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Abstract 

Urban infrastructure and city layout is a topic of great interest in recent years. 

According to trends, the number of people living in urban areas is steadily increasing. 

Accurate and user-friendly methods of spatial information visualization and analysis are 

required to aid in the management and planning of urban area expansion. Three-

dimensional (3D) city models, in particular, can be used for this purpose. Common 

sources of remote sensing data employed for 3D models of urban areas include Light 

Detection and Ranging (LiDAR) data and imagery. These data sources can be used to 

obtain the main features of a city model, namely the terrain and the buildings. The focus 

of this research is the generation of a digital building model (DBM) that is then added to 

a ground TIN (Triangulated Irregular Network) to produce accurate realistic visualization 

of 3D environments, implemented within a GIS platform. The production of the DBM is 

performed through the use of both data sources. The LiDAR data is used to obtain initial 

building-primitive boundaries as well as to obtain the height information for the created 

building model. The image data is used to refine the rough building-primitive boundaries 

derived from the irregular LiDAR data. Once the DBM is created, it is added to a ground 

TIN of the area under consideration, to produce a refined TIN surface model. The TIN is 

then converted to raster to obtain an enhanced DSM which is used in turn to generate 

improved true-orthophotos. The refined orthophotos are then draped over the refined 

digital surface model (DSM) for realistic visualization of the 3D urban environment. 

Quantitative and qualitative analysis of the final products were performed and analyzed 

using real data. Results from RMSE analyses found that the proposed method achieved 

results similar to the manual generation of a DBM, which were in the range of 33cm.  
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CHAPTER ONE:  INTRODUCTION 

1.1 General Introduction 

1.1.1 Overview 

Urban planning and city layout is a topic of great interest in recent years. 

According to current trends, the number of people living in urban areas is steadily 

increasing (Nichol et al., 2007). To aid in the management and planning of urban area 

expansion, fast and accurate methods of spatial information visualization and analysis are 

required. Historically, the paper map was the main interface between map-maker and 

user. These maps contain a fixed array of attributes and an invariant scale, which limits 

their use (Longley et al., 2005). In addition to the paper map, Ranzinger (1997) 

summarizes some of the other traditional visualization techniques used to convey 3D 

information: elaborate wood or pasteboard models, perspective drawings, etc. These 

techniques, in particular the wood and the pasteboard models, can be quite expensive and 

the models are not easily modified without significant effort. Recently, digital 

representations of three dimensional city models have become a commonly employed 

tool for urban analysis and visualization, partly fuelled by the increasing computer 

capabilities which have allowed for the growth in the representation of three-dimensional 

(3D) environments.  Moreover, 3D urban planning has become one of the most often 

quoted areas of human activity (Zlatanova et al., 2002). Planners, architects, and other 

decision makers can visualize possible construction projects and explore various changes, 

such as building location and size, in real-time. In addition, a computer based 3D urban 

model allows users to navigate through space and examine areas of interest from different 

view angles and scales. City models can also be utilized to simulate floods and other 



 

 

2 

disasters, which are employed for planning and prevention purposes. Other applications 

for 3D city models include marketing, investing, tourism, and telecommunications. This 

vast range of users and applications of 3D city models has led to new research activities 

in an effort to meet the need for fast and accurate techniques for the creation of 3D urban 

models. The following section will investigate the various data sources that can be used 

for the generation of 3D models. 

 

1.1.2 Common Data Sources 

When building a 3D city model, it is important to consider which features to 

include in the final model. The base features for a city model, are undoubtedly the surface 

model of the area, as well as ortho-imagery which can be used to add texture information 

to the model. In addition to these crucial layers, most models contain roads, trees, parks, 

and street signs (Ranzinger, 1997). Common methods of obtaining three-dimensional 

positional information for the 3D model features are photogrammetric, LiDAR (Light 

Detection and Ranging), and surveying techniques. Photogrammetry is a common 

method used to obtain 3D information from 2D imagery, in which mathematical 

calculations are performed to obtain the object space coordinates of points based on: the 

camera internal characteristics; the location and orientation of the camera; image 

measurement; and ground control data.  

 

In contrast to photogrammetry where a point must be measured several times (in 

overlapping images), LiDAR systems measure an object space point once. The LiDAR 

system consists of a laser scanner, a GPS receiver, and an inertial navigation system 
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(INS). The LiDAR system functions by emitting a laser pulse and measuring the return 

time. Based on the return time of the pulse, the distance between the scanner and the 

measured point can be obtained, and used in conjunction with the GPS and INS 

observations to compute the object’s coordinates (Wolf, 2000).  

 

A third method of obtaining three-dimensional attribute information is through 

field surveying. Surveying techniques are perhaps the most traditional form of obtaining 

positional information. There are several surveying techniques, which include the use of 

Total Stations and/or GPS surveying techniques. Surveying can obtain very accurate 

attribute coordinates (up to the millimetre level (Anderson and Mikhail, 1998)), but 

involves a significant amount of field work as well as post-processing. In addition to 

these outlined methods, data can be obtained through map digitizing as well as from data 

located within existing databases. The organization, integration, analysis, and display of 

the various data sources can be performed within a geographic information system (GIS). 

The integration of the data within a GIS is discussed in the next section. 

 

1.1.3 Integration in a GIS platform 

Once the data sources for a desired 3D city model are determined, the software 

environment in which the model is to be built and displayed must be selected. The 

integration of a 3D city model within a GIS platform can be very advantageous. Urban 

infrastructure information including city streets, building locations, and road signs, are 

often readily available in existing GIS databases. The existing GIS layer information can 

be incorporated into the 3D city models. In addition, the increasing availability and 
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affordability of data acquisition systems coupled with the increasing computer 

capabilities allow for the creation of detailed and accurate 3D city models within a GIS. 

Furthermore, the use of pre-existing GIS functions limits some repetition in programming 

efforts. For instance, Shiode (2001) notes that 3D urban models located within a GIS 

platform benefit from pre-existing functions such as; view-shed analysis, spatial queries, 

and shadow analysis. In addition, these models inherit GIS storage, management, and 

editing capabilities (Köninger, 1998). Moreover, Shiode (2001) notes that, in comparison 

to 3D GIS city models, photo-realistic CAD-type models lack the attribute data that can 

be stored in a GIS model, which is often necessary for certain analysis purposes. Thus it 

is a natural extension to incorporate 3D models and capabilities into the traditional GIS 

platform. 

 

1.2 Problem Statement and Research Objectives 

To avoid social and environmental problems that can arise from rapid 

urbanization, accurate and current geospatial information is required in a form that is 

simple to understand and analyze. Although the reconstruction of urban infrastructure and 

mapping of city layout is not a new topic of interest, there is a need for practical and 

accurate tools for exploiting geospatial data acquired by modern remote sensing systems. 

Digital 3D city models can be utilized to address this need. There is a vast range of users 

(governments, planners, environmental agencies, telecommunications and utility 

companies, consultants, architects, etc.) who require increasingly sophisticated 3D city 

models to plan and monitor urban services and impacts (Shiode, 2001). 3D city models 

are powerful instruments in the visualization of urban and built-up environments as they 
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provide important information that is easy to understand (Shiode, 2001). Nichol et al. 

(2007) outlines some required improvements for more effective urban models, in terms of 

data sources used and the 3D environment, to allow for the creation of accurate 3D 

models in a timely manner. Two of the outlined requirements include: 1) The use of high 

resolution imagery coupled with improvements in automated recognition of complex 

objects to avoid large quantities of manual digitizing; and 2) The development of 

automatic 3D segmentation algorithms to obtain accurate 3D building models from 

LiDAR data. The complimentary information provided by photogrammetric and LiDAR 

data is one of the main reasons these two sources of data are commonly used for urban 

planning (Nichol et al., 2007), often within a GIS framework. For instance, 

photogrammetry provides texture information, good horizontal accuracy, and offers 

detailed information regarding building boundaries. LiDAR in contrast offers dense 

information on homogenous surfaces, and provides good vertical accuracy. Table 1.1 

outlines the respective advantages and disadvantages of these two data sources, and thus 

highlights how the complimentary nature of these data can be utilized to obtain optimal 

accuracy and a more complete description of the object space. In addition, the integration 

of GIS with remotely sensed data can aid in the automation of procedures involved in 3D 

city modeling. For these reasons, this research focuses on the integration of the 

photogrammetric and LiDAR data within a GIS platform. 
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Table 1.1: Complimentary nature of Photogrammetric and LiDAR data 

Photogrammetry Pros LiDAR Cons 
Provides colour information No colour information 

Good horizontal accuracy Less accurate horizontal information 

Good information for building 

boundaries 

Less accurate building boundaries (due to 

irregularity of point data) 

LiDAR Pros Photogrammetry Cons 
Dense information on homogeneous 

surfaces 

Almost no positional information on 

homogeneous surfaces (due to matching 

problems) 

Day or night data collection possible Only day time data collection possible 

Directly acquires 3D information Post-processing is needed to obtain 3D 

information 

Good vertical accuracy Less accurate vertical information 

 

In this work, the LiDAR and photogrammetric data are used to produce the main 

components of a 3D model, namely orthophotos and a digital surface model (DSM) over 

the area of interest, and thus the quality of the produced 3D model is largely dependent 

upon the quality of these two important features. In some applications, the 3D urban 

model is created by simply draping ortho-imagery over a DSM of the area. This method 

may be sufficient for medium resolution imagery over relatively smooth terrain; however, 

more sophisticated procedures are required when dealing with high resolution imagery 

over urban environments. When the DSM of an urban area is derived from LiDAR, the 

irregular and sparse nature of LiDAR data leads to a degraded quality of building 

boundaries in the DSM. Furthermore, the quality of the orthophotos, which is directly 

affected by the DSM, will contain jagged building boundaries. Therefore, if the quality of 

the DSM can be enhanced, the surface model will be improved as well as the generated 

ortho-imagery.  

 



 

 

7 

This work outlines a framework for the integration of photogrammetric and 

LiDAR data within a GIS platform, for realistic 3D visualization of urban environments. 

To refine the DSM over an urban environment, a digital building model (DBM) for the 

area is obtained through the use of both LiDAR and photogrammetric data. When the 

DBM is added to a digital terrain model (DTM) of the urban area, a crisp surface model 

can be achieved. Improved true-orthophotos can then be generated using the refined 

DSM, as opposed to those generated from the original (unrefined) DSM. The improved 

true-orthophotos are then draped over the refined DSM, thus obtaining an accurate 3D 

realistic visualization of an urban environment. Figure 1.1 outlines the workflow for the 

creation of a 3D realistic visualization of an urban model starting from the input data to 

the final output product. 
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Figure 1.1: Workflow for 3D realistic visualization of an urban environment 

through the integration of LiDAR and photogrammetric data. 
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1.3 Thesis Outline 

Chapter Two starts with a literature review of methods used for the production of 

a DBM, DSM, and ortho-imagery. An analysis follows outlining the inherent limitations 

in these methods. Chapter Three presents the pre-requisites that are required for the 

proposed DBM generation procedure. These pre-requisites include: camera and LiDAR 

quality assurance (QA) and quality control (QC); and image and LiDAR data co-

registration. This last pre-requisite is the entry point of the proposed procedure for 

obtaining a DBM through a semi-automated procedure, involving LiDAR data and 

perspective imagery. The DBM generation procedure is presented in Chapter Four, and 

outlines the use of the DBM to enhance the DSM and the ortho-imagery. Experimental 

results and accuracy assessment of the outlined procedure are presented in Chapter Five, 

and final conclusions and recommendations for future work are then discussed in Chapter 

Six. Figure 1.2 depicts the final product of the proposed system, where a DBM is utilized 

to obtain a refined DSM and improved ortho-imagery, thus allowing for the creation of 

an accurate and realistic visualization of an urban environment.  
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Figure 1.2: Integration of LiDAR and photogrammetric data to obtain an accurate 

3D realistic model of an urban area. 
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CHAPTER TWO: BACKGROUND 

Chapter one introduced the main features or layers of a 3D city model, namely the 

orthophotos and a DSM of the urban area. In addition, it was highlighted that refined 

orthophotos and DSM can be obtained through the use of a DBM. This chapter discusses 

the concepts of orthophotos, DSM, and DBM in terms of their purpose and the 

methodology for their creation through the review of previous research work conducted 

in these areas. 

 

2.1 Orthophoto Generation 

The creation of ortho-imagery is outlined in this section. Ortho-imagery is 

important for use in many fields of applications, and is very frequently used in a GIS, 

often as a background as well as to give texture information to a DSM. Note that the 

terms orthophoto and ortho-imagery will be used interchangeably in this work. 

 

2.1.1 Introduction 

The purpose of orthophoto production is to remove the effects of terrain relief and 

sensor tilt from the captured perspective imagery, thus producing an image with uniform 

scale that has the same characteristics as a map. The produced orthophotos often serve as 

one of the main layers in a 3D GIS model, and can also be used to directly measure 

distances, angles, and areas (Wolf, 2002). A common method used to produce 

orthophotos is differential rectification, where the grey values from imagery are assigned 

to each output cell of the orthophoto (Novak, 1992; Bang et al., 2007).  The differential 

rectification procedure requires perspective imagery, a DSM, the exterior orientation 



 

 

12 

parameters (EOP), and the interior orientation parameters (IOP). The EOP define the 

position and orientation of the camera at the moment of exposure relative to the object 

space coordinate system, while the IOP define the internal camera characteristics 

(coordinates of the principal point, camera constant, and distortion parameters). In this 

procedure, a uniform grid is defined over the output orthophoto plane, and the DSM is 

used to obtain the elevation, Z(X,Y), for each grid cell. Through the use of the 

collinearity equations, EOP, and IOP, the corresponding image point (x,y) is located. The 

grey value at the image location (x,y) is determined through use of a resampling 

technique, and this grey value is assigned to the orthophoto grid cell (X,Y), as depicted in 

Figure 2.1. 

 
Figure 2.1: Concept of differential rectification. 
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One of the main limitations of the differential rectification procedure, however, is 

shown in Figure 2.2. This problem is known as the double mapping problem, which 

occurs when two object space points are competing for the same image location. Figure 

2.2 depicts a scenario where the projected rays of a ground point and a building roof 

point yield the same location on the input image. The datum cells labelled A and B will 

thus be assigned the same grey value, shown as g(x,y) in the figure. As a result of tall 

buildings and other tall features (e.g., trees) occluding neighbouring areas in the 

perspective imagery, ghost images are produced in the orthophotos. Figure 2.3 illustrates 

the double mapping problem using a real dataset. A black outline is drawn over the 

double mapped areas to highlight the effect.  

 

 
Figure 2.2: Illustration of the double mapping problem. 
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Figure 2.3: Perspective image (a) and corresponding orthophoto, with double 

mapped areas outlined in black (b). 

 

Differential rectification is therefore not well suited for orthophoto generation 

with large scale imagery over urban areas (Skarlatos, 1999), and the following section 

outlines alternative methodologies more suited for urban environments. 

 

2.1.2 True Orthophoto Generation 

To avoid having ghost images in the output orthophotos, some techniques have 

been developed to produce true-orthophotos, where ghost images are removed through 

visibility analysis and occlusion detection. A majority of the true-orthophoto generation 

techniques are based on the Z-buffer method (Bang et al., 2007; Habib et al., 2007a; Rau, 

2002). As discussed in the previous section, double-mapping occurs when two object 

space points are competing for the same image location. The Z-buffer method proposed 

in Amhar et al. (1998) addresses the situation of two (or more) object space points 
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competing for the same image location, by considering the distances between the 

perspective center and each competing object space point. The point that is closest to the 

perspective center is considered to be a visible point, while any other competing points 

are deemed invisible in the image. The implementation of the Z-buffer method utilizes 

three 2D arrays of the same dimension as the input image (these will be referred to as Z-

buffer image arrays), and one visibility map of the same dimension as the input DSM. 

The Z-buffer image arrays and the visibility map are shown in Figure 2.4. When a DSM 

cell is projected onto a perspective image, for example at an image location (x,y), the X-

coordinate of the DSM cell is stored in the (x,y) location of one of the 2D image arrays 

(labelled “X” in Figure 2.4), while the Y-coordinate of the DSM cell is stored in the (x,y) 

location of a second 2D image array (labelled “Y” in Figure 2.4). The third image array, 

labelled “Distance”, is used to store the distance between the perspective center and the 

DSM cell. A visibility map of the same dimension as the input DSM is also established 

and used to store information about the visibility of each DSM cell. For example, looking 

at Figure 2.4, if the DSM cell A is first considered, the X and Y coordinates of this cell, 

in addition to the distance from the cell to the image perspective center (call this dA) are 

stored in the image arrays. Furthermore, the cell is marked visible in the visibility map. 

When the DSM cell B is visited, the distance from cell B to the perspective center will be 

computed (dB) and found to be smaller than the distance dA. In this case, the X and Y 

coordinates of cell B, as well as distance dB, will now be stored in the image arrays 

(replacing the previous values obtained from cell A). The cell corresponding to B in the 

visibility map will be marked visible, while the cell corresponding to A in the visibility 

map will be changed to invisible. After all DSM cells have been visited, the image arrays 
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are used to project the image grey values onto the orthophoto plane. The visibility map is 

then used to locate occluded areas, which are represented by the cells labelled as invisible 

in the visibility map, and are marked as black cells in the output orthophoto. Figure 2.5 

compares the orthophoto generation methods that have been outlined thus far, applied to 

real data. Figure 2.5a shows a building located in a perspective image, Figure 2.5b 

displays the resulting orthophoto after differential rectification is performed (notice the 

ghost image of the building), and Figure 2.5c displays the result from the Z-buffer 

method, where the majority of the ghost images have been replaced by black cells, as no 

colour information is available for the occluded areas.  

 

 
Figure 2.4: Z-buffer methodology, as depicted in Habib et al. (2007a). 
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Figure 2.5: A building in a perspective image (a), in an orthophoto produced using 

differential rectification (b), and in an orthophoto produced using the Z-buffer 

method (c). 

 

Although the Z-buffer method is commonly used for the creation of true-

orthophotos, the method has some limitations. One of the limitations is the sensitivity to 

the sampling interval of the DSM in relation to the ground sampling distance (GSD) of 

the image. For instance, if the DSM cell size is smaller than the image GSD, false 

occlusions in flat areas will be detected, as neighbouring DSM cells will be projected 

onto the same image pixel. An example of this case is depicted in Figure 2.6, for the 

neighbouring cells labelled A and B. In this case, the distance between the perspective 

center and cell B is smaller than A, and thus cell B will be labelled as visible (V) and cell 

A will be falsely labelled as invisible (I). 

 
Figure 2.6: False Occlusions can occur when the DSM cell size is smaller              

than image GSD. 
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For the case shown in Figure 2.6, if the DSM cell size were made equivalent to 

the image GSD, these false occlusions would not occur. However, unlike Figure 2.6 

where the terrain is flat, if tall buildings are present in the DSM, this selection of cell size 

will result in false visibilities. Figure 2.7 depicts such a situation, where the DSM cell 

size is chosen to be equivalent to the image GSD on the terrain. When cell A is visited, 

the projection of A onto the image will yield the pixel that is highlighted in red. As no 

other DSM cell has been projected onto the red image pixel, DSM cell A is recorded as 

visible in the visibility map. When DSM cell B is visited, the cell location is projected 

onto the blue pixel in the digital image. As no other DSM cell has yet been projected onto 

this image location, DSM cell B is also labelled as visible. Next, DSM cell C is projected 

onto the green pixel in the image. Once again, no other DSM cell has yet been projected 

onto this image location, thus DSM cell C is labelled as visible. DSM cell D is then 

projected onto the image, at the location of the purple image pixel. No other DSM cell 

has been projected to this image location, and thus cell D is also labelled as visible. When 

the next cell is visited, DSM cell E, this cell location is projected onto the blue image 

pixel. Notice, however, that DSM cell B was also projected onto this same image 

location. As the distance between the perspective center and DSM cell E is smaller then 

cell B, cell B is now labelled as invisible, while cell E is labelled visible. A similar 

situation is encountered when cell F is visited, and projected onto the same image 

location as cell D – the purple pixel. The distance between the perspective center and 

DSM cell F is smaller than cell D, and so cell D is labelled invisible and cell F is labelled 

visible. This process will continue until all DSM cells have been visited. Observe that 

through this process, DSM cell C will be labelled visible, even though it is in the 
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building’s occlusion. The reason this occurs will now be explained. The image GSD on 

top of the building in Figure 2.7 will be smaller than the image GSD on the terrain, since 

the building roof is closer to the image perspective center. This will result in the DSM 

cell size being greater than the image GSD on the roof top, and thus there will be a higher 

probability that some of the image pixels are not associated with all the DSM cells in the 

roof region. This is shown in Figure 2.7b, where cell E is projected onto the blue image 

pixel, and cell F is projected onto the purple image pixel. Note that no roof point is 

projected onto the green image pixel. Therefore, when the DSM cell C is projected onto 

the green pixel, it is falsely labelled as visible since it is the only cell that has been 

projected onto the green image pixel. Therefore this false visibility occurs as a result of 

having non-compatible GSD values between the terrain and building roofs (Habib et al., 

2007a). 

