean and covariances of the set of all 

possible realisations (Ω) using sample data from a single realisation (ω).  If the random 

field is normally distributed and ( ) 0lim =∞→ hCh , then the field is ergodic (Cressie, 1993, 

p. 57). 

All second-order stationary processes are subsets of intrinsically stationary 

processes. An intrinsically stationary process has the following properties (Cressie, 1993, 

pp. 43, 61, 69):   

  E[Z(s)] = μ,  for all D∈s , and 

( ) ( )[ ] ( )hshs γ2Var =−+ ZZ .        3.7 

γ(h) is known as the semivariogram. When a stochastic process is second-order 

stationary, the semivariance can be determined from the covariance function as follows 

(Haining, 2003, p. 295; Schabenberger & Gotway, 2005, p. 135)    

)()0()( hh CC −=γ .        3.8 

Although all second-order stationary processes are intrinsically stationary, not all 

intrinsic processes are second-order stationary.  Intrinsic stationarity only requires that 

the first differences, Z(s) – Z(s + h), are second-order stationary. The variance of Z(s) 

may vary throughout the study region, and the covariance of Z(s) is dependent on 

position relative to the origin of the coordinate system (Schabenberger & Gotway, 2005, 
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p. 44). Covariance does not exist as a parameter of the spatial process when it is 

intrinsically but not second-order stationary (Cressie, 1993, p. 71). 

 

3.1.2 Spatial dependence 

Intrinsic and second-order spatial stationarity indicate the interdependence of data among 

locations, usually exhibited as spatial clustering of similar values in locations close to 

each other, although clustering of dissimilar vales is also possible. The correlation 

between points close to each other is referred to as positive spatial autocorrelation or 

dependence, while negative spatial dependence is the clustering of dissimilar values. This 

appears as small-scale patchiness and localized trends.  It is also possible for spatial 

dependence to exist in the presence of a global trend, where the mean of the phenomenon 

of interest varies over the study area (Fortin & Dale, 2005, p. 9).  The figure below shows 

patterns of values which are positively, negatively and randomly (independently) 

distributed over space. 

 

 

Figure 3-1 Patterns of spatial dependence and independence (Adapted from 
Haining, 2003, p. 80) 
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Positive spatial dependence implies that there is redundancy in the information of 

nearby samples, thereby effectively decreasing the degrees of freedom to less than the 

actual number of samples (Anselin & Bera, 1998; Haining, 2003, p. 41; Odland, 1988, p. 

13).  The reduction of independent observations should be taken into account when 

estimating parameters as the variance of estimates tends to be under-estimated in the 

presence of positive spatial dependence, while they are over-estimated in the presence of 

negative spatial dependence (Haining, 2003, p. 273; Schabenberger & Gotway, 2005, p. 

31).   In addition, maximum likelihood estimation methods are recommended for 

incorporating spatial dependence structures into regression models (Doreian, 1981; 

Schabenberger & Gotway, 2005). 

 

3.1.3 Causes of spatial dependence: spatial processes 

Spatial dependence occurs in spatial data due to the continuity of space and the operation 

of spatial processes (Haining, 2003). Generic spatial processes that can give rise to spatial 

dependence are diffusion (or contagion), exchange and transfer, interaction, dispersal and 

competition (Fortin & Dale, 2005, p. 21; Haining, 2003). 

Diffusion occurs when a phenomenon is spread to an adjacent or connected 

population or area that previously did not have it. An example is the spread of contagious 

or infectious diseases by people travelling and coming into contact with unaffected 

people in adjacent areas.  

Exchange and transfer take place when goods are exchanged and transferred from 

one place to another, e.g. trade between countries or nearby economic centers. The 
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revenue generated from sales in one area may be spent in another, thus the areas 

become economically dependent on each other. Economic statistics, such as per capita 

income, may begin to look similar in these areas.  

Interaction occurs when outcomes at one location are influenced by events and 

circumstances in another place. This is usually precipitated by some movement between 

locations and/or sharing of information. For example, the price of products will be related 

in markets that are close enough for those products to be exchanged, or for people from 

those markets to be able to move between them (Haining, 2003; Odland, 1988).  

In the process of dispersal, the population itself spreads physically through space. 

An example is the wind dispersal of seeds from a tree (Fortin & Dale, 2005; Haining, 

2003).   

Finally competitive processes may induce negative spatial dependence between 

adjacent objects (Fortin & Dale, 2005; Haining, 2003). Adjacent plants may compete for 

resources such as nutrients and light. The plants that are established first are likely to 

acquire the larger share of resources through extended and developed roots and foliage, 

thus reducing resources for neighbouring plants. All things being equal, the first plant 

will be larger and healthier in comparison to adjacent plants. 

Spatial dependence may be inherent to the variable of interest, where 

internal/endogenous spatial processes such as diffusion cause the variable to be correlated 

with itself, or induced by exogenous factors which are themselves spatially autocorrelated 

(Fortin & Dale, 2005, p. 7).  For example, the patch-like distribution of certain plants can 

be caused by the patchiness of the underlying soil types which it requires.  
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3.1.4 Causes of spatial dependence: sampling framework 

The spatial patterns that are detected depend upon and are sometimes created by the 

interaction between the sampling framework, the “actual” spatial patterns on the ground, 

and the assumptions of the particular spatial autocorrelation statistics used (Fortin & 

Dale, 2005, p. 112; Messner & Anselin, 2004).  

The size and/or spatial lag between units limit the scale of patterns that can be 

identified (Fortin & Dale, 2005, p. 112; Odland, 1988, p. 27).  If the spatial resolution of 

units, and/or the spatial lags are larger than the scale of the underlying process, the 

pattern may not be detected at all. For example, in satellite imagery a single value is 

assigned to a pixel although the area covered by the pixel may be composed of 

heterogeneous objects.  Negative spatial dependence could be detected if the spatial lag is 

larger than homogenous patches in a heterogeneous landscape (Cliff & Ord, 1981, p. 22). 

Conversely, if the resolution and spatial lag are smaller than the scale of the process, 

positive spatial dependence will be observed. Finally, in count and remote sensing data 

for example, smaller measurement units tend to have a larger variance, and are therefore 

more likely to contain spurious outliers (Fortin & Dale, 2005, p. 20; Haining, 2003; 

Messner & Anselin, 2004).  Local spatial outliers can in turn lead to false detection of 

significant spatial autocorrelation because several spatial autocorrelation test statistics, 

such as Moran’s I, rely on deviations from the average, and Geary’s c, squares the 

difference between nearby observations (Fortin & Dale, 2005, p. 125; Messner & 

Anselin, 2004, p. 130).  The definitions and descriptions of these spatial autocorrelation 

statistics are given in section 3.3. 
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The shape and orientation of the measurement units may minimize or maximize 

within-unit variance if they are orientated across or parallel to an environmental gradient 

respectively (Fortin & Dale, 2005, p. 112; Odland, 1988, p. 27). If the sampling units run 

across the gradient, the trend would not be detected, while it would be strongly detected 

if the units were aligned parallel to the gradient. An elongated shape may also cause the 

appearance of artificial anisotropic patterns (Fortin & Dale, 2005, p. 20). The problems of 

shape, size and spatial lag can be reduced by selecting random locations for sampling 

(Fortin & Dale, 2005, p. 20)  

The number of sampling units and their spatial configuration can increase or 

decrease the power of detecting significant spatial patterns (Fortin & Dale, 2005, pp. 112, 

142).  Fortin and Dale (2005, p. 18) recommend that a minimum of 30 observations are 

taken to detect spatial dependence when there is a fairly strong signal. Ideally, for reliable 

detection and estimation of parameters one-hundred observations should be used. 

Another potential problem of smaller sample sizes is caused by the assumption that the 

distributions of several spatial autocorrelation test statistics, such as Moran’s I (see 

Section 3.3) are asymptotically normal. Small sample sizes (of fewer than 50) may 

falsely detect spatial autocorrelation if a normal distribution is used for comparison 

(Odland, 1988, p. 27). However, this can be resolved by using a random distribution to 

test significance. 

A common assumption of several spatial autocorrelation statistics is that the 

variable of interest is second-order stationary. For example, Moran’s I is computed using 

the deviation from the estimated mean. However, if the extent of the study area 

incorporates heterogeneous areas with differing ecological and environmental conditions 
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it is likely that the response variable will become non-stationary, thus biasing test 

statistics or invalidating inferences (Fortin & Dale, 2005, pp. 11,174). In heterogeneous 

study areas where non-stationarity exists, local spatial autocorrelation statistics should be 

used rather than global to avoid misleading inferences (Fortin & Dale, 2005, p. 13).   

In contrast to large study areas that incorporate diverse regions, a study area may 

be too small to detect spatial patterns at all. For example the often arbitrarily or politically 

chosen boundary may cut off spatial processes and patterns that extend beyond the study 

area.   This can cause bias in the estimation of parameters that describe the 

interdependence of locations (such as in spatial autoregressive models), and make 

comparison of different weighting functions difficult.   

The shape of the study area and number of samples will determine how many 

units are affected by boundary issues. It is best to keep the proportion of boundary units 

as low as possible as boundary units will have fewer neighbours than observations in the 

core of the study area (Fortin & Dale, 2005, p. 22; Odland, 1988, p. 29).  

 

3.2 Exploring and modelling spatial dependence 

 

3.2.1 Semivariograms, covariograms and correlograms 

The distance over which spatial dependence occurs between two observations can be 

explored using various plots such as the semivariogram, covariogram and correlogram, in 

which the semivariance, covariance or correlation are computed at increasing distances of 

||h|| and plotted against ||h|| (Haining, 2003). If the process is anisotropic these should 

also be computed in various directions.  
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The semivariogram from equation 3.7 can be estimated using the classical 

semivariogram estimator, 
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as proposed by Matheron in 1962 (Cressie, 1993, pp. 40, 69). Z(si) and Z(sj

Although in theory the semivariogram should equal zero at the origin, i.e. no 

variance at h = 0, there is usually a small shift along the y-axis such that as

) are 

separated by h and |N(h)| is the number of distinct pairs of sites at a separation of h from 

each other. In irregularly spaced data, a tolerance or bandwidth should be specified 

around h to ensure that there are enough observation pairs at each value of h (Cressie, 

1993, p. 70).  This semivariance estimator is unbiased when Z(s) is intrinsically stationary 

(Schabenberger & Gotway, 2005, p. 137). 

0h →  

( ) 00 >→ chγ . c0

Figure 3-1

 is known as the nugget (Cressie, 1993, p. 59). The nugget is caused by 

local random effects, often termed microscale variation, and/or measurement error (Fortin 

& Dale, 2005, p. 134, Cressie, 1993).  shows the nugget, sill and range. 

If C(h) → 0, as ||h|| → ∞, i.e. if the process is ergodic, then the semivariogram 

will approach the variance of Z(s) either asymptotically or at some lag ||h|| (Cressie, 1993, 

p. 67). The asymptote itself is known as the sill, cs (Schabenberger & Gotway, 2005, p. 

138) and is equivalent to C(0) or the Var[Z(s)].  The range, a, is the distance, ||h||, at 

which the sill is reached. Observations separated by a distance greater than the range are 

no longer correlated with each other (Haining, 2003, p. 295).  



 

 

38 

There are several reasons why the semivariogram may not have a sill.  The 

process, Z(s), may not be stationary, or it is second-order stationary but the largest 

observed lag size is shorter than the actual range of the process, or the process does not 

meet the requirements of intrinsic stationarity, i.e. ( ) 0 as 0 2 2 →→ h
h

hγ  (Schabenberger 

& Gotway, 2005, p. 139) . 

 

Figure 3-2. Empirical and theoretical semivariogram (Adapted from Fortin & Dale, 
2005) 

By fitting a model to the empirical semivariogram important properties of spatial 

dependence can be explored such as the range of spatial interdependence (if the sill is 

reached), and the rate that covariance decreases with distance.  

Common isotropic models are the exponential, Gaussian, and bounded spherical 

model as shown below (Cressie, 1993, pp. 61, 89). 

The exponential model:  
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the Gaussian model: 

( ) ( ){ }22
0 h-exp1; acc s −+=θhγ ;        3.11 

and the bounded spherical model:  
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where θ = (c0, cs, a)´, and c0  ≥ 0, cs, ≥ 0  and  a  

  If the spatial process is second-order stationary, then the semivariogram, γ(h) can 

easily be expressed in terms of the covariance function, C(h), using 

≥  0.  

( ) ( ) ( )h0h CC −=γ  

(Schabenberger & Gotway, 2005, p. 135). The covariogram (the graph of C(h) against h) 

can as easily be transformed into a correlogram by dividing the covariogram by C(0).  

The covariance can be estimated from the data using 
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Cressie (1993, pp. 70 - 73) argues that the semivariogram is preferable to the 

covariogram for modelling spatial dependence.  For one, the semivariogram can be 

applied to all intrinsically stationary processes, while the covariogram is only defined for 

second-order stationary processes (Cressie, 1993, p. 71; Schabenberger & Gotway, 2005, 

p. 136). Although the semivariogram and covariogram are theoretically equivalent in 

second-order processes, the empirical estimators are not exactly equivalent. Thus when 

the semivariogram is calculated from the estimated covariance it will be biased, although 
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this bias decreases as |N(h)|/n → 1 (Cressie, 1993, p. 70; Schabenberger & Gotway, 

2005, p. 137).  The cause of this bias is shown below where the semivariance is rewritten 

as  
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However,   
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hence )(ˆ)(ˆ)(ˆ hh0 γ≠−CC . 

 Also, while the classical variogram estimator given in equation 3.9 is unbiased for all 

intrinsically stationary processes, the covariance estimator (3.13) is biased for second-

ordinary stationary processes when the mean must be estimated from the data 

(Schabenberger & Gotway, 2005, p. 137).  If there is a linear trend in the data, it is also 

advantageous to use the semivariogram rather than the covariogram to model the spatial 

dependency in the residuals. This is because the bias of the semivariogram is smaller than 

that of the covariogram. See Cressie (1993, p. 71 - 72) for details. The advantages of the 

semivariogram over the covariogram arise from the fact that the mean does not need to be 

estimated in the semivariogram (Schabenberger & Gotway, 2005, p. 137).  
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3.2.2 Spatial neighbourhoods, contiguity and weight matrices 

To model spatial dependence it is necessary to define which observations are “close” to 

each other and the strength of their relationship.  Those observations that covary with 

each other based on their spatial relationship are known as “neighbours”.   A formal 

definition of a neighbour is given by (Cressie, 1993, p. 414): a site k is a neighbour of site 

i if the conditional distribution of Z(si), given all other site values, is functionally 

dependent on Z(sk

Neighbourhood relationships can be represented by a weight matrix, W, which 

has n x n rows and columns, where n equals the number of sample observations. Each 

matrix element is a measure of the covariance between a pair of observations (Haining, 

2003) with non-diagonal elements being greater than or equal to zero (w

), for k ≠ i.  The neighbourhood of site i consists of all those sites that 

can be defined as neighbours as described above.  

ij ≥ 0), and 

diagonal elements, wii

Closeness can be determined in topological or Euclidian space (Fortin & Dale, 

2005, p. 113). In topological space, it is the relative position of observations to each other 

that is important, whereas in Euclidian space, absolute position, distance, and/or direction 

matters. Weights can be determined by connectivity, contiguity, or as functions of 

distances, shared borders, interaction factors, theoretical considerations, etc.   

 equal to zero, as an observation cannot be a neighbour with itself.   

The specification of weights can be guided by substantive knowledge and theory, 

or empirical approaches. For example, if there is data about the flow of people between 

places, the spread of a contagious disease can be based on substantive knowledge. When 

theory is not available, weights are chosen by convention or empirical approaches 

(Stetzer, 1982). The empirical specification of the weight matrix is difficult however, as 



 

 

42 

there is an “infinity of possible representations”, and involves “substantive concerns 

and technical constraints” (Doreian, 1981).   Various methods for specifying the weight 

matrix are described hereafter. 

 

3.2.3 Spatial dependence as a function of distance 

Distance-based contiguity can be defined by a simple binary relationship, where 

observations within a threshold distance of each other are neighbours, and those further 

apart are not.  A more common assumption following from Tobler’s Law of Geography 

(1970), is that the correlation between observations tends to decrease with increasing 

distance. This assumption is very likely correct for continuous variables sampled at 

discrete locations (Kaluzny et al., 1998). Distance neighbours can also be defined for 

areal units by using a single reference point, such as the centroid, for computing distances 

and other relationships (Fortin & Dale, 2005, p. 114; Kaluzny, et al., 1998). 

Distances can be measured in several other metrics besides Euclidian straight line 

distances, including route distances, the time or cost taken, perceived distances or 

networks of relationships (Haining, 2003, pp. 18, 19). 

Although there are many possible distance decay functions, a few commonly used 

functions are given below (Brunsdon et al., 1996; Haining, 2003).   

Inverse distance and inverse distance squared respectively: 

1−= ijij dw , and          3.16 

2−= ijij dw ,          3.17 

where dij is the distance between observations i and j.   
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The exponential distance decay function: 

)exp(- 1−= ijij dw ,         3.18 

where exp() denotes an exponential function.  

The Gaussian decay function:  

)exp( 2
ijij dw β−= ,         3.19 

where β is a constant to be determined. The larger β is the more rapidly dependence 

decreases with distance. 

The bi-square decay function: 

( )[ ] , if    ,/1 222 bdbdw ijijij <−=        3.20 

 where b is a distance threshold beyond which no spatial interaction occurs.  

The rate of decay or distance thresholds can be obtained from semivariograms, 

covariograms or correlograms. 

