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Abstract 

The complementary characteristics of photogrammetric and Light Detection And 

Ranging (LiDAR) data can lead to better surface description through their integration, 

when compared to that derived from either system alone, by supplying both accurate 3D 

positional information and descriptive information. This research is concerned with the 

integration of photogrammetric and LiDAR data to achieve a more complete surface 

description through the proposed true orthophoto generation, building hypothesis and 

primitive generation, and Digital Building Model (DBM) generation procedures. First, 

two alternative true orthophoto generation methodologies are proposed to overcome the 

limitations of existing methodologies. Even though improved true orthophoto generation 

methodologies are developed, it is hard to avoid the decrease in the quality of the true 

orthophoto products around breaklines, due to the irregular and sparse nature of LiDAR 

data. To improve the accuracy of the positional and descriptive information around 

breaklines, an accurate DBM generation procedure is needed. The building detection 

process is carried out first in order to generate building hypotheses and primitives from 

the LiDAR data alone. Then, the building reconstruction process is carried out using the 

derived building primitives. In order to produce precise boundary segments, the matching 

ambiguity problem is resolved by incorporating LiDAR data into the matching process, 

as a constraint. Then, colour information near the line segments derived through the 

matching process is utilized to find precise boundary segments. In addition, boundary 

segments in the occluded areas are reconstructed by hierarchically projecting the 

constructed segments of higher building primitives onto lower, neighbouring ones when 

these primitives share common vertical walls. All the derived boundary segments 
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contribute to DBM generation. At last, the accurately generated DBMs are used to 

produce improved true orthophotos and 3D visualizations. In summary, this research 

provides a new framework for the accurate reconstruction and visualization of urban 

environments, and the accuracy of the products is ensured by taking advantages of the 

synergic properties arising from the integration of photogrammetric and LiDAR data. 
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Chapter 1 : Introduction 

 

1.1 Motivation 

The United Nations predicts that the number of dwellers in urban areas will rise to 

almost 5 billion inhabitants by 2030 in the report entitled ‘State of the World Cities 

2006/7’. Such a population will constitute roughly 62% of the global population at that 

time. To successfully control social and environmental situations that might arise from 

this rapid urbanization, decision makers in various fields must have access to accurate 

and up-to-date geo-spatial information in a timely manner and at a reasonable cost. It has 

been, hence, recognized that the research and academic communities should develop 

practical and accurate tools for assisting these decision makers in exploiting the influx of 

geo-spatial datasets from multi-sensory systems. Basically, human understanding of 

urban environments can be fully assisted through the use of both spectral and positional 

information. Hence, the tools must be designed based on a system that uses both types of 

information. Well-known tools, such as Google Earth, NASA’s World Wind, and 

Microsoft’s Virtual Earth, are now available through the internet, allowing anyone to 

access satellite imagery and aerial photos covering most of the world, while providing 

positional information as well. People are using these applications to find directions to, 

and rough locations of, their destinations. It is, however, important to note that although 

the 3D visualizations available using the applications mentioned above may seem 

realistic, their level of accuracy is not sufficient for urban planning, urban management, 

and other applications, such as sidewalk construction, enforcement of right to light, 

visibility analysis for military operations, and line of sight analysis for 
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telecommunication. Moreover, the accurate geo-spatial information can be used as 

control information for the geo-referencing of images from various data sources (e.g., for 

a camera mounted on a Unmanned Aerial Vehicle (UAV), cell phone camera, 

surveillance camera, etc). For this reason, there has been an increasing need to develop a 

new system to be able to provide and manipulate accurate and realistic geo-spatial 

information in an automatic manner, while reducing the incurred costs. In other words, a 

system that is able to provide a better surface description (or reconstruction) with 

accurate positional and spectral information needs to be developed at a reasonable cost.  

Traditionally, photogrammetry has been used as the primary approach for 

deriving geo-spatial information through the use of multiple analog and digital images. 

The 3D information derived from photogrammetric measurements consists of accurate 

metric and rich descriptive object information (Mikhail et al., 2001). The critical step in 

surface reconstruction in photogrammetry is the identification of the same features in 

multiple images, a process referred to as the matching problem. The photogrammetric 

and computer vision communities have been making great efforts toward the automation 

of this procedure. However, it still remains a difficult and unreliable task, especially 

when dealing with large scale images over urban areas (Schenk and Csatho, 2002).  

Since it was introduced in the 1980s, Light Detection And Ranging (LiDAR) 

technology has emerged as a promising method for acquiring digital elevation data 

effectively and accurately. Since LiDAR technology is fully automated for generating 

digital elevation data, many researchers have paid attention to the technology and its 

applications (Ackermann, 1999). However, LiDAR data has a couple of disadvantages in 

terms of surface description. Basically, the system scans over surfaces and acquires 
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sample points reflected from these surfaces. Since these points are irregularly spaced, 

they do not divulge accurate information regarding breaklines such as building 

boundaries. Moreover, LiDAR data lacks the descriptive information, especially the 

spectral information that is essential to describe surfaces more completely.  

Although a variety of research has been conducted using these data sources, there 

are still many unsolved problems with the procedures used to achieve better surface 

descriptions. Hence, this research aims to introduce a new framework for generating 

accurate and realistic surface information for urban environments by using both 

photogrammetric and LiDAR datasets. The proposed procedures within this framework 

will overcome the problems mentioned above and provide accurate and robust solutions.  

In the remaining parts of this chapter, the problem statement, research objectives and 

scope, and structure of the dissertation will be discussed. 

 

1.2 Problem Statement 

Recall that spectral and positional information are the main components of 

surface description from the point of view of the photogrammetric community. It is 

known that there are many challenges in the journey to achieve better surface description 

using spectral and positional information from multi-sensory datasets in an automatic 

manner. Although a great deal of academic research has been conducted, there are still 

many unsolved problems. Hence, some of the fundamental issues and critical problems in 

the surface description process are addressed and categorized according to the following 

main subjects: 
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• Limitations of surface description using photogrammetric data: Basically, 

photogrammetric procedures can provide both positional and spectral surface 

information. These characteristics of photogrammetry provide great benefits in terms 

of surface description. For this reason, diverse research has been conducted on 

surface reconstruction using a monocular image, stereo images, and multiple images. 

Since building is one of the main components in urban environment, most of the 

research has focused on building reconstruction. There are still several problems that 

are critical and as yet unsolved. The first one is the limitations of the methods using a 

monocular image. Usually these methods employ some assumptions regarding the 

internal building characteristics (e.g., orthogonality, parallelism, and symmetry). 

These assumptions are not valid for complex buildings. The second is the automated 

identification of conjugate features in stereo or multiple images. Because of the 

geometric distortions that arise due to the nature of the perspective projection, this is 

still a difficult and unreliable task. The third problem is that occlusions around 

complex and connected buildings make it impossible to detect conjugate features in 

stereo or multiple images. The incorporation of multiple images with high overlap 

and sidelap has been proposed as a means of overcoming the occlusion problem 

(Wang et al., 2008). However, this method increases the costs of data acquisition and 

processing.  

 

• Limitations of surface description using LiDAR data: The main benefit of using 

LiDAR data is the high degree of automation it provides for deriving surface 

elevations. For this reason, LiDAR data has been widely utilized in automated surface 
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reconstruction procedures. However, the LiDAR system provides weak information 

along breaklines due to the irregular and sparse nature of the data acquisition process. 

To resolve this problem, various research studies have been conducted using high 

density LiDAR data (Vosselman, 1999; Rottensteiner and Briese, 2002). The use of 

high density data, however, increases data acquisition and processing costs. Moreover, 

LiDAR systems usually do not provide spectral information, which is essential for 

surface description. Even though the data includes intensity information, this does not 

generate sufficient surface description.  

 

• Synergy between photogrammetric and LiDAR data: Photogrammetry and LiDAR 

have their own advantages and disadvantages in terms of surface description. 

Photogrammetric data has higher planimetric accuracy than vertical accuracy. 

Conversely, LiDAR data has better vertical accuracy than planimetric accuracy. 

Photogrammetric data provides dense positional information along object space 

breaklines, whereas the information provided by LiDAR data is weak in this respect. 

Conversely, photogrammetric data contains almost no positional information along 

homogeneous surfaces, but LiDAR data provides dense information for such surfaces 

(Baltsavias 1999). The complementary nature of such characteristics gives enough 

reason for the integration of the two types of data. Such integration would enable the 

utilization of synergistic properties and lead to accurate and realistic surface 

descriptions, while overcoming the limitations of each dataset type. To fully utilize 

the synergistic properties, both datasets should be registered with respect to a 

common reference frame through a co-registration process. Afterwards, the 
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procedures to correctly relate spectral and positional surface information derived from 

these datasets can be performed. Since the positional information is derived from 

LiDAR points, there is a lack of representation of features, especially, breaklines (e.g., 

building boundaries in urban environments) due to the irregular and sparse nature of 

LiDAR data. Hence, the surface models should be enhanced by proper manipulation 

of the original LiDAR points. More detailed explanations of these problems are 

addressed as follows.  

    

o Co-registration: The synergistic characteristics of different types of datasets 

can be fully utilized only after both datasets are co-registered relative to a 

common reference frame (Habib and Schenk 1999, Chen et al. 2004). As long 

as the one-to-one point correspondence between photogrammetric and LiDAR 

data remains almost impossible, a well-designed co-registration procedure 

considering registration primitives, transformation functions, and similarity 

measures should be incorporated into the framework.  

 

o Relating spectral and positional information: Once the co-registration has 

been accomplished, the proper procedures to relate the spectral and positional 

surface information can be carried out. Differential rectification has 

traditionally been used to relate image spectral and LiDAR positional 

information. However, for large scale imagery over urban areas, differential 

rectification produces serious artefacts, in the form of double mapped areas, at 

any object space locations with sudden variations in relief (e.g., in the vicinity 
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of buildings) (Skarlatos, 1999). This phenomenon can be avoided by 

incorporating visibility analysis into the differential rectification procedures. 

Effective visibility analysis techniques should be introduced into the 

framework.  

 

o Enhancement of surface models: Since LiDAR data consists of points 

irregularly sampled over surfaces, the LiDAR points might not sufficiently 

represent breaklines. The insufficient representation of these features leads to 

the degradation of the surface description when the procedures of relating 

spectral and positional information are implemented. This problem can be 

overcome by upgrading surface models and utilizing them for refined surface 

descriptions. Effective methodologies for enhancing surface models should be 

introduced into the framework.  

 

1.3 Research Objectives and Scope 

The objective of this research is to introduce a new framework for accurate and 

realistic surface description of urban environments in an automated manner. The 

framework will be constructed based on the utilization of both photogrammetric and 

LiDAR data. Furthermore, the complementary properties of the two datasets will be fully 

exploited in the system to accomplish the objective of this research.  