 

 
Figure 2.7: False visibilities in occluded areas due to incompatible GSD values at the 

terrain and rooftops. 
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Another limitation of the Z-Buffer method is commonly referred to as the M-portion 

problem which arises from narrow vertical structures. When narrow buildings are present 

in the DSM, the terrain points located in the occluded area directly beside the building 

can be falsely deemed visible (shows as a yellow cell in Figure 2.8). To overcome this 

limitation, a DBM is required such that pseudo groundels can be introduced along the 

building walls, thus avoiding the false visibilities caused by tall narrow structures. Figure 

2.9 depicts the use of pseudo groundels (shown in red), and for detailed analysis on the 

pseudo groundels, refer to Bang et al. (2007). 

 

 
Figure 2.8: Depiction of false visibilities due to the presence of tall narrow 

structures. 
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Figure 2.9: Use of pseudo groundels to solve the M-portion problem. 

 

Kuzmin et al. (2004) commented on several limitations involved in image-based 

approaches for the creation of true-orthophotos: memory requirements; need for 

intermediate structures (DBM, groundels); processing speed; and dependency on 

resolution.  Kuzmin et al. (2004) therefore proposed a new method that would be fast, 

accurate, and resolution independent, but that still requires the availability of a DBM. 

This resulted in the development of a polygon-based methodology for true-orthophoto 

generation. The first step in this approach is to generate an orthophoto through the 

conventional differential rectification procedure. The procedures following this are then 

aimed at locating the double mapped areas, and marking them black in the output 

orthophoto. A DBM is used to provide surface polygons. The polygons are then projected 

onto the image plane, and analysis of the overlap of the individual polygons is performed. 

The “top” polygons, i.e. the polygons closest to the perspective center, are kept in the 
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orthophoto while all other polygons are deemed as hidden areas (see Kuzmin et al., 2004 

for more details on this method). 

 

Thus far, the outlined true-orthophoto generation procedures fall into the category 

of distance-based methods. Alternative methodologies for the production of true-

orthophotos have been developed and tested in Habib et al. (2007a) where in contrast to 

distance-based methods, two angle-based methods for true-orthophoto generation are 

proposed. The methodologies are based on the effect of relief displacement in perspective 

imagery. Relief displacement, which is the extent of the projection of the top and bottom 

of a vertical structure onto an image, is the source of occlusions in imagery. This 

displacement takes place along radial directions from the image space nadir point 

(Mikhail, 2001). The angle-based methods address the detection of occlusions by 

sequentially checking the off-nadir angles (herein referred to as α) to the line of sight that 

connects the DSM points with the perspective center of the image. The methods proceed 

along a radial direction starting from the object space nadir point, where there is no relief 

displacement and thus this point is always visible in an image. As the procedure moves 

outwards from the nadir direction, the angle α will continue to increase in the absence of 

occluded areas. As the angle increases, each DSM point will be considered as visible in 

the image, for example, DSM cells A, B, C and D in Figure 2.10. An occlusion will be 

detected if the α angle decreases while proceeding away from the nadir point, along a 

radial direction. Therefore, according to Figure 2.10, the DSM point E will be determined 

as an occluded point, as the angle αE is smaller than the angle of the previous visible 

DSM point, angle αD. The next visible point will occur only when the α angle becomes 
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greater than that of the last visible point, which is shown as DSM cell F for the situation 

depicted in Figure 2.10.  

 
Figure 2.10: Concept of angle-based true-orthophoto generation. 

 

The advantages of using an angle-based methodology for true-orthophoto 

generation are that the performance does not require a DBM of the area, and is 

independent of the DSM cell size and image GSD. For detailed descriptions of the two 

angle-based procedures, namely Spiral Sweep and Adaptive Radial Sweep, please refer to 

Habib et al. (2007a). Sample orthophotos produced using some of the true-orthophoto 

generation techniques discussed in this section are shown in Figure 2.11, as reported in 

Habib et al. (2008c). From this figure, it can be observed that, in comparison to the 

common Z-buffer method (Figure 2.11b), the two angle-based methods (Figures 2.11c 

and 2.11d) have detected occlusion areas more completely than the former.  
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Figure 2.11: Original perspective image (a), true-orthophotos generated using Z-

Buffer method (b), spiral sweep method (c), and adaptive radial sweep method (d). 

 

The production of true-orthophotos using the above-mentioned angle-based 

techniques offers a significant improvement over the traditional orthophoto generation 

procedures. However, the quality of the true-orthophotos will always be depended upon 

the quality of the DSM. For instance, when LiDAR data is used, interpolation of the 

irregular data is performed to obtain a raster grid that can be used as the DSM in the 

production of true ortho-images. The nearest neighbour interpolation method is often 

used, in particular for urban areas, to avoid blurring any edge information contained 

within the LiDAR point cloud. Nonetheless, interpolation errors and the point spacing of 

the LiDAR footprints can result in jagged building boundaries in the produced ortho-

imagery. Figure 2.12 illustrates the effect of these problems. In Figure 2.12a the small 

circles represent the LiDAR footprints, where the roof points are shown in black and the 

ground points in light green. When the data is interpolated to raster grid, each cell is 
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assigned the elevation value of the nearest LiDAR point. From this figure it is seen that 

the LiDAR footprints do not fully match the true building boundary (shown as the brown 

outline), and the results from interpolation cause further deviation to the boundaries. 

Figure 2.12b shows an orthophoto produced using a LiDAR derived DSM. To avoid the 

jagged building boundaries shown in Figure 2.12b, it is therefore important to obtain an 

accurate and complete DSM of the area. 

 
Figure 2.12: Effect of interpolation errors and LiDAR point spacing on the DSM (a) 

and true-orthophoto (b). 

 

2.2 DSM Generation 

A DSM of an area should ideally contain all object-space components, from the 

ground and vegetation to buildings of all sizes. Objects such as trees and vegetation, 

however, are often not included in a DSM, and thus it is common for a DSM to be 

composed of only the ground and buildings (Nielsen, 2004).  Traditionally, a DSM of an 

area of interest has been obtained through photogrammetric procedures, where a given 

surface point must be identified in at least two images in order to obtain 3D coordinates 

of the given point. The determination of conjugate points can, however, involve 

complicated matching procedures (Toutin, 2004), and ground control points (GCPs) are 
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often required which can involve a significant amount of field work. Furthermore, 

Mayunga et al. (2005) states that DSMs that are generated through the process of image 

matching are not sufficient due to poor ground sampling as well as matching errors, 

which can be caused by various factors such as poor image quality, occlusions, and 

shadows. This section will review previous methods utilized for DSM generation from 

imagery (satellite and aerial), LiDAR data, and IFSAR, while outlining the benefits and 

limitations of each approach. 

 

Toutin (2004) analyzed the capabilities of Quickbird satellite imagery, which 

provide a resolution of about 0.61m. It was found that the accuracy of the DEM produced 

from Quickbird imagery was highly dependent upon the land types present in the area 

under investigation. For example, areas containing bare ground provided accuracies 

below 1.3m, while areas containing natural as well as man-made surfaces provided 

accuracies ranging from 3.4-6.7m. As urban areas comprise numerous man-made 

surfaces, it can be inferred that the use of photogrammetric procedures in satellite 

imagery will not yield an accurate and complete DSM of an urban environment. In other 

research, aerial imagery has been utilized to obtain elevation information. In Habib et al. 

(2008a), experiments were performed with frame analogue imagery, collected at a flying 

height of 770m. The photos were digitally scanned at a resolution of 12 microns to obtain 

a 6cm GSD. A root mean squared error (RMSE) analysis showed that manual 

measurements in the aerial imagery could achieve vertical accuracy in the range of 30cm, 

and planimetric accuracy of around 14cm. Aerial imagery was also utilized for DSM 

generation in Baltsavias et al. (1995). Large scale imagery scanned at a resolution of 15 
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microns was used in an automated DSM generation program, which utilizes stereo 

correlation to automatically obtain a DSM from perspective imagery. The image data 

provided four-way image overlap, and the final DSM was obtained by merging six 

separate DSMs that were obtained through the “pairwise matching of images.” It was 

found that the obtained DSM was “unsatisfactory” in terms of the modeling of buildings. 

It was concluded that poor modelling of discontinuities in the DSM (for individual 

buildings, as well as several buildings close to one another) was the result of an 

insufficient density of measurements. In addition, numerous matching errors were found 

to occur near buildings due to the presence of shadows, occlusions, and trees. Thus, 

although the use of aerial imagery can allow for improved determination of elevation 

information in comparison to satellite imagery, the following paragraphs will outline 

alternatives that offer yet improved vertical accuracies. 

 

A different option for DSM generation is through the use of LiDAR data. LiDAR 

directly determines 3D coordinates of each point it measures, and is more reliable in 

terms of obtaining surface data in comparison to the traditional stereo photogrammetric 

techniques (Weidner and Förstner, 1995). LiDAR provides a vertical accuracy between 

5-20cm (Optech, 2008), and the LiDAR data delivery can be much faster, as the data is 

acquired in digital form and the system directly obtains range measurements (Baltsavias, 

1999). Recent trends show that LiDAR systems are more frequently used to obtain a 

dense 3D point cloud representation of the object space surface. In Baltsavias (1999), a 

good comparison of LiDAR and photogrammetric data is presented. Each data source is 

described as possessing different advantages and disadvantages, depending on the desired 
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product. However, in terms of DSM generation for urban environments, it was concluded 

that airborne laser scanning was the best option. The factors contributing to this 

conclusion were the density and accuracy of the data collection; this allows for an easier 

detection and reconstruction of 3D objects (in particular buildings) from a LiDAR-

derived DSM than from DSMs that are obtained through an image matching procedure. 

For many applications, the use of LiDAR data in its irregular format can be time-

consuming, and thus in many cases the irregular data is converted into a grid format.  

When using LiDAR data to obtain a DSM, the DSM cell size should be chosen such that 

it is small enough to avoid data loss during the resampling process. On the other hand, the 

cell size should be large enough to avoid redundancy in the derived DSM. It can thus be a 

good option to select a cell size equivalent to the average point spacing of the LiDAR 

data. In terms of the resampling technique, the nearest neighbour interpolation method is 

a good option, as explained in section 2.1.2. The irregular nature of the LiDAR point 

cloud leads to a degraded quality of building boundary representation in the DSM, and 

furthermore the irregular LiDAR point cloud can produce scissoring effects around 

building boundaries in the produced orthophotos (Figure 2.13). In Gamaba and 

Houshmand (2000), the use of interferometric radar (IFSAR) is discussed in terms of 

DSM generation capabilities. This data source was found, however, to be unsuitable for 

use in urban environments due to the “the insufficient spatial resolution, multiple 

scattering due to the building geometries, and layover effects, in addition to the intrinsic 

IFSAR system level noise.” 
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Figure 2.13: Scissoring effects in orthophoto                                                                                 

due to original LiDAR-derived DSM. 

 

Regardless of the chosen data source for DSM generation, abrupt changes in 

height can have an adverse effect on the quality of the DSM. Therefore, numerous 

research activities have been aimed at devising procedures for the refinement of a DSM, 

in particular through the addition of a digital building model (DBM). A review of 

research on DBM generation is thus investigated in the next section. 

 

2.3 DBM Generation 

To address the issues outlined in the previous section, a DBM can be created and 

added to a DTM to produce a crisp DSM that represents the buildings and terrain of an 

urban environment. Although the surface model of an urban area contains features such 

as trees, cars, lampposts, etc., it would be difficult to refine these objects in the DSM.  

For this reason, when a DBM is created it is added to a DTM, as opposed to the original 

DSM. Figure 2.14a shows a perspective image of a parking lot containing trees and 

lampposts. A true-orthophoto generated using the original DSM for this area is shown in 

Figure 2.14b. It is seen in the image that the effect of the irregular LiDAR point cloud 

causes the trees and lampposts in the produced orthophotos to contain occlusions around 

these features. Although these occlusions can be filled by generating a mosaic of several 
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orthophotos (Figure 2.14c), the trees will still appear degraded in quality. Therefore, 

when the trees are not considered in the surface model through the use of the DTM, the 

trees will simply be projected onto the ground, and will be more visually appealing in the 

3D model (Figure 2.14d). Therefore, the refined DSM is obtained by adding the DBM to 

a DTM. Once the improved DSM is obtained, it can be used to produce true-orthophotos 

with improved building boundaries. Figure 2.15a shows an initial DSM, which can be 

compared to the refined DSM in Figure 2.15b. Figures 2.15c and d show the produced 

orthophoto using both the initial and refined DSM, respectively. The improved 

orthophoto obtained in Figure 2.15d can then be draped over the modified DSM to obtain 

a realistic 3D city model.  

 
Figure 2.14: A perspective image of a parking lot containing trees, shrubs, and 

lampposts (a), a true-orthophoto of the same area using a DSM (b), the true-

orthophoto after occlusion filling (c), and a true-orthophoto generated using             

a DTM (d). 
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Figure 2.15: A comparison of an initial DSM (a) and a refined DSM (b), as well as 

initial true-orthophoto (c) and improved true-orthophoto (d). 

 

The DBM generation process can be separated into two steps; building detection 

and building reconstruction (Ma, 2004). Building detection is a process in which 

buildings are differentiated from all other objects within the data, to obtain building 

hypotheses. The term building hypothesis is used to describe regions in the data that are 

hypothesized as building locations. Building reconstruction utilizes the building 

hypothesis to derive building model parameters (such as height, width, etc.) that are 

required to obtain a 3D building model. DBM generation strategies are categorized into 

two groups in Chen et al. (2008). The first category is commonly called the model-driven 

approach, and the second category of DBM generation strategies is the data-driven 
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approach. The model-driven approach is referred to as a top-down method since the 

process begins with a set of pre-defined types for possible building-primitives. 

Information derived from the data is then investigated to determine which 3D model 

primitives best fit the different areas of the dataset. Sample building primitives utilized in 

the work of Halaa et al. (1998) are displayed in Figure 2.16. The model-driven approach 

is also referred to in some work as constructive solid geometry (Halaa et al., 1998). Since 

the approach uses a finite set of possible building primitives, it is easy to implement. On 

the other hand, the approach cannot model all building types. The building types that can 

be successfully modeled using the model-driven approach tend to be simple buildings 

with flat or gable rooftops (Ma, 2004). The data-driven approach for DBM generation 

deals with point features (such as building corners), linear features (building boundaries), 

and planar features (building rooftops) which are extracted from the input data. This 

approach is referred to as a bottom-up method since features are initially extracted from 

the point cloud, after which the features are used to construct the DBM. This approach 

has the advantage that it can handle generic models without making assumptions 

regarding the shape of the buildings contained within the data. As such, this approach can 

theoretically handle any building type, although on the down side, this approach involves 

complex implementation (Chen, 2008; Ma, 2004). 
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Figure 2.16: Building primitives used in the model-driven approach in Halaa et al. 

(1998). 

 

This section will highlight some of the previous methods employed for DBM 

generation, through the use of various data sources. In some of the previous literature on 

DBM generation, a single data source has been utilized. This section will review the use 

of imagery alone for DBM generation, as well as the single use of LiDAR data. The use 

of image data for DBM generation has the advantage that building boundaries are 

accurately defined in imagery. In addition, automated edge detection can be performed on 

the involved imagery to aid in the automatic detection of building boundaries. In some 

cases, however, difficulties may be encountered when information is not available due to 

occlusions and shadows (Baillard, 1999). Furthermore, it may be difficult to clearly 

locate building boundaries when there is weak contrast between the building roofs and 

the surrounding area (Chen et al., 2008). LiDAR data has also been used as a single data 

source for DBM generation. LiDAR provides important shape information regarding the 

building roofs (flat, slanting, etc.) as well as accurate height information. In addition, 

Priestnal et al. (2000) comments on several other benefits obtained from the use of 

LiDAR for the creation of a DSM: offers an inexpensive method for the production of 
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accurate DSMs; can be obtained under various weather conditions (day and night); and 

offers dense point data over surface features. Wang et al. (2008) note that the accuracy of 

buildings obtained from LiDAR alone suffer due to point spacing, scanning angle, etc. To 

overcome some of the limitations inherent with the use of a single data source, many 

authors have proposed DBM generation methodologies that utilize the integration of 

multiple data sources, including the integration of: LiDAR and vector maps; imagery and 

vector maps; and LiDAR and photogrammetric data. When LiDAR and vector maps are 

integrated, the vector maps can be used to provide building boundary locations, thus 

reducing any effort involved in building boundary detection. Vector maps have also been 

integrated with aerial imagery to improve on the performance obtained using image data 

alone. The vector maps can be used to aid in determining the possible locations of 

building boundaries within the imagery, and therefore aids in the detection of building 

boundaries. The use of vector maps with either LiDAR or imagery improves the 

automation involved in generating the DBM, however these method assumes that the 

vector maps are error-free (i.e., provide accurate boundaries) and up to date (Chen et al., 

2008). Furthermore, it is assumed that the roof borders match with the ground plans and 

thus that there are no roof overhangs (Halaa et al., 1998). In other research, 

photogrammetric and LiDAR data are integrated. There is strong evidence that these data 

sources compliment each other (Baltsavias, 1999), and their integration can produce 

accurate and reliable 3D building models. When these sources are integrated, a common 

approach is to extract information from the LiDAR data to obtain a building hypothesis, 

after which the image data is utilized to refine the building boundaries (Wang et al., 
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2008). Figure 2.17, modified from Habib et al. (2008c), gives a flow chart of the different 

data sources that will be reviewed in this section, in the context of DBM generation. 

 

 
Figure 2.17: Potential data sources for DBM generation (modified after Habib et al., 

2008c) 

 

2.3.1 DBM from Imagery 

The use of imagery for DBM generation has been utilized by numerous authors in 

previous research, and can be categorized as: use of monocular imagery (single image); 

stereopairs; and multiple images. Various forms of imagery, such as aerial and satellite, 

have been employed for DBM generation purposes over the past several years, and this 

section gives a brief review of some previous methods that utilize image data. The 

extraction of buildings from monocular imagery has been a topic of research for the last 

twenty years. Common techniques employed in DBM generation from monocular 

imagery include region growing and shadow analysis. Shufelt (1999) performed a 

comparative analysis of several building extraction systems that utilize monocular 
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imagery. The reviewed systems include: 1) BUILD+SHAVE; 2) VHBUILD; and 3) 

PIVOT. The BUILD+SHAVE building extraction system is a hybrid system that 

combines two separate programs, namely BUILD and SHAVE. When BUILD+SHAVE 

is used for DBM generation, several assumptions are made: a vertical image is used; 

perspective effects are negligible and thus ignored; all buildings are roughly rectangular 

in shape; and the solar azimuth angle is available. The BUILD program is used first, to 

obtain the building boundaries in image space. The program detects linear features in the 

input vertical image. Any lines that meet at right angles are intersected to obtain corners, 

after which the corners are used to obtain rectangular buildings. If some corners of a 

building are missing, the program uses symmetry to complete the building. The solar 

azimuth angle is then used to determine the sides of each box that are expected to cast 

shadows. If shadows are found in the expected areas, the building is included in the final 

2D building hypothesis. The SHAVE program then computes the average length of the 

shadow for a given building, as well as the GSD at the center of the building. The GSD is 

used to obtain the length of the shadow in the object space, which is used in conjunction 

with the solar azimuth angle to obtain the height of a building in the object space. The 

second building extraction system reviewed by Shufelt (1999) is VHBUILD, which 

improves on the previous system as it no longer assumes nadir acquisition geometry. 

Furthermore, buildings with flat rooftops as well as gable rooftops can be modelled by 

this system. The system utilizes the same shadow analysis as BUILD+SHAVE to obtain 

a building hypothesis, after which the height information is obtained by using a “vertical 

edge finder” on the buildings in the perspective imagery. Experimental results for the 

BUILD+SHAVE and the VHBUILD building extraction systems have shown a high 



 

 

37 

sensitivity to the image type. For instance, they have shown poor performance in images 

that contain numerous and complex buildings. The PIVOT building extraction system 

uses a vanishing point detection algorithm to detect building corners, which are then used 

to form rectangular and triangular 3D primitives that are subsequently connected to form 

3D buildings. The height attribute in this method is computed using a combination of 

shadow analysis and vertical line detection. In comparison to the previous methods, the 

PIVOT system produced the best results, largely in part due to the nature of the height 

computation of this system (i.e., the use of both shadows and vertical line detection of 

building walls visible in the perspective imagery). The three building extraction systems 

BUILD+SHAVE, VHBUILD, and PIVOT are classified as model-driven methods, as 

information obtained from the imagery is used to form a fixed model type; rectangular 

buildings with either flat or gable roofs. That is, the process uses a set of pre-defined 

types for possible building primitives.  