 

3.2.4 Shared boundaries in areal units 

A common method used to specify neighbours for areal units are those based on shared 

borders.  In the case of a regular square tessellation, rook, bishop and queen neighbours 

can be defined based on Chess moves. Rook neighbours share common boundaries in the 

four cardinal directions, bishop neighbours along diagonals and queen in all eight 

directions (Fortin and Dale, 2005). Chess moves can be adapted for irregular units such 

that rook neighbours share a boundary, bishop neighbours share corners, and queen 

neighbours share both. Chess neighbours are usually represented in a binary weight 

matrix. 
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Other common weighting functions are based on the proportion of shared 

border or a combination of shared border and distance (Haining, 2003). A commonly 

used function of shared border length is shown below:  

iijij llw = ,          3.21 

where lij

A combined distance-boundary function can be specified as follows: 

 is the length of the shared boundary over the length of the boundary for i.   

( ) 1−= ijiijij dllw .         3.22 

Second and higher-order neighbourhoods can also be constructed where neighbours are 

connected by 1 or more shared neighbours (Odland, 1988, p. 25).  

 

3.2.5 Connectivity network algorithms 

Neighbours can also be defined topologically using connectivity network algorithms. 

Fortin & Dale (2005, p. 57) describe a hierarchical set of connectivity networks, 

technically known as graphs, that can be used to model spatial neighbourhoods. Each 

graph is a subset of a more complex graph which is higher up in the hierarchy.  Graphs 

are defined by vertices (vi) which are connected together by lines known as edges.  A 

sequence of vertexes connected by edges is known as a path, and paths that start and end 

on the same vertex without crossing any edges twice are known as cycles.  In spatial data, 

each observation point, or centroid in the case of areal data, becomes a vertex. Pairs of 

observations connected by edges are neighbours, which can be represented in a simple 

binary format within the weight matrix.  
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The simplest graph, with the fewest number of connections, is the mutual 

nearest neighbour (MNN) graph. In this graph only mutual nearest neighbours are 

connected by edges.    

The MNN graph is a subgraph of the nearest neighbour (NN) graph. In a NN 

graph, every vertex will be connected to at least one other.  

The minimum spanning tree (MST) graph is formed by connecting all non-

connected parts of the NN graph by the shortest distances possible. All vertexes are 

connected to all others through a path, none of which are cyclic. 

The MST graph is a subgraph of the relative neighbour (RN) graph (Toussaint, 

1980, p. 59).  The RN graph is formed by connecting two vertices if the lens of overlap 

created by two circles centred on each vertex with a radius equal to the distance between 

the vertices, contains no other vertices. This concept is illustrated in Figure 3-3a where F 

and G are the two vertices of interest, and r is the radius of the circles centered on F and 

G. The lens of overlap created by these two circles must contain no other vertices. 

The next graph in the hierarchy is the Gabriel Graph (GG), see Figure 3-3b. The 

GG is formed by connecting any two vertices which lie opposite each other on the 

circumference of the circle whose diameter equals the distance between them, provided 

that no other vertices are found within this circle (Gabriel & Sokal, 1969, p. 59). 

 The most complex graph in the hierarchy is a Delaunay triangulation which 

incorporates all edges from the GG. A Delaunay triangulation is created by joining any 

three vertices where the circumcircle defined by those three points contains no other 

vertex (Hjelle & Daehlen, 2006, p. 56; Okabe, Boots, & Sugihara, 1992, p. 94) as shown 

in Figure 3-3c.   
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Figure 3-3. a) Relative neighbour graph b) Gabriel Graph c) Delaunay triangulation 
 

A Delaunay triangulation also requires that the minimum interior angle of any 

pair of adjacent triangles is the maximum possible (Hjelle & Daehlen, 2006, pp. 49, 56).  

This will be explained using Figure 3-4.  Consider the four vertexes, A, B, C and D in the 

figure.  There are two possible triangulations that can be created between ABCD shown 

in a) and b).  It can be seen in b) that the smallest angle of the six interior angles (amin’) is 

larger than the smallest angle (amin

 

) in a).  For this reason the triangulation in b) is the 

Delaunay triangulation.  

Figure 3-4. The maximum minimum requirement of Delaunay triangulation 

Each graph in the network hierarchy of graphs is a subgraph of a more complex 

connectivity network, thus the number of edges or connections increases for each graph 

  

A 

  B 

 C 

D E 

r 

lens

 

b) c) a) 

A 

B 

C 

D 

A 

B 

C 

D 

a) b) 

amin 

amin’ 
a2 

a4 
a3 

a5 

a6 

a2 

a3’ 
a4’ 

a5’ 

a6’ 

 

F   G 



 

 

47 

higher up in the hierarchy. Different network structures should be used to test for 

spatial dependence as it is typically not known a priori which structures may best capture 

spatial dependence, if at all.   

In the following section two important statistics are provided to test for spatial 

dependence.  These statistics rely on the specification of the weights matrix. 

 

3.3 Quantifying and testing for spatial dependence  

Following the specification of a weight matrix, it is possible to test for spatial 

autocorrelation amongst neighbouring observations. There are many possible statistics to 

measure and test spatial autocorrelation; however, this section will review the following 

popular and well-understood statistics, Moran’s I (Moran, 1950) and Geary’s c (Geary, 

1954).  The Gestis-Ord G is a useful alternative test and can be reviewed in Getis and Ord 

(1992). 

 

3.3.1 Measures of global spatial autocorrelation 

Moran’s I provides a measure of the average covariance between each unit, i, and its 

neighbours, j, as shown in equation 3.23, 
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where Z is the mean value of Z(s), n is the number of observations, wij is the weight of 

the contribution of the pair at locations si and sj, and [W] is the sum of all elements in the 
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weight matrix. The weights can be derived from neighbourhood functions as described 

in section 3.2.  

When I  > E[I], which is slightly less than zero (the value of E[I] is shown in 

equation 3.24), it indicates positive spatial dependence, and negative spatial dependence 

when I < E[I]   (Fortin and Dale 2005, p. 124). Assuming the null hypothesis of n random 

and independent observations drawn from a population of any distribution, the expected 

value of I is given in equation 3.24 (the proof is given in (Cliff & Ord, 1981, pp. 42 - 45) 

1-
1)E(

n
I −= .          3.24 

Although the estimated value of I will normally lie between – 1 and 1, I is not 

restricted to this range. The extreme values of I are given by the eigenvalues of the 

following matrix (Griffith & Layne, 1999, p. 25): 

( ) ( ) ])()()()([])()()()([ 11 ′′−′′− −− sZsZsZsZIWsZsZsZsZI .    3.25 

Moran’s I can fall outside of its normal range when there are too few pairs of sampling 

points, or there is an irregular pattern of weights and extreme values are heavily weighted 

(Cliff & Ord, 1981, p. 21, Fortin & Dale, 2005, p.124).        

While the expected value of I is the same for any underlying probability 

distribution of Z(s), the variance will differ for different distributions.  The variance of I 

under the normality assumption is given by Cliff and Ord (1981, p. 44). If the distribution 

of Z(s) is unknown, a randomisation procedure (R) (explained later in this section) can be 

used to estimate the expected variance of I under the null hypothesis of no spatial 

autocorrelation. The randomisation procedure provides an unbiased estimate of the 

variance such that Var[I] =  VarR[I] for any distribution (Cliff & Ord, 1981, pp. 45 - 46).  
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Geary’s c (equation 3.26) is similar to Moran’s I, but does not use the mean 

value of Z(s) to estimate autocorrelation.  Rather, it is based on the squared difference 

between neighbouring observations i and j,  
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Geary’s c ranges from 0 to 2, where 0 ≤ c < 1 indicates positive autocorrelation, and 1 < c 

≤ 2, negative (Fortin & Dale, 2005). Assuming a normal distribution, E[c] = 1, indicates 

no spatial autocorrelation, (Schabenberger & Gotway, 2005, p. 22).   

Cliff and Ord (1981, pp. 47 - 49) show that both Geary’s c and Moran’s I, are 

asymptotically normally distributed under the null hypothesis of zero spatial 

autocorrelation when Z(s) is normal.  Geary’s c is useful for confirming Moran’s I, which 

is the more powerful test statistic (Griffith & Layne, 1999, p. 15). 

Both Moran’s I and Geary’s c are based on the assumption of spatial stationarity, 

i.e. constant mean and variance (Haining, 2003, p. 244; Messner & Anselin, 2004, p. 22; 

Schabenberger & Gotway, 2005). Since the estimation of Moran’s I is based on the 

deviation from the mean, outliers, a skewed distribution or the presence of a trend in the 

data can bias the estimate.  Similarly, the value of c may also be biased by outliers or a 

skewed distribution, due to squaring the differences between nearby observations (Fortin 

& Dale, 2005, p. 125).   

The significance of both Moran’s I and Geary’s c can be tested using various 

methods, including the normality assumption, randomisation procedure, exact and 

Saddlepoint approximation tests.  
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Normality assumption 

The normality assumption assumes that the spatial autocorrelation statistic, M, is 

normal if the distribution of Z(s) is normal (e.g. Moran’s I and Geary’s c). Using this 

assumption, the mean and variance of M can be derived under the null hypothesis such 

that Cov[Z(si), Z(sj

[ ]
[ ] 2/1var

E
M

MMz −
=

)] = 0,  i ≠ j (Schabenberger & Gotway, 2005, p. 16). The spatial 

autocorrelation statistic can then be tested as a standardized normalized deviate: 

,         3.27 

where E[M] is the expected value of the spatial autocorrelation statistic, and var[M] is the 

operationalized variance (Cliff & Ord, 1973, pp. 13 - 15, 29 - 33; Schabenberger & 

Gotway, 2005). 

Randomisation procedure 

A randomisation procedure can be used when the population distribution of Z(s) is 

unknown.  If the null hypothesis of no spatial clustering of values, Z(s1), … , Z(sn), is 

true, then the observation values are randomly distributed among the spatial locations, or 

in other words, each permutation of the spatial allocation of values is equally likely (Cliff 

& Ord, 1981, p. 45; Schabenberger & Gotway, 2005).  Hence, if there are n sites, there 

are n! possible ways that the values of Z(s) may be arranged. By re-assigning observed 

values to locations so that all possible arrangements are made, and computing the spatial 

autocorrelation for each of these arrangements, it is possible to determine the null 

distribution (expected value and variance) of the autocorrelation statistic. The observed 

spatial autocorrelation statistic can then be compared to the empirical distribution to 

determine its probability (Schabenberger & Gotway, 2005).  
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Exact test 

The exact test is used when the exact reference distribution of the spatial 

autocorrelation statistic is known (Tiefesldorf, 2002). For example, when testing 

normally distributed residuals, the exact distribution of Moran’s I can be computed using 

numerical integration (Tiefesldorf, 2002). 

Saddlepoint approximation test 

The Saddlepoint approximation generates an approximate reference distribution 

that optimises the fit of the approximation (Tiefesldorf, 2002).  The Saddlepoint 

approximation is more reliable in the face of unusual spatial weights matrices, unknown 

reference distributions and strong underlying spatial dependence which tend to skew the 

reference distribution of the normal assumption test (Tiefesldorf, 2002). Also, unlike the 

randomisation test it can be used to test regression residuals.   More information about 

this method can be found in Tiefelsdorf (2002). 

 

3.4 Multivariate regression modelling in the presence of spatial dependence 

It has been well established that Ordinary Least Squares (OLS) estimates of multivariate 

regression parameters can result in biased variance estimates and inefficient regression 

coefficients in the presence of spatial dependence (Anselin & Bera, 1998; Cliff & Ord, 

1981; Cordy & Griffith, 1993; Doreian, 1981; Griffith, 1996; Hepple, 1976; Loftin & 

Ward, 1983). This is due to the fact that spatial dependence violates the assumptions of 

OLS.  

To use OLS, the multivariate linear model has the form (in matrix notation): 

( ) ( ) ( )sesXsZ += β ,         3.28  
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where Z(s) is a vector of n observations of the dependent variable at each location s, 

X(s) is a n by k matrix of observations of the explanatory variables,  β is a k-element 

vector of parameters, and e(s) is an n-element vector of disturbances or errors.   

The following assumptions are necessary to ensure that OLS is the best linear unbiased 

estimator. 

The residuals must be normally distributed with a mean of zero and constant variance: 

e(s) ~ N (0,σ2

There should be no correlation between the explanatory variables and residuals:  

).         3.29 

Cov[Xji, ei

The residuals must be independently distributed:  

]= 0.          3.30 

( ) ( )[ ] 0.E =sese .         3.31 

Finally, the explanatory variables must be independent:  
 

Cov[Xi,Xj

The assumptions of identically and independently distributed errors are often referred to 

as the iid assumptions.  If these assumptions are true, then OLS is the best linear unbiased 

estimator of the parameters β and σ

]=0,          3.32 

2

[ ] )()()()(ˆ 1
ols sZsXsXsX ′′= −β

 where 

,         3.33 

and 

[ ] [ ]olsols
2
ols

ˆ)()(ˆ)()(1ˆ ββσ sXsZsXsZ −
′

−
−

=
kn

.     3.34 

Using the estimated values of β and σ2, a set of residuals can be calculated, which 

in turn is utilized to calculate standard errors for each regression coefficient, as well as 
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test the significance of the coefficients. However, if the residuals are found to be 

spatially dependent, then the OLS assumptions have not been met and the inferences may 

be invalid (Cliff & Ord, 1981, p. 197). 

There are two major causes of spatial dependence in the residuals of a linear 

regression model.  First, if an explanatory variable is not included in the model, but is 

spatially dependent, the absence of this variable will most likely induce spatial 

dependence in the residuals.  It may be possible to add an explanatory variable to the 

model that captures this spatial dependence. However, while it may reduce spatial 

dependence, it is unlikely to remove it entirely due to uncertainty of the precise nature of 

the spatial processes operating, and the limitation of the data available (Odland, 1988, 

p.60). 

 Second, spatial autocorrelation may also result if the functional form of the 

model is incorrect, for example, if a non-linear relationship has been modelled as a linear 

relationship (Cliff & Ord, 1981, p. 54; Odland, 1988).  By correctly specifying the form 

of the relationship, spatial dependence may be removed. 

If it is not possible to remove spatial dependence using the suggestions above, it 

may be necessary to include spatial autoregressive structures into the multivariate model. 

Before describing these models in section 3.4.2, the following section will show how 

Moran’s I can be used to detect spatial dependence in the residuals of an OLS linear 

model. 
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3.4.1 How to test for spatial autocorrelation in the residuals 

Testing for spatial autocorrelation in residuals requires a modification of the expected 

value and variance of I used in section 3.3.  This is because the variance and covariances 

are not directly observable, but must be estimated from the residuals of a particular 

regression model (Odland, 1988).  The variance-covariance matrix of the OLS regression 

model, under the assumptions of identical and independent errors, is estimated as follows 

(Cliff and Ord, 1981, p.200):   

[ ] ( )[ ]
.

)()()()()(ˆ)(ˆE
2

2

M

sXsXsXsXIsese 1

σ

σ

=

′′−=′ −

      3.35 

Since M will have non-diagonal elements it can be seen from equation 3.35 that the 

estimated errors are correlated with each other, even if the underlying population of 

errors are uncorrelated.   

 To test the residuals for spatial autocorrelation, Moran’s I has the same form as in 

equation 3.23, although this time in matrix notation 

[ ] )(ˆ)(ˆ
)(ˆ)(ˆ

sese
seWse

W ′
′

=
nI res .         3.36 

The distribution of Ires

3.37

 has been shown to be asymptotically normal by Cliff and Ord 

(1981, pp. 200 -203) and the expected value is given in equation  (Schabenberger & 

Gotway, 2005, p. 314).  Since e(s) is estimated from X(s), the expected value of I (shown 

in equation 3.37) under the null hypothesis of identically and independently (i.i.d) 

Guassian residuals, must take into account any spatial dependence that may be in X.  

[ ] ( )[ ] ( )[ ])()()()(trE 1 sWXsXsXsX
W

′′







−

= −

kn
nI res  .     3.37 
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Here k is the number of explanatory variables including the intercept.  The expected 

variance is considerably more complicated but has been derived in Cliff and Ord (1973), 

Doreian (1981) and Schabenberger and Gotway (2005, p. 315). 

The distribution of the variance-covariance matrix of I used to test its significance 

is based on a normalisation assumption rather than randomisation. This is because 

equation 3.36 is a function of the explanatory variables, X. As a result, the randomisation 

procedure for testing autocorrelation statistics would require n! permutations of the n 

vectors (Z(si), X2(si), …., Xk(si

 

) (Cliff & Ord, 1981, p.200), however, it is not clear how 

to do this while keeping a fixed level of spatial dependence in the explanatory variables 

(Odland, 1988).  Due to the complexities involved, Cliff and Ord (1981) conclude that 

the only operational and efficient spatial autocorrelation tests available are Moran’s I and 

Geary’s c, based on a normal assumption test.  

3.4.2 Spatial autoregressive models 

When spatial dependence is found in the residuals of an OLS model, a spatial 

autoregressive model can be used to model spatial dependence structures. Besides 

removing the problems associated with spatial dependence, these models can provide 

information on the nature and strength of spatial processes in operation.  Several 

commonly used spatial autoregressive models in spatial econometrics are the error model, 

the lag model and the Durbin model.  All of these models can be estimated using a 

maximum likelihood approach (Anselin & Bera, 1998). Spatial econometric approaches 

assume a simultaneous autoregressive structure such that the n autoregressions occur 

simultaneously (Anselin & Bera, 1998; Schabenberger & Gotway, 2005, p. 335).  
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3.4.2.1 Spatial error model  

In this model, spatial autocorrelation is modelled in the error term as follows 

(Anselin & Bera, 1998): 

νsWesesesXsZ +=+= )()(   ,)()()( λβ ,       3.38 

[ ] Iνν 2E σ=′ ,          3.39 

where W is a n by n matrix of spatial weights, λ is the strength of the spatial dependence, 

and ν the identically and independently distributed residuals (Doreian, 1981; Odland, 

1988; Ord, 1975).  If the spatial parameter, λ, is significant then significant spatial 

autocorrelation is present. A significant spatial parameter is assumed to be caused by 

spatial autocorrelation in the measurement errors or a missing explanatory variable 

(Anselin & Bera, 1998).  The variance-covariance matrix of Z is given by Anselin & 

Bera, (1998) and Schabenberger & Gotway (2005) as: 

( )[ ] ( ) ( ) 112Var −− ′−−= WIWIsZ ρρσ .      3.40 

(I - λW )-1

3.4.2.2 Spatial lag model. 

 is a full matrix, therefore every pair of observations contains a non-zero value 

which decreases with the order of contiguity (Anselin & Bera, 1998). 