Some research has been conducted utilizing either high overlap/sidelap 

photogrammetric data or high point density LiDAR data in order to cater specifically to 

surface reconstruction over urban areas with complex structures (Wang et al., 2008; 
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Vosselman, 1999; Rottensteiner and Briese, 2002). In contrast, the proposed research is 

designed to exploit imagery and LiDAR data acquired through conventional mapping 

missions (20% sidelap and 60% overlap for photogrammetric data, and around 1.0 point 

per square meters for LiDAR data), while providing performance that is equal to or better 

than that achieved through intensive data acquisition. 

A summary of the procedures in the framework proposed in this research is 

depicted in Figure 1.1. The procedures introduced can be categorized into three stages: 1) 

prerequisites; 2) those used for relating image spectral information to the object 

positional information; and 3) those used for enhancing object space positional 

information/description. 
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Photogrammetric Data LiDAR Data

Photogrammetric Quality Assurance/Quality Control LiDAR Quality Assurance/Quality Control

Co-registration

Imagery (R,G, B) LiDAR Points (X, Y, Z)

Preliminary 2D/3D 
Visualization

Building Hypothesis

Off-terrain Points

DTM Generation

DBM Generation

Enhanced DSM

Refined 2D/3D Visualization

Terrain Points

  

Figure 1.1: The proposed framework for better surface description. 
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Prerequisites 

Since both photogrammetric and LiDAR datasets are considered in this research, 

several prerequisite procedures are necessary to process the different dataset types and to 

integrate them. The procedures involve 1) Photogrammetric and LiDAR quality 

assurance; 2) Photogrammetric and LiDAR quality control; and 3) Co-registration. 

Quality assurance comprises management activities to ensure that a process, item, 

or service is of the quality needed by the user. It deals with creating management controls 

that cover mission planning, implementation, and review of data collection activities. The 

key activity in the quality assurance is the system calibration procedure. In order for the 

final output to be as accurate as possible, all the system components should be accurately 

calibrated. Internal camera characteristics, which are usually known as the Interior 

Orientation Parameters (IOP), are derived through the process of camera calibration. In 

addition, the biases in the bore-sighting parameters relating LiDAR components should 

be derived.  

On the other hand, quality control provides routines and consistent checks to 

ensure data integrity, correctness, and completeness. In other words, quality control is to 

check whether the desired quality has been achieved. Photogrammetric quality control is 

implemented by the check point analysis and the precision evaluation of the derived data. 

Internal and external LiDAR quality control can be implemented by evaluating the degree 

of consistency among the LiDAR footprints in overlapping strips and by utilizing LiDAR 

control targets, respectively. This research will adopt the camera and LiDAR system 

calibration processes and LiDAR quality control methods recommended by Habib et al. 

(2006a), Habib et al. (2008a), and Al-Durgham (2007), respectively. Once the quality of 
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the photogrammetric and LiDAR data has been verified, the data can be used with 

confidence to produce various products for many different applications. Since this 

research utilizes two datasets from different sources, the datasets must be registered with 

respect to a common reference frame. Photogrammetric geo-referencing is a process to 

define the camera’s position and orientation relative to the object space coordinate system 

at the moment of exposure. This process will be performed by using two types of 

registration primitives: areal and linear control features acquired from LiDAR data. This 

research will adopt the georeferencing techniques recommended by Habib et al., (2008c). 

The adopted techniques will use the LiDAR data as the source of control for the image 

geo-referencing. The results from the adopted techniques are highly compatible with 

those by using GCPs for the image geo-referencing (Ghanma, 2006).  

.  

Relating positional and spectral information  

After the photogrammetric dataset has been aligned to the LiDAR data reference 

frame, the data are ready to be used for surface description, which is done by relating the 

spectral and positional surface information from both datasets. Orthophoto production 

aims to correctly relate the image spectral and LiDAR positional information. Differential 

rectification has traditionally been used for orthophoto generation (Konecny, 1979; 

Novak, 1992). However, for large scale imagery over urban areas, differential 

rectification produces serious artefacts in the form of double mapped areas at object 

space locations with sudden relief variations (Skarlatos, 1999). Such artefacts are 

removed through the use of true orthophoto generation methodologies, which are based 

on visibility analyses. Angle-based true orthophoto generation techniques are introduced 
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in this research to overcome the problems associated with current true orthophoto 

generation techniques.  One should note that the quality of the visualization in 2D (which 

is true orthophotos) and 3D (which is produced by draping the true orthophotos on top of 

the surface model) will be affected by two factors: 1) the performance of the true 

orthophoto generation techniques; and 2) the quality of the surface models. Since new 

true orthophoto generation techniques will be proposed in this research, the only 

remaining factor is the quality of the surface models. Usually, surface models generated 

by LiDAR points cannot show breaklines (especially, building boundaries in urban 

environments) precisely. Hence, the procedures that follow will incorporate new 

methodologies for enhancing surface models. 

 

Enhancing surface models 

To improve the quality of the 2D and 3D visualizations, the building boundary 

information should be added to the surface models. Since Digital Building Model (DBM) 

has precise building boundary information, this research will propose a new DBM 

generation method while overcoming the limitations of the current techniques which will 

be discussed in Chapter 2. One should note that planar rooftops bounded by straight lines 

will be the target of the DBM generation method which will be proposed in this research. 

Brief explanation of the method is addressed in the following paragraphs. First, 

terrain/off-terrain point classification will be carried out using LiDAR data only. This 

research will adopt the techniques introduced by Habib et al., (2008b) for this 

classification. The angle-based occlusion detection technique, which has already been 

proposed for true orthophoto generation, is extended and applied to terrain/off-terrain 
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point classification. DBM will be generated through further processing of the off-terrain 

points and imagery. In order to do this, building hypotheses will be generated using the 

off-terrain LiDAR points. Then, building primitives (i.e., planar patches constituting 

rooftops) with their initial boundaries will be derived from building hypotheses using 

segmentation and boundary detection methodologies. One should note that all the 

procedures to acquire building primitives and their initial boundaries are based on LiDAR 

data only. Since the derived initial boundaries do not accurately represent building 

primitives, the integration of LiDAR and photogrammetric data will be involved in the 

digital building model generation procedure. The integration of the two datasets will open 

the possibility of resolving ambiguities in the matching of conjugate features. Rich 

information along breaklines and surfaces, obtained from photogrammetric and LiDAR 

data, respectively, will enable the successful DBM generation in this research. 

Afterwards, the surface models will be improved by incorporating the produced DBM. 

Then, 2D and 3D visualizations with the improved quality will be realized by using the 

improved surface models and corresponding imagery.  

 

1.4 Structure of the Dissertation 

The proposed framework for accurate reconstruction and visualization of urban 

environments is documented in this dissertation. Brief explanations of the chapters 

constituting this dissertation are addressed as follows.  
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• Chapter 2 addresses previous research related to the necessary components of the 

framework for surface description. Literatures on the previous approaches for relating 

image spectral and LiDAR positional information and DBM generation are reviewed.  

• Chapter 3 includes the methodologies used to fulfill the prerequisites of this research. 

Afterwards, this chapter focuses more upon methodologies for relating image spectral 

and LiDAR positional information correctly by introducing the improved visibility 

analysis. Two methodologies developed for true orthophoto generation are introduced. 

• Chapters 4 and 5 explain how surface models are enhanced. First, Chapter 4 describes 

the methodology for building detection and primitive generation using LiDAR data 

only. The principle of the developed true orthophoto generation method is extended 

for terrain and off-terrain separation. Also, robust segmentation algorithm based on 

the voting scheme is proposed.  

• Afterwards, Chapter 5 explains the methodologies for building reconstruction, 

followed by the refined 2D and 3D visualizations. Object-based integration of 

photogrammetric and LiDAR data is introduced and utilized for feature matching and 

precise building boundary segment selection.  

• Chapter 6 describes experiments and evaluations carried out using real datasets to 

demonstrate and validate the performance of the proposed methodologies. Qualitative 

and quantitative evaluations are conducted to prove that the proposed research 

provides accurate and reliable results.  

• Chapter 7 summarizes the conclusions drawn from this research. Moreover, 

contributions and recommendations for future work are addressed.  
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Chapter 2 : Literature Review 

 

2.1 Introduction 

Recall that the objective of this research is to provide a new framework for better 

surface description with accurate positional and spectral information. Since this research 

is dealing with surface description, relevant research activities for relating image spectral 

information and LiDAR positional information will be reviewed first (in Section 2.2). 

Rectification and visibility analysis used in orthophoto and/or true orthophoto generations 

will be addressed in the section. One should note that the LiDAR positional information 

does not sufficiently represent breaklines (which are mostly coming from buildings in 

urban environments) due to the irregular and sparse nature of the data acquisition process. 

In this regard, various research studies have focused on building model generation which 

can provide precise building boundary information. Hence, Section 2.3 will review 

previous research work discussing building model generation.   

 

2.2 Relating Spectral and Positional Information 

Remote sensing imagery are usually acquired through perspective projection, 

where reflected light rays from the object space pass through the perspective center of the 

imaging sensor. Such a projection results in scale variation and relief displacement in the 

acquired imagery. Orthophoto generation aims at eliminating relief displacement from 

perspective imagery. As a result, orthophotos are characterized by having a uniform scale 

and showing objects in their true geographical locations. In other words, orthophotos 

have the same characteristics of a map. Orthophotos are generated through a rectification 
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process, which might be direct or indirect (Konecny, 1979; and Novak, 1992). Direct 

rectification utilizes the internal and external characteristics of the imaging sensor to 

directly project the image contents onto the Digital Surface Model (DSM) cells. Direct 

orthophoto generation is carried out through an iterative process. The mechanics of the 

direct orthophoto generation might leave some of the cells in the DSM with unassigned 

grey values. Therefore, empty cells have to be interpolated from neighboring ones. In 

contrast to the direct rectification, indirect orthophoto generation starts by projecting the 

DSM cell vertices onto the image plane using the internal and external sensor 

characteristics. The grey value at the projected image location is interpolated using the 

ones at neighboring cells/pixels. Finally, the interpolated grey value is assigned to the 

corresponding DSM vertex. Differential rectification is the commonly used term to 

denote indirect rectification of perspective imagery (Konecny, 1979; and Novak, 1992). 

The conceptual procedure for ortho-rectification is illustrated in Figure 2.1. 

)Y,X(Z

y)g(x,

y)g(x,  

Figure 2.1: Principle of ortho-rectification for orthophoto generation. 
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When dealing with large scale imagery over urban areas, differential rectification 

produces a significant artifact, which is double mapped areas at the vicinity of abrupt 

surface changes (Skarlatos, 1999). Figure 2.2 is a schematic diagram illustrating the 

double mapping problem. In this figure, points D, E, and F along the DSM are projected 

onto the image plane at the locations d, e, and f, respectively. The interpolated grey 

values )(dg , )(eg , and )( fg  are assigned to the corresponding DSM cells. On the other 

hand, due to the relief displacement caused by the vertical structure, the grey values )(dg , 

)(eg , and )( fg  will be also assigned to the DSM at the locations A, B, and C, 

respectively.  