 

Single imagery was also utilized in Nevatia et al. (1997), in which a system was 

developed for the extraction of buildings. In their work, it is noted that the use of single 

imagery for DBM generation can be more difficult in contrast to other input data types, 

such as stereo images and range images, as 3D information cannot be directly obtained 

from single imagery. The system developed in Nevatia et al. (1997) is restricted to 

parallelogram and rectangular shaped buildings with flat roofs, and thus is not suited for 

more complex building models. Since this method assumes these pre-defined types of 

building primitives, it is model-driven. The method begins with the detection of linear 

edges in imagery, after which parallelogram hypotheses are created. The validity of the 
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hypotheses is then assessed by investigating evidence of nearby walls and shadows, 

which are also used to obtain elevation information, in a similar fashion as outlined in 

Shufelt (1999). It is shown by experimental results that in some cases buildings that are 

partly occluded by trees or have low heights are not detected through the use of this 

system.  

 

Although single imagery can be used to detect certain types of buildings under 

specified conditions, the use of multiple images can produce a more robust system with 

more complete results. Multiple images can be used in several different ways. They can 

be analyzed as a stereo-pair, or the imagery can be analyzed individually after which the 

individual results are combined. The use of multiple images can be very advantageous, as 

some buildings not visible in a first image may be visible in a second (e.g., due to 

different view angle). When stereo imagery is used for building extraction, image 

matching techniques are commonly used. The matching techniques, however, can have 

several limitations such as failing to match in the presence of occlusions and shadows 

(Wang et al., 2008). In addition to investigating the use of single imagery for DBM 

generation, Nevatia et al. (1997) also investigated the use of multiple images, where 

hypotheses for buildings obtained from one image are projected into another image. The 

proposed method is restricted to rectilinear shaped buildings with flat roofs. Since the 

method assumes a pre-defined type of building-primitive, it is categorized as a model-

driven approach. The use of multiple images was also employed in the work of Baillard 

(1999). In his work, line-matching is performed where epipolar geometry is used to asses 

endpoint correspondence between tentatively matched lines, after which cross-correlation 
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is used to check the similarity of the line’s neighbourhoods. Once lines from two images 

are matched, they are then projected into a third view to confirm the matched lines. 

Subsequent steps use the detected lines to obtain roof planes. As this method deals with 

the extraction of features (in this case lines) from the input data, it is a data-driven 

approach. Moreover, it is a polyhedral data-driven approach, which is a sub model of the 

data-driven model. Polyhedral models assume that the buildings are composed of planar 

surfaces, bounded by straight lines. The roof planes and the final building reconstruction 

obtained using this approach is contingent on the accuracy and number of detected lines. 

Elaksher et al. (2003) also believe that to obtain accurate and complete building 

descriptions, multiple images are required. Moreover, they state that the use of multiple 

images will compensate for cases when a building is partially obscured in more than one 

image. In their work, four images are used for building wire-frame extraction. Their 

approach begins with a segmentation procedure, in which regions in the imagery are 

deemed as roof and non-roof areas, based on size, shape, and intensity values.  Since no 

assumptions are made regarding the building shape, this is a data-driven method, and the 

procedure requires both EOP and IOP of the involved imagery and utilized camera, 

respectively. Corresponding roof regions in overlapping imagery are located, and lines 

from these areas are matched (i.e. this research targets polyhedral models). In this work, 

it was found that the average coordinate accuracy that could be achieved was around 

0.9m in horizontal accuracy and 0.6m in vertical accuracy, using aerial imagery with a 

scale of 1:4000, scanned at 30 µm with a 12cm GSD. For six tested buildings, the 

planimetric root mean squared error (RMSE) was computed for each of the derived 

buildings. It was found that the planimetric RMSE of the six buildings ranged from 0.4m-
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1.5m. The vertical RMSE was also computed for each individual building, and the results 

ranged between 0.2m-1.0m. In Fraser et al. (2002), a data-driven method using stereo 

IKONOS satellite imagery was used to extract building models. 3D building information 

was obtained by matching conjugate points in overlapping imagery. GPS surveyed roof 

corners were used to evaluate the accuracy of the DBM extraction, and it was found that 

a planimetric accuracy of around 0.7m and vertical accuracy of about 0.9m could be 

achieved. It was further concluded that about 15% of buildings were not detected, 

including both small and large buildings. In addition, some buildings were generalised 

into simpler forms. Some reasons provided for these limitations were the presence of 

shadows and occlusions. Due to these limitations, as well as complex matching 

algorithms involved when using imagery alone for DBM generation, other authors have 

sought out alternative methods utilizing other data sources to detect and extract buildings.  

 

2.3.2 DBM from LiDAR 

In other research work, LiDAR data is used for the creation of a DBM. Some of 

the advantages that can be gained through the use of laser scanning data as opposed to 

image data are that factors such as variations in surface reflectance, as well as costly 

matching techniques which can be error prone, do not have to be considered. A common 

approach to DBM generation from LiDAR data is to segment planar roof patches. 

Although this method can be quite successful in the determination of roof planes, the roof 

boundaries can often be difficult to accurately define using the LiDAR data alone. In 

Maas and Vosselman (1999), the irregularly distributed LiDAR point cloud is used to 

segment the roof planes by grouping the laser scanner footprints in a 3D cluster (or 
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parameter) space, based on two slope parameters and one distance parameter. Each 

LiDAR footprint defines a plane in the cluster space. The algorithm identifies the roof 

planes based on the number of planes that intersect in a bin in the cluster space. That is, 

bins containing a large number of points are identified as the planes of the roof. All 

points located on the same plane will be clustered and segmented as a planar roof patch. 

To find the crest lines of gable roofs, all pairs of segmented roof planes are intersected. In 

addition, straight line roof boundaries are obtained using the Douglas-Peucker algorithm, 

followed by an approximation algorithm that forces the lines to be parallel or 

perpendicular to the main orientation of the building. To obtain the building walls, the 

height of the walls are obtained by intersecting vertical planes with the roof edges, while 

the ground level of the walls is obtained from the height of the lowest LiDAR footprint 

located near the building. At intersections of four or more roof planes, a common node is 

computed by averaging the individual corner points. The results of this method were 

promising, and complex roof structures were reconstructed, however, no ground truth 

was available to asses the accuracy of this polyhedral data-driven model (Figure 2.18). 

 

Figure 2.18: Complex buildings modeled in Maas and Vosselman (1999). 
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In Maas (1999) building detection and modelling was performed through the use 

of texture measures and height information, in a data-driven approach. In the first step, 

the LiDAR data is interpolated into a raster grid. In this work, the term texture measure is 

used to refer to local variations in height. It was hypothesized that roads and building 

rooftops would yield low height variations, while trees would produce large local 

variations. Some of the utilized texture measures include: height of data points; 

differences between the maximum and minimum height values within a given window; 

the results of applying a Laplacian and Sobel filter; and local slope information. A 

selection or all of the texture measures can then be used as the input to a supervised 

classification. Results showed that the use of texture information can be quite valuable 

for DBM detection and reconstruction, although some post-processing will be required. 

The reason for this is that some misclassified points appear as noise within objects, as 

well as some of the building edges are misclassified as vegetation. The DBM generation 

procedures reviewed up to this point involve the use of a single data source. The 

remainder of this chapter will review methods that utilize multiple data sources, in the 

efforts to increase the automation and accuracy of DBM generation.  

 

2.3.3 DBM from Data Integration 

The literature reviewed up to this point involves the single use of a data source. 

Although in some cases this can produce sufficient results, the single use of either 

LiDAR or imagery have several limitations. The single use of LiDAR data suffers from 

inaccurate building boundary definition due to the irregular nature of a LiDAR point 

cloud. When image data is used on its own, complex matching problems are encountered. 
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Many researchers have found that more complete and accurate building models can be 

obtained through the integration of different data: LiDAR, aerial imagery, satellite 

imagery, vector maps, etc. This section will investigate the use of data source integration 

for DBM generation. 

 

LiDAR and 2D map data are integrated in the work performed by Halaa et al. 

(1998). As ground plans are often readily available within a GIS, these data sources were 

chosen in their work. A model-driven (or CSG) approach is utilized in their work, where 

buildings are created by a combination of one or more building primitives. In particular, 

the ground plan is split into small rectangular areas, after which the DSM data is used to 

determine the best fitting building primitive for each area, which is accomplished by 

segmenting the DSM into planar surfaces. As this is a model-driven approach, a 

limitation of the method is that not all building types can be accurately modelled. 

Therefore this method is more suited to environments containing simple building 

structures. Furthermore, the authors comment that their method will produce inaccurate 

building models if the roof surface contains any building part (such as a bay), that is not 

included in the ground plan. Chen et al. (2008) investigated DBM generation through the 

integration of LiDAR point clouds with large scale 2D vector maps.  The reasoning given 

for the integration of these two data sources is that the vector maps can be used to 

provide accurate boundaries for the buildings, while the LiDAR data will be used to 

obtain dense information regarding the roof shape. An advantage gained through the use 

of the vector map is that it reduces any work aimed at building detection, and thus also 

increases the automation level of the procedure. The data-driven method proposed 
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consists of three main steps. The first step is data pre-processing. In this step, the vector 

map is used to obtain the building outline, after which a point-in-polygon procedure is 

employed to locate the LiDAR points that fall within a given building. The second step is 

roof analysis, in which the extraction of linear and planar roof features is performed. In 

this step, co-planar points are grouped in order to extract the different roof faces. In the 

third step, the final model is produced by regularizing the lines. The Split-Merge-Shape 

method is then applied to the generalized lines to form enclosed areas. The accuracy of 

the derived building model is assessed in several ways. The height consistency between 

the LiDAR data and the reconstructed building roofs is investigated. In addition, the 

planimetric accuracy of the building corners are compared to coordinates obtained from 

stereoscopic measurements, where an estimated horizontal accuracy of 0.3m was 

obtained from the manual measurements in overlapping images. It was found that the 

vertical RMSE is around 0.2m (where the accuracy of the LiDAR data for the system 

used is quoted as 0.15m, with an average point spacing of 0.8m). The computed 

horizontal RMSE was found to be no greater than 0.6m. Furthermore, it was found that 

around 80% of buildings in the dataset were correctly reconstructed, and the authors 

comment that the missing buildings could be reconstructed if a higher density of LiDAR 

data were available.  This work notes that the reconstruction results are thus dependent on 

the point cloud density, and the vector maps were assumed error free. In addition, when 

integrating multiple data sources, registration problems can be an issue. For instance, 

when vector maps are obtained from existing GIS databases, information regarding the 

data acquisition and accuracy could be missing or inaccurately documented.  
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Section 2.3.1 reviewed the use of imagery for DBM generation. Suveg and 

Vossleman (2000), however, stress that the sole use of image data for automated building 

reconstruction will not be sufficient, in large part due to lost information caused by 

occlusions, areas of low contrast, poor perspective, etc. And thus, to overcome these 

drawbacks, image data can be combined with other sources of data. In their work, Suveg 

and Vossleman (2000) utilize a GIS map as a secondary source of data. The ground plans 

are projected onto the imagery to aid in determining the possible locations of building 

corners and edges. The Foerstner operator, which is designed to locate the intersection of 

lines (i.e. corners), edge endpoints, as well as the center of circular features, is employed 

in this work. In particular, the authors use the operator to detect building lines and 

corners, after which matching procedures are performed on detected lines and corner 

points in overlapping imagery to obtain elevation information. The ground plan of a 

building is then manually partitioned, and the line and corner primitives (box, wedge, or 

rectangular primitive) that fit best for a given partitioned area are produced. As building 

primitives are used in this work, this method is considered model-driven. Finally, the 

building primitives are merged to obtain a 3D building model. This section has thus far 

shown that the inclusion of ground plans derived from an existing GIS database, is 

employed to aid in the detection of building boundaries in either imagery or LiDAR data. 

There are, however, some limitations inherent in this approach: the methods assume the 

ground plans are accurate and up to date; in some cases it is assumed that the roof borders 

match exactly with the ground plans, and thus there is no roof over-hang (Halaa et al., 

1998). Furthermore, registration problems can be an issue when integrating multiple data 



 

 

46 

sources, as the data acquisition is often performed at different epochs, and the data is 

commonly processed by different operators.  

 

Numerous previous research efforts have utilized LiDAR and photogrammetric 

data for DBM generation. Several authors have acknowledged that these two data sources 

supplement each other, and thus through their integration accurate and reliable buildings 

can be extracted (Wang et al., 2008). When photogrammetric data is used on its own, 

many systems require vertical images as the input data. In addition, the methods 

encounter difficulties due to the low contrast between roofs and wall, while contrast 

between roofs and the ground is often greater. This causes significant problems when 

walls are used to obtain the height information. In addition windows and doors can 

interfere in the boundary detection procedure, and sometimes the necessary shadows are 

not visible, in particular in urban areas due to occlusions from neighbouring structures.  

In addition, many methods assume buildings are rectilinear with flat roofs (Lin, 1998). 

Furthermore, the number of lines detected in an image can be immense. When using 

imagery alone, complex analysis must be performed to decide which detected lines 

should be considered in the process. This can require a grouping process, for example, 

where groups of lines are analyzed in terms of their proximity, etc. (Lin, 1998). Wang et 

al. (2008) comments that buildings obtained from LiDAR should be refined through the 

use of imagery. In particular, the LiDAR building boundaries can be refined by 

projecting the LiDAR boundaries onto vertical imagery, and investigating the difference 

between the projected boundaries and the extracted image building boundaries. Figures 

2.19a and 2.19b show results from Wang et al. (2008). Figure 2.19a shows the building 
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footprints as extracted from the LiDAR data, while Figure 2.19b shows the projected 

LiDAR footprint for a given building onto a vertical image. The authors comment that 

the differences between the boundaries from the projected LiDAR data and the 

boundaries in the imagery will differ as the buildings extracted from LiDAR data may not 

be very accurate due to the LiDAR point spacing, scanning angle, etc. The differences 

between the projected LiDAR lines and image extracted lines are found to be within a 

few pixels, and thus an affine transformation is used to refine the building boundaries 

obtained from LiDAR: the transformation parameters are estimated through the use of the 

computed distance between projected and extracted roof edges. Although an affine 

transformation is commonly used to solve registration problems, in this work the LiDAR 

buildings serve as initial building hypotheses, after which the LiDAR building boundaries 

are matched with the image boundaries to obtain buildings with improved accuracy. That 

is, the building boundaries obtained from LiDAR are aligned with the image building 

lines by estimating the transformation parameters (i.e. the scale in the x and y directions, 

the correction for non-orthogonality, rotation angle, and translation parameters). After the 

building boundaries are refined, a best oblique image for each building is selected and 

used to add texture to the building walls.  

 

 

Figure 2.19: LiDAR derived buildings (a), and projection of LiDAR boundary onto 

vertical imagery (b), according to methods proposed in Wang et al. (2008). 
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LiDAR and photogrammetric data were integrated in a GIS platform in Palmer 

and Shan (2002). The integration within a GIS allowed the use of existing powerful GIS 

functions and tools that are used to process the LiDAR data and visualize a 3D urban 

model through semi-automated procedures. The LiDAR is converted to a grid format, 

after which the grid is classified based on height only, to obtain building polygons. The 

classification results are vecotrized and regularized within the GIS, after which 

orthophotos are draped onto the 3D model. Although this method is straight-forward to 

implement and visualize due to the assistance of the GIS functions, the method does not 

yield an accurate 3D model that could be used for engineering purposes. Rottensteiner et 

al. (2004) also opted to integrate LiDAR and imagery for the extraction of buildings in 

urban areas. In their work, the LiDAR-derived DSM is first classified into ground and 

non-ground points, based on various criteria. Homogeneous segments are then located in 

overlapping imagery, through the use of image feature extraction techniques. The image 

planes are then matched with the corresponding DSM roof planes, to refine the initial 

segmentation of the DSM. Finally, building boundaries are then obtained by projecting 

linear features from imagery, which are located in the vicinity of the roof patches, onto 

the roof planes. Edge merging is performed, and finally closed building boundaries are 

produced. To evaluate the results of this data-driven method, building polygons were 

manually digitized in orthophotos, and used to determine the detected building 

completeness and correctness. The authors compute the building completeness as the 

ratio of the number of boundary segments that are correctly established to the total 

number of boundary segments in the area of interest. The term building correctness on 

the other hand is computed as the ratio of the number of boundary segments that are 
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correctly established to the total number of boundary segments that are established. It was 

found that the algorithm was not successful in separating trees from buildings in some 

cases, and buildings smaller than 30m² were not detected. Chen et al. (2005) also utilize 

LiDAR and photogrammetric data in a data-driven approach, and their results aim at 

obtaining sub-meter accuracy for the buildings. The procedure first performs building 

detection, through region-based segmentation, followed by object-based classification. In 

the region-based segmentation, the LiDAR data is resampled into a raster grid and the 

pixels with similar attributes are merged.  The attributes used for merging include the 

elevation information from LiDAR and the spectral information from imagery. After the 

pixels are grouped into regions, an object-based classification is performed to locate 

building regions (according to elevation, spectral information, texture roughness, and 

shape). In the building reconstruction stage, planar patches are extracted from the LiDAR 

data in the detected building regions. Initial building edges are then obtained from the 3D 

planes. These initial edges are used to predict the locations of the building boundaries in 

imagery. The Hough Transform is used to obtain image lines in the predicted regions, and 

the image lines are projected into object space using the height information of the 3D 

planes and the available exterior orientation parameters. Finally a split-merge-shape 

(SMS) method is applied, to yield final building boundaries. A 1/1000 scale topographic 

map with an image GSD of 0.1m was used as the source of ground control in their work, 

and the RMSE were computed. The values obtained from the RMSE analysis were 

0.45m, 0.56m, and 0.70m in X, Y, and Z respectively. Through experimental results it 

was noted that buildings smaller than 35m² were not detected.  
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2.4 Summary 

The literature reviewed in this chapter demonstrates the vast range of 

methodologies and data sources utilized by various researchers for orthophoto, DSM, and 

DBM generation. In Section 2.1, it was established that angle-based true-orthophoto 

procedures are required to obtain accurate ortho-imagery over urban environments. It was 

noted that the quality of the ortho-imagery is dependent on the quality of the DSM. 

Therefore, Section 2.2 outlined several methods used in previous research to obtain a 

DSM. It was found that a DSM obtained from either imagery or LiDAR did not 

accurately represent the surface of an urban environment, and thus a refinement of the 

DSM is required. It was concluded that this can be accomplished by adding a DBM to a 

DTM, and thus Section 2.3 investigated various sources of data that could be used for 

DBM generation. It was found that the sole use of LiDAR data was limited due to the 

irregularity of the LiDAR point cloud, and that the use of image data alone encountered 

difficulties due to complex image matching techniques, further hampered by occlusions 

and shadows contained within the imagery. The integration of LiDAR with 2D vector 

maps, as well as aerial imagery with 2D vector maps, was also reviewed. The addition of 

the 2D vector map aided in the automation of the DBM generation procedure, however 

problems occurred when the vector maps did not accurately depict the buildings. The 

advantages of integrating LiDAR and photogrammetric data were then addressed, and 

previous research in this topic was reviewed. Each method reviewed has different levels 

of automation and model accuracy. As mentioned in Chapter 1, the methodology 

proposed in this work utilizes the complimentary nature of LiDAR and photogrammetric 
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data for semi-automated production of an urban 3D model of high accuracy, which can 

be employed for engineering purposes.  
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CHAPTER THREE: PRE-REQUISITES FOR DBM GENERATION 

There are several pre-requisites that are necessary for accurate data integration 

and final 3D model production. The pre-requisites that are outlined in this chapter 

include: quality assurance (QA) of photogrammetric and LiDAR mapping; quality 

control (QC) of photogrammetric and LiDAR products, followed by the co-registration of 

the two data sources. 

 

3.1 Photogrammetric and LiDAR QA and QC 

QA procedures are necessary to obtain the best possible accuracies from the 

utilized systems, and deal predominantly with planning and data acquisition activities. 

QC activities investigate the performance of the data collection systems. During QC 

procedures, checks are performed to insure data integrity and correctness. This section 

briefly discusses the involved QA/QC procedures. 

 

For a camera system, the key QA procedure is camera calibration, however, other 

factors to consider include the source of control that will be used to georeference the 

imagery, as well as planning the data collection in terms of the base-height ratio, flying 

height, the number and distribution of tie points, the ground sampling distance (GSD), 

image overlap, and camera stability analysis. Since camera calibration is a crucial 

component for the QA of photogrammetric mapping, this will be addressed first. 