A spatial lag model may be developed if it is suspected or known that there is a 

spatial processes operating on the dependent variable such that Z(s) is a function of the 

surrounding values of Z(s) (Anselin & Bera, 1998; Doreian, 1981).  A regressive-

autoregressive lag model is defined as follows (Anselin & Bera, 1998): 

)()()()( sesXsWZsZ ++= βρ ,       3.41  

where E[e(s)] = 0 and  E[e(s)e(s)'] = σ2I.       
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If ρ is significantly different from zero then a spatial process may be operating.  

The variance-covariance matrix shown in equation 3.42 is the same as for the spatial 

error model (Anselin & Bera, 1998; Schabenberger & Gotway, 2005) 

( )[ ] ( ) ( ) 112Var −− ′−−= WIWIsZ ρρσ .       3.42 

Like in the error model, all pairs of observations have a non-zero covariance.  

3.4.2.3 Durbin model 

The Durbin model is derived from the spatial error model but includes a spatial lagged 

structure and a iid error term (Anselin and Bera, 1998, p. 249). It is defined as: 

).()( svWXXWysZ +−+= βλβλ         3.43 

3.4.2.4 Testing the spatial parameter 

The significance of the spatial model can be tested using the likelihood ratio test. This 

tests whether the spatial autoregressive model is significantly different from the OLS 

model (Schabenberger & Gotway, 2005).  Thus the null hypothesis, H0: θ = θ1, is 

compared to the alternative, H1: θ = θ2, where θ1 = [β, σ2] and θ2 = [β, σ2, λ].  Since only 

the spatial parameter is different this reduces to the following hypotheses: H0: λ = 0 and, 

H1

( )( ) ( )( )sZsZ ;;;; 21 θβϕθβϕ −

: λ ≠ 0. The test statistic is  

,        3.44 

where ( )( )sZ;;θβϕ is twice the negative log-likelihood and is compared to the χ2

   

 

distribution with one degree of freedom.  Exactly the same approach can be used to test 

the spatial lag model. 
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3.5 Summary 

In section 3.1, the important concepts of strict, intrinsic and second-order spatial 

stationarity were defined as they relate to the mean and expected variance and covariance 

of a spatial stochastic process. Using these concepts, spatial dependence was explained as 

the covariance among observations that are close to each other.  Spatial dependence in 

spatial data arises due to the inherent continuity of space, the operation of spatial 

processes, and the interaction between reality and the sampling framework.  It was also 

shown that spatially dependent data provide an opportunity to explore spatial processes 

that may be operating.  

Section 3.2 described how spatial dependence can be explored over increasing 

distances and in different directions using the semivariogram, covariogram and 

correlogram. It then provided a definition of “closeness” in terms of the conditional 

probability of an observation and its neighbouring observations. Spatial weight matrices 

were then introduced as a mechanism for representing spatial relationships or covariance, 

as well as some different methods by which they may be specified.   

Section 3.3 provided two important spatial autocorrelation statistics, Moran’s I 

and Geary’s c, that can be used to quantify spatial dependence using the spatial weights 

matrices defined in the previous section. These statistics can be applied at the global 

level, or to investigate local spatial dependence. Various estimation techniques for testing 

the statistics were also introduced. 

The final section, section 3.4, described why Ordinary Least Squares estimates of 

linear models are likely to provide unreliable estimates in the presence of spatial 

dependence.  The use of Moran’s I for detecting spatial dependence in the residuals of 
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OLS linear models was described and two popular spatial autoregressive models, SAR 

and CAR, were presented as a means of improving the reliability of regression estimates.  
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Chapter Four:  Methodology  

 

Chapter four provides a detailed description of the study area, data and methodology used 

for this research. 

 

4.1 Study Area 

The study area (Figure 4-1) is found on the eastern slopes of the Alberta Rocky 

Mountains and Foothills, and is defined by the three Bear Management Areas (BMA) 

called Grande Cache, FMF Core and Clearwater, totalling 94 800 km2 

A smaller study area is hatched in Figure 4-1. This additional study area was 

defined since a grizzly bear movement cost surface was available for this area. This 

allows the exploration of least cost distance neighbours. More information on the smaller 

study area and cost surface is given in section 

in area. Highway 

16 defines the boundary between Grand Cache and the FMF Core, and FMF Core and 

Clearwater are separated by Highway 11. Highway 3 is on the south boundary of 

Clearwater. The Bear Management Units were delineated based on genetic distinctions 

within the Alberta population (Stenhouse, 2007, p. 192). Thus each BMA is a distinctive 

population unit. These population units were selected for study as they had the greatest 

number of complete grizzly bear datasets available, making them most suitable for the 

systematic examination of spatial dependence in the grizzly bear health data.   

4.3.3.  The whole study area is referred to 

as study area A, and the smaller area as study area B. 
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Figure 4-1. Study area comprising of three grizzly bear population units 

The study area falls within the Cordilleran and Boreal climatic regimes of Alberta 

(Strong, 1992).  The Cordilleran regime falls over the Rocky Mountains extending from 

British Columbia to the eastern slopes in Alberta.   The northwest-southeast orientation of 

the mountains block the winds arising from the Pacific ocean, causing rainshadows on the 

leeward sides of the mountains and in interior valleys (Strong, 1992).  

The Cordilleran regime consists of three natural subregions, the Montane, 

Subalpine and Alpine (Natural Regions Committee, 2006; Strong, 1992). These can be 

seen in Figure 4-2.  The Montane Subregion occurs at the lowest elevation in the foothills 
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and major valleys of the Rocky Mountains. A diverse variety of vegetation types are 

found in this ecoregion, including coniferous and broadleaf trees, as well as grasses 

(Achuff, 1984; Strong, 1992).   

 

Figure 4-2. Natural regions of study area (Government of Alberta) 
 

The Subalpine Subregion is found above the Montane, ranging between 1,450 m 

and 2,180 m on average (Strong, 1992, p. 36).  The Subalpine Subregion is dominated by 

coniferous forests with broadleaf deciduous trees being found only in warmer sites 

(Achuff, 1984, Strong, 1992).  Shrubs and herbaceous vegetation are also found in the 

upper subalpine areas (Achuff, 1984).   
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The highest subregion is the Alpine, which is nearly treeless consisting of 

glaciers, colluvial talus and frost-shattered bedrock with lichens (Achuff, 1984; Strong, 

1992). It also includes patches of low-growing shrubs and grassland. Deformed and 

stunted arboreal species may occur within protected sites.  

The Boreal climatic regime is found to the west and north of and adjacent to the 

Rocky Mountain Foothills and consists of the Foothills and Boreal Forest Natural 

Regions (Strong, 1992, Natural Regions Committee, 2006).  The Boreal region is 

characterised by undulating and rolling topography.  The Upper Foothills consists mostly 

of closed canopy coniferous vegetation, while a mix of deciduous boreal and coniferous 

cordilleran vegetation occur in the Lower Foothills (Strong, 1992, pp. 41, 43, Natural 

Regions Committee, 2006).  On the northern and eastern outskirts of the study regime, 

the Central Mixedwood and Dry Mixedwood Subregions are found. Much of the Dry 

Mixedwood Subregion has been cultivated, while the Central Mixedwood consists of closed-

canopy mixedwood and aspen, and a variety of other tree species (Natural Regions 

Committee, 2006).  

The study area has been highly transformed, fragmented and disturbed by human 

activities such as settlement, agriculture, forestry, coal and petroleum extraction, hunting, 

trapping, and all-terrain vehicle use (McLellan, 1998; Stenhouse et al., 2005).  These 

activities are supported by an extensive linear network of roads and seismic lines for oil 

and gas exploration (Stenhouse, et al., 2005).  The FRI has shown that human activities 

within the study region are steadily increasing as can be seen in Table 4-1.  Only nineteen 

percent of the study area falls within in the two national parks of Jasper and Banff.  
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Table 4-1. Land use change in the study area 

Population units Years Road 
density 

Cutblock 
proportion 

Pipeline 
density 

Wellsite 
density 

Mine area 

Grand Cache 
(McDermid et al., 
2008) 

2005 – 
2008 

15 % 21 % 13 % 44 % N/A 

FMF Core and 
Clearwater 
(Linke et al., 
2009; Linke et al., 
2009; McDermid 
et al., 2008) 

1998 - 
2005 

28 % 98 % 
(total area 
= 2,300 
km2

5 % 

) 

56 % 
(total = 
8,162 km2

13-fold 
increase 

)  

 

4.2 Datasets 

4.2.1 GPS Data 

Grizzly bear location data was acquired from GPS radio collars placed on more than 150 

bears between 1999 and 2008 by the FRI.  Many bears were collared for two or more 

years. The bears were captured between April and October by various means including 

helicopter, snare, ground dart and culvert trap. The collars were programmed to provide 

position data at regular intervals on a 24-hour basis for approximately 9 to 10 months 

(Stenhouse & Munro, 2000, p. 24).  However, in reality the sampling interval and total 

duration of data collected varied greatly among bears, as well as inter-annually. This was 

caused by variety of factors. The GPS units were not always able to acquire position fixes 

and sometimes delivered inaccurate positions. This was mostly caused by rugged 

mountain terrain and north facing slopes. Also, the sampling interval changed from year-

to-year, ranging between 4 hours and 20 minutes, dependent on the battery power and 

GPS model.  Finally, in some cases, the GPS collars had mechanical failure, or fell off 

the bear before the end of the summer season.  
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The GPS tracking data of 94 bears found within the study area A, and which 

also had accompanying health data were used for this study.    As seen in Figure 4-3, 27 

of these were adult females (AF), 10 were adult females with cubs (AFC), 15 were 

subadult females (SF), 25 adult males (AM) and 17 subadult males (SM). 

 

Figure 4-3. The number of bears in each reproductive class. AF = adult females, 
AFC = adult females with cubs, SF = subadult females, AM = adult males, SM = 
subadult males 
 

4.2.2 Environmental data 

Numerous geographic environmental datasets were provided by the FRI and used to 

generate environmental variables for this study. They are shown in Table 4-2. The 

datasets provide information about vegetation structure and composition, land cover, 

topography, water, and human features. 
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Table 4-2. A description of environmental datasets used 

Dataset Description Range 
of 
values 

Raster 
/Vector 

Reso-
lution 
/Scale 

Canopy 
Closure  

The canopy gap fraction in each 30m pixel. This 
is a continuous variable. 

0 - 100 Raster 30 m 

Percent 
Conifer  

The percentage conifer trees in each 30m pixel. 
A continuous variable.   

0 - 100 Raster 30 m 

Forest Age Forest age is given as years AD.  1200 - 
2007 

Raster 30 m 

Land Cover Land cover consisting of 
1. Upland trees 
2. Wetland trees 
3. Upland herbs 
4. Wetland herbs 
5. Shrub 
6. Water 
7. Barren 
8. Snow/Ice 
9. Cloud 
10. Shadow 

1 – 10  Raster 30 m 

Regenera-
ting forests 

Presence (1) or absence (0) of regenerating 
forests.  Regenerating forests are defined as cut 
blocks, or wildfires after 1950. 

0 / 1 Raster 30 m 

Agriculture Presence (1) or absence (0) of agricultural land.  
Its purpose is to separate agricultural zones from 
natural herbaceous areas (natural grasslands, 
alpine meadows, etc). 

0 / 1 Raster 30 m 

Water-
bodies  

Large open water bodies, including wide river 
beds. 

N/A Polygon 1: 50,000 

Streams 
and Rivers 

Rivers, creeks and streams. N/A Line 1: 50,000 

Digital 
Elevation 
Model 

Elevation in meters above sea level. 218 - 
3945 

Raster 30 m 

Well sites Well sites N/A Point ? 

Roads A complete road network for Alberta provided 
by the Alberta Sustainable Resource 
Development Department.  Features added by 
the FRI GBP. 

Road 
types. 

Line 1: 50,000 
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All datasets are in UTM Zone 11 N on the NAD 1983 datum. Landsat 5 TM and 

Landsat 7 ETM+ acquired between 1999 and 2005 were the primary image datasets used 

for mapping (Laskin et al., 2006). The definition of the land cover classes are given in 

Table 4-3. 

Table 4-3 Definition of land cover classes 

Land Cover  Class Description 
Upland Trees  Vegetated sites with tree crown closure > 5%; dry or mesic 
Wetland Trees Vegetated sites with tree crown closure > 5%; wet 
Upland Herbs  Vegetated sites with herbaceous cover > 5%; dry or mesic; includes pipelines. 
Wetland Herbs Vegetated sites with herbaceous cover > 5%; wet 
Shrubs   Vegetated sites with shrub cover > 5%; 
Shadow  Ground features obscured by shadow 
Water  Non-vegetated sites with water cover > 50% 
Barren Land  Non-vegetated sites with barren cover > 50%; includes natural (rocks and soil) 

or manmade (cutblocks, permanent roads with 25 m buffer, well sites buffered 
by 70 m) non-vegetated sites 

Snow/Ice  Non-vegetated sites with snow/ice cover > 50% 
Cloud  Ground features obscured by cloud cover 

 

4.2.3 Health data 

The FRI conducted a variety of procedures to collect data to assess the health of 

individual bears. This included physical examination and measurement, physiological 

measurement, extraction of the pre-molar for age determination, and collection of blood 

samples (Janz et al., 2006, p. 56).  The complete set of 110 variables was reduced to nine 

based on biological knowledge and data reduction techniques by Cattet et al. (2007). The 

final set can be seen in Table 4-4. These variables indicate healthy functioning with 

respect to growth, immunity and stress, although it is difficult to interpret some of these 

variables separately from each other (Cattet et al. 2007, personal communication).  The 
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health data was also accompanied by information on age, sex, reproductive class, date 

of capture and capture method.  

Table 4-4. Health variables for grizzly bears captured (Cattet & Vijayan, 2007; 
Cattet, 2008, email correspondence) 

Functional  
Health 
Group 

Variables Range of values 

Growth o straight-line body length in cm 
o body condition index (BCI) 
o serum concentration of alkaline 

phosphatise 

o 60 ≤ value ≤ 230 
o -4.000 ≤ value ≤ +4.000 
o 4 ≤ value ≤ 300 

Immunity o White blood cell count, 
lymphocyte count,  

o percentage of neutrophils  
o percentage of monocytes,  

 
o 35.0 ≤ value ≤ 100.0 
o 0.0 ≤ value ≤ 35.0 
o 10 ≤ value ≤ 60 

Stress Serum concentrations of  
o heat-shock protein 60  
o heat-shock protein 70 
o gamma-glutamyltransferse 

(GGT)  

o 0. 0< value ≤ 35.0 
o 0.0 < value ≤ 20.0 
o 0 ≤ value ≤ 300 

 

The health data collected was not entirely systematic due to the inherent 

unpredictability of the process of capturing bears in the wild. As a result, some bears had 

only one set of health measurements available, while others had several, sometimes from 

the same year. Also, the bears were not captured at the same time of year.  While most 

health measurements were obtained in May at the same time that GPS collars were 

attached, a large proportion of measurements were acquired in April, and between June 

and October.  This is a complicating factor as grizzly bears are known to gain 

considerable weight in late summer and fall before hibernation (Schwartz et al., 2003), 

for example.  Finally, not all health records were complete. There were several cases 

where GPS data was available for a particular bear, that had no, or incomplete health 
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records.  This situation is also reversed, where GPS data were not always available for 

bears that had complete health records. Further, the year in which health data was 

collected does not always match the years for which tracking data were available.  

Finally, health data collected early in the year, May for example, reflects the bear’s 

condition from the previous year, not the upcoming year from when GPS data was 

collected. 

 

4.3 Methodology 

 

4.3.1 Home range estimation   

The delineation of the home range allows the identification of resources used by the bears 

and other environmental conditions that may have an impact on their health.  Considering 

the non-systematic nature of the GPS data collected, it was decided to estimate multi-

annual, rather than annual home ranges for this study.  An inspection of the grizzly bear 

GPS points and annual home ranges revealed that there was considerable overlap in the 

extent of a bear’s home range from year to year.  Blanchard and Knight (1991) found that 

adult female bears have a high degree of home range fidelity, while male home ranges are 

more variable.  In order to obtain a better understanding of home ranges, GPS data were 

combined to estimate a single multiannual home range. However, annual GPS datasets 

were not aggregated for bears transitioning from subadult to adult as these bears are more 

likely to disperse at this stage (Blanchard and Knight, 1991). This approach negated the 

difficulty of matching health data to temporally mismatched GPS tracking data.  Only the 
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GPS data from bears that had health data were used.  A total of 94 home ranges were 

computed.   

Multiannual home ranges were estimated using kernel density estimation. As 

described in Chapter 2, this method is recommended by several authors and has been one 

of the most popular home range estimation processes since it was introduced in 1989 by 

Worton.  KDE is appropriate as it is non-parametric and can estimate multi-modal 

utilisation distributions and enable the identification of core areas where the bear spends 

more time.  ABODE beta v.4., an application written for ArcGIS by Laver (2005), was 

used to compute KDE home ranges.  The parameters used are shown in Table 4-5. 