A

)d(g

d

B C

)e(g )f(g

D E F

fe

)d(g )e(g )f(g  

Figure 2.2: Double mapped areas where sudden relief causes duplication of the 

projected grey values onto the orthophoto plane (datum). 

 



18 

 

Therefore, these grey values will be incorrectly duplicated in the orthophoto plane 

(datum) causing double mapping of the same area. A real example of the double mapping 

problem is illustrated in Figure 2.3, where the perspective image and the generated 

orthophoto are shown. As it can be seen in Figure 2.3(a), the vertical structures have 

significant relief displacements that cause considerable occlusions in the object space. 

The generated orthophoto in Figure 2.3(b) shows that the relief effects along the building 

facades have been removed. However, double mapped areas, which are enclosed by solid 

black lines, occupy occluded portions of the object space. Double mapped areas 

constitute a severe degradation and are a major obstacle to the interpretability of the 

generated orthophoto. Therefore, true orthophoto generation methods focus on the 

elimination of the double mapped areas. The basic principle of these methods is the 

identification of occluded areas, which are caused by relief displacements associated with 

vertical structures in the object space. 

        

      (a)                    (b)  

Figure 2.3: Perspective image (a) and the corresponding orthophoto (b) with double 

mapped areas enclosed by solid black lines. 
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True orthophoto generation is mainly concerned with visibility analysis, which 

has been studied in computer graphics, computer vision, photogrammetry, remote sensing, 

and telecommunications. The classical visibility algorithms were developed in the early 

days of computer graphics – late sixties and early seventies (Sutherland et al., 1974). 

Amhar et al. (1996) proposed a method, which is based on photogrammetric principles, 

for making true orthophotos using Digital Terrain Models (DTM) and DBM. In this 

method, two orthophotos, one corresponding to the terrain while the other corresponds to 

the buildings, are independently generated. The DBM is first used to mask portions of the 

input image that are covered by man-made structures. The masked image is then used in 

conjunction with the DTM to generate the terrain orthophoto. In the mean time, the DBM 

together with the original image is used to generate the building orthophoto. The final 

true orthophoto is created by combining the terrain and building orthophotos. Therefore, 

the proposed method by Amhar et al. does not explicitly detect occluded areas. However, 

occlusions are implicitly considered by utilizing the masked image for the generation of 

the terrain orthophoto. Kuzmin et al. (2004) proposed a polygon-based approach for the 

detection of obscured areas for true orthophoto generation. In this method, conventional 

differential rectification is first applied. Afterwards, hidden areas are detected by using 

polygonal surfaces, which are generated from a DBM. A common prerequisite for the 

above methods for true orthophoto generation is the need for a DBM. In other words, the 

mentioned methods do not work properly without DBM. Other than the proposed method 

by Kuzmin et al., the majority of existing true orthophoto generation techniques is based 

on the Z-buffer algorithm (Catmull, 1974; Amhar et al., 1998; Rau et al., 2000; Rau et al., 

2002; Sheng et al., 2003; and Zhou, 2005). As it can be seen in Figure 2.2, double 
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mapped areas arise from the fact that two object space points (e.g., A and D, B and E, or 

C and F) are competing for the same image location (e.g., d, e, or f, respectively). The Z-

buffer method resolves the ambiguity of which object point should be assigned to the 

image location by considering the distances between the perspective center and the object 

points in question. Amongst the competing object points, the closest point to the 

perspective center is considered visible while the other points are judged to be invisible in 

that image. Since the Z-buffer method has been utilized by many researchers, following 

paragraphs describe its principle and limitations in detail.  

As it was mentioned earlier, the Z-buffer method for true orthophoto generation 

identifies occluded areas by resolving the ambiguity arising from having more than one 

object point competing for the same image pixel (Figure 2.2). As it was proposed by 

Amhar et al. (1998), the implementation of the Z-buffer starts by establishing three 2D 

arrays with the same dimensions of the input image, which will be referred to hereforth as 

the Z-buffer arrays, and a visibility map with the same dimensions of the input DSM 

(Figure 2.4). Two out of the three Z-buffer arrays are used to record the X and Y 

coordinates of the DSM cell that is projected onto the corresponding image pixel. The 

third array stores the distances between the perspective center and the respective DSM 

cells. The visibility map, on the other hand, indicates whether the corresponding DSM 

cell is visible in the involved image or not.  
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A

B

 

Figure 2.4: Principle of true orthophoto generation using the Z-buffer method. 

 

To illustrate the conceptual basis of the Z-buffer method, one can start by 

considering the DSM cell A in Figure 2.4. After being projected onto the image plane, the 

corresponding pixels in the Z-buffer arrays are assigned the coordinates XA and YA as well 

as the distance between the perspective center and the object point A, dA. In the mean 

time, the corresponding cell in the visibility map is initialized to indicate a visible DSM 

cell. Such a process is repeated while considering other cells within the DSM. When 

dealing with the DSM cell B, the algorithm determines that the corresponding image 

pixel has already been linked to the DSM cell A. To resolve which of the two DSM cells 

should be assigned to that image pixel, the distances from the perspective center to A and 

B (dA and dB, respectively) are computed and compared. Since dA is greater than dB, the 

DSM cell B is declared visible while A is deemed invisible. Therefore, the Z-buffer arrays 
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are updated where XA, YA, and dA are replaced with XB, YB, and dB, respectively. In 

addition, the visibility map is modified to indicate that the DSM cell A is invisible, while 

B is visible. After considering all the cells within the DSM, the Z-buffer arrays are used 

to transfer the grey values from the input image to the corresponding locations in the 

orthophoto plane. In the mean time, the visibility map can be used to indicate occluded 

areas in the object space due to relief displacement effects.  

The following paragraphs will briefly discuss the drawbacks of the Z-buffer 

method as well as possible solutions to mitigate the effects of these problems. To 

illustrate the manifestations of these drawbacks, a synthetic DSM consisting of 9 

buildings, 50m high, over a flat terrain is generated (Figure 2.5). The perspective center 

of the simulated image over the DSM is located above the centroid of the central building. 

The performance of the Z-buffer method will be evaluated through the quality of detected 

occlusions. 

 

Figure 2.5: Simulated data with nine buildings over a flat terrain. 

 

Detected occlusions by the Z-buffer method depend on the relative relationship 

between the DSM cell size and the Ground Sampling Distance (GSD) of the imaging 
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sensor. If the DSM cell size is less than the GSD of the imaging sensor, false occlusions 

in flat areas will be reported. Figure 2.6 illustrates such an instance, where several DSM 

cells not occluding each other are projected onto the same image pixel. As a result, the 

DSM cell, which is closest to the projection center, will be deemed visible, while the 

others are incorrectly considered to be occluded. Another illustration of such a 

phenomenon is depicted in Figure 2.7, which shows the visibility map associated with the 

DSM in Figure 2.5. Black portions in this map indicate occluded areas. As it can be seen 

in this figure, the over sampling of the DSM would lead to false occlusions, as 

represented by the black grid between the buildings. 

 

 

Figure 2.6: False occlusions are reported whenever the DSM cell size is smaller than 

the GSD of the imaging sensor. 
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Figure 2.7: Visibility map corresponding to the DSM in Figure 2.5 where the DSM 

cell size is chosen to be smaller than GSD of the imaging sensor (black grids between 

buildings indicate false occlusions). 

To avoid these false occlusions, the DSM cell size should be made equivalent to 

the GSD of the imaging sensor. However, the GSD is uniquely defined if and only if one 

is dealing with an ideal dataset with a vertical image over flat and horizontal terrain. In 

other words, the GSD cannot be uniquely defined when one is dealing with a dataset 

including terrain and vertical structures. Therefore, choosing the DSM cell size to be 

equivalent to the nominal GSD (e.g., GSD at the terrain surface) will not guarantee the 

absence of incorrectly detected occlusion. A problem to the DSM cell size is shown in 

Figure 2.8. In this case, the DSM cell size is chosen to be equivalent to the GSD at the 

terrain surface. However, such a choice will lead to having non-compatible resolutions at 

the building roofs. As a result, false visibility will be reported in the occluded areas by 

vertical structures. A further illustration of this problem is depicted in Figure 2.9, where 

false visibility, as represented by a white grid, is detected within the occlusions 

associated with the vertical structures in Figure 2.5. The false visibility problem will 
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escalate as the height of the vertical structures becomes significant in relation to the 

flying height of the imaging sensor. 

 

Figure 2.8: Optimal sampling of the DSM at the terrain level and tall vertical 

structures might lead to false visibility in occluded areas. 

 

Figure 2.9: Detected occlusion areas with optimal sampling of the DSM at the 

terrain level for the DSM in Figure 2.5 (white lines within the detected occlusions 

indicate false visibility). 
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Another significant defect of the Z-buffer method is the false visibility associated 

with narrow vertical structures. This problem is commonly known in the 

photogrammetric literature as the M-portion problem (Rau et al., 2000, 2002). The M-

portion problem is shown in Figure 2.10. In this case, some of the pixels in the occluded 

area do not have any competition from points on the building roof (as represented by the 

two terrain points close to the vertical structure in Figure 2.10). In such a case, terrain 

points in the occluded area will be incorrectly deemed visible as seen in Figure 2.10(a). 

To minimize this problem, additional pseudo groundels are introduced along the facades 

of vertical structures (Figure 2.10(b)). In such a case, a DBM should be available. False 

visibility caused by the M-portion problem as well as improved occlusion detection after 

the introduction of pseudo groundels for one of the buildings in Figure 2.5 are shown in 

Figure 2.11(a) and Figure 2.11(b), respectively. It should be noted that the pseudo 

groundels also reduce the false visibilities that have been reported in the previous section, 

which have been shown in Figure 2.9. 

 

                  (a)               (b) 

Figure 2.10: M-portion problem leads to false visibility (a), which can be minimized 

by the introduction of pseudo groundels (b). 
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Perspective center

False visibility Corrected false 
visibility

False visibility
Corrected false 

visibility

Perspective center  

                                             (a)                                                        (b) 

Figure 2.11: The M-portion problem leads to false visibility as indicated by the 

dashed triangles in (a) and can be mitigated by the introduction of pseudo groundels 

(b). 

 

For the verification of the limitations of the Z-buffer method mentioned above, a 

true orthophoto (Figure 2.12(b)) is generated by using DSM (Figure 2.12(a)) and aerial 

image in Figure 2.3(a). Also, Figure 2.12(c) shows a closer look at the vicinity of one 

building enclosed by white circle in Figure 2.12(b). Black portions in Figure 2.12(b) and 

Figure 2.12(c) indicate occluded areas due to relief displacement at the building’s 

locations. In spite of the fact that the DSM cell size has been adjusted to be compatible 

with the GSD of the digital image as well as numerous pseudo groundels have been 

introduced along the building facades, the Z-buffer methodology is still showing false 

visibilities and occlusions. Also, the produced true orthophoto does not have sharp (or 

crisp) building boundaries as can be seen in Figure 2.12(c). One should note that the 

DSM produced from LiDAR data does not sufficiently represent breaklines (e.g., 
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building boundaries) due to the irregular and sparse nature of the LiDAR data. Hence, the 

incompleteness of DSM leads to negative effects on the quality of the true orthophoto 

(especially, around the building boundaries) regardless of the used true orthophoto 

generation methods (as long as the methods are using DSM for true orthophoto 

generation).  