Deriving accurate 3D measurements from imagery is contingent on precise knowledge of 

the internal camera characteristics. These characteristics, which are usually known as the 

interior orientation parameters (IOP), are derived through the process of camera 
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calibration, in which the coordinates of the principal point, camera constant, and 

distortion parameters are determined. The calibration procedure can be performed in a 

laboratory, indoor, or in-situ. For indoor and in-situ calibration procedures, control 

information is required such that the IOP may be estimated through a bundle adjustment 

procedure. The type of control commonly used are surveyed point targets, however Habib 

and Morgan (2003) have outlined a low-cost easy to establish calibration technique where 

the use of linear features in camera calibration was proposed as a promising alternative. 

In recent years, the use of digital cameras for photogrammetric purposes has become 

more prevalent, with a wide spectrum of designs, in particular, for medium-format digital 

cameras. Furthermore, new users have entered the mapping market. Several authors in 

the field have thus devised an automated methodology for an in-door camera calibration 

(Habib and Morgan, 2003; Habib et al., 2007b). In addition to camera calibration, 

stability analysis should be conducted on the imaging system. If a camera is stable, the 

IOP obtained from multiple camera calibration sessions should not vary over time. 

Stability can be assessed through a comparison of two sets of IOP derived from two 

separate calibrations of the same camera (Habib et al., 2006). More specifically, if the 

object space reconstructed by the two sets of IOP is equivalent, then the camera is 

deemed stable. Flight planning is an important QA activity that should be conducted 

before data collection is performed. Habib et al. (2007c) performed an in-depth analysis 

on the affect of the number and distribution of ground control points (GCP), the number 

of tie points, the georeferencing method, and the percentage of image overlap on the 

accuracy of the derived object space for both a large-format analogue camera and a 

medium-format digital camera. The achievable accuracies under different flight 
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configurations were investigated for indirect georeferencing, direct georeferencing using 

onboard GPS/INS, and GPS-controlled areal triangulation. The research findings for the 

medium-format digital camera are now summarized. It was found that when there is a 

limited availability of tie points, direct georeferencing using GPS/INS performed 

significantly better in comparison to GPS-controlled georeferencing. In terms of indirect 

georeferencing, it was found that the number and distribution of GCP has a significant 

impact on ground point accuracy, in particular in terms of the z-direction. When there is a 

high number of GCP however, the accuracy is comparable to that achieved from direct 

georeferencing. When the number of available tie points is increased, direct 

georeferencing yields slightly better accuracy, although the results from GPS-controlled 

and indirect georeferencing (with a high number of GCP) are also sufficiently accurate. 

The final analysis performed in this research investigated the effect of sidelap on the 

accuracy of the derived object space. When sidelap was increased from 20% to 60%, it 

was found that all methods yield similar and accurate results. In addition, the vertical 

accuracy obtained through indirect georeferencing is not as strongly affected by the 

number of GCP. That is, when sufficient side lap exists in the images and there are a 

good number of available tie points, the number of GCP that are required is reduced. 

Such an analysis can allow users to select the appropriate equipment and ground control 

information, based on desired product accuracy. 

 

In terms of QC procedures for photogrammetric products, photogrammetric 

triangulation is based on redundant measurements. This provides quantitative measures 

for the precision of the data. The precision can be measured by the variance component, 
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as well as the variance-covariance matrix of the computed object space coordinates. As 

these two measures asses the integrity and internal/relative quality of the data, this type of 

quality control is often referred to as internal quality control (IQC). The accuracy of the 

photogrammetric data is an external or absolute quality control measure, and is often 

referred to as external quality control (EQC). The EQC of photogrammetric products is 

measured through the use of check point analysis, where some check points visible in the 

imagery have been independently measured and their coordinates are compared with the 

outcome from the photogrammetric reconstruction. 

 

Similar to QA for photogrammetric mapping, the main QA activity for LiDAR 

mapping is the calibration procedure. The aim of LiDAR system calibration is the 

estimation of systematic errors. The quality of the derived point cloud is dependent upon 

the systematic and random errors in system measurements and parameters (Habib, 

2008c). Part of the calibration process involves careful planning of the flight and control 

surface configurations (Habib et al., 2007d). A calibration flight is performed over a 

control test field. The discrepancies between the control surface and the LiDAR data are 

used to determine the systematic errors in the LiDAR system parameters. These errors 

can include the bore-sighting spatial and rotational offsets, and biases in the system 

measurements which include the range measurements and mirror angles (Habib et al., 

2007d). Mission planning is another important aspect of QA for LiDAR mapping. 

Aspects of mission planning include: understanding of the area to be mapped to limit the 

number of occluded areas in the obtained data, the flying height, the pulse repetition rate, 

scan angle, amount of overlap between flight lines, GPS baseline, and mission time.  
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To asses the quality of the derived LiDAR point cloud, LiDAR QC procedures 

can be conducted. In contrast to photogrammetric data, which provides redundancy in the 

observations that can be used to assess photogrammetric IQC, LiDAR data lacks 

redundancy in the process for deriving the point cloud coordinates. That is, it is 

impossible to identify conjugate points in overlapping LiDAR strips, due to the irregular 

nature of LiDAR data. To evaluate the degree of consistency between overlapping 

LiDAR strips, LiDAR IQC procedures can utilize conjugate surface elements. The main 

concept of this approach is that conjugate surface elements in overlapping strips should 

match as well as possible, in the absence of biases in the system parameters and 

measurements (Habib, 2008c). To evaluate the external or absolute quality of the LiDAR 

data, EQC procedures can be employed. A common approach to LiDAR EQC involves 

the use of signalized targets that are placed along the LiDAR strip and which are used in 

a check point analysis. This check point analysis is similar to that employed for 

photogrammetric EQC, although a segmentation procedure must be performed on the 

LiDAR data to obtain the LiDAR derived coordinates for each signalized target (Csanyi 

and Toth, 2007). 

 

3.2 Co-Registration 

When integrating data from different sources, the datasets must be registered to a 

common reference frame. Photogrammetric georeferencing, the process of relating the 

image and ground coordinate systems, is performed by defining the position and 

orientation information (exterior orientation parameters - EOP) of the camera at the 

moment of exposure relative to the object space coordinate system. The EOP can be 
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derived either through indirect georeferencing using ground control information or 

through direct georeferencing when GPS/INS is available onboard the imaging platform. 

The quality of the reconstructed surface is affected by the accuracy of the EOP, and thus 

it is essential that these parameters be determined to a high degree of accuracy. In direct 

georeferencing, the IMU body frame attitude and the GPS phase centre position are 

directly measured using onboard GPS/INS systems. In addition, the IMU boresighting 

angles and the GPS antenna offsets relative to the camera perspective centre are 

computed to determine the position (X0, Y0, Z0) and attitude (ω, φ, κ) of the camera at the 

time of exposure with respect to object space coordinates frame. Direct georeferencing is 

computationally efficient as well as economical in the long run since no ground control is 

required. The quality of the geo-referencing is highly sensitive to the accuracy of the 

system calibration as well as the IOP of the implemented camera. 

 

Indirect georeferencing has traditionally been the preferred georeferencing 

procedure due to its accuracy and robustness against IOP biases (Cramer et al., 2000). In 

indirect georeferencing, the EOPs are determined using ground control, where the most 

common type of control involves the use of ground control points obtained through field 

surveying procedures. This form of ground control can be costly in terms of the required 

time and effort but has proven to be an accurate source of control for the georeferencing 

procedure. With the recent developments in spatial acquisition systems, however, some 

reliable alternative forms of control are becoming available. For instance, in recent 

research, LiDAR-derived features are used as the source of control for image 
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georeferencing. Some of the procedures for use of LiDAR derived control are outlined in 

the rest of this chapter. 

 

LiDAR georeferencing is directly established through the GPS/INS components 

of the LiDAR system. Therefore, LiDAR-derived control features can be utilized for the 

georeferencing of the photogrammetric data relative to the LiDAR reference frame. The 

use of LiDAR derived control has two main advantages. First, it allows for a straight-

forward/direct co-registration of LiDAR and photogrammetric data, which has numerous 

benefits such as effective production of 3D city modeling and orthoimage generation. In 

addition, the use of LiDAR control features can eliminate the need for ground control 

points which simplifies the indirect georeferencing procedure and makes it more 

affordable. Since the LiDAR footprints are irregularly distributed, however, no point-to-

point correspondence can be assumed between the photogrammetric and LiDAR data. As 

such, it is almost impossible to identify distinct conjugate points in overlapping 

photogrammetric and LiDAR data. Consequently, LiDAR-derived patches and linear 

features can be used as control information for the georeferencing of the 

photogrammetric data. The planar patches are obtained through a segmentation technique 

(Kim et al., 2007), and a sample result for an area of interest is shown in Figure 3.1a and 

Figure 3.1b. Linear features are obtained through the intersection of neighbouring planar 

patches (Figure 3.1c). Details on the methods for the incorporation of patches (or areal 

features) and linear features in photogrammetric georeferencing are explained in detail in: 

Habib et al. (2004a); Habib et al. (2007e); Aldeglawy et al. (2008); Habib et al. (2008c); 

and Habib et al. (2008a). These authors present several alternative approaches, and this 
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section will now discuss in some detail one of the proposed methods for each of the 

LiDAR-derived features, namely patches and lines. 

 

Figure 3.1: LiDAR point cloud extraction (a), Segmented planar patches (b), and 

extracted linear features through planar patch intersection (c). 

 

The approach for the use of LiDAR derived patches that will be reviewed is referred to as 

the coplanarity-based incorporation of planar patches. The steps for this procedure 

include the extraction of the LiDAR patches from the LiDAR point cloud, followed by 

the incorporation of LiDAR-derived areal features in the photogrammetric triangulation 

procedure. In this approach (shown in Figure 3.2), the planar patch in the imagery is 

defined by a minimum of three points, for example points a, b, and c, which are located 

in the image space, while the LiDAR patch is defined as a set of LiDAR points in object 

space (Habib et al., 2007e). The points, a, b, and c should be visible in at least two 

overlapping images. The collinearity equations are used to relate the image space 

coordinates of the points a, b, and c to their object space coordinates (A, B, C). The 

LiDAR points belonging to a certain planar-surface patch should coincide with the 

photogrammetric patch representing the same object space surface. The coplanarity of the 
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LiDAR and photogrammetric points can be mathematically expressed through Equation 

3.1 which outlines how to incorporate the LiDAR points into the photogrammetric 

triangulation. In physical terms, this constraint means that the normal distance between 

any LiDAR point P and the corresponding photogrammetric surface consisting of the 

three points A, B, and C should be zero. In other words, the volume of the tetrahedron 

comprised of the four points (A, B, C and P) should be zero, as these points belong to the 

same plane. This constraint is applied for all LiDAR points located within this surface 

patch. It is important to mention that in order to de-correlate the estimated parameters in 

the bundle adjustment procedure, one should make sure to use planar patches with 

varying slope and orientation (Habib et al., 2007d). 

 

 
Figure 3.2: Coplanarity-based incorporation of planar patches in photogrammetric 

triangulation (Habib et al. 2007e). 
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Where: 
CBA

ZYX
,,

),,(  are the object space coordinates of image points cba ,, and 

),,( PPP ZYX are the object space coordinates of any LiDAR footprint, 1=P  to n , where n  

is the number of extracted LiDAR points in the areal feature. 

 

Similar to LiDAR-derived areal features, LiDAR-derived linear features can be used as 

control information for the georeferencing of the photogrammetric data. One of the 

methods proposed in previous research (Habib et al., 2004a) for the integration of LiDAR 

linear control features in a photogrammetric triangulation procedure will now be 

reviewed. This procedure is referred to as the coplanarity-based incorporation of linear 

features. Neighbouring planar patches are identified and intersected to obtain LiDAR-

derived linear features. This technique defines a line in object space by its two end points. 

These two points in the object space are extracted from the LiDAR data. In the image 

space, the line is defined by a group of intermediate points (shown as k ′′ in Figure 3.3). 

Each of the intermediate points satisfies the coplanarity constraint shown in Equation 3.2. 

In it, vector 1V
r

 is the vector from the perspective centre to the first LiDAR end point of 

the line, vector 2V
r

is the vector from the perspective centre to the second LiDAR end 

point of the line, and vector 3V
r

is the vector from the perspective centre to any 

intermediate image point on the line. The constraint in Equation 3.2 indicates that these 

three vectors are coplanar, and can be introduced for all the intermediate points along 

image space linear features. For this procedure, a minimum of two non-coplanar line 

segments is needed (Habib et al., 2004b). 

( ) 0
321

=•× VVV
                      (3.2) 
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Figure 3.3. Perspective transformation between image and LiDAR straight lines and 

the coplanarity constraint for intermediate points along the line (Habib et al., 

2004a). 

 

3.3 Summary 

This concludes the review of the pre-requisites for the proposed methodology for 

DBM generation. In this chapter, photogrammetric and LiDAR mapping quality 

assurance was described. The purpose for these pre-mission procedures is to ensure that 

the data meets the user requirements. Photogrammetric and LiDAR data quality control 

was then discussed. The purpose of the quality control is to ensure the desired data 

quality has been obtained, and is thus an important pre-requisite for any work. Then, the 

need for the co-registration of photogrammetric and LiDAR data was described, in which 

it was concluded that several advantages can be gained through the use of LiDAR-

derived control features for image georeferencing. The following chapter makes use of 

the co-registered datasets to obtain accurate digital building models over an urban 

environment. 
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CHAPTER FOUR: DBM GENERATION METHODOLOGY 

4.1 Introduction 

The co-registered LiDAR and photogrammetric data are now available for use in 

the proposed DBM generation procedure, and the workflow of the involved steps is 

outlined in Figure 4.1. The raw LiDAR point cloud is used to obtain a building 

hypothesis. This is accomplished by first classifying the LiDAR data into ground and 

non-ground points. Next, the non-ground points are classified into those belonging to 

planar surfaces and those belonging to rough surfaces. The reason planar surfaces are 

desired is that this work focuses on buildings with roofs composed of planar surfaces. 

Furthermore, these planar roof surfaces are referred to as building-primitives in this work. 

Neighbouring points that belong to planar surfaces are then grouped, according to their 

proximity in 3D. The output from this process is a building hypothesis. The next step is to 

generate initial building-primitives, by performing LiDAR segmentation on the 

individual building hypotheses. Once the initial building-primitives are obtained, a 

building-primitive of interest is selected and the best perspective image that contains the 

chosen building-primitive is located. The best image will be the one in which the chosen 

building-primitive is located as close as possible to the center of the image, and thus 

where many if not all building-primitive boundaries will be visible. Canny Edge 

detection (Canny, 1986) is then performed on the perspective image, and detected edges 

that meet certain criteria are extracted and displayed to the user. In this research, these 

outlined steps have been linked sequentially. That is, the user simply inputs the raw 

LiDAR point cloud and image dataset, then selects a building-primitive of interest, after 

which the extracted lines from imagery are displayed for their analysis. At this point, the 
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user can visually inspect the output image lines, and if any visible building-primitive 

boundary lines have not been located automatically, manual editing can be performed to 

digitize any missing lines. Once the user is satisfied, the lines that are to be automatically 

projected into 3D must be selected. The projected 3D lines are then displayed, and if 

there are any portions of the building-primitive boundary that have not been located using 

the best image, the user can choose to extract lines for the same building-primitive in a 

second image. This process continues until the user is satisfied with the located 3D lines, 

or until no more perspective images are available. Automated snapping of neighbouring 

edges in the object space can then be chosen, followed by manual digitizing if any 

building-primitive boundaries are still missing. After the boundaries of all building-

primitives are obtained through this process, an automated process converts the extracted 

rooftops into a digital building model. Two output options are available at this time: the 

DBM can be added to a ground TIN to obtain a refined TIN surface model that is 

displayed within ArcGIS, or the DBM can be exported to KML format which can be 

loaded and viewed in Google Earth. As a final step, the refined TIN surface model is 

exported to raster and used as the DSM for the creation of true-orthophotos. This chapter 

will outline each of these described steps in sequential order, showing intermediary 

results.  
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Figure 4.1: DBM Generation Workflow. 
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4.2 Building Detection and Primitive Generation 

This process utilizes the LiDAR data to obtain a building hypothesis, followed by 

building-primitive generation: planar patches constituting the rooftops. The main steps in 

generating the initial building-primitive boundaries include: 1) Point cloud classification 

into ground and non-ground points; 2) Building hypothesis generation; and 3) Rough 

building-primitive boundary generation. Detailed explanations of these three steps are 

explained in the following sub-sections. 

 

4.2.1 Ground/Non-Ground Classification of LiDAR data 

In order to obtain initial building-primitive boundaries, the LiDAR footprints 

must be classified into ground and non-ground points. Although there exist several 

different approaches for LiDAR point classification, the method that will be explained in 

more detail is a novel ground/non-ground point classification technique developed 

recently by Chang et al. (2008). In this classification procedure, a perspective center is 

simulated. The LiDAR point cloud is first converted to a regular grid by using the nearest 

neighbour resampling technique. The classification process is fully automated and is 

founded on the knowledge that in a perspective projection, non-ground objects cause 

occlusions. The top and bottom of above-ground objects are projected as two different 

points in a perspective projection, and this displacement, which occurs along radial 

directions from the image space nadir point, causes occlusions in the imagery. In a 

similar procedure to the angle-based true-orthophoto generation techniques outlined in 

Section 2.1.2, occlusions are detected by sequentially checking the off-nadir angles 

(recall that this is referred to as α) to the line of sight that connects the DSM points with 
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the perspective center of the image. The detection of occlusions will be used to locate the 

points causing the occlusions, i.e. non-ground points. As we proceed away from the nadir 

point, it is expected that α will increase (Chang et al., 2007; Habib et al., 2007a). As α 

increases, the checked DSM points will be deemed visible. In Figure 4.2 for instance, the 

point B will be deemed visible, since Bα  is greater than Aα . Whenever there is an 

apparent decrease in the angle α while proceeding away from the nadir point, an occluded 

point is located. This will occur at point C in Figure 4.2, since Cα  is less than Bα . A 

backward tracking procedure is then conducted in order to locate the occluding points, 

which will be presumed to be non-ground points. The tracking begins from the last 

visible cell and starts tracing back towards the nadir point until the α angle is less than the 

off-nadir angle of the first occluded point. In the case depicted in Figure 4.2, this 

backward tracking will proceed until the α angle is less than Cα . As 
A

α and Bα are both 

greater than Cα , the points A and B will be classified as non-ground points. 

 

Aα

Bα

Cα

Dα

 
Figure 4.2: Detection of occlusions and occluding points in a perspective view. 
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The best criteria for the simulated perspective center location will now be 

explained. As depicted in Figures 4.3, the best location is to position the perspective 

center at an elevation that is as close as possible to the heights of the buildings and 

located at a significant distance from the buildings. This will enhance the capability of 

the procedure in detecting occluding points, as depicted in Figure 4.3a and 4.3b. The 

reason for this is that under these criteria, the buildings in the imagery cause a greater 

number of occluded points (shown in Figure 4.3) and thus more of the occluding building 

roof points can be located. Furthermore, a more complete classification can be obtained 

through the use of multiple perspective centers. In Figure 4.3c, it is seen that some non-

ground points that were not detected using perspective center A have been detected using 

perspective center B. By merging the results from these two perspective centers, all non-

ground points in this figure have been detected.  

Occlusion 
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Detected

Non-Ground 

Points with

Higher P.C.

 Higher Perspective 

Center

Nadir Point

Detected

Non-Ground 

Points with 

Lower P.C.

Lower 

Perspective 

Center

Occlusion 

with Lower P.C.

  
  (a)            (b)         (c)         

Figure 4.3: The effect of using different PC heights (a), different locations (b), and 

the use of multiple PCs (c), (figures modified from Chang et al., 2007). 

 

Noise in the data as well as surface roughness and high-frequency components (for 

example cliffs) can lead to falsely detected non-ground points. A statistical filter is thus 

applied to reclassify any falsely classified ground points. Experimental results showed 
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that this robust classification procedure is successful and performs well in urban 

environments. Therefore, the classified ground and non-ground points can be used with 

confidence in the following steps for the creation of a building hypothesis for an urban 

area. Figure 4.4a shows an aerial image of an area of interest, Figure 4.4b shows the 

original LiDAR data, and Figure 4.4c shows the resulting classified ground and non-

ground points. 

           
Figure 4.4: An aerial image of an area of interest (a), the original LiDAR data for 

the area of interest (b), and the classified ground (blue) and non-ground (red)  

points (c). 

 

4.2.2 Building Hypothesis Generation 

The classified LiDAR point cloud can be used to develop hypotheses for the 

individual buildings that are located in the mapped area. This section outlines the steps 
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involved in obtaining the building hypothesis for an area of interest. First, the non-ground 

points are further classified into those belonging to planar surfaces and those belonging to 

rough surfaces.  This is accomplished by first defining a spherical neighbourhood 

centered at each non-ground point. The non-ground points in the spherical neighbourhood 

are used to compute an initial plane through the use of a least-squares adjustment 

procedure. The inverse normal distances from the fitted plane to each point in the 

neighbourhood are used as weights in a second plane fitting procedure, where points that 

are further from the plane are assigned smaller weights than points closer to the plane. 