Table 4-5. Kernel Density Estimation Parameters 

Cell size Bandwidth Fixed/Adaptive Kernel Standardize 
data 

Contouring 
method 

100 m LSCV Fixed Biweight Unit variance Volume 
 

The estimated home range is most sensitive to the choice of the bandwidth and 

was therefore estimated using LSCV (see Chapter 2, section 2.5.2).  LSCV is appropriate 

for estimating bandwidths for multimodal home ranges. 

A fixed probability contour was not used to define the home range as there is no 

objective method to define this.  Rather the core area of the home range was estimated 

using the method suggested by Seaman and Powell (1990) as described in section 2.5.5.  

Examples of the core home ranges and utilisation surfaces are shown in Figure 4-4. 
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Figure 4-4. Utilisation surfaces and core home ranges 
 

The utility distribution surfaces computed for each home range were saved to be 

used as a weighting surface for summarising the environmental variables for each core 

home range. This is described in detail in section Table 4-3. 

A visual inspection of the core home ranges within the mountains suggested that 

KDE had overestimated the true extent of the home ranges.  The raw core home ranges 

extended into barren areas of rock, snow and ice, which although occasionally crossed by 

the bears, do not provide any resources to them (Munro, et al., 2006).  These high alpine 

areas should be distinguished from alpine meadows which provide food to the bears 

(Nielsen, et al., 2006).  This situation is illustrated in Figure 4-5.  
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Figure 4-5. Example of core home ranges in the Alpine and Subalpine Subregions 
 

In Figure 4-5, a core home range is outlined in black and suggests that bears 

occupy the barren alpine regions shown in white. However, the black GPS points indicate 

that the bear seldom goes into these areas.  For this reason, to avoid the inclusion of non-

utilised barren areas in the home range which would bias the composition calculations of 

each, non-vegetated alpine regions were removed from the mountain home ranges. 

It was first necessary to define at what elevation the Alpine Subregion began. 

According to Strong (1992) the boundary between the Alpine and Subalpine Subregions 

decreases in elevation in a northward direction, and eastwards from the cardinal divide, 
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as defined by equations 4.1 and 4.2.  Equation 4.1 describes the decline of the alpine 

zone in the north direction with an origin at the 49th

φ 35.61 - 3910.49  E =

 parallel, and 4.2, in the east direction. 

 ,        4.1 

d 35.61 - 3910.49  E = ,        4.2 

where elevation is in meters, φ  is latitude in decimal degrees, and d is the distance in 

kilometres from the continental divide in an easterly direction. Using these two equations 

a sloping alpine elevation plane was computed.  Elevations in the DEM that were higher 

than the plane were selected and then intersected with the barren, snow/ice, shadow and 

cloud classes from the land cover layer. These barren alpine regions were then removed 

from the home ranges with which they intersected.  This process is illustrated in the 

Figure 4-6. 

 

Figure 4-6. The process for correcting the core home ranges in the alpine regions 
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The coordinates of the cell with the greatest utilisation value from each utilisation 

grid were used as centroids for computing various spatial neighbourhoods and weights 

described later. The final home ranges and their centroids can be seen in Figure 4-7.  The 

core home ranges were defined by probability contours ranging from 35 % to 76%, with a 

mean of 57 % and median of 56 %.  Core areas ranged between 8 km2 and 2,328 km2, 

with a mean of 252 km2 and median equal to 124 km2

 

. The area distribution was strongly 

skewed left. 

 

Figure 4-7.  Core home ranges and centroids 
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4.3.2  Environmental variables 

Using the environmental datasets listed in Table 4-2, the desired environmental variables 

were computed for each core home range area. The environmental variables can be 

categorised into four groups: habitat types, topography, water availability and human 

disturbance. The utility distribution surface of each core home range generated by the 

KDE was used as a weighting surface to weight the relative contribution of the 

environmental attribute at the position of each grid cell. Thus, it was first necessary to 

convert all vector environmental GIS layers into raster format. The raster environmental 

datasets were then summarised per core either as a weighted “average” for numerical 

variables, or for categorical variables as a weighted “percentage” of the area.   The 

formula for the weighted average is shown below. 

∑

∑
= m

i
i

m

i
ii

ave

u

EVu
EV ,          4.3 

where EV is a numerical environmental variable, u is the utilisation value from the 

utilisation grid, and i indicates a particular grid cell.   

The categorical variables were reclassified into separate binary GIS layers where 

1 indicates the presence of the class of interest, and 0, its absence. The formula for the 

weighted percentage area is almost identical to 4.4, 

100×=

∑

∑
m

i
i

m

i
ii

per

u

EVu
EV ,        4.4 
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where EVi

Habitat types were based on those compiled for west-central Alberta by Munro et 

al. (2006).  The habitat types, their descriptions and the resources that they provide to 

grizzly bears are shown in the 

 is one or zero indicating presence or absence. 

Table 4-6. 

The alpine-subalpine, shrub and herbaceous habitat types were merged together as 

they provide similar food resources to grizzlies.  Also, since elevation and slope 

(described hereafter) already provide a measure of mountainous regions versus foothills, 

the herbaceous-shrub class were not split into two geographic regions as these would 

make the same distinction.  Nielsen et al., (2006) also followed this approach, grouping 

together subalpine, alpine and herbaceous vegetation in their habitat-based conservation 

framework analysis. 
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Table 4-6. Definition of habitat types (Munro et al., 2006) 

Habitat type  Description Resources 
Alpine - subalpine  Herbaceous areas >1,700 m where clusters 

of trees (< 20% crown closure) are mixed 
with grasses, sedges, and forbs. 

Roots 

Shrub  Areas greater than 50% shrub cover. Roots 
Herbaceous  Herbaceous areas <1,700 m including mine 

site reclamation. 
Roots,  Fruit 

Mixed forest  Forested areas having both coniferous and 
deciduous trees with less than 80% 
dominance of either type. 

Fruit, Bedding 

Open forest  Coniferous or deciduous forests with < 60% 
crown closure.  

Fruit, Ungulates, 
Bedding 

Closed forest  Coniferous or deciduous forests with > 60% 
crown closure. 

Ungulates, Bedding 

Wet forest  Wet treed areas (semiopen to closed) 
typically dominated by black spruce (Picea 
mariana) and tamarack (Larix laricina). 

Ungulates, Ants, 
Insects, Bedding 

Regenerated forest  Open or partially timbered site where 
timber harvest has disturbed natural 
vegetation 

Insects 

Anthropogenic  Areas altered by humans, including 
residential and industrial (oil and gas well 
sites, pipelines, and transmission lines).  

Herbaceous grazing, 
Green vegetation 

Nonvegetated  Nonvegetated areas including rock, water, 
ice, shadow, and cloud. 

Ungulates 

 

The forest regions in contrast were both aggregated and separated into the 

following classes and sub-classes for additional exploration. Subsets of these classes have 

been used in various studies by Munro et al. (2004) and Nielsen et al. (2006). 
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Figure 4-8. Forest classes and subclasses 
 

The method for creating the final habitat types are described in detail in Table 

4-7. 

Although, elevation has no direct impact on health, it is a surrogate for plant 

growth, temperature and moisture (Austin, 2007).  These in turn affect the availability of 

food.  Areas of high elevation and rugged terrain tend to have a lower density of human 

activities so it also acts a surrogate for human disturbance. 
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Table 4-7. Habitat types (adapted from Munro et al., 2006) 

Habitat type  Method 
Alpine-
subalpine herbs 
& shrubs 

o Select shrub and upland herb classes from land cover dataset. 
o Remove regenerating forests that overlap with this layer. 

Broadleaf 
forests 

o Select upland trees from land cover where percent conifer < 20 %. 
o Remove regenerating forests that overlap with this layer. 

Coniferous 
forests 

o Select upland trees from land cover where 80 % < percent conifer 
o Remove regenerating forests that overlap with this layer. . 

Mixed forests o Select upland trees from land cover where 20 % < percent conifer < 80 %. 
Open forests o Select upland trees from the land cover, where canopy cover < 60 %. 

o Remove areas that are regenerating forests. 
Open mixed 
forests 

o Using open forests, select areas where 20 % < percent conifer < 80 % 
o Remove regenerating forest.   

Open 
homogeneous 
forests 

o Select upland trees from the land cover, where canopy cover < 60 %  
o Select areas where percent conifer<  20 % and  80 % < percent conifer 
o Remove regenerating forest.   

Closed forests o Select upland trees from the land cover, where canopy cover > 60 %. 
o Remove areas that are regenerating forests. 

Closed mixed 
forests 

o Select upland trees from the land cover, where canopy cover > 60 %.  
o Select where 20 % < percent conifer < 80 %. 
o Remove regenerating forest. 

Closed 
homogeneous 
forests 

o Select upland trees from the land cover, where canopy cover > 60 %.  
o Select where percent conifer < 20 % and 80 % < percent conifer 
o Remove regenerating forest. 

Regenerating 
forests 

o Use the regenerating forest layer.  
o Exclude agricultural lands.  
o Due to clear distinction between new regenerating forest (fresh cutblocks 

or burns) and older regenerating forest (which has more trees, older cuts 
and fires) this class was also split into two. 

New 
regenerating  

o Select regenerating forest where barren, herbs or shrubs exist and/or 
canopy closure * < 20 % 

Old 
regenerating  

o Select all other regenerating forest not selected above. 
 

Wet trees o Select wetland trees from the land cover.  
o Remove regenerating forest. 

Wet herbs o Select wetland herbs from the land cover 
o Remove regenerating forest 

Wetlands o wet trees + wet herbs 
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Other indirect measures that were derived from elevation were slope and three 

aspect classes: eastness, northness and northeastness.  These represent the degree to 

which sloped terrain faces east, north or northeast. Northeastness was computed in 

addition to northness and eastness, as temperature and moisture are strongly related to the 

degree to which a slope faces northeast or southwest. Southwest slopes exhibit xeric 

conditions, while northeast slopes are cool and mesic (Nielsen et al., 2002). 

To assess water availability, the waterbodies, streams and rivers layers were 

converted to raster and then merged together. This layer was used to compute to 

measures of water availability: 1) the percentage water in the home range and 2) the 

average distance to water. 

Human disturbance was measured by several distance surfaces to roads, wells, 

roads and wells, and towns.  A list of the final environmental variables, their 

abbreviations, descriptions and units is given in Table 4-8. 

 

4.3.3 Cost Surface 

A 30 m cost surface indicating the difficulty to move across a unit cell from the 

perspective of grizzly bear was generated by the FRI for part of FMF Core Population 

Unit. The cost surface covers study area B and is shown in Figure 4-9. Using the cost 

surface it was possible to compute the shortest route between every pair of centroids 

considering factors such as mountain ridges, steepness and roads which may impede 

bears’ travel. Using least cost distances a set of nearest neighbours and distance 

neighbourhoods were created in addition to compare to those based on Euclidian 

distances.  
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Table 4-8. Complete list of environmental variables 

Variable Description Units 
MaxX x coordinate of the point of maximum use on the 

utilization surface 
km 

MaxY y coordinate of the point of maximum use on the 
utilization surface 

km 

Elev Average elevation above sea level km 
Slope Average slope, where slope is measured as a percentage 

elevation change over horizontal distance. 
% 
change 

Northness Average degree to which the slope faces north.  unitless 
Eastness Average degree to which the slope faces east.  unitless 
Neastness Average degree to which the slope faces northeast.  unitless 
Per_Wat Percentage water in the home range % 
Dist_Wat Average distance to waterbodies and rivers km 
Dist_Town Average distance to towns km 
Dist_Road Average distance to roads km 
Dist_Well Average distance to wells km 
Dist_Rd_Wll Average distance to roads and wells km 
PerCon Average percentage conifer % 
CanClo Average canopy closure unitless 
FstAge Average forest age years 
Herbs Percentage herbaceous and shrubby vegetation % 
OpMixFst Percentage open mixed forest % 
OpHomFst Percentage open homogeneous forest % 
CldMixFst Percentage closed mixed forest % 
CldHomFst Percentage closed homogeneous forest % 
OpFst Percentage open forest % 
CldFst Percentage closed forest % 
HomFst Percentage homogeneous forest % 
MixFst Percentage mixed forest % 
DecFst Percentage deciduous forest % 
ConFst Percentage coniferous forest % 
OpDecFst Percentage open deciduous forest % 
CldDecFst Percentage closed deciduous forest % 
OpConFst Percentage open coniferous forest % 
CldConFst Percentage closed coniferous forest % 
WetHerbs Percentage wet herbs % 
WetFst Percentage wet forests % 
Wetlands Percentage total wetlands % 
RegBar Percentage regenerating barren lands % 
RegFst Percentage regenerating forests % 
RegAll Percentage total regenerating area % 
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Thirty-nine individual grizzly bears with health data were available for this smaller 

region. 

 

Figure 4-9. The movement cost surface for study area B 
 

4.3.4 Choice of health variable  

It was not immediately obvious how to use all the health records available, nor how to 

combine these with the home range data due to the fact that some bears were captured 

and measured several times in one year, and/or over several years, while others were only 

captured once. Furthermore, the health measurements were not all obtained at the same 

time of year, nor did they always match the time frame over which the GPS data were 

collected. To overcome this difficulty, average values for each bear were computed, 

using the first and/or only measurements of each year.  By using the average values for 
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each bear, the effect of annual fluctuations would be reduced, thereby providing an 

overall indication of health for each bear. This approach is also consistent with the 

estimation of multiannual home ranges, so that one set of health variables is associated 

with one set of environmental variables for each bear.   

Out of the nine health variables shown in Table 4-4, it was necessary to select one 

to act as the dependent variable for multivariate regression modelling based on its 

potential to reflect the effect of environmental conditions on grizzly bear health.  

The stress variables were considered an unsuitable choice as there are several 

challenges associated with understanding this highly complex phenomenon. Cattet et al. 

(2007) discuss the difficulties of measuring long-term stress directly, especially when 

capturing bears to acquire blood and tissue samples for stress measurements increases 

short-term stress.  Measures of long-term stress in grizzly bears that are unaffected by the 

method of capture are in the process of being developed by Cattet et al. (2007). Further, 

individual animals may experience different stress responses to the same stressors based 

on their specific early experiences, genetics, age, physiological state and the season 

(Moberg & Mench, 2000). 

Immune functioning is affected by both long and short-term stress. While long-

term or chronic stress depresses immunity, it has also been found that acute stress can 

have the opposite effect (Cattet et al., 2007).  Cattet et al. (2007) have found that there is 

a positive association between stress and immunity using the FRI data.  This 

counterintuitive result is being explored further.  Cattet (2008, personal communication) 

also suggests that the immunity variables must be interpreted along with other variables. 
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Due to this complexity of interpreting immune responses, the immunity variables were 

not selected for use. 

 It was therefore decided to focus on the growth variables which are easier to 

interpret and not affected by the capture process. Measures of growth are useful 

indicators of the overall health of individuals and the potential success of a population.  

Also, access to high-quality and abundant meat, such as salmon, is strongly associated 

with increased body mass, reproductive success and increased population density 

(Hilderbrand et al., 1999; Schwartz et al., 2003).  Low scores in body growth variables 

can therefore signify a shortage or lack of access to quality food which could be caused 

by human disturbance.  Stress can also divert metabolic resources away from growth 

towards various coping mechanisms, thus resulting in reduced growth (Elsasser et al., 

2000, p. 79, 86, 87). This in turn could have long-term negative impacts on reproduction 

and ultimately population density.  This relationship is illustrated in the diagram below. 

 

 

Figure 4-10. Relationship between growth, habitat and population density 
(Hildebrand et al., 1999; Elsasser et al., 2000) 
 

Straight-line length was chosen as the dependent variable, after evaluating the 

suitability of all three growth variables (straight-line length, body condition index and 

serum alkaline phosphatase concentration). 
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Serum alkaline phosphatase concentration was eliminated as an appropriate 

choice as its interpretation relies on the interpretation of several other variables (Cattet, 

2008, email correspondence).   

Body condition index (BCI) was a promising candidate.  Body condition 

measures the relationship between the combined mass of fat and skeletal muscle against 

straight-line length, and is an indicator of long-term trends in food availability (Cattet et 

al., 2002). However, it is also influenced by the time since den emergence. At emergence, 

body condition is at the lowest and improves as the season progress until it is at its best in 

October (Cattet et al., 2002).   

Straight-line length (SLL) has been shown to be an accurate indicator of skeletal 

(bone) mass and total body mass, i.e., the natural logarithms SLL, skeletal mass and total 

body mass, result in a linear relationship between SLL and skeletal mass, and between 

SLL and total body mass (Cattet et al., 2002).  Hence, SLL is also an indicator of body 

size (Cattet et al., 2002).  SLL has the ability to capture long term effects without 

seasonal fluctuations.   Finally, SLL was selected as the variable of choice as an initial 

investigation of the correlation between straight-line length and environmental variables 

revealed that it had stronger relationships with the environmental variables than BCI. 

Also, more records were available for SLL than BCI for the study area. For these reasons, 

SLL was chosen as the dependent variable for model development; although BCI 

warrants further investigation in future work. 

To facilitate the interpretation of straight-line length as an indicator of good or 

poor health, and to allow males, females, adults and subadults to be considered 

simultaneously, SLL was transformed to values between 0 and 1. These transformed 



 

 

86 

values represent the degree of growth on a continuum, where 1 indicates the best 

possible growth and 0, the worst. The transformation of the raw SLL values to scaled 

values was based on thresholds indicating the transition between poor, ok and good 

values, provided by Marc Cattet, a veterinary scientist with the Canadian Cooperative 

Wildlife Health Centre, in 2008. These are shown in Table 4-9. 