 

     

          (a)              (b)            (c) 

Figure 2.12: LiDAR DSM corresponding to the area in Figure 2.3(a), true 

orthophoto generated using the Z-buffer method (b) with a closer look at the 

building within the white circle (c). 

 

In summary, to minimize the problems associated with the Z-buffer method, it 

should be preceded by interpolating the DSM to a resolution that is equivalent to the 

nominal GSD of the imaging sensor. Moreover, a DBM should be available to allow for 

the introduction of pseudo groundels along the facades of vertical structures. However, 

these precautions would not guarantee the absence of false occlusions or visibilities in the 



29 

 

resulting true orthophoto. Therefore, generated orthophotos from the Z-buffer method are 

post-processed using a majority filter to eliminate sporadic false visibilities or occlusions. 

Also, the incompleteness of the DSM negatively affects the quality of true orthophotos. 

To resolve the problem caused by the incompleteness of the DSM, there is a need for 

building boundary information which can be provided by a DBM. Hence, many 

researchers who are interested in surface description have focused on the development of 

DBM generation methods. The literature on the DBM generation is reviewed in the next 

section.  

 

2.3 Building Model Generation 

In the past few years, much research effort in computer vision and 

photogrammetry has been directed at DBM generation. The main goal of the 

implementation of building modeling procedures is to promote automated generation of 

3D urban models. A 3D urban model also requires the modeling of trees and other 

elements of the urban furniture; however, buildings are the most important and complex 

features.   

Several approaches have been proposed in recent years. DBM generation is 

usually performed in two steps: building detection and building reconstruction. Building 

detection is the process of generating building hypotheses by differentiating buildings 

from other objects within the data. Building reconstruction, on the other hand, utilizes the 

hypothesized building regions in the data to derive its 3D representation (Ma, 2004). The 

reconstruction of the buildings in previously detected regions of interest can be carried 

out using two different approaches: model driven or data driven methods (Förstner 1999; 
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and Faig and Widmer, 2000). Model driven methods are based on parametric building 

models, where each model is treated as a hypothesis that is verified from information 

derived from the data. The parametric primitives are usually stored in a model database, 

which can be instantiated and fit to the data. The model achieving the best fit is the 

selected one. Data driven approaches, on the other hand, involve the use of generic 

models. Since generic models do not make any assumptions regarding the building shape, 

its implementation can be a very complex task. For that reason, the most commonly 

adopted model – in data driven approaches – is the polyhedral model. The polyhedral 

model, which is considered a sub-model of the generic model, assumes that a building is 

bounded by planar surfaces.  Constructive Solid Geometry (CSG) model – an alternative 

approach – is a fusion of the model driven and the data driven methods (Ma, 2004). In 

this approach, it is assumed that a complex building can be subdivided into several 

simple building model primitives (parametric models) which are then combined using 

boolean operators (Haala et al., 1998; Vosselman and Dijkman, 2001; and Suveg and 

Vosselman, 2004). 

Regarding the sources of data used for DBM generation in previous studies, they 

can be categorized into approaches using only imagery (monocular, stereo, or multiple 

images), approaches using only LiDAR, and approaches using data integration (Figure 

2.13). The classification criterion in the figure is used in the following subsections to 

review previous research work.  
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Figure 2.13: Sources of data used for DBM generation. 

 

2.3.1 Monocular imagery 

Some of the first approaches in previous work were based on the use of 

monocular imagery (Huertas and Nevatia, 1988; and McGlone and Shufelt, 1994). Since 

these approaches do not make use of 3D information in the reconstruction process, they 

are also referred to as 2D approaches. The process usually starts by detecting the building 

features/primitives (e.g., edges of the building) followed by the reconstruction process. 

The third dimension (i.e., the building height) is usually estimated using shadows and 

vertical walls. Shadows and vertical walls are also used for building hypothesis 

verification (Lin et al., 1995). The algorithms are mostly based on grouping the detected 

building primitives. Some assumptions regarding the internal building characteristics 

(e.g., orthogonality, parallelism, and symmetry) are usually employed to find building 

features/primitives. Building region detection is usually performed after the analysis of 

the building primitive topology. The main problem of this approach is that it is strongly 
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dependent on the quality of the detected edges/corners as well as the grouping procedure. 

Poor edge detection can be caused by several factors: (i) low image contrast or variation 

in contrast along the building edges, (ii) presence of trees close to the building boundaries, 

(iii) presence of structures on top of the roof, and finally (iv) the presence of a huge 

amount of detected edges from different objects rather than buildings, where most are 

noisy edges. The poor quality of the edge detection makes the process of identifying and 

grouping building edges quite complex (Wang, 1999). In addition to this, the use of 

shadow to infer the height of the building is not a reliable procedure since in most of the 

cases it does not appear completely in the image (Lin et al., 1995). 

 

2.3.2 Stereo and multiple imagery 

Differently from the approaches mentioned in the previous section, numerous 

authors have proposed DBM generation procedures based on the use of stereo and 

multiple imagery. These approaches make use of three-dimensional information in the 

modeling process (building detection and reconstruction) which is determined by the 

matching of conjugate features in overlapping imagery. According to Suveg and 

Vosselman (2004), the approaches that make use of stereo imagery can be classified into 

two groups: (i) Methods that use monoscopic techniques for building recognition and 

reconstruction and use stereoscopic techniques for validating the reconstruction and 

inferring the third dimension (Roux and McKeown, 1994; Nevatia et al., 1997; and 

Noronha and Nevatia, 2001). (ii) Methods that use stereoscopic techniques during the 

building modeling (Baltasavias et al., 1995; Henricsson et al., 1996; Haala and Hahn, 

1995; and Weidner, 1996).  
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The most obvious advantage of deriving the 3D information to be used in the 

building detection and reconstruction process is that real-world geometric constraints can 

be utilized (Wang, 1999).  The process usually starts by deriving a DSM by image 

matching. The generated DSM is then used for building detection (building hypothesis 

generation). Usually, the DSM generated from image matching is very noisy. For this 

reason, several authors proposed some sort of post-processing to smooth it down 

(Baltasavias et al., 1995; and Weidner, 1996). Also, other researchers (Baillard and 

Zisserman, 1999; Kim et al., 2001; and Wang, 2008) proposed building reconstruction 

approaches using multiple images. They mostly focused on the improvement of matching 

quality and solution for occlusion problems. Although some satisfactory results can be 

achieved in some cases, feature matching in large-scale imagery over urban areas still 

remains to be an ill-posed problem.    

Due to the complexity of the building modeling using imagery, the majority of 

existing literatures is based on model driven approaches. In this type of approach, more 

prior knowledge about the building model is utilized in the modeling process. Therefore, 

deficiencies in the feature extraction procedure (due to low image contrast, occlusion, and 

trees close to the building boundaries) can be more easily compensated for. Although this 

type of approach provides satisfactory results, its use is limited to simple building models 

such as flat-roof and gable buildings. When more complex building types need to be 

handled, data driven approaches must be employed. 

One should note that fully automatic systems, which can handle any type of 

building, are still in the research stage. Automation in building modeling using only 

imagery is a very complex task. For that reason, semi-automatic approaches were 
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proposed by several authors (Grün and Dan, 1997; and Grün and Wang, 1998). In a semi-

automated system, processes that are difficult or less efficient for a computer to complete 

are performed by the user (Wang, 1999). In other words, human ways of perception, 

which are difficult to model, such as the recognition and interpretation embedded in a 

specific context, will be more efficient and reliable if realized by the system operator. 

Overall, in operational conditions, user interaction can solve or circumvent problems that 

cannot be reliably solved by a software program alone. 

In summary, the building reconstruction methods utilizing either stereo or 

multiple images still suffer from the quality of image matching; therefore, they have low 

degree of automation of DBM generation (Brenner, 2005). Still, extensive human 

intervention is needed to acquire accurate results.  

 

2.3.3 LiDAR 

LiDAR has emerged as an important source of data for the generation of 3D city 

models. The main advantage is the direct acquisition of a reliable and dense 3D point 

cloud in contrast to the error-prone matching techniques when using stereo or multiple 

images. The LiDAR research community has been very active in the development of 

algorithms for the post-processing of LiDAR data, especially for DBM generation 

(Alharthy, 2003; Charaniya, 2005; Maas and Vosselman, 1999; and Vosselman, 1999).  

A classification procedure to separate terrain and off-terrain points is usually 

performed to help with the building detection. A substantial portion of existing 

techniques is based on mathematical morphology and includes the methods presented by 

Kilian et al. (1996), Vosselman (2000), Roggero (2001), and Zhang et al. (2003). In the 
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proposed method by Vosselman (2000), the classification of LiDAR data is based on two 

operations: morphological erosion using a pre-defined discriminant function and 

comparison between the eroded and original surfaces. A point is classified as a terrain 

point if its original height does not exceed the height of the eroded surface at the same 

location. A variation of this method was proposed by Roggero (2001), where the terrain 

is extracted using a local morphological operator. The shape of this operator is designed 

according to the slope of the bare earth. Since the shape of the bare earth is not known, a 

local linear regression procedure is used to derive an estimate of its shape. The main 

limitation of morphological filters is their sensitivity to the utilized window size as it 

relates to the size of off-terrain objects such as buildings and forest canopy. For example, 

a small window will wrongly classify large buildings as terrain. A larger window, on the 

other hand, might classify portions of a steep terrain as non-ground. To overcome such a 

limitation, multiple window sizes have been proposed by Kilian et al. (1996) and Zhang 

et al. (2003). Other than the window size, the performance of morphological filters 

depends on the designed discriminant function. 

Another group of LiDAR point classification techniques is based on the 

manipulation of a Triangulated Irregular Network (TIN). In Axelsson (2000), ground 

points are classified through progressive densification of a TIN model. The process starts 

with a coarse TIN, whose vertices are derived from the lowest points in local areas with a 

predefined size. The performance of this procedure depends on the local area size and the 

angle that a new point makes with the facet being densified. The algorithm proposed by 

Sohn and Dowman (2002) fragments a LiDAR Digital Elevation Model (DEM), which 

has been convolved with heterogeneous terrain slopes, into a set of homogeneous sub-
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regions. The terrain is defined by sub-regions, which can be characterized by a single 

slope. The main problem with this method, as reported by Sithole and Vosselman (2004), 

is unreliable classification of low and complex objects. LiDAR classification using linear 

prediction and hierarchic robust interpolation has been proposed by Kraus and Pfeifer 

(1998), Kraus and Pfeifer (2001), Pfeifer et al. (2001) and Briese et al. (2002).  In this 

approach, one starts with a rough approximation of the terrain surface model. The defined 

surface model is iteratively reduced to the terrain surface using linear prediction with the 

help of a pre-defined weighting function. The quality of the derived DTM depends on the 

design of the weighting function. Sithole and Vosselman (2004) reported that linear 

prediction procedures might lead to unreliable classification of low and complex objects. 