This process is repeated until the plane parameters do not change between iterations, or 

until a maximum number of iterations are performed. At the end of this iteration process, 

a final plane is obtained. A buffer is then created above and below the final fitted plane, 

where the size of the buffer is chosen based on the expected noise in the LiDAR point 

cloud. This buffer creates what is referred to as a cylindrical neighbourhood (Figure 4.5). 

A non-ground point is then classified as belonging to a planer or rough surface based on 

its spherical and cylindrical neighbourhoods. The ratio of the number of points in the 

cylindrical neighbourhood to the number of point in the spherical neighbourhood will be 

around 1 for relatively flat surfaces, and significantly less than 1 for points belonging to a 

rough surface. In addition, if the plane fitting process does not converge, the point under 

investigation will be classified as belonging to a rough surface. Figure 4.6 shows a 

sample scenario when the non-ground point on a building roof will be classified as 

belonging to a planar surface (Figure 4.6a), and a scenario when a non-ground point 

located on a tree will be classified as belonging to a rough surface (Figure 4.6b). 
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Figure 4.5: Spherical and cylindrical neighbourhood definitions of a non-ground 

point. 

 

 

Figure 4.6: A sample case for when the ratio will be computed as 1 for a roof point 

(a), and a case where the ratio for a rough surface, such as a tree, will be computed 

as significantly less than 1 (b), (Kim et al., 2007). 

  

After all non-ground points are classified as belonging to a planar or rough surface, the 

neighbouring points belonging to planar surfaces are then grouped, based on their 

proximity in 3D. The groups are then analyzed to form building hypothesis by 

considering the size and height characteristics of each group. This filters some of the 

groups out, which do not match a given criteria for possible building size and height. The 

process as outlined in this section is proposed in Kim et al. (2007). Figure 4.7 shows the 

Target 

point 
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results of the generated building hypotheses using the classified points shown in Figure 

4.4b. The different colours in Figure 4.7 represent the different building hypotheses. 

 
Figure 4.7: Generated building hypotheses for the area of interest, shown in Figure 

4.4a. 

 

4.2.3 Building-Primitive Generation 

LiDAR segmentation techniques can be used to generate rough building-primitive 

boundaries from the building hypotheses. The groups obtained from the building 

hypothesis generation may contain points from more than one roof surface. This can 

occur, for instance, when a roof structure consists of a series of connected planes with 

different slopes and aspects. . LiDAR segmentation, in general, is used to relate the 

LiDAR footprints to physical objects. When dealing with urban environments in 

particular, the goal is to relate footprints to planar roof patches. The segmentation process 

is thus applied on each individual building hypothesis to segment points that belong to 

physically different planes. Detailed descriptions of this procedure are available in Kim et 

al. (2007) and Habib et al. (2008c), although a brief summary of the three main steps is 

presented here: 1) First the neighbourhood of a point is defined; 2) A set of attributes is 

computed for each point, based on its neighbourhood; and 3) A clustering procedure is 
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then conducted based on the computed attributes to group points belonging to the same 

planar roof surface. 

 

The definition of a point’s neighbourhood significantly affects the computed 

attributes for the given point. For the purpose of planar patch segmentation, it has been 

found that an adaptive cylinder neighbourhood definition, first introduced in Filin and 

Pfeifer (2006) and as explained in Section 4.2.2, is optimal. Through this definition, 

points located on building walls are not considered in the neighbourhood of rooftop 

points. Figure 4.8 depicts the adaptive cylinder neighbourhood definition. 

 
Figure 4.8: Adaptive cylinder neighbourhood definition (Filin and Pfeifer, 2006). 

 

The neighbours of a point are then utilized to compute attributes for each point. 

For each point and its neighbourhood, a plane of best fit is computed. The normal 

distances from two predefined origins to the plane are computed, and stored in a 2D 

accumulator array (Figure 4.9). The reason two origins are used is to insure that points 

belonging to different planes which are located at the same distance from one origin (for 

example the three planes shown in Figure 4.9a, which are all at the same normal distance 

from origin 1) are not stored in the same cluster within the 2D accumulator array. 

Through this outlined process, all points on the same plane will form a cluster in the 
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parameter space. Figure 4.9b shows the clusters in the 2D accumulator array obtained for 

the three planes shown in Figure 4.9a. 

 

Figure 4.9: The use of two origins from which to compute the normal distance 

attributes (a), and 2D accumulator array (b), (Kim et al., 2007). 

 

 Figure 4.10 shows an accumulator array that contains two planar surfaces. The 

points contributing to the peaks are identified, and the segmentation results for the two 

planar surfaces are shown in Figure 4.10b. Therefore, through this outlined process, the 

points belonging to the same planar surface can be obtained (Figure 4.11a).  

 

Figure 4.10: Accumulator array (a) and segmented patches for a site with two 

planar roof surfaces (b), (Kim et al. 2007). 
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 The final step in obtaining the initial rough building-primitive boundaries from 

LiDAR employs the modified convex hull approach (Jarvis, 1977) to obtain boundary 

outlines of the segmented clusters (Figure 4.11b). In addition, the plane parameters for 

each segmented cluster is computed and stored for use in later processing steps. These 

initial boundaries are now ready for use in the DBM generation procedure presented in 

the following section. 

 
Figure 4.11: The results from segmentation of the building hypotheses (a), and the 

initial building-primitive boundaries (b), for the area of interest shown in Figure 

4.4. 

 

4.3 LiDAR and perspective imagery for DBM generation 

The advantages of integrating LiDAR and photogrammetric data have been 

known for several years. Weidner and Förstner (1995) note that LiDAR data is a 

promising option for obtaining 3D information that could be useful during image 

analysis. Baltsavias (1999) notes that the two forms of data are fairly complementary and 

through their integration numerous benefits can be obtained including more accurate and 

complete products, in addition to creating new application areas.  Baltsavias notes that 

when dealing with photogrammetric data, the planimetric accuracy is much greater than 

the vertical accuracy whereas the opposite is true for airborne laser scanning, where the 
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planimetric accuracy is significantly lower than the vertical accuracy. For these reasons, 

as well as those outlined in the preceding chapters, the methodology introduced in the 

following sections is a semi-automated procedure for DBM generation based on the 

integrated use of LiDAR and photogrammetric data, while requiring minimal user 

interaction. The refined DBM that is reconstructed in the following sections can be used 

to improve the surface model of an urban environment, particularly in areas where sharp 

surface discontinuities, such as building roof boundaries, are present. 

 

4.3.1 Edge Detection within an Image Buffer 

In this work, the building-primitives are assumed to be bounded by straight lines. 

The use of perspective imagery can be a practical option for DBM generation, due to the 

high visibility of building boundaries. This allows the use of linear feature detection to 

automate the location of the many building edges, and can also provide more accurate 

locations for the building-primitive boundaries, in comparison to those derived from 

LiDAR data (Figure 4.12). Note that the boundary lines displayed in Figure 4.12a 

represent the detected lines that are within a buffer distance from the LiDAR boundary 

that is shown in Figure 4.12b. The addition of LiDAR in the building-primitive boundary 

location process can be very beneficial. Although the initial LiDAR-derived boundaries 

do not provide accurate building-primitive boundaries, they can be used to assist in the 

automatic building-primitive boundary extraction from perspective imagery. In addition, 

the segmented LiDAR data can be used to obtain the plane equations of the rooftops, and 

thus provides important and accurate height information for the building-primitive 

boundary points. Furthermore, the integration of these two data sources allow for the 
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determination of 3D information from a single image (i.e., monoploting), and thus does 

not require any matching of conjugate points in overlapping imagery. The developed 

procedure begins from the initial building-primitive boundaries. A building-primitive of 

interest is then manually selected, and the best image from which to extract the selected 

building-primitive is investigated.  

 

Figure 4.12: Automated linear feature extraction from perspective imagery (a), and 

segmented roof boundaries from the raw LiDAR data (b). 

 

Image Selection 

When creating a DBM from perspective imagery, the first step will be to 

investigate the selection of the best image from which to extract the boundaries of a 

specific building-primitive. The best image for a given building-primitive is the image 

with the shortest distance between its perspective centre and the chosen building-

primitive’s centroid (Figure 4.13), and thus where none (or as few as possible) of the 

building-primitive edges will be occluded. When a building-primitive of interest is 

selected, the distance between the building-primitive centroid and each image perspective 

centre is computed to locate which image provides the shortest distance. By selecting the 

image through this criterion we are trying to avoid the relief displacement from 

neighbouring higher structures for a given building boundary. Figure 4.14 displays the 
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concept of choosing the best image. Once the best perspective image for a certain area 

has been located, automated linear feature extraction techniques can be used. 

 
Figure 4.13: Selection of the best image for a given building-primitive. 

 

 
Figure 4.14: Location of the best image (a) to avoid having occluded building 

boundaries (b). Note that the white lines represent the projected initial building-

primitive boundaries from LiDAR. 
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Generation of Image Buffer from LiDAR 

Once the best image from which to extract a given building-primitive is located, 

automated edge feature extraction techniques are used. When edge detection procedures 

are performed on imagery, a large number of linear features are usually detected. This 

can make the identification of the building-primitive lines of interest quite time 

consuming and less reliable (Figure 4.15). 

  
Figure 4.15: Sample output from edge detection algorithm, showing the large 

quantity of edges that are detected for the given building-primitive. 

 

The LiDAR initial boundaries can play an important role in simplifying this 

process. The boundary vertices of the initial building-primitives, from the LiDAR raw 

data, can be used to create a buffer around the current building-primitive boundary of 

interest in the imagery, after which only the area of the image contained within this buffer 

is considered in further processing steps. Before any buffer operations are performed, 

however, the LiDAR boundary points must be projected onto the perspective image. This 

is accomplished through the use of the collinearity equations, to obtain the 2D image 

coordinates of the 3D boundary points.  A black and white binary image of the area 
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surrounding the initial building-primitive is then created. This black and white image is 

used to represent areas of the image that are within a buffer distance from the LiDAR 

boundary, where the pixel value of 1 is assigned for pixels in the buffer zone, and 0 for 

pixels outside the buffer zone (and thus not of interest). The buffer is created by 

sequentially moving through the list of the projected LiDAR boundary points. For each 

neighbouring boundary vertices, for example call these point(i) and point(i+1), the 

distance between these points is computed (in pixels), and a moving window of a 

specified dimension is moved along the line connecting these two points (Figure 4.16). In 

Figure 4.16, the red circles denote the projected LiDAR boundary points, and the orange 

square represents the moving window that assigns values of 1 to each pixel that is located 

along its path. 

 

 
Figure 4.16: Moving window used to create a buffer around a building-primitive. 

 

An appropriate window size must be chosen to guarantee that the true building 

boundary is located within the buffer area. The selection of the buffer size should thus be 

made while considering the average point spacing of the LiDAR data. It can be inferred 
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that the true building boundary must be within a distance equal to the average point 

spacing from the initial boundary of a building-primitive. An assumption is made here 

that the quality of the segmentation results is very good. Therefore, the chosen buffer size 

should be twice the average point spacing. Figure 4.17 depicts the concept behind the 

creation of the buffer image. This buffer image is to be used at a later stage in this 

process, to reduce the number of lines to consider after Canny Edge Detection has been 

applied to the perspective image. 

 

 
Figure 4.17: Depiction of the concept of the buffer creation (white), based on the 

irregular LiDAR building-primitive boundary (red line). 

 

Canny Edge Detection 

Building-primitive boundaries are often represented by visible edges in imagery. 

Existent edge detection algorithms can thus be employed to detect edges from imagery. 

Canny Edge Detection is an algorithm commonly used in various edge detection 

applications, including this research work. Although the Canny Edge detector algorithm 

is more complex than other edge detectors, it is often viewed as a superior method 

(Canny, 1986). Canny aimed at improving on existing edge detection methods, by stating 

three objectives that a good edge detection algorithm should achieve. These objectives 
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are; 1) Low error rate, 2) Edge points are well localized, and 3) Single edge point 

response. The low error rate aims at finding all edges, and ensuring non-edges are not 

falsely detected as edges. The well localized edge response objective states that the 

detected edges should be as close as possible to true edges. For the third objective, the 

single edge response, the detector should return one single point for each true edge that is 

detected. It was found that the best way to accomplish these objectives was to first 

eliminate noise in the image through the use of a Gaussian filter. The gradient of the 

smoothed image is obtained using the Sobel operator, after which the magnitude and 

direction of the gradient are computed in order to estimate the strength of the edge. 

Nonmaxima suppression is performed next, to insure thin edges are produced. The final 

step in the Canny Edge detection procedure is a thresholding operation. The purpose of 

this step is to remove false edge points, and avoid gaps between the detected lines. 

Experiments outlined in Gonzalez and Woods (2008) have shown that through the use of 

the Canny Edge detector improvements in detail of the edges are obtained, and irrelevant 

features are removed. Furthermore, improved continuity and thinness is obtained, which 

makes the Canny Edge detector the preferred algorithm in many applications (Baillard, 

1999; Gonzalez and Woods, 2008). 

 

Once Canny Edge detection has been performed, all edges detected in the image 

will be saved in an output image, including non-building-primitive boundary edges, 

which are not of interest in this research. The buffer image produced by the initial LiDAR 

building boundary, as previously described, can now be used to filter out any detected 

edges that are not within the area of interest, namely the building-primitive boundary 
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area. Figure 4.18 shows a sample of this procedure. Figure 4.18a displays the output from 

the Canny Edge detection over a given building-primitive, where in addition to the 

boundary edge pixels of the building-primitive, many other edges have been detected. 

Figure 4.18b shows the projected LiDAR building boundary, and the result of retaining 

only the detected edges located within a buffer around the LiDAR building boundary is 

shown in Figure 4.18c. 

 
Figure 4.18: Detected edge pixels for a given building-primitive (a), the projected 

LiDAR building-primitive boundary (b), and the resulting edge pixels located within 

a LiDAR buffer area (c). 

 

4.3.2 Extracting Image Lines and Obtaining Precise Boundary Segments 

After the image buffer is used to locate the detected edge pixels that are near the 

LiDAR building-primitive boundary, the next step is to search through these edge pixels 

and connect neighbouring edge pixels to form chains of connected edge elements. This is 

accomplished by locating the chain endpoints and tracking along the connected edge 

pixels to form the chains (referred to as edge tracking). Once all chains of connected edge 

elements are located, edge-splitting is performed followed by straight line fitting, to 
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obtain straight line segments. Adjacent line segments are then merged, as well as 

collinear line segments, based on several constraints. The resulting line segments are then 

displayed to the user, who must select the precise boundary segments that are to be 

projected into 3D. If any building-primitive boundary segments are visible in the imagery 

but have not been automatically detected, the user can manually digitize these missing 

line segments. The user-selected line segments are then projected into 3D space using a 

monoploting procedure. More details will now be provided for each of these steps.  

 

Edge Tracking 

The resulting binary image produced from the Canny Edge detection on the 

perspective image, within the LiDAR buffer zone, is now traced to connect neighbouring 

edge pixels to form chains of connected edge elements. The chaining process starts by 

first locating the image coordinates of a chain endpoint. The concept used for endpoint 

detection is that an edge endpoint will only have one neighbour that is also an edge point. 

Therefore, edge endpoint detection is performed by sequentially checking every pixel in 

the image, and determining at which locations two edge pixels are found in a moving 3x3 

window, centered on the checked pixel. Figure 4.19 depicts the different types of cases 

where an edge endpoint is located.  

 
Figure 4.19: Three different types of edge endpoints; horizontal (a), diagonal (b), 

and vertical (c). 
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 When an edge endpoint is located, the pixel coordinates are stored and a moving 

window is then used to trace along the connected edge elements (storing each pixel 

location) until another endpoint is reached. The coordinates of the traced edge are stored, 

and the traced chain elements are then deleted from the image, so that it is not 

accidentally traced again. After searching through the entire edge image, all edge chains 

will be obtained. During this process, any chains that are shorter than a given threshold 

value will be rejected and not used in further processing steps. 

 

Edge Splitting 

The results from the edge tracing may contain curved line segments. This research 

assumes building boundaries to be straight lines, and thus the next step is to split the 

traced edges into straight line segments. This is accomplished using a method similar to 

the Douglas-Peucker algorithm (Douglas and Peucker, 1973). A line is connected 

between the two endpoints of a tracked edge (shown as a red dashed line in Figure 4.20). 

The perpendicular distance between every pixel in the tracked (or traced) edge and the 

dashed line is computed. If the maximum perpendicular distance, shown as “d” in Figure 

4.20, is greater than a threshold, the tracked edge is split into two edge segments. This 

step differs from the Douglas-Peucker method, as the tracked edge is actually split into 

two under this criterion. The Douglas-Peuker method is used to simplify lines, not to split 

them. In their method, when the distance d is smaller than a threshold, the line is 

simplified by joining the endpoints of the red dashed line in Figure 4.20. In this work, the 

same splitting process is performed on the split edge segments, and if necessary, the 

segments are further split into smaller edge segments. This process is applied to all 
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tracked edges, and the resulting split edge segments are stored and used in the following 

section. 

 
Figure 4.20: A tracked edge that will be split into two lines at the point P if the 

distance d is greater than a threshold. 

 

Before moving to the next step, however, line fitting is performed. Figure 4.21 shows a 

case where a split edge is not straight after the edge-splitting is performed. Line fitting is 

thus applied to all split edges. This is done using all the edge points along the split edge 

in a least-squares line-fitting procedure. The straight lines are then used in following 

section. 

 
Figure 4.21: Possible output line from line-splitting process (a) where line-fitting is 

performed to obtain straight-line segments (b). 
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Line Merging  

There are two types of line merging steps that are performed on the image space 

lines. The first involves the merging of adjacent lines, which are lines that overlap with 

each other to some degree. The second line merging is performed on neighbouring lines 

that are roughly collinear. Figure 4.22 show a sample of adjacent lines versus roughly 

collinear lines.  

 
Figure 4.22: Sample adjacent lines (a), and roughly collinear lines (b). 

 

The first step in line merging is to investigate the line directions. If the angle between two 

adjacent lines is larger than a threshold, then these two lines are not considered further as 

possible lines to be merged (Figure 4.23). If, however, the angle is smaller than a given 

threshold, then these two lines are still considered as possible lines to be merged. A 

reasonable angular threshold to use is 10º, as any lines that have significantly different 

line directions should not be merged. 

 
Figure 4.23: Angle constraint for line merging. 
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 Another constraint that is considered, deals with the computation of a line that 

connects the two line midpoints, which is used as a measure of the normal distance 

between two adjacent lines. This is best explained by consulting Figure 4.24. In this 

figure, M1 represents the midpoint of Line 1, while M2 represents the midpoint of Line 2. 

A line is then connected from M1 to M2, and let us call the length of this new line “l”. 

The midpoint of this connecting line is labelled Mm. Therefore, the distance from M1 to 

Mm is l/2. This is also true for the distance from Mm to M2.  

 
Figure 4.24: Computation of perpendicular distance from the midpoint Mm to Line 

1 and Line 2. 

 

The perpendicular distance from point Mm to Line 1 can be computed as 
1

sin2 θ⋅l . 

Similarly, the perpendicular distance from point Mm to Line 2 can be computed as 

2
sin2 θ⋅l . These values are used in the constraint in Equation 4.1, as proposed in 

Zuxun et al. (2004) and give an indication of the normal distance between the lines. If the 

sum of these two distances is below a given threshold, these lines are kept. In this work, 

the threshold was chosen as 2 pixels. 
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A third constraint is introduced to assess the separation between the endpoints of two line 

segments. If the line endpoints are separated by a significant distance they should not be 

merged.  Figure 4.25 depicts this new constraint, which is expressed by Equation 4.2. 

Figure 4.25a depicts this constraint when applied to two nearly collinear lines, while 

Figure 4.25b depicts the constraint applied to adjacent lines. From Figure 4.25b it can be 

seen that the left hand side of Equation 4.2 will be negative, and thus all adjacent lines 

that have passed the previous constraints (i.e., angle and normal distance constraints) will 

also pass the line separation constraint. 

 

 
Figure 4.25: Line separation constraint for collinear lines (a), and the effect of 

applying this constraint to adjacent lines (b). 
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Note that the left-hand side of Equation 4 expresses the distance highlighted in red in 

Figure 4.25. If this distance is smaller than a threshold (chosen as 10 pixels in this work), 

and the previous two constraints have been met, the line endpoints will be used in a least-

squares line fitting procedure, to obtain a merged line. The three outlined constraints deal 

with both neighbouring/overlapping and almost collinear line segments. This concludes 

the line extraction from imagery procedures. The lines produced at the end of these 

outlined steps are now ready for use in the following sections.     