Table 4-9. Thresholds for good and poor values (Cattet, 2008) 

 

The approach used was based on Fuzzy Set Theory (Zadeh, 1965). Fuzzy Set 

Theory allows quantitative work to be conducted on fuzzy data or with fuzzy concepts. In 

contrast to Boolean logic which requires statements to be true or false, Fuzzy Set Theory 

permits statements to be true with a certain possibility, or properties to partially belong to 

one or more sets (Burrough & McDonnell, 1998). The possibility of being true, or the 

degree of membership of an object, z, to a particular set, A, can be assigned using a 

mathematical membership function (MFF

( )( ) ZzzMFzA F
A ∈=  allfor     ,

).  Formally, a fuzzy set is thus defined as 

follows (Zadeh, 1965) 

.       4.5 

 The degree of membership, or truthfulness, of a statement falls between [ ]0,1 . The closer 

it is to one, the more z belongs to A. In this research, the transformed value of SLL, 

Health 
Component 

Variable Expert identified 
thresholds for poor values 

Expert identified 
thresholds for good values 

Growth straight-
line length 

• adult female < 152 
• subadult female < 137 
• adult male  < 174 
• subadult male  < 141 

• adult female > 164  
• subadult female > 154 
• adult male > 186 
• subadult male > 160 
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ranging between 0 and 1, indicates the degree to which the observed SLL can be 

considered a good health score.   

In this research a sinusoidal function was used as the membership function to 

assign each of the variables to the interval [0, 1].  Three forms of the sinusoidal 

membership function are shown in Figure 4-11, and are defined by the following 

equations (Burrough & McDonnell, 1998) 
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The combination of equations 4.6 and 4.7 results in Figure 4-11 a), 4.7 and 4.8 

gives c), and b) is constructed from all equations. b1 and b2 correspond to the values at 

which the membership function equals 0.5 (Burrough & McDonnell, 1998).  d1 and d2, 

control how gradually or rapidly the transition occurs between 0 and 1 by defining the 

width of the transition zone (Burrough & McDonnell, 1998). These can be informed by 

the observation precision.     
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Figure 4-11. Sinusoidal membership functions 
 

Since a longer straight-line length is considered better than a shorter length, only 

the left-sided sinusoidal function was needed (equations 4.6 and 4.7, shown in Figure 

4-11 a)). In this study b1 is the average of the thresholds for good and poor, and d1

( )
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 is the 

measurement precision estimated at 9 % of the measured value (Cattet, 2008): 

         4.9 

  Due to differences in straight-line length among adult males, adult females, 

subadult males and subadult females (Schwartz, et al., 2003; Cattet, 2008, personal 

communication), different thresholds were used for each reproductive group resulting in 

different curves for each. The final membership function curves for each reproductive 

group are shown in Figure 4-12. 
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Figure 4-12. Membership functions for straight line length in each reproductive 
group 
 

After transformation there were no statistical differences between reproductive 

classes.  Boxplots of the transformed straight-line length per reproductive class and 

results of an ANOVA assessment are shown in Figure 4-13 and Table 4-10. 
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Figure 4-13. Boxplots of SLL100 for reproductive classes. AF = adult females,     
AFC = adult females with cubs, AM = adult males, SF = subadult females and SM = 
subadult males.  

Table 4-10. Summary of ANOVA results for SLL100 

Source of variation Sum of 
squares 

Degrees of 
freedom 

Mean square F value Pr ( > F ) 

AF, AFC, SF, AM, SM 0.2079 4 0.0520   0.9157 0.4585 
Residuals 5.0517   89 0.0568        
4 classes: AF, SF, AM, SM 0.1947   3 0.0649   1.1534 0.3321 
Residuals 5.0649   90 0.0567 
Males vs Females 0.0415 1 0.0415 0.7315 0.3946 

 Residuals 5.2181 92 0.0567 
Adults vs subadults 0.1352   1 0.1352   2.4274 0.1227 

 Residuals 5.1244   92 0.0557   
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4.3.5 Linear regression models 

After completing home range estimation, the computation of environmental variables per 

home range, and the selection and transformation of an appropriate health variable, it was 

possible to create OLS linear regression models.  Several multivariate models were 

developed, starting from universal models in which all variables that were not highly 

correlated with each other (r < 0.7) or a linear combination of each other were included. 

Backward elimination was used to remove variables sequentially such that each variable 

removed would cause the largest decrease in the AIC score (Burnham & Anderson, 1998; 

Golberg & Cho, 2004).  Those models with the lower AIC scores and a higher adjusted 

coefficient of determination were considered more predictive and explanatory.  This 

process was stopped once the removal of another variable would cause Akaike’s 

information criterion (Akaike, 1973) to increase.  Akaike’s information criterion (AIC) is 

defined as (Burnham & Anderson, 1998) 

( ) K2ˆlog2AIC 2 +−= σ ,        4.10 

where 2σ̂  is the estimated variance, and K  is the number of estimated parameters 

including the intercept and the variance.  If the sample size is small, AIC is adjusted for a 

small sample size using the following equation 

( ) ,
1
12AICAICc −−

+
+=

Kn
KK         4.11 

where n is the sample size.  Generally, the AICc is advocated when n / k < 40 (Burnham 

& Anderson, 1998).  

R, version 2.6.2 (The R Foundation for Statistical Computing, 2008), was used for 

this analysis.  



 

 

92 

Models were screened for outliers using a variety of diagnostic plots. If any 

observations were found to have a Cook’s distance greater than one, they were examined 

(Golberg & Cho, 2004, p. 273).  Cook’s distance measures the effect of an observation on 

all the coefficient estimates (Golberg & Cho, 2004, p. 272).  Those observations with a 

large Cook’s distance and leverage were investigated to determine if these observations 

were perhaps not part of the same population as the other observations, or perhaps 

erroneous. If there was no justifiable reason to remove them from the study, they were 

retained in the model, even if they reduced the overall fit of the model.  

The models were also checked for multicollinearity among the explanatory 

variables, or regressors, which can cause large variances and covariances of the estimated 

coefficients (Faraway, 2002, p. 291; Montgomery & Peck, 1982). As a result of this, t-

tests are more likely to fail to identify important variables.  Multicollinearity occurs when 

there is near linear dependencies between two or more regressors in the model 

(Montgomery & Peck, 1982, p. 287).   

Three methods were used to check for the presence of multicollinearity. These 

were the examination of i) the correlation matrix of the predictors, ii) the variance 

inflation factors, and iii) condition numbers (Faraway, 2002, pp. 116 - 118; Montgomery 

& Peck, 1982, pp. 288 - 300). Typically, if correlations are greater than 0.9, 

multicollinearity is a problem (Golberg & Cho, 2004, p. 385). In this case one or more of 

the offending variables were removed from the model. The variance inflation factor (vif) 

of the jth

21
1

j
j R

vif
−

=

 regressor is given by (Montgomery & Peck, 1982, p. 300)  

,          4.12 
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where 2
jR  is the coefficient of determination obtained when the jth

02 =jR

 variable is regressed 

on the remaining regressors. In a perfectly orthogonal dataset  and the variance of 

parameter estimates is minimized.   If vifj is greater than 10, it is likely that 

multicollinearity is present and that the jth parameter is poorly estimated (Montgomery 

and Peck, 1982, p.300). The condition score, κj

j
j λ

λ
κ max=

, are computed as follows (Faraway, 

2002) 

          4.13 

where λj are the eigenvalues and λmax 

A problem with this method is that it is not clear which design matrix to use (Golberg & 

Cho, 2004, p. 380).  It has been recommended to center and scale the design matrix 

before calculating the eigenvalues and condition numbers (Golberg and Cho, 2004). In 

this study the design matrix was centered and scaled such that the variance equalled one 

before calculating the condition numbers. 

is the maximum eigenvalue of the variance-

covariance matrix of the estimated coefficients.  If one or more condition numbers are 

equal to or greater than 30, then at least one near linear dependence exists among the 

explanatory variables (Faraway, 2002, p. 117).  

Once the issues of outliers and multicollinearity were satisfactorily resolved, a 

series of diagnostics plots were created to examine the residuals for heteroskedasticity 

and non-normality.   
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To determine the relative likelihood of each model given the data, the weights 

of each model was computed and then ranked. First the differences between all AIC 

scores and the lowest AIC score were computed (Burnham & Anderson, 1998, p. 71): 

minAICAIC −=∆ ii .         4.14 

The differences were then used to calculate the Akaike weights as follows (Burnham & 

Anderson, 1998, p. 75) 

∑
=







 ∆−







 ∆−

= n

r
r

i

iw

1 2
1exp

2
1exp

 ,        4.15  

where Δr is the sum of all Akaike differences, Δi

Once the models were ranked and compared using Akaike’s weights and the 

evidence ratio, it was then possible to select the best model for testing for spatial 

dependence in the residuals. This is discussed further in the next section. 

. Further, the evidence ratio can be 

computed as the Akaike weight of one model over the weight of the other (Burnham & 

Anderson, 1998, p. 75).  This measures the relative likelihood of model pairs and is 

useful for comparing any two models.  If the ratio is small for a pair of models then there 

is weak support that one model is better than the other. If the ratio is large then the model 

with smaller weight has strong evidence against it.  A ratio of less than three is 

considered to be poor support for selecting one model over the other (Burnham & 

Anderson, 1998, p. 75). 

This process was carried out for the entire study area A, and repeated for study 

area B. 
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4.4 Developing spatial weights 

A variety of spatial neighbourhood weights were developed to test the residuals of the 

best models for spatial dependence using Moran’s I.   The neighbourhoods tested are 

demonstrated conceptually in Figure 4-14. K-nearest neighbours, distance thresholds, 

inverse distance weights, Gabriel graphs, Delaunay networks, proportion overlap between 

home ranges and family relatedness were used to inform spatial weight matrices.  

The cost surface was employed to develop least cost distance decay weights for 

the subset of data which fell over its coverage. These observations were tested for spatial 

dependence using both Euclidian and least cost distance decay weights for comparison.   

For overlap neighbours, the proportion of overlap between core home ranges was 

used to define weights. These were calculated in two ways 

            , 1
i

ij
i A

A
O =          4.16 

and 

ji

ij
i AA

A
O

+
=2  .         4.17  

These will be referred to as overlap # 1 and overlap # 2 for simplicity.  

Family relationships were also used to define weight matrices. Genetic 

relatedness was expected to cause similarity or dependence in SLL among related bears.  

Weights were equal to the inverse of the number of degrees of separation to a maximum 

of two degrees of separation.  This allowed the inclusion of family relations between 

grandparents and offspring, as well as aunts/uncles and nieces/nephews.   
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The point of maximum use from each home range utilisation surface was used 

as the centroid from which to determine distance-based neighbourhoods, including k-

nearest neighbours, distance-threshold and distance decay weights.   

 

Figure 4-14. Spatial neighbourhoods  

 

4.5 Developing spatial autoregressive models 

Those spatial weight matrices for which significant spatial dependence was detected (p < 

0.05), were selected to test spatial error, lag and Durbin models (See Chapter 2, section 

2.4.2).   Simultaneous autoregressive models were used rather than conditional as the 
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former do not require the spatial matrices to be symmetric and are commonly applied 

in spatial econometric approaches (Anselin & Bera, 1998, p. 255).  Again R, version 

2.6.2 (The R Foundation for Statistical Computing, 2008), was used for this analysis. 

The log-likelihood ratio test was used to evaluate whether the inclusion of a 

spatial parameter was a significant improvement over the ordinary linear model.  The 

OLS and spatial autoregressive models were ranked and their relative strength was 

assessed using AIC and Akaike weights.   For the spatial autoregressive model, equation 

4.10 is slightly modified for maximum likelihood estimation (Burnham and Anderson, 

1998, p. 61): 

Kz 2))|(log(2AIC +−= θ


L ,        4.18 

where ))|(log(( zθ


L is the log-likelihood of the maximum likelihood estimation of the 

parameters,θ


 (includes explanatory variables, intercept, variance and spatial 

parameter(s)), given z (Burnham & Anderson, 1998).  It can be adjusted in the same 

manner as equation 4.11 for small sample sizes. 
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Chapter Five: Results and Discussion  

 

The results of this research are presented in this chapter along with a detailed discussion 

relating these to the hypotheses and objectives listed in chapter one.  Findings for study 

area A and B (see Figure 4.1) are shown separately in sections 0 and 5.2 respectively. 

The results of the Moran’s I tests for dependence in the transformed straight-line length 

variable are shown in section 5.1.1. OLS model descriptions, parameter estimates and 

diagnostics tests are found in section 5.1.2 and 5.2.1. Moran’s I tests for spatial 

dependence in the residuals of the OLS models are presented in section 5.1.3 and 5.2.2. 

Those spatial weight matrices that were able to capture significant dependence were used 

to develop the spatial autoregressive models shown in section 5.1.4 and 5.2.3.   The 

significance of the selected environmental parameters, spatial neighbourhoods and spatial 

autoregressive models are discussed in depth in section 5.3. Finally, the findings of this 

research are summarised.  

 

5.1 Results for study area A  

 

5.1.1 Spatial dependence in the dependent variable 

The dependent variable, transformed straight-line length (SLL100) was found to have 

strong positive spatial dependence using several spatial neighbourhoods. All nearest 

neighbour (NN) neighbourhoods from first to twenty-second were tested and all found to 
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have significant dependence. Thirteen NN had the smallest probability of being 

generated from a random process, p = 1.6e-7 and Moran’s I = 0.16.  Distance threshold 

neighbours were also found to have significant positive dependence.  

Neighbourhood weights were also based on the proportion of overlap between 

neighbours based on the following two equations   1
i

ij
i A

A
O = (overlap # 1) and 

ji

ij
i AA

A
O

+
=2 (overlap # 2) as were described in Chapter 4 in equation 4.15 and 4.16.  

Both of these weight neighbourhoods showed significant positive spatial dependence, p = 

0.0005 and p = 0.001 respectively. The family-based neighbourhoods did not detect 

significant dependence, but this was most likely due to the fact that 57 observations had 

no family information available. The results are summarised in Table 5.1 

Table 5-1. Moran's I tests for SLL100 

Neighbourhood & 
weights 

Test Observed 
Moran’s I 
(Iobs

Pr (I < I

) 

obs

13 NN – row 
standardised 

) 

Randomisation  0.16 1.6e-7 

0.6 x, 0.75 x, 1.25 x, 
1.75 x  and 2 x 48 km 

Randomisation 0.04 to 0.16 0.0006 to 0.016 

Overlap # 1  Randomisation 0.27 0.0005  
Overlap # 2 Randomisation 0.25 0.001 
 

Moran’s I tests rely on the assumption of a constant mean and variance in the 

tested variable (Schabenberger and Gotway, 2005, p. 22). Any spatial clustering in 

SLL100 may be due to one or more spatially autocorrelated environmental variables. 

Thus, OLS regression models relating SLL100 to environmental variables were 
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developed and the residuals of these models were tested for spatial dependence.  The 

results are shown in section 5.1.2 and 5.1.3. 

 

5.1.2 OLS Linear model 

It was intended that several universal models be created that include representative 

variables from each of the categories: terrain, water availability, habitat type and human 

disturbance. However, several variables were highly correlated with each other thereby 

limiting which variables could be included within the same models.  The variables slope 

and elevation were found to be highly correlated to each other and with distance to roads 

and wells, closed canopy, wetland types, regenerating land types, herbaceous and 

shrubby vegetation, as well as open mixed and deciduous forests. The correlated 

variables are shown in Table 5-2.  

Table 5-2. Correlation between explanatory variables 

Variables Elevation Slope 
SLL100 -0.6229 -0.6883 
Elevation 1.0000 0.8848 
Slope 0.8848 1.0000 
Distance to roads 0.8561 0.8411 
Distance to wells 0.9051 0.8757 
Distance to roads & wells 0.8565 0.8401 
Canopy closure -0.7202 -0.5692 
Herbaceous and shrubby veg 0.8804 0.7717 
Open mixed forest -0.7364 -0.6223 
Open deciduous forest -0.7366 -0.5560 
Wetland herbs -0.8464 -0.9075 
Wetland forests -0.6687 -0.7487 
Wetlands (herbs + forests) -0.6753 -0.7617 
Regenerating barren lands -0.8242 -0.7720 
Regenerating forests -0.7367 -0.6332 
Regenerating (forests + barren) -0.7951 -0.7184 
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This precluded the combination of elevation, slope, disturbance measures 

(distance to roads, wells, and or roads and wells), herbaceous and shrubby vegetation, 

and the various wetland and regenerating vegetation classes in the same model.  Canopy 

closure, open mixed forest and open deciduous forests were also highly correlated with 

elevation, but less than 0.7 for slope. 

Considering these constraints, the candidate models shown in Table 5-3 were 

obtained using a process of backward elimination (Golberg & Cho, 2004) and were 

ranked using Akaike’s weights (Burnham & Anderson, 1998). The highest ranked model 

is model E with three variables: slope (Slope), open deciduous forest (OpDecFst) and 

distance to water (Dist2Wat).   

Table 5-3. Ranked candidate OLS linear models for study area A 

Model Variables K AIC Δ w i Evidence 
ratio 

E Slope + OpDecFst + Dist2Wat 4 825.21 0 0.277 1.000 

D Slope + OpDecFst + Northeast + Dist2Town 5 826.16 0.952 0.172 1.610 

I Slope + OpDecFst + Northeast 4 826.51 1.296 0.145 1.912 

J Slope + OpDecFst  3 826.83 1.615 0.124 2.242 

F Slope + log(OpDecFst+0.01) + Northeast + MaxX 5 827.84 2.623 0.075 3.712 

G Slope + log(OpDecFst+0.01) + Northeast 4 828.70 3.486 0.048 5.713 

A Slope + Northeast 3 828.90 3.692 0.044 6.335 

B Slope + East 3 829.02 3.811 0.041 6.721 

K Slope +  OpMixFst+Northeast + Dist2Wat 5 829.23 4.022 0.037 7.472 

H OpDecFst + WetAll + RegAll + Dist2Wat 5 829.53 4.320 0.032 8.670 

C Elev + Dist2Wat 3 833.39 8.180 0.005 59.728 

 

Model E is very similar to models D, I, and J, which have Δ i < 2. According to 

Burnham and Anderson (1998, p. 70), those models with AIC differences of two or less 

from the best model are well-supported by the data, while those models that have Δ i > 4 
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are unlikely to be the best models given the data. Also, the evidence ratio, which 

compares the relative likelihood of each model, shows that model E is just over two times 

more likely than model J.   