The last group of LiDAR point classification is based on segmentation techniques. 

Jacobsen and Lohmann (2003) developed a classification procedure, which starts by 

segmenting the point cloud. The segments are then categorized into terrain and off-terrain 

regions using the height difference between neighbouring segments. Segmentation 

techniques are computationally expensive especially when dealing with large areas. Other 

filtering algorithms are also introduced by many researchers (Elmqvist et al., 2001; 

Haugerud and Harding, 2001; Brovelli et al., 2002; Wack and Wimmer, 2002; Masaharu 

and Ohtsubo, 2002; and Akel et al., 2007). A detailed comparison of some of these filters 

is provided by Sithole and Vosselman (2004). 

The off-terrain points usually include points that belong to trees and buildings. By 

using attributes, such as surface roughness, buildings can be distinguished from trees. In 

the reconstruction process, planar roof patches are segmented in the detected building 

regions. Segmentation techniques can be roughly divied into two categories (Vosselman, 
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2004). The first category includes the techniques that segment point clouds based on the 

proximity of points and the similarity of the locally estimated attributes from the surface. 

The techniques belonging to the second category aggregate points with similar attributes 

into clusters in a parameter space (or attribute space).   

Several researchers (Hoover et al., 1996; and Lee and Schenk, 2001) utilized  the 

region growing method proposed by Besl and Jain (1998), which extends seed regions to 

adjacent points while considering the proximity and attribute similarity of points for 

segmenting LiDAR points. In comparison to the region growing method built in the 

spatial domain, there are some techniques which segment points in the parameter space 

(or attribute space). Vosselman and Dijkman (2001) extended Hough transform (Hough, 

1962) to deal with planar surfaces in 3D. Instead of focusing on extracting planar 

surfaces, some researcher developed clustering methods offering generality and 

flexibility in accomodating spatial relation and attributes to distingush different types of 

surfaces such as vegitation, smooth surfaces, and planar surfaces (Axelsson, 1999; Mass, 

1999; Filin, 2002; Vosselman et al., 2004; and Filin and Pfeifer, 2006). These methods 

are based on an attribute vector (which consistes of the proximity of points, the 

parameters of the tangent plane, and relative height different between the points) defined 

by a point and its neighbouring points (Axelsson, 1999; Mass, 1999; Filin, 2002; 

Vosselman et al., 2004; and Filin and Pfeifer, 2006). In this research’s point of view, the 

above segmentation techniques suffer from the following problems: 1) Region growing 

based segmentation depends heavily on the selection of seed points (or seed regions); the 

segmentation performance might be sensitive to the choice of seed points (Besl and Jain, 

1998). 2) Moreover, region growing methods utilize similarities while locally comparing 
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the values among neighbouring points without globally considering the local similarities 

of the points. 3) The segmentation techniques based on parameter space do not consider 

the connectivity of points. This limitation causes the segmentation results to contain 

many spurious surfaces which do not exist in reality (Vosselman and Dijkman, 2001; and 

Filin, 2002). 4) The clustering techniques based on the attribute vector do not involve 

seed points; however, efficiency issue arises. With the increase in the number of 

attributes that are utilized in the clustering procedure, the amount of memory required 

increases tremendously.  

After the planar patches are acquired from the segmentation process, building 

boundaries can then be modeled. Intersection of surface patches and regularization of the 

patch boundaries are utilized by Vosselman (1999), Mass and Vosselman (1999), and 

Sampath and Shan (2007). The problem associated with building reconstruction using 

only LiDAR is that building outlines are not determined precisely. This can be explained 

by the irregular and sparse nature of the LiDAR data. In other words, there is no 

guarantee that the LiDAR footprints will capture surface discontinuities such as building 

boundaries. Hence, the accuracy of the generated building boundaries will be highly 

dependent on the LiDAR point density (Wang et al., 2008). 

 

2.3.4 Data integration 

Several authors have proposed the integration of different data sources for 3D 

building reconstruction. The integration of imagery and 2D Geographic Information 

System (GIS) data (i.e., building ground plans) has been proposed by Suveg and 

Vosselman (2004). The use of the ground plans helps in the building hypothesis 
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generation and provides clues about the structure of the building. This is particularly 

useful in the process of partitioning the building into simple parts when using the CSG 

model. The integrated use of LiDAR and 2D GIS data for DBM generation has been 

exploited by Haala et al. (1998) and Vosselman and Dijkman (2001). 2D GIS data 

provided an improved quality of building boundaries in their research. They also employ 

the CSG model in the reconstruction process. The ground plans are subdivided into 

rectangular primitives and the selection of the parametric primitive for each 2D rectangle 

is based on the analysis of the LiDAR DSM. Although existing ground plans can be 

useful information in the sense that they reduce the search space in the reconstruction 

procedure, they might be out-of-date, incomplete, or improperly co-aligned with LiDAR 

or imagery data. 

Based on the discussion mentioned in Section 2.3.2 and Section 2.3.3, it is 

obvious that overlapping imagery provides the necessary geometric and spectral 

information for accurate and detailed DBM generation. Feature matching, however, leads 

to a low level of automation (especially, when dealing with large scale imagery over 

urban areas with complex building models). LiDAR systems, on the other hand, directly 

provide 3D positional information, which leads to a more reliable building detection and 

reconstruction (Brenner, 2005). Nevertheless, the irregular and sparse nature of the 

LiDAR data will negatively affect the quality of the building boundaries. Therefore, the 

integration of LiDAR data and aerial imagery for DBM generation has gained a 

significant attention by the research community (Rottensteiner and Jansa, 2002; McIntosh 

and Krupnik, 2002; Schenk and Csatho, 2002; Seo, 2003; Hu et al., 2004; Ma, 2004; 

Brenner, 2005; Chen et al., 2005; and Lee et al., 2008). 



40 

 

For example, satisfactory results were demonstrated by Ma (2004) and Hu et al. 

(2004), where LiDAR data was utilized to detect building regions and reconstruct initial 

3D building models. The initial building models are then refined by integrating LiDAR 

data and imagery. Chen et al. (2005) integrated a region-based segmentation and 

knowledge-based classification procedures to detect building regions by investigating the 

surface roughness and texture data in LiDAR and imagery, respectively. Then, identified 

planar patches in the LiDAR data and extracted edges from imagery are integrated to 

determine 3D boundaries of the building models through a split-merge-shape technique. 

The main limitation of this approach is that small and thin objects are filtered out during 

the building detection procedure. Lee et al. (2008) extracted initial building regions and 

coarse building boundaries from LiDAR data with the assistance of colour segmentation 

in aerial imagery. Then, precise building boundaries are defined by replacing the coarse 

building boundaries with matched line segments from imagery. Reliable results were 

shown in this research. However, the quality of the results strongly depends on successful 

derivation of the coarse building boundaries. Most of the previous work has been mainly 

focusing on buildings with a regular shape. DBM generation of complex structures still 

remains to be a challenging issue. 

 

2.4 Summary 

This chapter first reviewed relevant research activities for relating image spectral 

and LiDAR positional information. Rectification and visibility analysis used in the 

current orthophoto and/or true orthophoto generation techniques were discussed. The 

review has shown that the most popular true orthophoto generation technique (i.e., Z-
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buffer method) is sensitive to the relative relationship between the DSM cell size and the 

GSD of the imaging sensor. If the DSM cell size is less than the GSD of the imaging 

sensor, false occlusions in the terrain surfaces will be produced. To avoid this problem, 

one should make the DSM cell size equivalent to the GSD of the imaging sensor. 

However, such a choice will lead to having non-compatible resolutions at the building 

roofs and false visibility will be produced in the occluded areas by buildings. Moreover, 

the Z-buffer method requires the availability of a DBM to resolve the false visibility 

problem associated with narrow vertical structures, where artificial points along building 

facades are introduced. Also, it is discussed that the incompleteness of the DSM 

negatively affects the quality of true orthophotos especially around the building 

boundaries. Hence, DBM consisting of building boundary information is necessary to 

resolve the problem caused by the incompleteness of the DSM.   

 

Since the surface model derived from the original LiDAR data does not 

sufficiently represent breaklines along the building boundaries in urban environments, 

many studies have paid attention to building model generation (which include precise 

building boundaries). Hence, previous research studies focusing on building model 

generation were also discussed. The previous studies are categorized into three types of 

approaches according to the sources of data used for DBM generation, which are 1) using 

only imagery (single, stereo, and multiple images), 2) using only LiDAR, and 3) using 

data integration. DBM generation methods using monocular imagery usually employed 

some assumptions regarding the internal building characteristics (e.g., orthogonality, 

parallelism, and symmetry). These assumptions are not valid for more complex buildings. 
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These methods can only work for simple building models. Compared to the methods 

based on single image, other approaches using stereo or multiple images usually provide 

more reliable results. However, feature matching in large-scale imagery over urban areas 

still remains to be an ill-posed problem. This problem leads to a low degree of 

automation in the DBM generation. On the other hand, manipulation of LiDAR data is 

becoming a popular tool for DBM generation since elevation data is directly acquired 

from LiDAR system. The degree of automation in building detection and reconstruction 

procedures is relatively higher when compared to that using imagery. However, the 

defined boundaries of the generated DBM are of lower quality due to the irregular and 

sparse nature of LiDAR data. The discussion has also shown that different types of data 

sources have their own advantages and disadvantages in terms of DBM generation. 

Hence, some researchers integrated different types of data sources such as 1) imagery and 

2D GIS, 2) LiDAR and 2D GIS, and 3) LiDAR and imagery. 2D GIS information either 

helped in building hypothesis generation or provided the improved quality of building 

boundaries. However, it might be out-of-date, incomplete, or improperly co-aligned with 

LiDAR or imagery data. On the other hand, many researchers have proposed DBM 

generation methods based on the integration of LiDAR and imagery. Some limitations of 

the studies based on this approach are explained. After reviewing the current true 

orthophoto and DBM generation techniques and their limitations, this research will 

propose new methods for more accurate reconstruction and visualization of urban 

environments while overcoming the mentioned limitations.  
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Chapter 3 : Relating Image Spectral and Object Positional Information 

 

3.1 Introduction 

In Chapter 2, previous studies related to the necessary components of the 

proposed framework, and their advantages and disadvantages, were addressed. This 

chapter will, first, address prerequisite procedures, which are 1) photogrammetric and 

LiDAR quality assurance; 2) photogrammetric and LiDAR quality control; and 3) co-

registration of LiDAR and imagery. These procedures will be explained in Sections 3.2 

and 3.3. Once the prerequisite procedures have been conducted, spectral and positional 

information can be derived from photogrammetric and LiDAR data, respectively. Hence, 

the methodologies used to correctly relate image spectral information and object 

positional information are discussed in Section 3.4. For this purpose, two methods are 

introduced to overcome the problems that have arisen in previous research.  