 

2D/Image Space Manual Editing 

Following the boundary line extraction from imagery, the user can manually add any 

missing boundary lines that are visible in the perspective image. Missing lines can occur 

for several reasons. For instance, when a boundary is in shadow, the edge detection will 

likely not be able to detect the building-primitive edge, and will more likely detect the 

edge of the shadow or simply not locate any edges in the boundary region. This situation 

is shown circled in green in Figure 4.26a, where the shadows cast by the trees prevent 

automatic line detection for part of the building-primitive boundary. In other cases, if 

there is not enough contrast between the building roof and wall or ground, the edge 

detection may fail. This situation is depicted in the green circled area in Figure 4.26b.  In 

addition, if the boundary is composed of small protruding parts, the line tracking process 

may disregard these edges due to length constraints employed during the edge tracking 

process. A scenario of this case is shown in Figure 4.26c. In all three figures the red lines 
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shown are the detected lines obtained from the above outlined process. At this point in 

the process, the user has the option to manually digitize any missing boundaries that have 

not been located through the automated procedure.  

 

Figure 4.26: Detected lines and building image clip, demonstrating problems in the 

straight-line detection process. 

 

Once all visible boundary lines are obtained, either through the edge detection process or 

from manual digitizing, the user manually selects the lines, which represent the precise 

boundary segments for the building primitive in question, which are to be projected into 

3D. The line selection performed by the user is a vital step in this process. If the selection 

of 2D lines was implemented automatically, there would be some cases in which 

incorrect lines would be selected. The lines that are chosen manually, on the other hand, 

can then be used with confidence. This is important as the accuracy of the reconstructed 

building-primtives is dependent upon the accuracy (and number) of detected lines. Lines 

chosen through an automated process will always have certain cases in which wrong 

selections are made. Therefore, the manual digitizing and line selection options that are 
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offered to the user is a key contribution to obtaining accurate and more complete 

building-primitive lines.  

 

The selected lines are then automatically projected into 3D, and this projection is 

performed through a monoploting procedure, where monoploting is the process of 

obtaining 3D information from measurements in a single image (Makarovic, 1973). The 

regular monoploting procedure is an iterative process, and in some cases the solution will 

diverge. However, in this research we do not perform iterations, as the plane of the 

building-primitive in question is already defined by the LiDAR segmentation. In addition 

to not requiring the implementation of an iterative procedure, there is no risk of the 

monoploting solution diverging. The plane equations for the building-primitives are used 

in conjunction with the collinearity equations, to directly obtain 3D information from a 

single 2D image. The collinearity equations are shown in Equations 4.3 and 4.4, with the 

plane equation shown in Equation 4.5. 
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The object space coordinates of the endpoints of the established precise boundary 

segments are obtained through this monoploting process, and are displayed in 3D for the 
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user. The following section outlines the options available once object space 3D lines are 

obtained. 

 

4.3.3 Building modelling in Object Space 

The previous section outlined the detection, digitization, selection, and projection 

of building-primitive boundary lines from the best image for a given building-primitive, 

into 3D object space. In some cases, there may be some missing building-primitive 

boundaries, which were not visible in the chosen perspective imagery. There is thus an 

option available to the user to explore other images to complete the boundary of the 

building-primitive in question. When the user decides to explore another image for a 

given building-primitive, an option can be chosen to select the next best image from 

which to extract lines. This option repeats the previously outlined steps, and in addition, 

the object space lines obtained from the best image are projected into the image space of 

the next best image. Figure 4.27 shows an instance when using the next best image option 

is needed. The best selected image for a given building-primitive has one boundary that is 

not visible (and is circled in red in Figure 4.27a), whereas the next best image for this 

building-primitive has a clear view of this boundary (which is circled in green in Figure 

4.27b). Manually selected/digitized lines from previous images plus the detected straight 

line segments from the current image are displayed together in the same image space, as 

shown in Figure 4.28. 
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Figure 4.27: A building-primitive in which a boundary line within the red ellipse is 

not visible in the best image (a), but is clearly visible within the green ellipse in the 

next best image (b). 

 

 

Figure 4.28: The display of detected lines from multiple images - red lines from 

previous image, green from current. 



 

 

95 

The final step in obtaining the complete building-primitive boundary is performed in 

object space. In some cases, some boundary segments for a given building-primitive may 

not be visible in any of the images contained in the dataset, or small gaps may be present 

between neighbouring building-primitive boundaries. When one of these situations 

occurs, these lines must be created/edited in 3D to obtain a closed building-primitive roof 

boundary. There are two options available to the user. The first option, called 3D 

Prunning, has been implemented to snap neighbouring lines together if they are separated 

by small gaps. A threshold for the snapping process has been set, by the author, to 2m. 

Therefore, any neighbouring lines that are separated by 2m or less will be snapped 

together automatically. Figure 4.29 shows a sample case when this option can be very 

useful. In Figure 4.29a, two boundary segments of the building-primitive have not been 

automatically located, due to low contrast near the building edges. These two lines are 

then manually digitized on the image (in image space), as shown in Figure 4.29b. Note 

however, that in Figure 4.29b there are small gaps between many neighbouring lines. It 

would be quite time consuming to manually add line segments for all these gaps. Figure 

4.29c shows the lines for this building-primitive after being projected into 3D. The 

snapping option has then been used to obtain the closed 3D building-primitive outline 

shown in Figure 4.29d.   
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Figure 4.29: A building-primitive with some boundary lines not detected 

automatically, due to low constrast (a), the boundary lines after manual editing, 

with gaps between all lines (b), the projected lines of the given building-primitive 

into 3D (c), and the results from using the snapping option (d). 

 

The logic behind the snapping function will now be explained. Figure 4.30 shows three 

sample cases where gaps are present in the boundary of a given building-primitive. For 

the first case, circled in blue in Figure 4.30, two neighbouring lines that form corners are 

to be snapped together. The program will snap these lines by computing the intersection 

point of the two lines, and then changing the coordinates of the line endpoints to match 

the coordinates of the intersection point. The Z-coordinate is then obtained from the roof 

plane equation. In some cases the extracted neighbouring lines have an orientation that 

causes their computed intersection point to lie outside the extent of the building-
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primitive, that is, not between the neighbouring line endpoints (shown in Figure 4.30a 

and 4.30b, circled in red). In these cases, a new line is simply placed between the 

neighbouring lines. Although this produces a slightly jagged boundary (Figure 4.30c), it 

is temporary as it will be compensated for in later processing steps when the Douglas-

Peucker algorithm is applied to all building boundary lines. A third case is displayed in 

Figure 4.30, circled in green, where two neighbouring lines are collinear. Under this 

constraint their intersection point cannot be computed. When two neighbouring lines 

have a similar slope, the snapping function will simply connect the endpoints of the 

collinear or almost collinear lines.  

 
Figure 4.30: Three cases for gaps between neighbouring lines (a), the connection of 

neighbouring lines to the intersection point or the joining of line endpoints (b), the 

result from snapping the lines together, and the resulting building-primitive 

boundaries(c). 
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As previously mentioned, there are two options for closing the building-primitive 

boundaries in object space. If the first option, snapping the lines together, does not close 

all building-primitive boundaries (recall there is a threshold for the snapping process), 

then manual editing is required. Figure 4.31 shows a building-primitive that led to this 

situation, where one of the building-primitive boundaries was not visible in any image, as 

it is occluded by a neighbouring building-primitive. Figure 4.31a shows the best image 

for the given building-primitive and Figure 4.31b shows the next best image for the same 

building-primitive. Figure 4.32 shows the building-primitive boundary lines before and 

after the snapping option is used.  

 

 
Figure 4.31: Images of a building-primitive in the best image (a) and next best image 

(b), where a one boundary is not visible, thus requiring manual digitizing in 3D. 
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Figure 4.32: The boundary lines for a building-primitive, before (a) and after (b) 

using the snapping option. 

 

Note that for this case there is still a boundary segment for this building-primitive that is 

missing. A tool is available to the user for manual digitizing in 3D, to obtain any missing 

boundary lines. For this tool, the LiDAR initial boundaries can be used as a guide for 

digitizing, if desired (Figure 4.33). In Figure 4.33a, the initial LiDAR boundaries are 

displayed as polygons, and the established boundary segments are displayed in red. By 

using the LiDAR boundary as a guide, the user can be confident that the two lines beside 

the gap should be joined (Figure 4.33b). Note that during the manual editing in 3D, the 

ArcGIS snapping function that snaps newly added lines to existing lines is enabled.  

 

 

Figure 4.33: Use of the LiDAR boundary for manual editing in 3D, where a) and b) 

represent the boundary outline before and after editing. 
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Once all the boundaries of a building-primitive have been obtained, the boundary line 

segments are used to obtain a building-primitive polygon. This step is necessary, as the 

next step requires the input building-primitives to be in polygon format. When the 

polygon is created, the Douglas-Peucker algorithm is applied to the boundary lines. This 

algorithm aims at preserving directional trends in linear features based on a tolerance that 

is used to specify the amount of simplification that is desired (Douglas and Peucker, 

1973). The generalized building-primitive polygons are then used in the next section to 

create a refined DSM, by adding the building-primitive polygons to a DTM of the area. 

Figure 4.34 shows a sample of a building-primitive before and after the generalization is 

performed. In Figure 4.34a, there is a jagged line segment circled in red (produced by the 

3D snapping function). The Douglas-Peucker algorithm generalizes the building-

primitive boundary to obtain the result shown in Figure 4.34b. 

 

 
Figure 4.34 Generalization of building boundaries to remove the small bend in the 

building outline circled in red (a), through the use of the Douglas-Peucker algorithm 

to obtain straight boundary segments (b). 
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4.4 Generating a Refined DSM  

The outlined process discussed so far is applied sequentially to the building-

primitives one by one. The discussed procedure in this section is applied while 

simultaneously considering all the building-primitives. This section outlines the process 

in which the rooftop polygons are added to a ground TIN to obtain a refined DSM. First, 

to obtain a DBM both the rooftops and the building footprints are required. The rooftops 

acquisition for the individual building-primitives is performed as outlined in Section 4.3. 

Several steps are required to obtain the building footprints. First the roof patches are 

aggregated based on their proximity into new polygons which form the external building 

boundaries (Figure 4.35). The elevation information for the footprints are obtained by 

projecting the aggregated polygons onto the ground TIN, and the Z-coordinates for the 

footprint vertices are obtained by linear interpolation of the ground TIN.  Before the 

rooftop and footprint polygons can be incorporated into the ground TIN, one final 

modification must be made, due to the 2.5D limitation of TIN models. That is, each X-Y 

location on the TIN can only have one elevation point. In reality however, the rooftop 

and footprint will have two different elevations for the same X-Y pair. To address this 

limitation of the TIN structure, the building footprints are slightly expanded outwards 

thus avoiding truly vertical walls. This expansion however is very slight and thus does 

not have a significant effect on the final output DBM. In addition, any ground nodes 

located within the building boundaries or within a specified buffer distance (10cm) from 

the building footprints are first selected and deleted from the ground TIN. The final step 

is the addition of the building rooftops and footprints to the ground TIN (as hard lines). 
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Figure 4.36a shows the building rooftops and footprints, while Figure 4.36b shows the 

DBM that has been added to the ground TIN.  

 

 
Figure 4.35: The building rooftop polygons (a) and the aggregated building 

footprints (b). 

 

 
Figure 4.36: Building rooftops and derived footprints (a), and the TIN surface 

model from adding the buildings to TIN (b). 

 

The resulting TIN surface model would not look as visually appealing if it was 

obtained by adding the DBM to the original TIN surface model obtain from the LiDAR 



 

 

103 

footprints (as opposed to the ground TIN). Reasons for this are that the representation of 

other non-ground features are not accurately modelled in the LiDAR derived TIN, and 

thus are not visually appealing in either the refined surface model or true ortho-imagery. 

Figure 4.37 shows a sample “refined” TIN surface model that is obtained by adding the 

reconstructed DBM to the original TIN surface model, in comparison to a refined TIN 

surface model obtained by adding the DBM to a ground TIN. To obtain a refined DSM 

that can be used to produce improved true-orthophotos, the TIN shown in Figure 4.36b is 

converted to raster using the nearest neighbour resampling technique. This method is 

chosen to maintain the established boundaries. 

 

 
Figure 4.37: Refined TIN surface model that is obtained when the DBM is added to 

the original TIN surface model (a), in comparison to when the DBM is added to a 

ground    TIN (b). 

 

4.5 Refined True-Orthophoto Generation 

The enhanced DSM obtained in the previous section can be used to provide a 

more complete surface model for a 3D realistic visualization of an urban area. Chapter 1 

outlined that in addition to a surface model, the most important feature of a city model is 

the ortho-imagery that is draped over the surface model. The use of the refined DSM for 
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true-orthophoto generation is thus the last objective to discuss in this research. The first 

step is to export the refined TIN surface model to a DSM, which can be used for true-

orthophoto generation. Experimental results for the improved true-orthophotos are 

presented in Chapter 5. In addition, a comparison between the resulting orthophotos from 

two variations of the refined DSM is performed: the first DSM is obtained by adding the 

DBM to the ground TIN, whereas the second DSM is obtained by adding the DBM to the 

original TIN surface model. Figure 4.38a shows the true-orthophoto obtained using the 

original DSM, and Figure 4.38b shows the true-orthophoto generated using a refined 

DSM that was obtained by adding the DBM to a ground TIN. It can be observed that the 

building boundaries are clearly defined in Figure 4.38b, as opposed to Figure 4.38a where 

the building boundaries are jagged. Figure 4.38c shows the 3D visualization of the 

dataset using the original orthophotos and surface model, while Figure 4.38d shows the 

refined 3D visualization obtained using the refined surface model and improved true-

orthophotos.  
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Figure 4.38: True-orthophoto generated using the initial DSM (a), true-orthophoto 

generated using the refined DSM (b), the 3D visualization using the initial surface 

model and true-orthophoto (c), and the 3D visualization using the refined surface 

model and improved true-orthophoto (d). 

 

4.6 Summary 

This chapter has outlined the proposed DBM generation methodology, performed 

through the integration of photogrammetric and LiDAR data. Building detection and 

primitive generation using the LiDAR footprints was first reviewed. In particular, the 

method proposed in Chang et al. (2007) for ground/non-ground classification of the 

LiDAR data was outlined, followed by a discussion on building hypothesis and building-

primitive generation procedures as proposed in Kim et al. (2007). The building-primitives 

and perspective imagery were utilized in a semi-automated procedure to obtain a DBM of 
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an urban area. The DBM was then added to a ground TIN and converted to raster to 

obtain a refined DSM, which was then used to obtain improved true-orthophotos. 

Together the refined raster surface model and improved true-orthophotos can be used to 

obtain an accurate and realistic 3D visualization of an urban environment. 
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CHAPTER FIVE: EXPERIMENTAL RESULTS 

5.1 Introduction 

To assess the performance of the proposed methodology, experiments were 

carried out using a real dataset. Both LiDAR and image data were utilized, and 

qualitative and quantitative analyses were performed on the generated output. The 

qualitative analyses involve a visual comparison of the DSM, orthophotos, and 3D 

models that are produced using: 1) the refined DSM obtained by adding the DBM to the 

original TIN surface model, and 2) the refined DSM obtained by adding the DBM to a 

ground TIN. The quantitative analysis was conducted through root mean squared error 

(RMSE) computations between building corner coordinates obtained manually (using 

photogrammetric techniques) and the building corner coordinates obtained from the 

proposed methodology. Repeatability of the implemented DBM generation process was 

also investigated. The developed software program will be described in this chapter, and 

intermediate results are shown and discussed.  

 

5.2 Dataset Description 

The data obtained for the conducted experiments is of the University of Calgary 

and surrounding area. This data is ideal for testing the proposed methodology, as the 

university campus contains numerous buildings of various sizes and shapes. The 

photogrammetric data includes nine photos in three strips. The photos were captured by 

an RC30 frame analogue camera, with an average flying height of 770m, and a focal 

length of 153.33mm. The image scale is 1:5000, and the photos were digitally scanned at 

12 microns resolution to obtain a 6cm GSD. With a pixel size of 12 microns and an 
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image measurement accuracy of 1 pixel, the expected horizontal accuracy is around 

0.06m, while the expected vertical accuracy is around 0.30m. Ten LiDAR strips with an 

average point spacing of around 0.8m were captured in two flight missions over the study 

area (six strips in the first mission and four strips in the second mission), with an Optech 

3100 sensor. The data was captured with a flying height of 1000m for the first flight 

mission, and 1400m for the second. According to manufacturer specifications for the 

given flying height, the expected accuracy for the LiDAR data is a vertical accuracy of 

15cm for both flight missions, while the horizontal accuracy for the first flight mission is 

50cm, and 70cm for the second. The overlap between the LiDAR data and imagery can 

be seen in Figure 5.1. In accordance with the pre-requisites outlined in Chapter 3, the data 

were co-registered as described in the following section. 

  

 
Figure 5.1: Overlap between LiDAR and photogrammetric data. 
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5.3 Co-Registration 

The co-registration of the utilized data had been performed prior to this research 

using LiDAR-derived linear features, to georeference the involved imagery. It was found 

that using LiDAR-derived features to obtain the image EOP was a better option in 

comparison to the use of ground surveyed control points, for several reasons that will be 

discussed. A comparative analysis was performed on the use of ground control points 

(GCP) versus LiDAR-derived features for image georeferencing, in an independent 

study. A static GPS survey of 24 GCP was conducted around the University of Calgary 

campus. Out of the 24 GCP, 8 points were used to georeference the imagery using a 

conventional photogrammetric bundle adjustment (BA) procedure. The remaining 16 

surveyed ground points were used as check points. A root mean squared error analysis 

(RMSE) was performed between the 16 check points and their values as computed from 

the photogrammetric BA. The results are summarized in the second column of Table 5.1. 

With a pixel size of 12 microns and an image measurement accuracy of 1 pixel, the 

expected horizontal accuracy is around 0.06m, while the expected vertical accuracy is 

around 0.30m. From Table 5.1, it can be seen that the expected accuracies match closely 

with the results computed in this experiment (RMSEX, RMSEY, RMSEZ,). The results 

from the georeferencing of the imagery using LiDAR-derived linear features are 

presented in column 3 of Table 5.1. A relatively large amount of bias is present in the 

results (Mean∆∆∆∆X, Mean∆∆∆∆Y, Mean∆∆∆∆Z), which is not present in the results from 

georeferencing experiments using GCP. The reason for this is that a bias has been 

identified between the LiDAR reference frame and the reference in which the ground 

control points were surveyed. Moreover, a bias in the LiDAR system parameters was 
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suspected as well. The error amount (σσσσX, σσσσY, σσσσZ), however, is reasonable. In particular, 

the horizontal standard deviation is similar to the results from using GCP, while a noted 

vertical standard deviation improvement is obtained. A possible explanation for this is 

that many more LiDAR-derived control features (50) were used in comparison to the 

number of GCP used (8). That is, the improved vertical accuracy may be due to the 

higher redundancy. In addition, the linear features are derived from a plane fitting and 

intersection procedure, which reduces the noise in the LiDAR data. Therefore the vertical 

accuracy of the linear features is significantly better than 15cm. The effect of the bias 

value is seen in the final RMSE values (RMSEX, RMSEY, RMSEZ, RMSETotal), which 

are larger than those presented in the second column of Table 5.1.  

 

Table 5.1: Mean, standard deviation, and RMSE analysis of the Check Points using 

surveyed GCP and LiDAR linear control features 

METHOD 

Surveyed GCP 

 

 

 -  8 Control Points 

 - 16 Check Points 

 

Coplanarity Method,  

 Linear Features 

 

  - 50 Control Lines 

  - 24 Check Points 

 

Mean∆∆∆∆X (m) 0.05 1.00 

Mean∆∆∆∆Y (m) -0.01 -0.76 

Mean∆∆∆∆Z (m) 0.14 0.65 

σσσσX (m) 0.09 0.10 

σσσσY (m) 0.11 0.10 

σσσσZ (m) 0.25 0.11 

RMSEX (m) 0.10 1.00 

RMSEY (m) 0.10 0.77 

RMSEZ (m) 0.28 0.66 

RMSETotal (m) 0.32 1.43 
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A qualitative comparison between these two types of georeferencing procedures 

was also performed. Two orthoimages were generated using the angle-based true 

orthoimage generation methodology outlined in Section 2.1.2. They were generated using 

the perspective image shown in Figure 5.2, a digital surface model, and the two sets of 

EOPs resulting from using GCPs as well as from the use of LiDAR derived linear 

features as the source of control for image georeferencing. The generated orthoimages are 

illustrated in Figures 5.3a and 5.3b. From these images it can be seen that the 

orthoimages generated using the LiDAR data as a source of control appears to be more 

accurate than the orthoimage generated using GCPs. This can be observed in the 

orthophotos in Figure 5.3, where there are more traces of building boundaries projected 

onto the ground in the latter orthoimage (Figure 5.3a). Therefore, the EOP derived from 

the LiDAR control ensures better co-registration between the photogrammetric and 

LiDAR data. 