The key variables which distinguish the top four from the other models are slope 

and open deciduous forest (untransformed). The top model, E, was examined more 

closely for fit and diagnostics. Table 5-4 provides the parameter estimates of model E, as 

well as its overall fit and AIC score.  

Table 5-4. Model E parameter estimates and fit 

Variable Coefficient Std.Error t-Statistic Pr(>|t|)  

Intercept 76.5402 6.056108 12.63851 < 2.00E-16 *** 
Slope -1.6715 0.390553 -4.27991 4.66E-05 *** 
OpDecFst 5.0631 1.997701 2.534462 0.0130 * 
Dist2Wat -2.9453 1.56789 -1.87849 0.0636 . 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
F-statistic: 19.092 Pr(>F) 1.15e-09 
Number of 
observations 

94 Degrees of freedom 90 

Number of variables 4 R-squared 0.389 
AIC 825.213 Adjusted R-squared 0.369 
Mean dependent 
variable 

54.311 Log Likelihood -407.606 

S.D. of dependent 
variable 

23.654 Sum of squared 
residuals 

32141.200 

Sigma-squared 357.124 Sigma-square ML: 341.928 
S.E. of regression 18.898 S.E. of regression ML 18.491 

 

Slope is by far the most significant predictor with a coefficient of -1.67 and a 

probability of p < 0.0001. This means that as the slope increases, straight line length 

decreases.  Open deciduous forest is positive with a coefficient of 5.06 and p < 0.05. 

Distance to water has a negative coefficient of – 2.95 and a probability of p < 0.1.  
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Although the adjusted R2 is only 0.36, the model is highly significant since the F-test1

Various diagnostics were conducted to test the normality and heteroskedasticity of 

the residuals. Also, the possibility of multicollinearity was examined using the 

multicollinearity condition number, the correlation matrix of the parameter estimates, and 

the variance inflation factors. These diagnostics are shown in 

 

has p = 1.14e-009.    

Table 5-5 and Figure 5-1.   

Table 5-5. Diagnostics of model E 

Regression Diagnostics 
Multicollinearity condition number 6.516736 
Test of normality of errors 
Test  df value p-value 
Jarque-Bera 2 1.133947 0.56724 
Diagnostics for Heteroskedasticity 
Random Coefficients 
Test df value p-value 
Breusch-Pagan test 3 3.847241 0.278439 
Koenker-Bassett test 3 4.031967 0.258033 
Specification Robust Test 
Test df value p-value 
White 9 11.14075 0.266185 
Correlation Matrix 

 Intercept Slope OpDecFst Dist2Wat 
Intercept 1 -0.547 -0.495 -0.542 
Slope -0.547 1 0.446 -0.302 
OpDecFst -0.495 0.446 1.000 -0.059 
Dist2Wat -0.542 -0.302 -0.059 1 
Variance Inflation Factors 
Intercept Slope OpDecFst Dist2Wat 
2.0283 1.3797 1.2584 1.1091 

 

The tests for heteroskedasticity and non-normality of errors are not significant. 

The multicollinearity condition number is well below 10, the correlations are lower than 

                                                 

1 The F-test tests whether the variance explained by the regression is statistically different from the 
variance caused by error (Underhill & Bradfield, 1996).  If the F-test is statistically significant it can be 
concluded that there is a significant relationship between the dependent variable and explanatory variables.  
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0.9 and the variance inflation factors are well below 10. These all indicate that 

multicollinearity is not present to any significant degree since these values are all within 

their normal bounds.   

The diagnostics plots in Figure 5-1 seem to confirm these results.  Observation 45 

draws attention as a potential outlier due to the fact that it has a much larger Cook’s 

distance than the other observations. However, Cook’s distance is well below 1 (Golberg 

& Cho, 2004) and does not have a particularly large leverage; hence it has been retained 

for this research.   

 

Figure 5-1. Diagnostic plots of Model E 
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Figure 5-2 shows the spatial distribution of the explanatory variables of model 

E. To facilitate visualisation, Voronoi polygons were generated from the core home range 

centroids.  

 

Figure 5-2. Spatial distribution of slope, open deciduous forest, distance to water 
and SLL100  
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SLL100 appears to be positively spatially autocorrelated with lower values 

towards the mountains and higher values towards the mid-northeast. This corresponds to 

the Moran’s I findings in section 5.1.1.  There are also patchworks of contrasting SLL100 

values appearing in the northwest especially. It can also be seen from the figure that slope 

is highly spatially autocorrelated, as is open deciduous forest (OpDecFst) and distance to 

water (Dist2Wat). This visual pattern in each of the explanatory variables was confirmed 

using Moran’s I with one to twenty nearest neighbours. All neighbourhoods were found 

to have highly significant positive spatial dependence. The results for five nearest 

neighbours are shown in Table 5-6. 

Table 5-6. Results of Moran's I tests for slope, open deciduous forest and distance to 
water in study area A 

Variable Neighbourhood Test Observed 
Moran’s I (Iobs

Pr (I
) 

obs

Slope 

 > I) 

 
5 NN – row 
standardised 

Randomisation 
  

0.6786   < 2.2e-16 

Open deciduous 
forest 

5 NN – row 
standardised 

Randomisation 
 

0.4362 1.792e-15 

Distance to water 5 NN – row 
standardised 

Randomisation 
 

0.4184 2.560e-14 

 

The model E-predicted SLL100 values shown in Figure 5-3 roughly fit the trend 

of the observed SLL100, with lower values in the mountains higher values towards the 

north and east. However, it does not reproduce the range of values observed in the raw 

data, strongly under predicts SLL100 in the middle east of the region and does not seem 

to capture the heterogeneity observed in SL100.  The residuals (also in Figure 5-3) appear 

to have some clustering as well as contrasting values adjacent to each other. 
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Figure 5-3. Predicted values and residuals of model E 

5.1.3 Spatial dependence tests 

Due to the fact that significant spatial dependence was found in the SLL100 data (section 

5.1.1), it was deemed necessary to test whether model E had accounted for the spatial 

dependence present in the data, or whether it still remained in the residuals.  

Moran’s I was therefore computed for the residuals of model E using one to 

twenty nearest neighbours (NN). Significant negative spatial dependence was found for 

three to eight NN.  Negative dependence is a rare finding, but does reflect the contrasting 

residuals seen in Figure 5-3. Those significant NN neighbourhoods and the Moran’s I 

results are shown in Table 5-7.   All neighbourhoods were row-standardised and Moran’s 

I was tested using a normal assumption (Normal), exact (Exact) and a Saddlepoint 

(Saddle) approximation test. 
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Table 5-7. Moran's I tests on model E residuals using nearest neighbour weights 

Neighbourhood & 
weights 

Test Observed 
Moran’s I 
(Iobs

Pr (I < I

) 

obs

3 NN – binary & row 
standardised 

) 

 

Normal 
Exact 
Saddle  

- 0.1789 0.0195 
0.0118 
0.0118 

4 NN – binary & row 
standardised 
 

Ordinary 
Exact 
Saddle point 

-0.1405 0.0.370 
0.0252 
0.0252 

5 NN - binary & row 
standardised 
 

Ordinary 
Exact 
Saddle point 

-0.1367 0.0223 
0.0102 
0.0102 

6 NN - binary & row 
standardised 
 

Ordinary 
Exact 
Saddle point 

-0.1023 0.0583 
0.0403 
0.0404 

8 NN - binary & row 
standardised 
 

Ordinary 
Exact 
Saddle point 

-0.0891 0.0574 
0.0355 
0.0356 

 

Three and five NN resulted in the most significant p-values for the observed 

Moran’s I.  Neighbour distances ranged between 0.3 km and 66 km of each other for 

three NN, and between 0.3 km and 92 km for five NN.  The spatial arrangement of these 

neighbourhoods is shown in Figure 5-4. From this figure it appears that these nearest 

neighbour configurations distinguish three spatial groups that correspond to the three 

population units separated by Highway 11 and Highway 16. There is evidence that these 

populations are genetically distinctive (Stenhouse, 2007). 

Neighbourhoods defined by distance thresholds were also tested.  Distance 

thresholds were based on multiples of the largest nearest neighbour distance of 48.425 

km. Multiples used were 0.6, 0.75, 1, 1.25, 1.5, 1.75 and 2 and neighbourhood weights 

were row-standardised. The only neighbourhood found to be significant was 1.5 times the 
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maximum nearest distance, i.e. 72.638km.  Negative spatial dependence was detected.  

The results are shown in Table 5-8. 

 

 

Figure 5-4.  Three and five nearest neighbours 
 

Table 5-8. Moran's I tests on Model E residuals using distance threshold 
neighbourhood, where threshold = 73 km. 

Neighbourhood Test Observed 
Moran’s I (Iobs

p-value (I
) 

obs

Distance threshold = 1.5 x 
max. NN dist – binary 
weights 

 > 
I) 

Normal 
Exact 
Saddle 

-0.0625 0.9550 
0.9705 
0.9717 

 
The spatial distribution of this neighbourhood configuration is shown in the figure 

below. 
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Figure 5-5. Distance threshold neighbours. Threshold = 73 km 

The scales of three and five NN neighbourhoods and the distance threshold 

neighbourhoods shown in Table 5-9 are very similar.  Although the distance threshold 

neighbourhood has connections between population units, the within group connections 

occurred at a much higher frequency. 

Table 5-9. Neighbourhood distances for 3 NN, 5 NN and distance threshold 
neighbourhoods 

 Minimum 
distance 

Median 
distance 

Maximum 
distance 

3 NN 0.3 km 13.1 km 66.5 km 
5 NN  0.3 km  16.6 km 91.7 km 
Distance threshold = 72.9 km 0.3 km 41.5 km 72.9 km 

 

The relative neighbour graph, Gabriel graph and Delaunay network graph 

neighbourhoods, the overlap neighbourhoods # 1 and 2, and the family neighbourhood 

did not detect significant spatial dependence. 
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5.1.4 Spatial autoregressive models 

Spatial lag, error and Durbin models were developed using those spatial neighbourhoods 

that showed significant spatial dependence.  All neighbourhood weights were row-

standardised, forcing an upper limit of 1 for the estimated spatial parameter. The 

explanatory variables from model E (slope, open mixed forest and distance to water) 

were used to develop the spatial autoregressive models. Only simultaneous 

autoregressive (SAR) models were implemented as these do not require symmetrical 

weight matrices.  The SAR models were ranked according to their Akaike weights and 

are shown in Table 5-10. All models have a significant spatial parameter (p < 0.05) 

according to the log-likelihood test.   

  The top eight top models have considerable support as the best models. Their 

Akaike differences are less than three and the evidence ratio is less than four. After these 

eight, there is quite a jump in the Akaike differences and evidence ratios. Therefore these 

models are not well supported by the data.  Six out of the top eight spatial models are 

error models and two are lag models, while Durbin models fair the worst due to the larger 

number of parameters estimated.  Almost every spatial neighbourhood appears once in 

the top eight models except seven NN. Only five NN appears twice, including rank one 

model.  



 

 

112 

Table 5-10. Ranked spatial autoregressive models for study area A 

Rank Model Neighbourhood Type k AIC AICc Δ wi Evidence 
ratio 

i lamda/ 
rho 

p -
value 

1 5NN_err 5 NN row standard error 6 818.11 820.74 0.00 0.200 1.000 -0.706 0.0025 
2 Dist_thre_72km_err dist threshold = 73 km error 6 818.56 821.19 0.45 0.160 1.252 -1.507 0.0033 
3 3NN_err 3 NN row standard error 6 819.26 821.89 1.15 0.113 1.777 -0.465 0.0048 
4 8NN_err 8 NN row standard error 6 819.35 821.98 1.24 0.108 1.859 -0.959 0.0050 
5 4NN_error 4 NN row standard error 6 820.08 822.71 1.97 0.075 2.678 -0.539 0.0076 
6 5NN_lag 5 NN row standard lag 6 820.30 822.93 2.19 0.067 2.989 -0.465 0.0085 
7 6NN_err 6 NN row standard error 6 820.49 823.12 2.38 0.061 3.287 -0.713 0.0095 
8 3NN_lag 3 NN row standard lag 6 820.76 823.39 2.65 0.053 3.762 -0.370 0.0111 
9 4NN_lag 4 NN row standard lag 6 822.19 824.82 4.08 0.026 7.691 -0.369 0.0250 

10 7NN_err 7 NN row standard error 6 822.23 824.86 4.12 0.026 7.846 -0.643 0.0256 
11 6NN_lag 6 NN row standard lag 6 822.49 825.12 4.38 0.022 8.935 -0.437 0.0297 
12 Dist_thre_72km_Dur dist threshold = 73 km, 

row 
Durbin 9 819.02 825.23 4.49 0.021 9.449 -1.597 0.0011 

13 5NN_Dur 5 NN row standard Durbin 9 819.16 825.37 4.63 0.020 10.135 -0.750 0.0009 
14 8NN_lag 8 NN row standard lag 6 823.17 825.80 5.06 0.016 12.554 -0.437 0.0443 
15 7NN_lag 7 NN row standard lag 6 824.23 826.86 6.12 0.009 21.328 -0.360 0.0840 
16 Dist_thre_72km_lag dist threshold = 73 km, 

row 
lag 6 824.80 827.43 6.69 0.007 28.361 -0.419 0.1201 

17 6NN_Dur 6 NN row standard Durbin 9 821.63 827.84 7.10 0.006 34.846 -0.804 0.0033 
18 8NN_Dur 8 NN row standard Durbin 9 821.72 827.93 7.19 0.005 36.450 -0.961 0.0037 
19 4NN_Dur 4 NN row standard Durbin 9 823.61 829.82 9.08 0.002 93.780 -0.553 0.0058 
20 7NN_Dur 7 NN row standard Durbin 9 824.56 830.77 10.03 0.001 150.799 -0.676 0.0166 
21 3NN_Dur 3 NN row standard Durbin 9 824.89 831.10 10.36 0.001 177.851 -0.466 0.0054 
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The AIC score of the top spatial autoregressive model (5NN_err) is 818.11, 

which is considerably smaller than that of the top OLS model (E) with AIC = 825.213. 

Thus it appears that the spatial autoregressive models are a significant improvement over 

the OLS models.  

Although the estimated spatial parameters (lamda/rho) appear large in comparison 

to the usual positive spatial parameters, they are not incorrect.  According to 

Schabenberger and Gotway (2005, p. 336) using a row-standardised weights matrix 

forces an upper limit of one for rho/lamda, but there is no lower limit. 

Table 5-11 provides a comparison of the parameter estimates of the best spatial 

autoregressive model (5NN_err) and the best OLS model (E). 

Table 5-11. Comparison of parameters from model E and model 5NN_err 

Model type Variables Estimate Std. Error z value   Pr(>|z|) 
Error – 5 NN Intercept 78.335     4.096 19.126   < 2.2e-16 *** 

OLS Intercept 76.540 6.056 12.639  < 2.0e-16 *** 
Error – 5 NN Slope -1.686     0.260 -6.482      9.1e-11 *** 

OLS Slope -1.672    0.390 -4.280     4.7e-05 *** 
Error – 5 NN OpDecFst 3.632     1.500   2.420      0.0155  * 

OLS OpDecFst 5.063    1.998   2.535     0.0130  * 
Error – 5 NN Dist2Wat   -3.257     1.039 -3.135      0.0017  ** 

OLS Dist2Wat -2.945    1.568   -1.879      0.0636  . 
Error – 5 NN Lamda -0.706                      n/a n/a    0.0025  ** 

 

It can be seen that the parameter estimates do not change significantly between 

models, but the significance of all variables increases. Distance to water increases from p 

= 0.06 to p = 0.002, and slope from 5e-5 to 9e-11.  Maps of the predicted values and 

residuals of model 5NN_err show improvement over the OLS model, E. For comparison, 

maps of the observed SLL100, SLL100 predicted from model E, SLL100 predicted from 

model 5NN_err, and the residuals of model 5NN_err are presented in Figure 5-6.  



 

 

114 

 

Figure 5-6.  A comparison of observed SLL100, model E -predicted SLL100, model 
5NN_err - predicted SLL100, and the residuals from Model 5NN_err  
 

The residuals of 5NN_err have decreased slightly from [-48.0 to 43.9] for the 

OLS model, to [-47.3 to 38.7].  The arrows in the figure point to a few observation units 

where the spatial autoregressive model more accurately predicts SLL100. All predicted 

intervals are based on the original equal interval ranges of the observed SLL100. 
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Finally, the residuals are examined for normality in the diagnostics plots 

below.  It appears the residuals are approximately normally distributed, although there is 

some divergence in the upper tail.  