 

3.2 Quality Assurance and Control of Photogrammetric and LiDAR Data 

Quality assurance and control of photogrammetric and LiDAR data are 

considered to be the necessary components of the proposed framework for better surface 

description in this research. Quality assurance encompasses management activities to 

ensure that a process, item, or service is of the quality needed by the user. It deals with 

creating management controls that cover mission planning, implementation, and review 

of data collection activities. The key activity in the quality assurance is the system 

calibration procedure. Internal camera characteristics, which are usually known as IOP, 

are derived through the process of camera calibration. A typical LiDAR system, on the 
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other hand, consists of three main components: a Global Positioning System (GPS) 

system to provide position information, an Inertial Navigation System (INS) unit for 

attitude determination, and a LASER system to provide range (distance) information 

between each LASER firing point and corresponding ground point. The quality of the 

surface derived using a LiDAR system depends on the accuracy of the data derived from 

the three components mentioned above and the calibration parameters relating these 

components (i.e., bore-sighting parameters). The camera and LiDAR system calibration 

methodologies adopted in this research are recommended by Habib et al. (2006a) and 

Habib et al. (2008a), respectively.  

After the calibration of both systems, quality control procedures determine 

whether the desired quality has been achieved. Photogrammetric quality control is 

investigated through check point analysis and the precision of the derived data. Internal 

and external LiDAR quality control can be implemented by evaluating the degree of 

consistency among the LiDAR footprints in overlapping strips and by utilizing LiDAR 

control targets, respectively. This research adopts the quality control methods 

recommended by Al-Durgham (2007). He suggested four different methods for LiDAR 

quality control analysis. The first two methods utilize the derived conjugate linear 

features and patches from overlapping strips, respectively. The basic concept of these 

methods is that conjugate linear features and patches from different strips should be 

collinear and coplanar in the absence of biases, respectively. The third method called the 

ICPatch method uses a TIN generated from a strip and raw LiDAR points from the other 

strip while assuming a point-to-patch correspondence. The last method called the ICPoint 

method assumes a point-to-point correspondence between raw LiDAR points from two 
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different strips. Once the quality assurance and control of photogrammetric and LiDAR 

data have been conducted, photogrammetric and LiDAR data can be used with 

confidence to produce surface models for various applications. Since this research deals 

with two different data types, they must be registered to a common reference frame. 

Hence, Section 3.3 briefly explains the co-registration techniques to be used, which 

incorporate both linear and areal features.  

 

3.3 Co-registration 

Only after ensuring that the photogrammetric and LiDAR datasets are geo-

referenced with respect to a common reference frame, can the synergic properties of the 

two datasets be fully utilized (Habib and Schenk, 1999). Traditionally, photogrammetric 

geo-referencing is either done indirectly using Ground Control Points (GCP), or directly 

using GPS/INS units onboard the imaging platform (Cramer et al., 2000). LiDAR geo-

referencing, on the other hand, is done directly using the GPS and INS components of the 

LiDAR system. When GCP-based or GPS/INS-based photogrammetric geo-referencing 

is conducted, there might be biases between two reference frames for photogrammetric 

and LiDAR data. The biases can be caused by utilizing different GPS base stations for 

photogrammetric and LiDAR data acquisition. In addition, utilization of GCP for 

photogrammetric geo-referencing is expensive. One should note that LiDAR can be 

utilized as a source of photogrammetric geo-referencing. Habib et al. (2008c) generated 

three true orthophotos using a perspective image (Figure 3.1 (a)), a digital surface model, 

and three sets of EOPs resulting from using GCPs, patches derived from LiDAR, and 

lines derived from LiDAR as sources of control. They compared the qualities of true 
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orthophotos generated by using different sources of control. By examining these true 

orthophotos, it is clear that two of the generated true orthophotos using LiDAR patches 

and LiDAR lines are compatible (Figure 3.1 (c) and Figure 3.1 (d)). Moreover, the true 

orthophotos generated using LiDAR patches or lines appear to be more accurate than the 

one generated using GCPs. This can be observed in the orthophotos, where there are 

more traces of building boundaries in the latter true orthophoto (Figure 3.1 (b)). For this 

reason, the features derived from LiDAR data can be utilized as a source of control for 

photogrammetric geo-referencing.  

 

Figure 3.1: Perspective image (a), and orthoimage using the geo-referencing 

parameters using GCPs (b), LiDAR patches (c), and LiDAR lines (d), as the source 

of control (Habib et al., 2008c). 
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Since LiDAR footprints are irregularly distributed, it is almost impossible to 

assume point-to-point correspondence between photogrammetric and LiDAR data. Geo-

referencing techniques that involve a coplanarity constraint while utilizing LiDAR linear 

and areal features were proposed by Habib et al. (2006b). In their research, the 

coplanarity constraint was added to existing bundle adjustment procedures. Alternative 

geo-referencing techniques that use existing point-based bundle adjustment procedures 

and incorporate linear and areal features were introduced by Habib et al. (2008c). These 

techniques simply manipulate the weight matrices associated with the points belonging to 

these features without modifying the bundle adjustment procedures, compared to Habib 

et al. (2006b). The extraction of linear and areal features from irregular LiDAR points is 

done through a semi-automatic process. First, an operator selects areas in which areal and 

linear features might be present, by looking at the LiDAR intensity images (which are 

used for visualization purposes only). Then, a segmentation technique (Kim et al., 2007) 

is used to cluster LiDAR points belonging to planar patches. For linear feature extraction, 

adjacent planar patches are identified and intersected to produce straight line segments. 

Figure 3.2 shows examples of LiDAR point cloud extracted for the areas selected by an 

operator (a), segmented planar patches (b), and a straight line segment derived through 

the intersection of two neighbouring planar patches (c).  
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                        (a)                                          (b)                                        (c) 

Figure 3.2: LiDAR point cloud extracted for the area of interest selection (a), 

segmented planar patches (b), and linear features extracted by intersecting two 

neighbouring planar patches (c) (Habib et al., 2008c). 

 

Once the linear and areal features are extracted from the LiDAR data, the focus 

will be shifted towards the incorporation of these features in photogrammetric geo-

referencing. The techniques for this incorporation are designed to restrict the weight 

matrices for the points representing lines and planar patches. As a mathematical model, 

the well-known collinearity equations are used in these techniques. More detailed 

explanations follow in Sections 3.3.1 and 3.3.2.  

 

3.3.1 Point-based incorporation of linear features  

Here, geo-referencing is carried out by incorporating linear features in 

photogrammetric triangulation. Image and object space lines are each defined by two end 

points, extracted from the image and object space, respectively. There is no need for 
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correspondence between the image and object space points along the linear features, as 

shown in Figure 3.3. This is because the weight matrix of each image point involved is 

restricted in this approach. Only useful information along normal direction to the image 

space line is utilized. In other words, the point is free to move only along the image space 

line.  

x2

y2

x1

y1

Image space line

A

B

a1

b1

a2

b2

Error range
Object space line

 

Figure 3.3: Representation of image and object space lines for the point-based 

incorporation of linear features (Habib et al., 2008c). 

 

A matrix, R  is a rotation matrix between the original (XY) coordinate system and the 

line (UV) coordinate system, in which the U axis is along the line (Figure 3.4 and 

Equation 3.1). Weight matrices with dimensions 2×2 can be used for weight restriction in 

the image space.  
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Figure 3.4: Image and line coordinate systems.      
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Where: 
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V
U  is point coordinates in the line coordinate system; 

R  is the rotation matrix between the image and line coordinate systems; and 
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⎦

⎤
⎢
⎣

⎡
Y
X  is point coordinates in the image coordinate system.  

 

An explanation of the weight matrix restriction in the image space is as follows. The 

original weight matrix, XYP , of a point is defined as the inverse of its variance-covariance 

matrix, XYΣ , which depends on the image measurement accuracy. After applying the law 

of error propagation to Equation 3.1, the weight matrix of a point in the line coordinate 

system, UVP , can be derived according to Equation 3.2. 

T
XYUV RRPP =                                                             (3.2) 
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Where: 

UVP is the weight matrix of the point in the line coordinate system and 

XYP  is the weight matrix of the point in the image coordinate system.  

 

Modification of the values in the computed UVP matrix is done along the line direction. In 

other words, zero values are assigned to the weights along the line direction, as shown in 

Equation 3.3. 

⎥
⎦

⎤
⎢
⎣

⎡
=

v
UV P

P
0

00'                                                                 (3.3) 

Afterwards, the modified weight matrix, '
UVP , is propagated back to the image coordinate 

system, according to Equation 3.4. 

RPRP UV
T

XY
'' =                                                              (3.4) 

Finally, the new weight matrix, '
XYP , can be applied in the point-based solution 

using the collinearity equation. The minimum requirement for linear control features to 

establish the geo-referencing parameters for the involved imagery is to have two non-

coplanar lines (Ghanma, 2006).  

 

3.3.2 Point-based incorporation of areal features  

As another alternative for geo-referencing, an approach that incorporates areal 

features extracted from LiDAR data is introduced here. The vertices of conjugate patches 

should be observed in at least two overlapping images. The number of points selected in 

the corresponding LiDAR patch should be equivalent to the number of vertices defined in 
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the imagery. One should note that there is no need for correspondence between image 

and object space points, as shown in Figure 3.5. The weight matrix of each patch vertex 

in the object space is restricted in this approach. Only useful information along normal 

direction to the object plane is utilized. In other words, the point is free to move only 

along the object plane.  

 

 

Figure 3.5: Representation of corresponding patches in the image and object spaces 

(Habib et al., 2008c). 

 

A matrix, R  is a rotation matrix between the original (XYZ) coordinate system and the 

local plane (UVW) coordinate system, in which the U and V axes are aligned along the 

plane (Figure 3.6 and Equation 3.5).  
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Figure 3.6: Object and plane coordinate systems.                
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Where: 

⎥
⎥
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⎤

⎢
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⎢

⎣

⎡

W
V
U

 is point coordinates in the plane coordinate system; 

R  is the rotation matrix between the object and plane coordinate systems; and 

⎥
⎥
⎥

⎦

⎤

⎢
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⎢

⎣

⎡

Z
Y
X

 is point coordinates in the object coordinate system.  

 

The original weight matrix, XYZP , of a point is defined as the inverse of its variance-

covariance matrix, XYZΣ , which depends on the specified accuracy of the LiDAR data. 

After applying the law of error propagation to Equation 3.5, the weight matrix of the 

point in the local coordinate system, UVWP , can be derived according to Equation 3.6. 
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T
XYZUVW RRPP =                                                         (3.6) 

 

Where: 

UVWP is the weight matrix of the point in the plane coordinate system and 

XYZP  is the weight matrix of the point in the object coordinate system.  