 
Figure 5.2: Perspective image of a building on the University of Calgary campus. 
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Figure 5.3: Orthoimage produced using GCP as the source of control (a), and 

orthoimage produced using LiDAR derived linear features (b). 

 

The reason for this is that any bias that exists in the LiDAR data will not be visible in the 

final orthoimages, when the source of control data and the digital surface model have 

both been obtained from the same (although biased) data source. To summarize the 

conclusions of this study, the use of LiDAR features and GCPs for georeferencing 

appeared to give compatible horizontal precision. On the other hand, LiDAR features 

seemed to give better vertical precision. The inferior quality of the orthophotos generated 

using GCP is due to co-registration problems between the reference frame in which the 

ground control was collected and the LiDAR reference frame. That is, the derived EOP 

are in the GPS reference frame, while the DSM used to produce the orthophoto is in the 

LiDAR reference frame. The bias that was identified between these reference frames 

contributes to the degraded quality of the produced orthophoto using the GCP as the 

source of control for image georeferencing. 
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5.4 Software Implementation  

The implementation of the proposed methodology was performed within the 

ArcGIS platform, through the use of existing functions as well as from the addition of a 

custom toolbar which was added. The coding language used for the customized 

modifications of the ArcGIS functionality was performed using the native ArcGIS 

programming language ArcObjects, as well as in C#. This multi-platform integration was 

very advantageous, as the powerful functionality available within ArcGIS can be 

modified to suite the desired application, without having to program many processes 

from scratch. The developed program is called GEO DPRG TOOLS EXTENDED, and the 

purpose of this program is to reconstruct 3D building models using LiDAR and aerial 

image data. The program developed in this work is a semi-automated process. The use of 

a semi-automated DBM generation procedure offers several advantages: some steps are 

automated which can improve speed, while incorporating some manual work for times 

when automated methods fail or provide incomplete results. Table 5.2 lists the functions 

available within the ArcObjects library that were used in the developed software. When 

this research began, the algorithms for several procedures (LiDAR data classification, 

LiDAR segmentation, etc.) required for the proposed methodology were available within 

numerous different programs and programming languages. To allow a user to perform the 

full process of creating a refined DSM from the two input data (co-registered LiDAR and 

photogrammetric data), the existing programs were merged within an option on a drop-

down menu of the implemented toolbar (Figure 5.4). The first step that is required, as 

outlined in Chapter 4, is the classification of the LiDAR point cloud into ground and non-

ground points, after which the classified non-ground points are used to generate building 
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hypotheses and initial boundaries for the building-primitives. This process is invoked 

through the Compute initial boundary option shown in Figure 5.4. 

 

Table 5.2 List of ArcGIS functions used for various purposes in the developed 

software. 

Purpose ArcGIS function used 

Generalization of the building 

boundaries 
Douglas-Peucker Algorithm 

Perform manual editing operations Editor Toolbar 

Selection of a building-primitive of 

interest, and selection of the image 

space lines 

SelectFeaturesTool 

Convert the refined TIN to Raster TinRaster 

Create the building footprints, and add 

the roof patches and footprints to the 

ground TIN 

AggregatePolygons, TinEdit, 

Buffer, InterpolateShape 

 

 

Figure 5.4 Toolbar containing links to all required functions in the proposed 

methodology. 

 

 For the area of interest (Figure 5.5a), the menu option takes the input LiDAR 

point cloud (Figure 5.5b) and classifies the points into ground and non-ground points 

(Figure 5.5c), generates a building hypothesis (Figure 5.5d), performs segmentation on 

the building hypothesis to obtain clustered building-primitives (Figure 5.5e), and finally 

obtains initial boundaries of the building-primitives (Figure 5.5f). The initial building-
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primitives are then loaded into the ArcGIS interface, in a data frame that is automatically 

labelled Object space. Figure 5.6 displays the polygons of the initial building-primitives 

for the hypothesized buildings in the dataset. 

 

 

Figure 5.5: Areal image of the area of interest (a), the LiDAR data over the area of 

interest (b), the classified ground (blue) and non-ground points (red) over the same 

area (c), the generated building hypotheses (d), the clustered building-primitives (e), 

and the initial boundaries of the building-primitives (f). 
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Figure 5.6: Display of polygons of the initial building-primitives. 

 

As outlined in the explanations in Chapter 4, the user will start the DBM 

generation process by selecting a polygon from the interface display. Figure 5.7 shows 

the selection of a building-primitive in the software interface. The threshold values that 

were utilized in the experiments presented in this chapter are summarized in Table 5.3. 

Once a building-primitive is selected by the user, an option on the drop-down menu is 

chosen to extract lines from the best perspective image for this building-primitive. When 

this option is selected, Canny Edge detection is performed to locate the edge pixels in the 

perspective image. An image buffer is then created and used to locate the edge pixels that 

are located near the building-primitive boundary. Edge tracking (or chaining), edge 

splitting, line fitting, and line merging is performed automatically on the edge pixels 
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located in the buffer area, and the lines obtained from this process are displayed in a new 

map, that will be called Image space. Figure 5.8a show the results from the Canny Edge 

detection on the chosen perspective image, and Figure 5.8b shows the extracted lines 

from the established buffer surrounding the initial LiDAR boundary after its projection 

into the image space, displayed on a clip of the building-primitive in the perspective 

image. In Figure 5.9a, the user has manually added lines that were not detected 

automatically. In particular, two added lines are circled in green in Figure 5.9a. The 

reason these lines were not detected automatically is that these segments of the boundary 

are composed of small sub-parts, as shown in a close-up view in Figure 5.9b. In Figure 

5.9c, precise boundary segments are selected (highlighted in blue) and are ready to be 

projected into the object space map (through monoploting) for further processing. Please 

note that throughout this section, in some cases the images will be rotated to improve the 

display within this document. 

 

 
Figure 5.7: Selection of a building-primitive of interest, shown outlined in orange in 

the interface. 
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Table 5.3: Descriptions and values for the thresholds used for the experimental 

results contained in this chapter. 

Threshold Description Value 

Image Buffer 
Size of the buffer on each side of the initial 

boundary, used for edge filtering. 

14 pixels 

(0.8m in 

object space) 

Douglas-Peucker 

Threshold for Edge 

Splitting 

Threshold value used to determine if tracked 

edges should be split. 
15 pixels 

Line Merging 

Angle Constraint 

Acceptable angle between neighbouring/ 

overlapping line segments in the line merging 

process.  

10 degrees 

Line Merging 

Normal Distance 

Constraint 

Acceptable normal distance between 

neighbouring/overlapping line segments in the 

line merging process in the image space. 

2 pixels 

Line Merging 

Endpoint 

Separation 

Constraint 

Acceptable endpoint separation of neighbouring 

line segments in the line merging process in the 

image space. 

10 pixels 

3D Snapping 

Threshold 

Acceptable endpoint separation for intersection 

3D lines. 
2m 

Douglas-Peucker 

Generalization 

Threshold 

Threshold value for generalizing a line segment. 0.3m 

 

 

 

Figure 5.8: The results from the Canny Edge detection on the perspective image (a), 

and the line segments obtained from line extraction in the image buffer that was 

applied to the Canny output image (b). 
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Figure 5.9: Line editing in the image space, where two manually added lines are 

circled in green (a), a close-up view of one of the boundary portions that was not 

detected automatically (b), followed by manual line selection of the precise 

boundary segments (c). 

 

The selected image lines have been projected into 3D and are displayed on top of the 

LiDAR-derived initial building-primitive polygon in Figure 5.10. The gaps between the 

building-primitive lines must be closed, and thus the 3D pruning/snapping option is used 

for this building-primitive. Figure 5.11 shows a sequence of steps: Figure 5.11a shows 

the 3D building-primitive boundary lines after the lines have been project from image 

space to object space; Figure 5.11b shows the resulting lines after the 3D snapping option 

is selected; and Figure 5.11c shows the final building-primitive polygon that is obtained. 

Through this process, all the precise boundary segments for this building-primitive are 

extracted from a single image.  

(a) 
(b) 

(c) 
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Figure 5.10: Projected image lines into 3D (green lines) on top of the initial building-

primitive polygons (blue). 

 

 
Figure 5.11: The boundary lines after projection into 3D (a), after using the 3D 

snapping option (b), and finally the closed building-primitive polygon (c). 

 

The same process is repeated for a second building-primitive, shown in Figure 5.12. 

Figure 5.12a shows the building-primitive selected in the ArcGIS interface, and Figure 

5.12b is the output from running the Canny Edge detection on the best chosen perspective 

image. The extracted lines from the established buffer surrounding the initial LiDAR 

boundary after its projection into the image space are displayed in Figure 5.12c. A 

portion of a boundary segment has not been detected automatically, due to low contrast 

(a) (b (c) 
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near the building-primitive boundary. This area is circled in green in Figure 5.12c and 

5.12d. The user has chosen to not manually digitize this gap in the image, and has 

selected the lines that are to be projected into 3D (highlighted in blue in Figure 5.12d).  

 
Figure 5.12: Selected building-primitive in the object space (a), the Canny output 

image for the building-primitive (b), the extracted lines located within the image 

buffer, with a boundary portion that was not automatically detected circled in green 

(c), and the selection of precise building-primitive boundary segments (d). 

 

Figure 5.13 shows the projected lines from image space into 3D. Figure 5.13a and 5.13b 

show the 3D lines before and after the snapping option is used. There is still a gap in the 

boundary of the building-primitive in Figure 5.13b. Although the option to select another 

image from which to extract the boundary lines is available at this point, from analysis of 

the LiDAR-derived building-primitive that is viewed in Figure 5.13c, it is clear that this 

gap should be closed by simply adding a straight line segment in this area. Therefore, 

(a) 
(b) 

(d) (c) 
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manual editing in 3D is performed by the user, using the LiDAR-derived initial boundary 

as a guide to manually digitize the missing line segment. Figure 5.13d shows the 

boundary lines after manual editing is performed to obtain a closed building-primitive 

outline. The polygon obtained for this second selected building-primitive is shown 

alongside the first building-primitive in Figure 5.13e.  

 

 
Figure 5.13: The projection of the image lines into the object space (a), the results 

after using the 3D snapping option (b), LiDAR-derived building-primitive used as a 

guide for manual digitizing in 3D (c), the results from manually digitizing the 

missing line segment (d), and the two polygons obtained from the selected building-

primitives (e),  which are shown in Figure 5.8 and Figure 5.12. 

(a) 
(b) 

(c) (d) 

(e) 
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Once all building roof polygons are obtained, the user can select an option in the custom 

menu bar to add the roof polygons to a ground TIN, which can be used to export a refined 

DSM. The function that performs this operation utilizes several ArcGIS geoprocessing 

techniques and analysis tools (aggregation, buffer, etc.). In particular, an ArcGIS script 

available online in Visual Basic was converted into C#, with some slight modifications, 

and employed in Habib et al. (2008c) for DBM generation. Figure 5.14 shows the 

ArcGIS interface with the building roof polygons and TIN displayed, both in the main 

ArcGIS window and a custom 3D Viewer dockable window. The 3D Viewer window can 

be used at any time to view the GIS data layers in 3D. The resulting TIN surface model 

obtained by adding the buildings to the ground TIN is displayed in Figure 5.15a, and 

Figure 5.15b displays the created DBM in Google Earth. 

 

 
Figure 5.14: Building rooftop polygons obtained for the area of interest. 
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Figure 5.15: The resulting DBM added to a ground TIN in ArcGIS (a), and the 

created DBM displayed in Google Earth (b). 
 

The TIN surface model that is obtained by adding the DBM to the ground TIN is then 

converted to raster. The raster is then exported to text file to obtain a refined DSM. 

(a) 

(b) 
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Improved true-orthophotos can be generated using the refined DSM, and draped on the 

refined DSM to obtain an improved 3D urban model. The following section conducts a 

qualitative analysis of the output DSM, DBM, and refined true-orthophotos. Note that the 

area of interest that is investigated in this work is ideal as it contains various shapes and 

sizes of building-primitives, and thus provides a robust test for the proposed 

methodology. 

 

5.4.1 Qualitative Evaluation 

This section will perform qualitative analysis and comparison between the true-

orthophotos, the TIN surface model, and the 3D realistic visualization obtained using; 1) 

the original LiDAR-derived TIN surface model, 2) the TIN surface model derived by 

adding the DBM to the original LiDAR-derived TIN surface model, and 3) the refined 

TIN surface model obtained by adding the DBM to a ground TIN. To obtain the DSM 

that is required to generate the true-orthophotos, each of these TIN surface models were 

converted to raster data. Since the quality of the produced orthophotos is dependent upon 

the DSM quality, we will first investigate the three surface models shown in Figure 5.16. 

The TIN surface model obtained from the original LiDAR point cloud is shown in Figure 

5.16a. In this figure the building boundaries are jagged, and the roof surfaces are not 

smooth due to various reasons (the presence of small features on the roof such as pillars, 

pipes, etc., as well as the vertical accuracy of the LiDAR footprints). Furthermore, the 

trees are represented by tall narrow cones in the surface model. It is evident from this 

figure that the surface model requires refinement. Figure 5.16b shows the resulting TIN 

surface model that is obtained by adding the derived DBM to the TIN representation of 
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the original LiDAR point cloud. The building rooftops are now smooth, since the roof 

surfaces in the DBM are obtained using a plane-fitting equation, and thus look more 

natural. In addition, the building boundaries are crisp. The representation of the trees in 

Figure 5.16b is the same as in Figure 5.16a, since only the representation of the buildings 

in the surface model has been refined. Figure 5.16c shows the refined TIN surface model 

that is obtained by adding the DBM to a ground TIN. From Figure 5.16c, it is clear that 

the buildings look very realistic, and as the trees are no longer present in the surface 

model, the 3D visualization is more appealing then the 3D models shown in Figures 

5.16a and 5.16b.  

 
Figure 5.16: Three TIN surface models are shown: the original surface model 

coming from the LiDAR footprints (a), the surface model obtained by adding DBM 

to the original surface model (b), and the refined surface model obtained by adding 

DBM to a ground TIN (c). 



 

 

127 

These three TIN surface models were then each converted to raster to obtain a DSM that 

can be used to produce true-orthophotos over the same area. A comparison of the results 

is shown in Figures 5.17, 5.18, and 5.19. The original surface model obtained from the 

LiDAR footprints is used to produce the true-orthophoto mosaic shown in Figure 5.17a. 

Looking at the close-up view in 5.17b, several things are apparent. Part of the building 

outline has been projected onto the ground. This can be seen in the areas contained within 

the green ellipses in Figure 5.17b. In addition, the building boundaries are not crisp, and 

there are many occlusions (shown in black) in and around the trees. Figure 5.18a shows 

the mosaic of the true-orthophotos produced using the DSM obtained by adding the DBM 

to the original surface model. In the close-up view of the area bounded by the red box 

(Figure 5.18b), it can be seen that the building boundaries look quite crisp and there are 

no traces of the building boundaries on the ground, however the quality of the trees is still 

degraded and thus the image does not look fully realistic. Figure 5.19 shows a mosaic of 

the true-orthophotos created using the refined DSM, obtained by adding the DBM to a 

ground TIN. In this figure, the building boundaries are clearly defined, and the trees 

appear more natural, as they are simply projected onto the ground.  
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Figure 5.17: A mosaic of true-orthophotos obtained using the original DSM (a), with 

a close-up view of the area bounded by the red box (b). 

 

 
Figure 5.18: A mosaic of true-orthophotos created using a DSM obtained by adding 

the DBM to the original surface model (a), and a close-up view of the area bounded 

by the red box (b). 
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Figure 5.19: A mosaic of true-orthophotos created using the refined DSM that is 

obtained by adding the DBM to the ground TIN (a), and a close-up view of the area 

bounded by the red box (b). 

 

Once the refined DSM and the true-orthophotos over the area of interest have been 

generated, the next step is to use these output products to create a 3D realistic 

visualization of an urban environment.  This was accomplished by adding these two data 

layers into ArcScene, and the results are displayed in Figure 5.20 and 5.21. The 3D 

model obtained using the original DSM and true-orthophotos is shown in Figure 5.20a. In 

this image, it is evident that the building boundaries are jagged, and the trees appear as 

green spikes beside the buildings. Figure 5.20b displays the results obtained using the 

DSM derived by adding the DBM to the original TIN surface model. From this image, 

the building boundaries are improved, however the trees are still displayed as green 

spikes which cause the 3D model to be less visually attractive. Figure 5.21 shows the 

final 3D city model obtained using the refined DSM obtained by adding the DBM to a 

ground TIN. An extra step has been included to obtain the 3D model shown in Figure 

5.21. A buffer “wall” around the buildings has been added, to enhance the visualization 
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of the building walls. This was has been created by simply generating a copy of the 

building rooftop polygons, expanding these polygons slightly, and extruding the polygons 

to the ground. From a comparison of these three figures it can be concluded that the 

proposed procedure has successfully improved both the surface description and the 

texture information of an urban environment. Furthermore, the choice of adding the DBM 

to the ground TIN of the area has been validated through these results.  

 
Figure 5.20: The 3D models created using the original LiDAR derived DSM (a), the 

DSM obtained by adding the DBM to the original DSM (b). 
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Figure 5.21: The refined DSM obtained by adding the DBM to the ground TIN. 

 

To further confirm the choice of adding the DBM to the ground TIN as opposed 

to the TIN obtained from the original LiDAR footprints, some comparisons are shown in 

Figure 5.22. An area of the true-orthophotos generated using the DSM obtained by 

adding the DBM to the original LiDAR-derived TIN is shown in Figure 5.22a, and the 

refined DSM obtained by adding the DBM to the ground TIN is shown in Figure 5.22b. 

From these images, it can be seen that the trees in Figure 5.22a contain occlusions in and 

around them, whereas the trees in Figure 5.22b look more visually appealing. A 

comparison of trees in a second area shown in 3D is found in Figure 5.22c and Figure 

5.22d. In figure 5.22c, several large trees are modeled as green spikes. The LiDAR 

footprints that hit the tree canopy produce the spikes, while in some cases the LiDAR 

footprints penetrate the canopy and return a ground point. For this reason, trees are often 

poorly modeled in a surface model obtained from LiDAR data. Figure 5.23 displays 
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samples of other structures (such as cars, metal structures, and the campus entrance) on 

the surface that are poorly modeled by the LiDAR data, and thus appear degraded in the 

derived orthophotos. Figures 5.23a, 5.23c, and 5.23e are true-orthophotos produced using 

a DSM that is obtained by adding the DBM to the original LiDAR-derived TIN model, 

while Figures 5.23b, 5.23d, and 5.23f are true-orthophotos from a DSM that is obtained 

by adding the DBM to a ground TIN. 

 
Figure 5.22: An orthophoto obtained by adding the DBM to the original TIN 

surface model (a), an orthophoto obtained from a refined DSM (DBM + ground 

TIN) (b), the 3D model obtained using the orthophoto in figure a (c), and the 3D 

model obtained under the orthophoto in figure b (d). 
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Figure 5.23: Figures (a), (c), and (e) are true-orthophotos from a DSM that is 

obtained by adding the DBM to the original LiDAR TIN, while figures (b), (d), and 

(f) are true-orthophotos generated from a DSM that is obtained by adding the DBM 

to a ground TIN. 

  

From these examples, it is evident that it is a better option to simply ignore the 

modeling of trees, cars and other structures on the surface and simply display them on the 

ground. Figure 5.24 shows the final 3D urban model of the University of Calgary 

campus, obtained through the proposed methodology. This concludes the qualitative 
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analysis of the produced output, and the following section will outline a quantitative 

analysis performed on the output DBM. 

 

 
Figure 5.24: Final 3D model obtained through the proposed methodology. 

 

5.4.2 Quantitative Evaluation 

This section performs a quantitative analysis of the accuracy of the DBM 

produced through the proposed procedure. This was conducted by computing the RMSE 

of the corner points of the DBM with the corner points of a manually generated DBM, 

which was derived through a photogrammetric reconstruction procedure using the image 

dataset. Since the manually generated DBM will be used as the ground truth, it is 

important to assess the quality of this DBM before comparing it to the DBM produced in 

Section 5.4.1. To assess the consistency of coordinates derived manually, six operators 

independently generated a DBM from imagery. The resulting coordinates for the building 

corner points obtained by the six operators were used in an RMSE analysis, where the 
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results obtained by one of the more experienced operators were compared against the 

other five. The computed RMSE values are displayed in Table 5.4.  Looking at these 

results, several conclusions can be drawn. The mean values are all quite small, which 

indicates that there is no bias or systematic discrepancies between the six sets of 

measurements. The standard deviation indicates the magnitude of the random errors in 

the operator measurements. From the results in Table 5.4, the planimetric and vertical 

standard deviations range between 9cm-36cm, which is roughly 1.5-6 pixels in the 

imagery (recall the image GSD is 6cm), and the main cause for this difference is due to 

the difficulty in accurately locating the precise corner points in the imagery. The total 

RMSE values range from about 22cm to 56cm, and the average RMSE is around 33cm. 