 

Figure 5-7. Diagnostics plots of residuals from model 5NN_err 

 

5.2 Results for study area B 

 

5.2.1 OLS linear models 

Using the same procedures as previously, the following OLS linear models were 

developed and then ranked using AICc scores.  Twenty models were ranked, but only the 

top sixteen are shown here in Table 5-12.  The top three models are most likely the best 

models with Δ i < 2 and evidence ratios < 3. 
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Table 5-12. Ranked OLS models for study area B 

Rank Model Environmental Variables k AICc Δ wi Evidence i 
ratio 

1 E Slope + Northeast 4 340.03 0.00 0.294 1.000 
2 F Slope + Northeast + OpMixFst 5 340.22 0.19 0.268 1.097 
3 H Slope + DecFst 4 341.03 1.00 0.179 1.648 
4 A Slope 3 342.28 2.25 0.095 3.087 
5 J Slope + OpDecFst 4 342.36 2.33 0.092 3.209 
6 K Elev + Northeast + MaxX  5 345.26 5.23 0.021 13.689 
7 I MaxX + Northeast + OpDecFst + RegAll 6 347.15 7.12 0.008 35.171 
8 C Northeast + Herbs + OpMixFst + CldFst 6 347.45 7.42 0.007 40.838 
9 D Flat + Northeast + OpFst + log(RegFst+1) 6 347.97 7.94 0.005 52.872 
10 G Northeast + Herbs + OpMixFst + CldFst + 

log(WetFst+1) 
7 348.19 8.16 0.005 59.064 

11 L MaxX_km + Northeast + Herbs + CldFst 6 348.35 8.32 0.005 63.960 
12 Q North + OpDecFst 3 348.52 8.48 0.004 69.458 
13 O North + OpDecFst + RegAll 5 348.61 8.58 0.004 73.128 
14 M Northeast + Dist2Wat + OpDecFst + 

RegAll 
6 348.83 8.80 0.004 81.619 

15 R MaxX + Northeast + Dist2Town + Herbs +  
CldFst 

7 348.94 8.90 0.003 85.821 

16 B MaxY + North + OpFst 5 350.89 10.86 0.001 227.649 

 

The most significant variable again seems to be slope which appears in the top 

five models, but is absent in the following models.  The top two models are distinguished 

from the other three by the inclusion of northeast aspect and appear to be slightly more 

supported than the other three top models.  An examination of diagnostics plots to assess 

normality and heteroskedasticity of the residuals of the two top models (E and F) 

indicated that model F was the most normal and least heteroskedastistic. Due to these 

desirable characteristics model F was chosen for further analysis.  The fit and parameters 

of model F are shown in Table 5-13 and diagnostics in Table 5-14.  



 

 

117 

Table 5-13. Model F parameter estimates and fit 

Variable Coefficient Std.Error t-Statistic Pr(>|t|)  

Intercept 86.023 10.800 7.965 2.27E-09  *** 
Slope -2.210 0.564 -3.919 0.0004  *** 
Northeast -86.852 36.501 -2.379 0.0229  * 
OpMixFst 2.166 1.436 1.508 0.1404  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
F-statistic 12.991 Prob(F-statistic) 7.35E-06 
Number of 
observations 

39 Degrees of Freedom 35 

Number of variables 4 R-squared 0.527 
AIC 338.398 Adjusted R-squared 0.486 
Mean dependent 
variable 

56.045 Log likelihood -164.199 

S.D. dependent 
variable 

23.700 Sum of squared 
residuals 

10364.400 

Sigma-square 296.126 Sigma-square ML 265.754 
S.E. of regression 17.208 S.E. of regression ML 16.302 

 

Slope has a negative coefficient and is by far the most significant parameter in the model. 

Northeast aspect is also fairly significant with a negative coefficient.  Open mixed forest 

(like open deciduous forest in model E) has a positive coefficient.  This model has a good 

fit with an adjusted R2

 

 = 0.486. 
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Table 5-14. Diagnostics of Model F 

Regression Diagnostics 
Multicollinearity condition number 8.597951 
Test of normality of errors 
Test  df value p-value 
Jarque-Bera 2 0.5147571 0.773076 
Diagnostics for Heteroskedasticity 
Random Coefficients 
Test df value p-value 
Breusch-Pagan test 3 2.4112 0.4915 
Koenker-Bassett test 3 2.1366 0.5445 
Specification Robust Test 
Test df value p-value 
White 9 6.246471 0.7150195 
Correlation Matrix 

 Intercept Slope OpDecFst Dist2Wat 
Intercept 1 -0.846 -0.664 -0.435 

Slope -0.846 1.000 0.593 0.084 
OpDecFst -0.664 0.593 1 -0.135 
Dist2Wat -0.435 0.084 -0.135 1.000 

Variance Inflation Factors 
Intercept Slope OpDecFst Dist2Wat 

1 1.609143 1.627481 1.063232 
 

It can be seen from Table 5-14 that the multicollinearity condition number is less 

than 10, and the variance inflation factors are all less than 2. The tests for 

heteroskedasticity and normality are not significant indicating that the residuals can be 

assumed to be normally distributed and homoskedastic.  This is confirmed by the 

diagnostics plots below. 
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Figure 5-8. Diagnostics plots of Model F 
  

Observation 36 has a larger Cook’s distance than the other observations; however 

it is well below 1, the usual threshold for concern (Golberg & Cho, 2004).  The 

explanatory variables of model F and the dependent variable, SLL100, are mapped in 

Figure 5-9. 
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Figure 5-9. Spatial distribution of slope, open mixed forest (OpMixFst), northeast 
aspect (Northeast) and SLL100 
 

From Figure 5-9, it is clear study area B has spatial clustering like the larger study 

area. One to ten nearest neighbours were used to test all the variables for spatial 

dependence. The most significant results are shown in Table 5-15.  Only northeast aspect 

did not have significant positive dependence.  
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Table 5-15. Results of Moran's I tests for slope, open mixed forest, distance to 
water and SLL in study area B 

Variable Neighbourhood Test Observed 
Moran’s I (Iobs

Pr (I
) 

obs

SLL100 

 > I) 

7 NN – row 
standardised 

Randomisation 
 

0.222452851 2.229e-06 

Slope 
 

7 NN – row 
standardised 

Randomisation 
  

0.586308293 < 2.2e-16 

Open mixed 
forest 

10 NN – row 
standardised 

Randomisation 
 

0.315870076 2.925e-11 

Neastness 10 NN – row 
standardised 

Randomisation 
 

-0.01858225 0.4411 

 

Figure 5-10 maps the distribution of the residuals and predicted values of model 

F. The predicted values match the spatial pattern of the observed values of SLL100; 

however, the residuals tend to show patterns of both clustering and heterogeneity. 

 

Figure 5-10. Predicted values and residuals of Model F 
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5.2.2 Spatial dependence tests 

The residuals of model F were tested using the same spatial neighbourhoods as used in 

study area A. In addition, least cost distance neighbourhoods were tested since a cost 

surface was available for this area. Least cost distances were used to select nearest 

neighbours and define distance thresholds. Very few of these neighbourhoods were able 

to detect significant dependence.  This is could be due to a conflicting pattern of both 

positive and negative spatial dependence. 

Significant negative spatial dependence was detected using the second largest 

nearest neighbour distance of 16.684 km, shown in Figure 5-11.  Nearest neighbourhoods 

and distance threshold neighbourhoods based on least cost distances computed from the 

cost surface did not find any significant spatial dependence. The residuals of model F 

were also tested for spatial dependence using the two overlap proportions (#1 and #2).  

Results were mildly significant for # 1.  The Moran’s I test results are summarised in the 

table below. 

Table 5-16. Moran's I tests for distance threshold neighbours and overlap 
neighbours, study area B 

Neighbourhood Test Observed 
Moran’s I (Iobs

Pr (I
) 

obs

Distance threshold = 17 km 

 > I) 

Normal 
Exact 
Saddle 

-0.20 0.94 
0.97 
0.97 

Overlap # 1 Normal 
Exact 
Saddle 

-0.05 0.77 
0.79 
0.79 

 

The distance threshold and overlap neighbourhoods are shown in Figure 5-11. 
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Figure 5-11. Distance threshold and Overlapping neighbours 
 

The relationship between the distance threshold neighbourhood and residuals is 

explored further in Figure 5-12 which superimposes the neighbourhood over the 

residuals. This neighbourhood appears to capture the main line of heterogeneity in a 

north-south direction. 
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Figure 5-12. Residuals of model F and the distance threshold neighbourhood. 
 

Using the family neighbourhood to test for spatial dependence, positive spatial 

dependence was found.  The family neighbourhood unfortunately had seventeen bears 

without family relations due to incomplete data.  If this dataset were complete, it is 

hypothesized that stronger spatial dependence would have been detected.  The results are 

shown in Table 5-17. 
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Table 5-17. Moran's I tests for family neighbourhood weights 

Neighbourhood Test Observed 
Moran’s I (Iobs

Pr (I
) 

obs

Family neighbours - row 
standardised 

 > I) 

Normal 
Exact 
Saddle 

0.166 0.173  
0.060  
0.060 

Family neighbours - 
variance stabilised 

Normal 
Exact 
Saddle 

0.166 0.151 
0.048  
0.046 

 

The family-based neighbourhood is shown Figure 5-13.  It is clear that it does not follow 

a conventional spatial pattern. 

 

Figure 5-13. Spatial neighbourhood based on family kinship 
 

5.2.3 Spatial autoregressive models 

Using the distance threshold neighbourhood, the overlap neighbourhoods # 1 and # 2, and 

the family neighbourhood, error, lag and Durbin models were developed and ranked 

using AIC as before.  The ranked models are shown in Table 5-18. 
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Table 5-18. Ranked spatial autoregressive models for study area B 

Model Type Neighbourhood k AICc Δ wi Evidence 
ratio 

i Rho/ 
Lamda 

p -value 

Dist_thre_17km_err error Distance thresh = 16.7 km 6 336.36 0.000 0.433 1.000 λ = -0.737 0.010 
Dist_thre_17km _lag lag Distance thresh = 16.7 km 6 337.04 0.680 0.308 1.405 ρ = -0.509 0.014 
Ovlap1_lag lag Overlap # 1 6 338.77 2.410 0.130 3.337 ρ = -0.563 0.039 
Ovlap2_lag lag Overlap # 2 6 339.19 2.830 0.105 4.116 ρ = -0.577 0.050 
Dist_thre_17km Dur Durbin Distance thresh = 16.7 km 9 342.96 6.602 0.016 27.138 ρ = -0.574 0.008 
Fam_Dur Durbin Family & weighted  9 346.53 10.172 0.003 161.733 ρ = 0.288 0.039 
Ovlap2_Dur Durbin Overlap % 2 9 346.85 10.492 0.002 189.796 ρ = -0.579 0.059 
Fam_Dur Durbin Family - binary 9 347.20 10.842 0.002 226.093 ρ = 0.262 0.060 
Ovlap1_Dur Durbin Overlap % 1 9 347.60 11.242 0.002 276.151 ρ = -0.561 0.066 

 

The top three models provide the best fit to the data.  The error and lag models based on a distance threshold of ~ 17 km 

are very similar. The next most significant model is a lag model with the overlap # 1 neighbourhood.  All of these models 

(except those based on the family neighbourhoods) have negative spatial parameters. Again negative spatial dependence is the 

dominant spatial pattern.  It is interesting to note that the spatial parameters of the family neighbourhood models were positive. 

These models, however, have large Akaike differences and very evidence ratios, indicating that they are very poor models given 

the data.
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Only the first two spatial autoregressive models (Dist_thre_17km_err and 

Dist_thre_17km_lag) provide a slight improvement in the AICc score for model F. AICc 

= 338.4 for model F and AICc

Table 5-19

 = 336.36 and 337.04 for Dist_thre_17km_err and 

Dist_thre_17km_lag respectively. A comparison of the estimated parameters of the OLS 

model and the best spatial error and spatial lag model is given in . 

Table 5-19. Comparison of the parameters of Model F and the best error and lag 
models 

Model Variable Estimate Std. Error z - value Pr(>|z|)  

OLS  Intercept 86.023 10.800 7.965 2.27E-09  *** 

Error – Dist thresh Intercept 78.402 7.308 10.729 < 2.20E-16  *** 

Lag – Dist thresh Intercept 118.778 15.252 7.788 6.88E-15  *** 

OLS  Slope -2.210 0.564 -3.919 0.0004  *** 

Error – Dist thresh Slope -1.748 0.373 -4.689 2.74E-06  *** 

Lag – Dist thresh Slope -2.938 0.572 -5.133 2.86E-07  *** 

OLS – Dist thresh OpMixFst 2.166 1.436 1.508 0.1404  

Error – Dist thresh OpMixFst 2.859 0.928 3.080 0.0021  ** 

Lag – Dist thresh OpMixFst 3.017 1.244 2.425 0.0153  * 

OLS – Dist thresh Northeast -86.852 36.501 -2.379 0.0229  * 

Error – Dist thresh Northeast -85.903 29.521 -2.910 0.0036  ** 

Lag – Dist thresh Northeast -87.414 31.282 -2.794 0.0052  ** 

Error – Dist thresh Lambda -0.737   0.0098  ** 

Lag – Dist thresh Rho -0.509   0.0144  * 

 

In all cases, the error and lag models increase the significance of the explanatory 

variables, while the parameter values themselves do not change significantly.  A visual 

comparison of the observed SLL100, the residuals of model F, and the predicted and 

residual values from model Dist_thre_17km_err can be seen in Figure 5-14.  It appears 

that the error model more accurately predicts the observed SLL100 and the residuals are 

more randomly distributed in space in comparison to model F. The range of the residuals 
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also decreased from [-35.0 to 40.1] for model F to [-26.1 to 33.7] for 

Dist_thre_17km_err. 

 

Figure 5-14. Comparison of observed SLL100, predicted SLL100 and residuals 
using model F and model Dist_thre_17km_err 
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Finally, a plot of residuals versus fitted values for the distance threshold neighbours and a 

Q-Q plot reveal that the residuals are very close to normally distributed. 

 

Figure 5-15. Diagnostics plots of residuals from model Dist_thre_17km_err 

 

5.3 Discussion 

5.3.1 Environmental variables 

Slope was shown to be by far the most significant explanatory variable of the top models 

for both the whole study area (A) and the subset area (B) (see Table 5-3, Table 5-4, Table 

5-12, Table 5-13).  In the OLS models, slope had a negative coefficient of – 1.7 for study 

area A, and – 2.2 for study area B, and p = 5e-5 and p = 4e-4, respectively.  The 

significance of slope increased dramatically in the spatial autoregressive models while 

the coefficient estimates remained similar (Table 5-11, Table 5-19).   

Since slope is highly correlated with several other variables (see Table 5-2), it is 

not likely to be driving body length directly. Slope is highly positively correlated with 
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elevation, herbaceous and shrubby vegetation, and distance away from roads and wells.  

It is negatively correlated with closed canopy, wetlands and regenerating forest.  

Therefore, while high elevation and steeply sloped areas are further away from 

disturbance features such as roads, wells and regenerating lands, i.e. clearcuts, the bears 

are smaller. Thus, it is more likely that reduced availability of high quality foods in these 

areas causes smaller body length, rather than stress.  

It has been shown by Munro et al. (2006) that grizzly bears at higher elevations in 

the west-central Rockies eat nearly 2.5 times fewer ungulates than bears in the foothills. 

This is due to a much lower density of ungulates at the higher elevations.  The eating of 

meat is well known to be associated with larger body size in grizzly bears (Schwartz, et 

al., 2003).  Grizzly bears living at high elevations have to compensate by eating roots 

which are more prevalent in the alpine, subalpine and shrub habitats (Munro et al., 2006). 

However, the mountains have a lower abundance of food than the foothills due to their 

later green-up periods and earlier frosts in Fall (Munro et al,. 2006).   Insects tend to 

occur in wet and regenerating forests (Munro et al., 2006), which are found at a greater 

abundance in the lower elevations as shown in this study.  Nearly all food sources have a 

shorter period of availability in the mountains, including fruits, ungulates and insects 

(Munro et al., 2006). 

SLL100 was also found to have a positive correlation with open deciduous forest 

and open mixed forest in study area A and B.  These two variables are highly correlated 

with each other (r = 0.9), hence it can be assumed that the presence of one vegetation 

type indicates the presence of the other.  In the OLS models, open deciduous forest has a 

positive coefficient estimate of 5.1 and p = 0.01, and open mixed forest, 2.2 and p = 0.1.  
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The significance of both variables increases in the spatial autoregressive models.  These 

forests offer bears fruits, another important component in their diets (Munro et al. 2006).   

Distance to water was in the final OLS model for study area A with a coefficient 

estimate of – 2.9 and p = 0.06. This coefficient became more significant in the spatial 

autoregressive model, such that its probability decreased to 0.002. A negative correlation 

indicates that the further grizzly bears are from major water sources such as rivers and 

waterbodies, the smaller their body size. A larger distance could imply that these grizzly 

bears are living in less desirable xeric habitats which have decreased vegetation 

abundance and ungulate availability.  It was shown by Munro et al. (2006) that most 

ungulate kills by grizzlies were made in wet forests. 

For the smaller study area, B, northeast aspect, was the third explanatory variable 

in model F. It had a large negative coefficient (~86) with p = 0.02 in the OLS model. The 

significance of this variable increased by a factor of 10 in the spatial autoregressive 

model. Since northeast slopes are associated with xeric conditions (Strong, 1992), this 

again could relate to the reduced availability of open, mixed forests and wet forests, and 

insects, fruit and ungulates inhabiting these areas. 

 

5.3.2 Spatial dependence tests  

An examination of spatial dependence in SLL100 using Moran’s I revealed strong 

positive spatial dependence. The probability of the observed Moran’s I was < 3e–7 for 

several nearest neighbour weight matrices. This made further exploration of spatial 

dependence in the residuals of OLS models necessary. It was important to determine 
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whether the environmental variables included within the OLS models could account for 

the spatial dependence in the dependent variable.  