 

Modification of the values in the computed UVWP matrix is then done. Specifically, zero 

values are assigned to the weights along the planar patch, as shown in Equation 3.7. 
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Afterwards, the modified weight matrix, '
UVWP , is is propagated back to the object 

coordinate system, according to Equation 3.8. 

RPRP UVW
T

XYZ
'' =                                                           (3.8) 

Finally, the new weight matrix, '
XYZP , can be applied in the point-based solution 

using the collinearity equations. The minimum requirement for areal control features to 

establish the geo-referencing parameters for the involved imagery is to have four planar 

patches (three patches parallel to the planes XY, YZ, and ZX, respectively and an 

opposite patch in one of the planes XY, YZ, or ZX). However, the probability of having 

vertical patches in airborne LIDAR data is not high. Therefore, instead of working with 

vertical patches, one can use tilted patches with different orientations (Ghanma, 2006). 
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3.4 Rectification and Visibility Analysis 

Once the photogrammetric dataset has been aligned to the reference frame of the 

LiDAR data, the image spectral and LiDAR positional information from the two datasets 

are ready to be linked to one another in the orthophoto generation process. One should 

note that orthophoto production aims to relate the image spectral and LiDAR positional 

information correctly through the elimination of sensor tilt and terrain relief effects from 

the captured perspective imagery. Differential rectification has been widely used for 

orthophoto generation (Konecny, 1979; and Novak, 1992). When dealing with large scale 

imagery over urban areas, however, differential rectification produces significant artifacts 

in the form of double mapped areas at the vicinity of abrupt surface changes (Skarlatos, 

1999). A real example of the double mapping problem is illustrated in Figure 3.7, in 

which a perspective image and the corresponding generated orthophoto are shown.  

            
(a)                  (b) 

Figure 3.7: Perspective image (a) and corresponding orthophoto with double 

mapped areas around buildings (b). 
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As can be seen in Figure 3.7(a), the vertical structures have significant relief 

displacements that cause considerable occlusions in the object space. The generated 

orthophoto in Figure 3.7(b) shows that the relief effects along the building facades have 

been removed. However, double mapped areas (enclosed by red ellipses) occupy 

occluded portions of the object space. Double mapped areas constitute a severe 

degradation and are a major obstacle to the interpretability of the generated orthophoto. 

Therefore, true orthophoto generation methodologies focus on the elimination of the 

double mapped areas. The basic principle of these methodologies is the identification of 

occluded areas, which are caused by relief displacements associated with vertical 

structures in the object space. 

True orthophoto generation is mainly concerned with visibility analysis, which 

has been studied in computer graphics, computer vision, photogrammetry, remote sensing, 

and telecommunications, as discussed in Chapter 2. To overcome false visibility and false 

occlusion problems associated with current true orthophoto generation techniques 

mentioned in the chapter, two alternative methods, which can be categorized as angle-

based true orthophoto generation methods, are introduced in this research.   

In an orthogonal projection, points are vertically dropped onto the datum. 

Therefore, when considering a vertical structure, its top and bottom are projected onto the 

same location without any relief displacement. However, in a perspective projection, the 

top and bottom of that structure will be projected as two points, which are spatially 

separated by the relief displacement. This displacement is expected to take place along a 

radial direction emanating from the image space nadir point (Mikhail, 2001). The radial 
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extent of the relief displacement is the source of occlusions/invisibilities in the 

perspective imagery. The presence of occlusions can be discerned by sequentially 

checking the off-nadir angles to the lines of sight connecting the perspective center to the 

DSM points along a radial direction starting from the object space nadir point. In the 

remainder of this section, the off-nadir angle to the line of sight will be denoted as the α 

angle (Figure 3.8). 

Since there is no relief displacement associated with the object space nadir point, 

one can assure that this point will be always visible in the acquired image. As one moves 

away from the object space nadir point, it is expected that the α angle will increase 

gradually. As long as there is an increase in the α angle as one moves away from the 

nadir point, the DSM cells along the radial direction will be visible in the image in 

question. On the other hand, occlusions will take place whenever there is an apparent 

decrease in the α angle while proceeding away from the nadir point. This occlusion will 

persist until the α angle exceeds the angle associated with the last visible point. Figure 3.8 

illustrates the mechanics of using the off-nadir angle to the line of sight in detecting 

occluded areas by considering a vertical profile through the perspective center. As can be 

seen in this figure, moving away from the nadir point will be accompanied by an increase 

in the α angle until one reaches the object point A, thus indicating that there is no 

occlusion up to this point. However, when considering the object point B, one would 

notice that αB is smaller than αA, which indicates that point B is occluded by A. For the 

object point C, it is obvious that αC is greater than αA, which indicates that C is visible. 
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Figure 3.8: Using the off-nadir angle to the line of sight as a means of detecting 

occlusions. 

In summary, the method of checking the α angle along a radial direction while 

moving away from the nadir point can be used for occlusion detection. Because such a 

method of occlusion detection does not incorporate the internal characteristics and 

attitude of the imaging sensor, its performance does not depend on the relative 

relationship between the DSM cell size and the GSD of the imaging sensor.  

 

Adaptive Radial Sweep Method 

As was mentioned before, the method of checking the α angle along radial 

directions from the nadir point can be used to identify occluded cells in the DSM. Radial 

sweep method considers individual cells in the DSM by scanning through the radial 
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directions from the object space nadir point. For example, one can start by considering 

the radial direction with zero azimuth (i.e., θo = 0 in Figure 3.9). After classifying the 

DSM cells along that direction, one would move to the next radial direction by 

incrementing the azimuth by a given value ∆θ. This process is repeated until the whole 

range of azimuth values has been considered. Occlusions detected along the radial 

directions can be stored in a visibility map with the same dimensions as the DSM. This 

map is initially set by switching off all the cells to indicate occlusion. During the radial 

sweep search, the visibility map cells corresponding to non-occluded DSM cells are 

switched on. Finally, the corresponding grey values for visible DSM cells are imported 

from the original image using traditional differential rectification. In this way, occluded 

areas will be left blank, thus producing a true orthophoto. 

 

 

Figure 3.9: Conceptual basis of the radial sweep method of occlusion detection. 
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A critical decision in the implementation of the radial sweep method is the choice 

of the azimuth increment value (∆θ). A small value will make the process time 

consuming and inefficient since the DSM cells close to the nadir point will be revisited 

repeatedly. On the other hand, coarse selection of the azimuth increment value will lead 

to non-visited cells at the DSM boundaries. To avoid this problem, an adaptive radial 

sweep method is proposed, in which the azimuth increment value is decreased gradually 

while moving away from the nadir point (Figure 3.10 and Figure 3.11). 

 

Figure 3.10: DSM partitioning for the adaptive radial sweep method (the azimuth 

increment value decreases as one moves away from the nadir point). 
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Figure 3.11: The R-θ array that corresponds to the partitioned DSM in Figure 3.10. 

 

The implementation of the adaptive radial sweep method for occlusion detection 

and true orthophoto generation can proceed according to the following steps (a 

conceptual procedural flow can be seen in Figure 3.12): 

1. Divide the DSM into concentric rings centered at the object space nadir point (Figure 

3.10).  

2. Using the sections defined in Step 1, define an R-θ array, as shown in Figure 3.11, 

where R indicates the radial distance from the nadir point and θ is the corresponding 

azimuth for a given DSM cell. The R-θ array will be used to store the α angle 

associated with each of the DSM cells. The pixel size in the R-direction can be 

chosen to be equivalent to the DSM pixel size. In the R-direction, the array is divided 

into sections that correspond to those defined in the previous step. Since different 

sections use different azimuth increment values, the number of rows in the array 

increases as the radial distance increases. More specifically, the azimuth increment 

value should vary between sections to ensure that the majority of the DSM cells are 

visited without excessive repetition or gaps. 
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3. Define a visibility map with the same dimensions of the DSM grid. All the cells in the 

visibility map are switched off to indicate occlusion. Also, define two arrays with the 

same dimensions as the R-θ array. These arrays will be used to store the X and Y 

coordinates of the corresponding cells in the DSM. 

4. For each of the cells in the DSM, compute the corresponding R, θ, and α values. One 

should note that the R and θ values might not correspond to an integer location in the 

R-θ array. Therefore, the α angle is stored in the closest R-θ array element. In the 

meantime, the corresponding X and Y coordinates are stored in the respective X and 

Y array elements. 

5. After populating the R-θ, X, and Y arrays, proceed by checking the α angles in the R-

θ array for a given azimuth value. Visible locations along this direction should be 

updated in the visibility map using the corresponding coordinates in the X and Y 

arrays. 

6. Finally, import the grey values at visible DSM cells from the original image using the 

traditional differential rectification procedure. In this way, occluded areas will be left 

blank, thus producing a true orthophoto.  
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Figure 3.12: Conceptual procedural flow of the adaptive radial sweep method of 

occlusion detection. 

   One should note that the number of sections and their respective azimuth 

increment values will affect the efficiency of the adaptive radial sweep method and the 

storage requirements of this approach. To alleviate storage requirements while 

maximizing efficiency, the spiral sweep method has been developed, in which the DSM 

cells are swept in a spiral pattern starting from the nadir point. 

 

Spiral Sweep Method 

Similarly to the adaptive radial sweep algorithm, the spiral sweep method is an 

angle-based approach. However, the spiral sweep method scans the DSM cells starting 

from the nadir point in a spiral pattern while directly checking the α angles along the 

radial directions, without the need for DSM partitioning or additional arrays. The 

implementation of the spiral sweep method requires a visibility map and an α array with 

the same dimensions as the DSM grid. Initially, all the cells in the visibility map are 

switched off to indicate occlusion. The process begins by populating the α array while 

computing the off-nadir angle to the line of sight between the perspective center and each 
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DSM cell. Afterwards, the α array is swept in a spiral pattern, as shown in Figure 3.13. 

For each cell in the α array, the α angle is compared to the angle associated with the last 

visible point along the same radial direction from the nadir point. If the α angle of the 

cell in question is larger than the α angle of the last visible cell along the same radial 

direction, this cell will be considered to be visible, and the corresponding cell in the 

visibility map is switched on. Finally, the grey values for visible cells in the DSM are 

imported from the input image according to the differential rectification procedure.  

 

Figure 3.13: Conceptual procedural flow of the spiral sweep method of occlusion 

detection. 

To verify that the angle-based approach overcome the drawbacks of the Z-buffer 

method, the visibility maps created using these methods are compared with each other for 

three different situations in Figure 3.14, Figure 3.15, and Figure 3.16.  First, Figure 

3.14(a) and Figure 3.14(b) show the visibility maps created using Z-buffer and angle-

based methods when the DSM cell size is less than the GSD of the imaging sensor, 

respectively. In Figure 3.14(a), the DSM cell A which is closest to the projection center is 
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deemed visible, while the cells B, C, D, and E are incorrectly considered to be invisible. 