Thus, a general conclusion that can be taken from these results is that the variability in 

coordinates obtained from the manual generation of a DBM is about 33cm. Table 5.5 

shows a break down of the RMSE in terms planimetric and vertical components, where 

the average planimetric RMSE is around 0.25m and the average vertical RMSE is around 

0.21m.  
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Table 5.4: RMSE Analysis between results obtained from six operators, where all 

units are in meters. 

 
Mean 

X 

Mean 

Y 

Mean 

Z 
σX σY σZ RMS X RMS Y RMS Z 

RMS 

Total 

Op_2 

Vs. 

Op_1 

0.010 0.043 0.003 0.119 0.132 0.192 0.119 0.138 0.191 0.264 

Op_3 

Vs. 

Op_1 

0.086 0.008 0.091 0.349 0.364 0.239 0.357 0.362 0.255 0.569 

Op_4 

Vs. 

Op_1 

0.027 0.035 0.021 0.172 0.124 0.210 0.174 0.128 0.210 0.301 

Op_5 

Vs. 

Op_1 

0.009 0.061 0.003 0.090 0.125 0.152 0.090 0.139 0.151 0.224 

Op_6 

Vs. 

Op_1 

0.013 0.034 0.038 0.149 0.124 0.252 0.149 0.128 0.253 0.321 

 

Table 5.5: A comparison of the Planimetric and Vertical RMSE (in meters) 

 Planimetric RMSE Vertical RMSE 

Op_2 

Vs. 

Op_1 

0.182 0.191 

Op_3 

Vs. 

Op_1 

0.508 0.255 

Op_4 

Vs. 

Op_1 

0.216 0.210 

Op_5 

Vs. 

Op_1 

0.166 0.151 

Op_6 

Vs. 

Op_1 

0.196 0.253 

 

The results from the six operators were averaged and used to compute an RMSE between 

the manually generated DBM and the DBM generated through the proposed procedure. 
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The coordinates of the building corners for the DBM generated in ArcGIS are stored in 

the rooftop polygons and can be obtained by clicking on the building vertices (Figure 

5.25).  

 

 
Figure 5.25: Building vertex coordinates stored in the rooftop polygon layer. 

 

Table 5.6 lists the results from an RMSE analysis conducted to compare the DBM 

generated through the proposed procedure with the manually generated DBM. The 

second row in Table 5.6 shows the values obtained when comparing the averaged results 

from the six operators with the DBM generated using the developed program. The mean 

values in the X and Y directions are quite small, which indicates no bias between the two 

sets of building coordinates. The mean Z value on the other hand is quite large (about 

53cm). This indicates the presence of a vertical bias between the compared DBMs. The 

reason for this is that the Z-coordinates of the DBM generated through the proposed 

procedure are obtained from the rooftop plane equation, which does not consider the 
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height of the walls or “fences” that surround the rooftops of many buildings in the 

dataset. Two sample buildings from the image dataset are shown in Figure 5.26, where 

the fence on the building roof in Figure 5.26a has a height of around 0.45m above the 

roof plane, while the fence shown in Figure 5.26b has a height greater than 1m above the 

roof plane. The Z-coordinates obtained manually from imagery, in contrast to vertices for 

the generated DBM shown in Figure 5.25, were obtained for the outer-top corners of each 

building, and thus the points selected in imagery were located on top of these fences. The 

reason for this type of point selection in the imagery was due to the fact that the outer 

walls are more clearly visible in overlapping imagery. Returning to the analysis of the 

second row in Table 5.6, the standard deviations in the X, Y, and Z directions are 35cm 

or less, while the RMSE in X and Y are around 20cm. These RMSE values are in the 

same range as the RMSE values between the different operators shown in Table 5.4. This 

is therefore an indication of a very good accuracy for the generated DBM. As expected, 

the RMSE Z is quite large due to the large Mean Z value. In the third row of Table 5.6, 

the compared manual DBM as well as the DBM generated through the proposed method 

were both derived by the same operator, and the results are quite similar to those in the 

second row of the table. Table 5.7 reports the planimetric RMSE values obtained for the 

semi-automatically generated DBM. These values are consistent with the average 

planimetric RMSE obtained from the manual DBM generation results, which was 0.25m. 

In Chapter 2, results from Elaksher et al. (2003) were outlined. In their work, multiple 

images were used for automated DBM generation. The reported planimetric accuracy was 

0.9m, for an image GSD of 12cm. The results from the semi-automated DBM generation 
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reported in Table 5.7 reveals that the proposed method has improved upon this accuracy 

by about a factor of three, and thus the results are very satisfactory.  

 

Table 5.6: RMSE analysis of the semi-automatically generated DBM (in meters) 

RMSE 
Mean 

X 

Mean 

Y 

Mean 

Z 
σ X σY σZ 

RMS 

X 

RMS 

Y 

RMS 

Z 

Total 

RMS 

OP_1 DBM  

vs. 

Avg Manual 

-0.077 0.094 0.537 0.221 0.179 0.352 0.233 0.202 0.642 0.712 

OP_1 DBM  

vs.  

OP_1 Manual 

-0.057 0.064 0.567 0.275 0.160 0.402 0.280 0.172 0.693 0.768 

 

Table 5.7: Planimetric RMSE analysis for the semi-automatically                                

generated DBM (in meters) 

 Planimetric RMSE 

OP_1 DBM  

vs. 

 Avg_Manual 

0.308 

OP_1 DBM  

vs.  

OP_1 Manual 

0.329 

 

 
Figure 5.26: Manually selected vertices for the photogrammetrically reconstructed 

DBM, with a building fence height of 45cm (a), and fence height of over 1m (b). 

(a) (b) 
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To assess the repeatability of the proposed DBM generation procedure, the DBMs 

generated by the same operator are compared in the second row of Table 5.8, and the 

third row compares two DBMs that are generated by two different users. The mean 

values for both rows are quite small, indicating no systematic discrepancies between the 

compared DBMs. The standard deviations and RMSE values are all within the same 

ranges as those obtained by the six operators in Table 5.4. This indicates that a resulting 

DBM obtained from the proposed procedure, performed by the same operator, will obtain 

very similar results when repeating the DBM generation process, and that the resulting 

DBM is independent of the operator. One difference worth noting in Table 5.8 is the 

mean, standard deviation, and RMSE values for the derived Z-coordinates, which are 

smaller than the respective values for the X and Y coordinates. The explanation for this is 

that regardless of the person generating the DBM, the Z-values for a given building-

primitive will always come from the same plane equation, and therefore are expected to 

be very similar. 

  

Table 5.8: RMSE analysis to assess repeatability of proposed methodology, where 

the second row compares two DBMs generated by the same user with a time gap of 

over two weeks, and the third row compares two DBMs generated by two different 

operators. 

RMSE 
Mean 

X 

Mean 

Y 

Mean 

Z 
σ X σY σZ 

RMS 

X 

RMS 

Y 

RMS 

Z 

Total 

RMS 

OP_1 DBM1 

vs. 

OP_1 DBM2 

-0.034 -0.043 -0.009 0.178 0.207 0.029 0.180 0.211 0.030 0.279 

OP_1 DBM 

vs. 

OP_2 DBM 

0.065 0.029 -0.00 0.328 0.148 0.001 0.333 0.150 0.001 0.364 
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To perform a quantitative analysis on the produced true-orthophotos, the GPS-

surveyed points used in the experiments outlined in section 5.3 can be used. In particular, 

an RMSE between GPS control points and the planimetric coordinates of the GCP 

located within the true-orthophoto mosaic can be computed. Since LiDAR-derived linear 

features were used as the source of control for the image georeferencing, it is expected 

that the results of the RMSE analysis should contain the bias that was observed in section 

5.3. Only two GPS-surveyed GCP were visible in the mosaic of the area of interest, and 

future work will target the expansion of the mosaic for a more comprehensive RMSE 

analysis. Nonetheless, the differences in the X and Y coordinates of these two points can 

be discussed. The computed differences in the planimetric coordinates of the first point 

were 0.51m and 0.27m, in X and Y respectively. For the second point, the X and Y 

coordinate differences were 0.38m and 0.87m. These large values confirm the bias 

between the GPS and LiDAR reference frames that was previously detected (i.e., recall 

that the Mean∆∆∆∆X and  Mean∆∆∆∆Y  reported in Table 5.1 were 1.0m and 0.76m, respectively).  

 

5.5 Summary  

Through the qualitative and quantitative analyses performed on the DBMs 

generated through the proposed methodology, several conclusions can be summarized. 

The developed software that is integrated within the ArcGIS platform allows a user to 

generate a DBM through the use of a single custom toolbar. In addition, several existing 

tools available within the GIS library are utilized, and the output products benefit from 

the display and visualization capabilities of the GIS. In terms of the qualitative analysis, it 

was concluded that the addition of the DBM to a ground TIN produced the most 
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appealing visualization of an urban area. Furthermore, the true-orthophotos obtained 

using the refined DSM show accurate and crisp building boundary delineation. The 

quantitative analysis has shown that the accuracies achieved by producing a DBM 

through the proposed procedure are comparable to those achieved using traditional 

manual photogrammetric techniques. Furthermore, the produced DBM has been shown to 

be operator independent. For these reasons it can be confidently concluded that the 

proposed methodology and developed software can be utilized to obtain an accurate 3D 

realistic visualization of an urban environment. The following chapter outlines the 

conclusions, limitations, and areas of future work. 
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS FOR      

FUTURE WORK 

6.1 Introduction 

This work has outlined the integration of photogrammetric and LiDAR data, 

within a GIS, for the accurate reconstruction of a 3D realistic urban model. Moreover, 

through the integration of these two data sources, in a semi-automated procedure, 

accurate boundaries of the building-primitives can be obtained from a single image. This 

chapter will summarize the work that has been done, comment on the limitations, and 

propose areas of future work.  

 

6.2 Conclusions and Limitations 

To avoid social and environmental problems that can arise from rapid 

urbanization, accurate and current geospatial information is required in a form that is 

simple to understand and analyze. Moreover, there is a need for practical and accurate 

tools for exploiting geospatial data acquired by modern remote sensing systems. Urban 

environment reconstruction can be a difficult procedure due to the complexity of the 

involved scenes: dense buildings, variety in building types, etc. The proposed DBM 

generation procedure aims at providing a solution to the often complex task of 3D urban 

model reconstruction, to cater to the growing needs for accurate and realistic 3D 

visualizations of urban environments. In particular, the developed program allows a user 

with little or no prior experience in DBM generation or in the use of ArcGIS 

geoprocesing techniques to create an accurate and realistic 3D city model. Although there 

are some current 3D visualization platforms, such as Microsoft Virtual Earth and Google 
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Earth that are freely available, there are significant differences between these platforms 

and the developed ArcGIS program. For instance, the developed program allows the user 

to input their own LiDAR and image data and perform the DBM generation process from 

start to end all within the same program. In addition, the accuracy of the two prior 

mentioned commercial platforms are not of engineering quality, as their main purpose is 

to provide a visually pleasing 3D model. Figure 6.1 shows an area of Chicago taken from 

Google Maps that displays buildings that are “leaning into” one another. This quality of 

model would not be suitable for flood simulations or engineering design projects, and 

thus there is a need for products such as the GEO.DPRG.TOOLS.EXTENDED program 

that has been developed in this work, for numerous and various applications.  

 

 
Figure 6.1: Noticeable inaccuracies in Google Earth building models. 
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A review of the topics discussed in each chapter and their key findings will now 

be summarized. It has been outlined that to obtain an accurate and realistic reconstruction 

of an urban environment, the techniques for DSM, DBM, and true-orthophoto generation 

must be investigated. Therefore, a review of previous work conducted in the areas of 

orthophoto, DSM, and DBM generation were conducted. It was found that many existing 

true-orthophoto generation techniques did not perform very well in urban environments, 

and the new angle-based techniques proposed in Habib et al. (2007a) were selected as the 

best option, as the performance of such techniques does not require a DBM of the area to 

correctly identify occluded DSM cells, and are independent of the DSM cell size and 

image GSD. Moreover, the angle-based techniques do not depend on the 

attitude/orientation of the involved image. Regardless of which true-orthophoto 

generation procedure is used, the result is affected by the quality of the DSM, in terms of 

positional accuracy and detail. A review of different DSM generation procedures was 

thus investigated, but it was found that a DSM obtained from LiDAR data did not 

sufficiently model the buildings in an urban environment while an image-based DSM 

contain problems regarding the level of automation. Above ground features such as trees 

and vegetation are often not included in a DSM, and it is common for a DSM to be 

composed of only the ground and buildings. Therefore, the procedures for enhancing the 

DSM target the refinement of the description of the buildings in the surface model, 

through DBM generation procedures. If the buildings can be accurately modeled and 

added to the DTM of the area, a refined DSM can be obtained for an urban area, and thus 

improved true-orthophotos can also be produced for the same area. A review of the 

different data sources used for DBM generation in previous literature was outlined, and it 
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was found that due to the complimentary nature of LiDAR and photogrammetric data, an 

integration of these two sources will yield a more accurate and complete DBM. The use 

of these two sources required several pre-requisites. To insure a high quality of output 

products (orthophoto, DSM, DBM), QA and QC procedures must be performed on the 

photogrammetric and LiDAR systems and derived products. Following a discussion of 

the QA/QC procedures, the co-registration of the two datasets was reviewed. When 

integrating data sources, it is required that they are registered to a common reference 

frame. Some experimental results were provided from an independent study which 

revealed that LiDAR-derived control features produced the best results for 

georeferencing the involved imagery relative the LiDAR reference frame.  

 

The proposed integration of LiDAR and photogrammetric data, within a GIS 

platform, was then outlined in detail, where the customized modifications of the ArcGIS 

functionality were performed both in ArcObjects and C#. It was found that by 

implementing the proposed procedure through the creation of a custom toolbar within 

ArcGIS, several benefits could be obtained. The powerful functionality available within 

ArcGIS was modified to suite the desired application, and thus not every algorithm that 

was used had to be fully implemented from scratch. In addition, the visualization 

capability of ArcGIS could be utilized. Furthermore, many users are already familiar with 

this popular GIS platform, and thus the use of the developed product would be very 

intuitive to many new users. Previously developed programs for the classification and 

segmentation of LiDAR data were added into the custom toolbar, and thus no previous 

knowledge about the individual programs these procedures came from is required by a 



 

 

147 

user. The developed program implements the DBM generation procedure through a semi-

automated process. In the first step, the initial building-primitives are obtained from 

LiDAR, through LiDAR data classification and segmentation, and displayed to the user. 

The user can then select a given building-primitive, which commences a series of steps. 

First the best image from which to extract the boundaries of the selected building-

primitive is located, and image processing techniques are applied to the image, after 

which extracted lines are displayed for the user. These extracted lines represent the 

detected line segments located within a buffer distance from the initial LiDAR-derived 

building-primitive boundary. The user then manually selects the line segments they wish 

to project into 3D. If any lines are visible in the image but have not been located 

automatically, the user has the option to manually digitize any missing lines. If this 

process had been fully automated, these missing lines would not have been located, and 

thus this user interaction insures that the reconstructed buildings are as complete as 

possible. After manual editing is performed on the image, the selected line segments and 

digitized lines are projected into 3D through a monoploting procedure. Through this 

process, 3D information is obtained from a single image. After inspecting the 3D lines, if 

any lines are missing the user has an option to extract lines for the given building-

primitive from a second image. If this option is chosen, the 3D lines are projected onto 

the second image, along with the detected lines from the second image. The user again 

has the option to perform manual editing in the image space, and then must select which 

lines to project into 3D. By allowing the user to check through multiple images for any 

missing boundary lines, it can be assured that the utmost number of boundary lines is 

extracted. A snapping option can be selected, in the object space, to close any gaps 
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between neighbouring lines. In addition, if after checking through every image in the 

dataset there still remain some missing building boundaries, the user can manually 

digitize the boundaries in 3D while using the LiDAR building-primitive as a guide, after 

which the final building-primitive rooftop polygon is obtained and displayed in the GIS 

interface. Once all building rooftop polygons are obtained, a function is used to add the 

polygons as buildings to a DTM. It was concluded that in order to avoid distracting 

displays of above-ground structures, it was best to add the DBM to a ground TIN, and not 

the original DSM. This produces a refined DSM of the urban model, and is exported to be 

used by the angle-based true-orthophoto generation procedure to obtain improved 

orthophotos over the urban area. When the improved orthophotos are draped over the 

refined DSM, a 3D realistic urban model is obtained.  

 

Qualitative and quantitative analyses were then performed on the produced 3D 

model. In the qualitative analysis, it was found that the ortho-imagery obtained using the 

refined DSM produced accurate results: no traces of buildings were found on the ground, 

and the building boundaries were clearly defined. In addition, since the DBM was added 

to a ground TIN as opposed to a TIN surface model, there were no distracting displays of 

inaccurately depicted above-ground features, such as trees, cars, etc. It was found that the 

produced DSM and ortho-imagery was a significant improvement on those obtained 

using the original LiDAR-derived DSM, as well as the results obtained when the DBM 

was added to the original DSM. The results from the quantitative analysis found that the 

generated DBM was equivalent to the results obtained by manually generating a DBM 

from imagery. Furthermore, it was shown that the generated DBM was not dependent on 
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the operator, which is an important aspect for any developed system. The proposed 

methodology has thus outlined a successful approach for the detection and reconstruction 

of complex buildings, through a small amount of user interaction, through the integration 

of the developed program in ArcGIS.  

 

Although the proposed methodology has provided satisfactory results, there are 

some limitations that are now discussed. The first limitation is the level of automation, in 

particular in obtaining a closed building-primitive boundary in the object space. The 

current 3D pruning function joins neighbouring lines based only on a threshold. 

Therefore, in many cases when there is a large gap between neighbouring lines that 

should be joined, these lines are currently not joined. If the threshold for joining lines 

based on distance separation is increased, however, some lines may be incorrectly joined. 

A possible solution for this limitation is discussed in section 6.3. A second limitation 

occurs when a boundary of a building-primitive is not visible in any of the perspective 

images. In the current implementation, manual digitizing must be performed in 3D to 

obtain this line segment. Although the initial LiDAR-derived building-primitive 

boundary can be used as a guide for manual digitizing in 3D, the digitized boundary may 

not be very accurate. Section 6.3 will also discuss a suggestion to solve this problem. 

 

6.3 Future Work 

One of the more noticeable areas of future work that is visible in the final 3D 

model is the wall texture. In the current program, no wall texturing is performed. As a 

result, a uniform coloured buffer wall is simply created around the roof polygons. 
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Texture information is vital to produce as realistic city model as possible. Oblique images 

and terrestrial images are more suited for building texturing in comparison to vertical 

imagery, as they provide better side views of the building structures (Wang et al., 2008). 

Another option is the use of artificial texturing applied to the building faces (Halaa et al., 

1998). A final addition that could be made to enhance the 3D visualization is the addition 

of street furniture that is readily available with the majority of the commercially available 

GIS (Figure 6.2). 

 
Figure 6.2: Samples of the street furniture available in ArcGIS. 

 

To address the 3D pruning limitation stated in the previous section, the initial 

building-primitive boundary could be used to locate neighbouring lines that should be 

joined. For example, in Figure 6.3, a threshold used to join the neighbouring lines may 

accidentally join Line 1 with Line 3, instead of joining Line 1 with Line 2. A better 

solution would be to use the LiDAR information to determine which lines are truly 

neighbouring boundary segments that should be merged. 
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Figure 6.3: Future method for joining neighbouring lines in 3D 

 

To address the situation when a building-primitive boundary is not visible in any 

of the images, the building-primitive selection should be performed in a specific order. 

That is, building-primitives that have a higher elevation should be selected first. This will 

then allow for a solution when a lower building-primitive boundary is occluded by a 

neighbouring (taller) building that share a vertical wall. This situation is shown in Figure 

6.4. In Figure 6.4a, if precise building-primitive boundaries for the top building-primitive 

are obtained first (displayed in black), these boundary segments can be projected onto the 

lower building-primitive to locate the line segment that was not detected from imagery, 

for the lower building-primitive (Figure 6.4b). This will reduce the need for manual 

digitizing in 3D, and will also provide more accurate boundary segments than would be 

obtained from manual digitizing. 

 

Line 1 

Line 2 

Line 3 

Line 4 

Line 5 
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Figure 6.4 A building in which the top building-primitive is first investigated (a), 

after which the information obtained for the top building-primitive is used to 

complete the boundary of a lower building-primitive (b). 
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