The residuals of the best model, E, for study area A, were found to have 

significant negative spatial dependence using a variety of neighbourhoods. Thus, the 

explanatory variables accounted for the positive dependence, thereby revealing negative 

dependence.  Using three and five nearest neighbours (Figure 5-4 and Table 5-7) the 

probability of Moran’s I was less than 0.05.  The distance threshold neighbourhood of 73 

km also found significant negative spatial dependence with p ~ 0.95 (see Table 5-8 and 

Figure 5-5). The scales of these three neighbourhoods were similar as shown in Table 

5-9.  Neighbourhood distances ranged from 0.3 km to 66 km, 73 km and 92 km for the 

three NN, distance threshold and five NN neighbourhoods respectively. These 

neighbourhoods seem to distinguish three distinct population groups which are separated 

by Highway 16 and Highway 11 (Figure 5-4).  The median scale of these neighbourhoods 

also corresponds to the distance threshold neighbourhood of study area B, with a distance 

threshold of 17 km. 

The spatial weight matrices based on the proportion of overlap were not found to 

be significant, nor the family weights. Overlap neighbourhoods may not have been 

significant for two reasons. 1) Those bears that were close to each other but not 

overlapping, were not considered as neighbours. 2) The method of home range overlap 

was not computed in the most appropriate manner. Due to the biases in home range area 

caused by KDE estimation, it may have been better to compute a weighted proportion of 

overlap based on the home range utilisation grids. 
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The family neighbourhood was unable to detect anything in study area A due to 

the fact that the database was largely incomplete.   

In study area B, significant negative spatial dependence (p ~ 0.95) was revealed 

by the neighbourhood of observations within 17 km of each other. The overlap neighbour 

weights # 1 and # 2 also found weak negative spatial dependence with p ~ 0.78 and p ~ 

0.65 respectively.  Least cost distance neighbours also did not find spatial dependence.   

Positive spatial dependence was detected for study area B using the family 

neighbourhood.  Moran’s I was observed to be 0.17 with a significance of p = 0.04 using 

the variance-stabilised version of the weight matrix and the exact and Saddlepoint tests.  

The negative spatial autocorrelation found in both study areas, is difficult to 

explain without further investigation. It is possible that it is caused by some form of 

competitive process between bears which causes differential access to food, or one or 

more missing variables that is/are naturally heterogeneous. 

 

5.3.3 Spatial autoregressive models 

Promising spatial weight matrices (described in the previous section) were used to 

develop spatial error, lag and Durbin autoregressive models.  It was found that several of 

the spatial autoregressive models provided a significant improvement in the AIC scores 

over the original OLS models (Table 5-3 and Table 5-10, and Table 5-12 and Table 

5-18).  Also, environmental parameters increased in significance in all cases (Table 5-11 

and Table 5-19). This is to be expected as negative spatial dependence tends to cause the 

variance to be overestimated in OLS models (Anselin & Bera, 1998).  The estimated 

spatial parameters, ρ and λ, were negative in all of the models except models using the 
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family neighbourhood. However, the family neighbourhood models were very weakly 

supported according to their Akaike weights. It was found that the top spatial models 

improved the actual predicted values, reduced the range of the residuals and resulted in a 

random spatial distribution of the residuals. 

Spatial error models were found to dominate the top models of study area A 

(Table 5-10), while spatial lag models were most common in the top models of study area 

B (Table 5-18).  At this stage it is difficult to know why a particular spatial model is the 

best as little is currently known about the spatial processes that may be operating.    

 

5.4 Summary 

This chapter presented the major findings of this research.  Grizzly bear home ranges 

were delineated using kernel density estimation and used to compute environmental 

variables for each bear (Chapter 4). Using these variables, OLS regression models were 

developed to relate grizzly bear straight-line length to the environmental variables.  

Slope, open mixed forest, open deciduous forest, distance to water, and northeast aspect 

were found to be significant variables. 

A variety of spatial neighbourhood weight matrices were developed and used to 

test the residuals of the OLS models for spatial dependence.  Significant negative spatial 

dependence was found in the residuals of the OLS models.  In study area A, three NN, 

five NN, and distance threshold neighbours (within 73 km) were best able to detect 

spatial dependence. In study area B, significant spatial dependence was detected using a 

distance threshold neighbourhood of 17 km.  
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Spatial error, lag and Durbin autoregressive models were developed using the 

significant spatial neighbourhoods. These models were reviewed in terms of the 

significance of the estimated spatial parameters, the significance of the environmental 

parameter estimates and the AIC scores. It was found that the top spatial autoregressive 

models had significant negative spatial parameters, and that there were several 

improvements over the OLS models. The AIC scores decreased from the OLS models, 

the range of the residuals decreased and spatial dependence was removed from the 

residuals.   

Five nearest neighbours and neighbours within a distance threshold of 73 km were 

best able to characterise the spatial dependence in the data and improve the regression 

models for the whole study area.  These neighbourhoods seem to capture three grizzly 

bear population units which are known to be genetically distinct.  For the smaller subset 

area, a distance threshold of 17 km provided the best neighbourhood for modelling 

negative spatial dependence and improving regression models.   
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Chapter Six: Conclusions 

 

This chapter summarises the main findings as they relate to the objectives presented in 

chapter one.  It also documents contributions to knowledge, and provides suggestions for 

future research. 

 

6.1 Summary of findings 

6.1.1 Spatial dependence in straight-line length 

The hypothesis that positive spatial dependence exists within the straight-line length 

dataset was tested using Moran’s I and found to be highly significant using a variety of 

spatial neighbourhoods.  Using thirteen nearest neighbours, the maximum spatial 

dependence of I = 0.16 was observed with the one-tailed probability = 1.6e-7. 

 

6.1.2 Relationship between transformed straight-line length and environmental 

variables 

Straight-line length (SLL) measures the skeletal length of grizzly bears. The natural 

logarithm of SLL has a positive linear correlation with the natural logarithm of total body 

mass (Cattet et al. 2002).  SLL was chosen as the variable of interest since increased body 

size is associated with increased reproductive success and population density 

(Hilderbrand et al., 1999).  In this study SLL100 was transformed to a value between 0 

and 1 in order to remove statistical differences between reproductive groups and allow 

easier interpretation of low values as poor and higher values as good. The transformed 
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SLL - SLL100 - was found to be negatively correlated with slope, positively correlated 

with the percentage of open deciduous forests and negatively correlated with the distance 

to water for the whole study area (A). For the smaller study area, B, SLL100 was found 

to be negatively correlated with slope, positively correlated with the percentage of open 

mixed forest and negatively correlated with northeast aspect.  

Slope was by far the most significant variable in all models in both study areas, 

yet slope is not likely to influence body size directly. Rather, it is highly correlated with 

increased elevation and, therefore, decreased food availability. The Subalpine and Alpine 

Subregions become productive later and frosts tend to occur earlier in the Fall than in the 

foothills. Munro et al. (2006) also documented that bears in the foothills consumed more 

than two times more ungulates than those at higher elevations. It is well established that 

the consumption of meat is related to the body size of grizzly bears (Hildebrand et al., 

1999; Schwartz et al., 2003), and, thus, a reduction in meat availability at higher 

elevations should result in smaller body sizes.  Furthermore, regenerating, wet, open, and 

mixed forests were negatively correlated with slope and elevation and are known to 

provide insects and fruits (Munro et al., 2006) which are good sources of food for grizzly 

bears.   

Distance to water and slopes facing northeast may also measure the availability 

and quality of food.  Areas further away from rivers and waterbodies, as well as slopes 

with a northeast aspect, are drier and therefore less likely to have areas of open, mixed 

and wet forests. 

 



138 

 

6.1.3 Testing for spatial dependence in the OLS residuals and spatial neighbourhoods 

Choice of spatial neighbourhood configuration was found to determine the ability of 

Moran’s I tests to detect significant spatial dependence.  Many of the neighbourhoods 

used in this study (proportion overlap, family neighbourhood for area A, least cost 

distance neighbourhoods for area B) were unable to identify spatial dependence in the 

residuals of the OLS models. Significant negative spatial dependence was detected for 

area A using nearest neighbours and distance threshold neighbourhoods. Negative spatial 

dependence was also found in study area B using distance threshold neighbours.  In area 

B significant positive spatial dependence was found using the family neighbourhood. 

However, this neighbourhood had seventeen isolated observations and, thus, these results 

should be viewed with caution. 

It was surprising to find negative spatial dependence in the residuals of the OLS 

models when strong positive spatial dependence had been identified in the dependent 

variable.  However, this surprising result is not completely implausible. Griffith (2006) 

discusses the presence of hidden negative autocorrelation despite test results of 

significance positive autocorrelation.  In reality, most spatial patterns exhibit positive and 

negative autocorrelation at a local scale, but positive spatial dependence usually 

dominates using global statistics (Griffith, 2006). This interesting result warrants further 

investigation to uncover the causes of this pattern. At this point the following possible 

explanations are offered: 

1) Landscapes are heterogeneous entities consisting of a mosaic of patches at a 

variety of scales (Forman, 1995). Natural and human disturbances such as 
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fires and clear cutting create new patches and increase heterogeneity in the 

landscape (White & Picket, 1985).   Thus, negative spatial dependence 

could reflect the natural patchiness/heterogeneity of one or more missing 

variables in the model. 

2) It is possible that some bears are better at preying on ungulates than other 

bears, thus making their overall body length and size bigger than average. 

3) Perhaps an appropriate description or representation of the spatial process 

has not yet been discovered. Many of the approaches used here are largely 

naïve, and those that were more logical such as family neighbourhoods and 

least cost neighbours, had insufficient data to test conclusively. 

4) The data may have been over-smoothed in the estimation of home ranges 

and the averaging of health variables therefore resulted in an overly 

smoothed signal that is difficult to identify. 

5) The dataset has too few observations, making it vulnerable to spurious test 

results.  It may not be possible to detect the overall pattern of the dataset 

with these small sample sizes and the unusual elongated arrangement of 

observations in a northwest – southeast direction. 

It is of interest that the family neighbourhood applied to study area B was the only 

neighbourhood to show significant positive spatial dependence. It was expected that 

genetic relations could generate similarity in related bears, i.e., large parents produce 

large offspring.  It was also interesting to note that this neighbourhood did not exhibit a 

clear spatial pattern that resembled other spatial configurations tested here. 
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6.1.4 Spatial autoregressive models 

Due to the detection of significant spatial dependence in the residuals, it was deemed 

necessary to develop spatial autoregressive models and compare these to the OLS 

models. It was found that the spatial autoregressive models provided a substantial 

improvement over the OLS models when the appropriate spatial weight matrix and form 

of autoregressive model (error, lag or Durbin) were used.  In this study, three and five 

nearest neighbours and the distance neighbourhood (73 km) produced the best results 

study area A, while the top model for study area B was based on the distance threshold 

neighbourhood (17 km).  For study area A, the AIC score decreased dramatically from 

the OLS models. For both study areas the autocorrelation in the residuals was removed, 

the range of the residuals decreased and the significance of the environmental parameters 

increased.  This was to be expected as negative spatial dependence tends to cause the 

variance of estimates to be over-estimated in OLS models (Schabenberger & Gotway, 

2005).  In this study the estimated spatial parameters, ρ (lag dependence) and λ (error 

dependence), were negative in all models, except those models using the family 

neighbourhood. This result corresponded to the Moran’s I tests using the family 

neighbourhood. It should be noted that the family models were not well supported by the 

data according to the Akaike weights and evidence ratios. 

In study area A spatial error models were the top models according to AIC scores, 

Akaike weights and evidence ratios.  However, for the smaller area, B, spatial lag models 

best reflected the data.  It is difficult to understand why a particular form of the spatial 
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model is superior to another since the spatial processes that may be operating are not well 

understood at this stage.   

It can be concluded that significant negative spatial dependence was present in the 

data and the incorporation of an appropriate spatial weights matrix within regression 

models improved the explanatory power of those models. 

 

6.1.5 Evaluation of spatial weights matrices 

For study area A, Moran’s I tests revealed the most significant p-values for three NN, 

five NN and the distance threshold neighbourhood of 73 km. These neighbourhoods also 

led to the best spatial autoregressive models in terms of the AIC scores.  The scale of 

these three neighbourhoods was very similar and separate three spatial groups of 

observations. These groups in fact correspond to the FRI population units shown in 

Figure 4.1 which are considered to be genetically distinctive (Stenhouse, 2007).  

All of the other tested neighbourhoods were unsuccessful for the larger area. No 

significant spatial dependence was identified when neighbourhood weights were derived 

from the proportion of home range overlap. There are two possible explanations for this. 

Bears that were close to each other but did not have any core home range overlap were 

not considered to be neighbours, despite the fact that they may have been living adjacent 

to each other. A second cause could be that the proportion of core home range overlap 

was not computed in a suitable manner. Due to bias in home range assessment resulting 

from the method employed for this work, i.e., kernel density estimation, it may have been 
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better to compute the weighted proportion of overlap based on the home range density 

grids generated from the KDE process.   

The family neighbourhood did not reveal spatial dependence in study area A. This 

was most likely due to the fact that over 50 % of the observations had no neighbours due 

to a lack of data.  Similarly, the network neighbours were unable to detect spatial 

dependence. 

In study area B, significant negative spatial dependence was only revealed by the 

neighbourhood of observations within 17 km of each other.  Interestingly, significant 

positive spatial dependence was detected for this area using the family neighbourhood.  

This corresponds with our expectation of the size of offspring being partially determined 

by the size of the parents. 

 

6.2 Contributions to knowledge 

This research demonstrated that spatial dependence should be considered when 

developing regression models that relate grizzly bear health to environmental variables in 

the Alberta Rocky Mountains and foothills. This may be applicable to other wildlife 

studies which sample individuals from the same population and study area.  This research 

showed that although the parameter estimates themselves did not vary substantially 

between the OLS and spatial autoregressive models, the significance of these parameters 

was greatly affected.  This suggests that inferences from OLS models could be flawed. In 

particular, a variable selection approach such as backward deletion may delete the 

incorrect variables based on the significance of parameters in OLS models.  To improve 
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our understanding of which variables affect grizzly bear health, it is essential that 

important variables are correctly identified. 

Another important finding is that the selection of an appropriate spatial weight 

matrix is essential for detecting spatial dependence that may be present in the data.  It is 

necessary to test a variety of neighbourhoods and weights since theories regarding the 

nature of spatial dependence may be naive, or inaccurately formulated and measured.  

Instead of finding positive spatial dependence as was expected, negative dependence was 

detected.  This indicates that our understanding of the key spatial processes and patterns 

in this context may be misinformed.  The non-spatial neighbourhood, based on kinship, 

was the only neighbourhood to detect positive spatial dependence.  This suggests that a 

substantive theory can improve our ability to derive spatial neighbourhoods and that it is 

necessary to think beyond simple configurations of space.    

 

6.3 Future research 

The following suggestions are made for further research in health-environment regression 

modelling. 

Explore alternative means of home range delineation 

The delineation of an appropriate home range is crucial since the home range 

determines what features are considered for analysis. If the home ranges are over-

estimated, the data will be overly smoothed, and if they are under-estimated, important 

factors may be excluded. There are many other new methods available for home range 

estimation such as local convex hull and Brownian-bridge models which may be more 
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suitable for this study. Steiniger et al. (2010), Laver and Kelly (2008) and Powell (2000) 

can be referenced for a review of these methods.   

Explore other means of defining centroids 

This research used the point of maximum utilisation of the home range utilization 

grids to compute nearest neighbours, distance neighbours and network neighbours.  Other 

centroids such as the centre of gravity should be investigated to see what effect this 

would have on neighbourhood configurations and the detection of spatial dependence. 

Explore the use of other health variables such as Body Condition Index 

There are several other measures of health, or some combination of these, that 

could be explored for use as the dependent variable in regression models.  In chapter 

four, body condition index (BCI) was identified as a potentially useful measure of health 

which warrants further investigation 

Alternative methods for computing the proportion of home range overlap as a 

measure of covariance between nearby observations 

The method used in this research to compute the proportion of overlap between 

home ranges was based on a simple intersection of the core home range polygons.  

However, due to biases that are likely present in the estimated home ranges, this may not 

reflect the true overlap. It is suggested that the density grids generated from the KDE 

estimation process be used to estimate home range overlap as a weighted proportion. 
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Neighbourhoods based on family relationships 

The family relationship neighbourhood warrants further investigation given its 

suggestion of positive dependence in the data. As more DNA studies are completed by 

the FRI and the family trees of the grizzly bears become more complete, it will be 

possible to test for spatial dependence using this neighbourhood more reliably. 

Local Indicators of Spatial Association 

Maps of the OLS residuals suggested that there were clusters of both positive and 

negative spatial dependence.  Global measures of spatial dependence, such as Moran’s I, 

only measure the average spatial dependence in the dataset, and hence local variations 

may be hidden (Anselin, 1995).  It is therefore recommended that local indicators of 

spatial association (LISA) be investigated as an alternative means for testing and 

exploring spatial dependence within the dataset (Anselin, 1995). 

Study the effects of environmental change on health 

Several datasets of environmental change over the past decade have been created 

by the FRI.  This offers the possibility of matching the available GPS and health data 

with the specific environmental conditions at the time that they were acquired. In this 

research it was decided to take the average of the health data and merge annual GPS 

datasets together to mitigate the effects of the temporal mismatch between the GPS 

datasets and the health measurements. This may have over-smoothed the data thereby 

reducing the overall fit of the model and hiding spatial patterns. Other approaches, which 

take greater advantage of the environmental change data that is now available, should be 

investigated. This would be an interesting area of research that allows more accurate 

quantification of the effects of changing environmental conditions on grizzly bear health.  
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Investigate the causes of observed spatial dependence 

Finally, the motivation for modelling spatial dependence is not only to improve 

regression models, but also to identify and hopefully explain the causes of spatial 

dependence.  This can reveal interesting ecological or behavioural processes which may 

provide useful information for management decisions.    For example, the observed 

negative spatial dependence may have been caused by the heterogeneity of the landscape, 

which is exacerbated by human activities such as gas extraction, clearcutting and the 

construction of access roads.   In the future these activities could be managed to reduce 

unnaturally patchy and fragmented landscapes which degrade habitat quality. 
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