On the other hand, all the DSM cells in Figure 3.14(b) are correctly considered to be 

visible because the off-nadir angles of the DSM cells increase as one moves away from 

the cells A to E.   

 

Aα

 

(a)                                                                    (b) 

Figure 3.14: Visibility maps created using Z-buffer method (a) and angle-based 

approach (b) when the DSM cell size is less than the GSD of the imaging sensor. 

 

Figure 3.15(a) and Figure 3.15(b) show the performance of the visibility analysis 

using Z-buffer and angle-based methods, respectively, when dealing with a DSM 

including terrain and above-terrain structures. The DSM cell size is chosen to be 

equivalent to the GSD of the imaging sensor at the terrain level. Figure 3.15(a) shows 

false visibility (at DSM cell E) in the occluded areas by vertical structures. The false 

visibility in the figure comes from having non-compatibility between GSD of the imaging 
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sensor at the building rooftops and DSM cell size. On the other hand, Figure 3.15(b) 

shows correctly detected occluded DSM cells D, E, and F and visible cells A, B, C, and G.   

 

 

DSM

Perspective center

Datum

Digital image

Image pixels

Optimum DSM cell size

Visibility mapV I V I V V V

V : visible
 I  : invisible

False visibility

ABC

DEFG

  

Aα

 

(a)                                                                   (b) 

Figure 3.15: Visibility maps created using Z-buffer method (a) and angle-based 

approach (b) when the DSM size is chosen to be equivalent to the GSD at the terrain 

surface.  

 

Figure 3.16(a) and Figure 3.16(b) show the performance of the visibility analysis 

using Z-buffer and angle-based methods, respectively, when dealing with a DSM 

including terrain and narrow vertical structures. Figure 3.16(a) shows false visibility in 

the occluded areas by vertical structures. The false visibility (know as M-portion 

problem) occurs because the cells C and D do not have any competition from points on 
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the building roof. On the other hand, Figure 3.16(b) shows correctly detected occluded 

DSM cells C, D, E, and F and visible cells A and B.   
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(a)                                                                   (b) 

Figure 3.16: Visibility maps created using Z-buffer method (a) and angle-based 

approach (b) when a DSM includes narrow vertical structures. 

 

The simulated DSM in Figure 2.5 has been used for occlusion detection through 

the implementation of the adaptive radial sweep and spiral sweep methodologies. 

Detected occlusions from the adaptive radial sweep and spiral sweep methods are shown 

in Figure 3.17(a) and Figure 3.17(b), respectively. A closer look at Figure 3.17 reveals 

that the detected occlusions from the developed methods are almost identical except for 

very small differences at the occlusion boundaries. These differences are the result of 

number rounding of the involved values to the nearest integer. Comparing the detected 

occlusions with those resulting from the Z-buffer technique (refer to Figures 2.7, 2.9, and 

2.11), one can see improved results without false visibilities and/or occlusions.  
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(a)                                                                (b) 

Figure 3.17: Detected occlusions from the adaptive radial sweep (a) and spiral sweep 

(b) methods using the simulated DSM in Figure 2.5. 

 

Since the adaptive radial sweep and spiral sweep methods are both derived from 

the angle-based approach, the true orthophotos generated using these methods are almost 

identical. The execution time for generating orthophotos using the spiral sweep method is 

shorter than the time required for the adaptive radial sweep method, when large areas of 

interest are handled. On the other hand, it is the other way around in the case of relatively 

small areas of interest. Figure 3.18(a) shows real examples of true orthophotos generated 

using the adaptive radial sweep method. Also, an example of true orthophoto using Z-

buffer method is shown in Figure 3.18(b). The black portions in Figure 3.18(a) and 

Figure 3.18(b) indicate detected occlusions that are due to relief displacement at the 

building locations (also refer to Figure 3.7(b)). To compare the true orthophoto results 

from the adaptive radial sweep method and Z-buffer method more carefully, the enlarged 
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areas in the true orthophotos created using the methods are shown in Figure 3.19(a) and 

Figure 3.19(b), respectively. The true orthophotos produced using the adaptive radial 

sweep method do not introduce any false visibility or occlusions. On the other hand, the 

true orthophoto produced using Z-buffer method still has false visibility in the double 

mapped areas. Some of buildings have less false visibility and some have more because 

this method is sensitive to the relative relationship between the DSM and the image GSD. 

Figure 3.20 (a) shows the true orthophoto (based on adaptive radial sweep method) after 

filling occluded cells using overlapping images. The true orthophoto generated is draped 

on top of the DSM to produce the 3D visualization of the surfaces in Figure 3.20 (b). 

 

    

        (a)                (b) 

Figure 3.18: A true orthophoto generated using adaptive radial sweep method (a) 

and a true orthophoto generation using Z-buffer method (b). 
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(a) 

       

(b) 

Figure 3.19: Enlarged areas in the true orthophotos created using adaptive radial 

sweep method (a) and using Z-buffer method (b). 
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(a) 

 

 

(b) 

Figure 3.20: A true orthophoto (based on the adaptive radial sweep method) after 

filling the occlusions using overlapping images (a) and 3D perspective view after 

draping the generated true orthophoto on top of the DSM (b). 
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One should note that Figure 3.18 (a) and Figure 3.20 are real examples of the 

preliminary 2D and 3D visualizations shown in the proposed framework diagram (Figure 

1.1) in Chapter 1. The surface descriptions from the preliminary 2D and 3D 

visualizations created using the proposed true orthophoto generation methods are of 

improved quality and value, compared to those created using the current popular 

technique (Z-buffer method). However, a closer look at the products (produced using the 

proposed true orthophoto generation method) indicate that they are not yet of sufficient 

quality for the purpose of this research. Figure 3.21 shows the degraded quality near 

building boundaries in the true orthophotos produced. Furthermore, the effects of small 

features (such as cars, sculptures, and trees), which are not properly represented by the 

LiDAR-based DSM, on the quality of the true orthophoto are exemplified in Figure 3.22. 

Such degradation is an obstacle to the proper interpretation of the 2D/3D products 

generated. Due to the irregular and sparse nature of LiDAR data, it is almost impossible 

to have enough LiDAR points reflected from the exact building boundaries and small 

features. Hence, the DSM produced using the LiDAR points does not represent building 

boundaries and small features sufficiently.  
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Figure 3.21: Jagged building boundaries due to the incompleteness of the DSM.  

 

       

Figure 3.22: Low quality of the produced true orthophoto around small features 

(e.g., cars, sculptures, and trees) due to the incompleteness of the DSM. 

At this stage, it is quite important to mention that such degradation arises due to 

incomplete surface models, not from the proposed methodologies. In other words, the 

methodologies proposed to relate the image spectral and the LiDAR positional 

information have reliable performance; however, the positional information utilized does 

not represent breaklines well. To achieve the goal of this research, which is better surface 

description, Chapters 4 and 5 will focus on the enhancement of the surface models.  
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3.5 Summary 

This chapter first presented the prerequisites for utilizing both photogrammetric 

and LiDAR data. Quality assurance and control of photogrammetric and LiDAR data 

were conducted to acquire photogrammetric and LiDAR datasets with reliable quality. 

Afterwards, co-registration was conducted to register both of the datasets to a common 

reference frame. Highly reliable co-registration results were achieved by utilizing LiDAR 

data as a source of control for photogrammetric geo-referencing. In this procedure, linear 

and areal features derived from LiDAR data are incorporated. 

 

Two angle-based true orthophoto generation methods (the adaptive radial sweep 

and spiral sweep methods) were proposed to overcome problems such as false visibility 

and false occlusions that arise from the use of current methodologies. Moreover, the 

proposed methods do not require the incorporation of the internal characteristics and 

attitude of the imaging sensor for visibility analysis. Thus, their performance does not 

depend on the relative relationship between the DSM cell size and the GSD of the 

imaging sensor. 

 

 The quality of the 2D and 3D visualization products was also investigated. It was 

recognized that the degradation in the quality of the products was due to the 

incompleteness of the surface models, which was in turn caused by the limited LiDAR 

point resolution. Thus, to obtain better surface descriptions, methodologies for enhancing 

surface models will be investigated in Chapters 4 and 5.  
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Chapter 4 : Building Hypothesis and Primitive Generation 

 

4.1 Introduction 

In Chapter 3, the prerequisites for accurate data integration, which are quality 

assurance of photogrammetric and LiDAR data, quality control of photogrammetric and 

LiDAR data, and co-registration techniques were addressed. Once the photogrammetric 

and LiDAR have been aligned relative to the same reference frame, two methods of 

correctly relating image spectral and LiDAR positional information (the adaptive radial 

sweep and spiral sweep methods) were proposed. Through the investigation of the 2D 

and 3D visualization products that were generated from the procedures mentioned above, 

the problems caused by the incompleteness of the surface models were recognized. In 

other words, it was found that there is a lack of representation of features, mainly, 

breaklines (e.g., building boundaries in urban environments) due to the irregular and 

sparse nature of LiDAR data. Hence, there is a need to enhance the surface models by 

introducing precise building boundary information. DBM generation is usually performed 

in two steps: building detection and building reconstruction. Building detection is the 

process of generating the building hypothesis by differentiating buildings from other 

objects within the data. Building reconstruction, on the other hand, utilizes the 

hypothesized building regions in the data to derive its 3D representation (Ma, 2004).  

Based on discussion mentioned above, the procedures for creating the enhanced 

surface models will be split into two parts and discussed in Chapters 4 and 5. This 

chapter will explain building hypothesis and primitive generation. The next chapter will 

discuss building reconstruction and enhancement of digital surface models, followed by 



76 

 

the refinement of the 2D and 3D visualization products. At this stage, one should note 

that the DBM generation method which will be proposed in this research is focusing on 

buildings with planar rooftops, which are bounded by straight lines (i.e., polyhedral 

building models). 

Since elevation data is acquired directly by a LiDAR system, the degree of 

automation in building detection using this type of data is higher when compared to that 

using imagery (Brenner, 2005). Hence, this chapter discusses building detection through 

the manipulation of LiDAR data only. First, the classification of LiDAR data into terrain 

and off-terrain points is conducted in Section 4.2. The points classified as off-terrain 

points are then used to generate building hypotheses in Section 4.3. Finally, building 

primitive generation procedures that use the produced building hypotheses are discussed 

in Section 4.4.  

 

4.2 Terrain/Off-terrain Point Classification 

The building hypothesis generation procedure starts by classifying the LiDAR 

data into terrain and off-terrain points using an occlusion-based approach. The proposed 

methodology, like many other LiDAR classification techniques, is based on the 

assumption that there is a sudden elevation change at the transition between terrain and 

off-terrain points. The majority of existing techniques (as discussed in Chapter 2) detect 

these sudden changes by inspecting the slope or height differences within locally defined 

neighbourhoods. The size of these local neighbourhoods has a significant impact on the 

quality of the point classification. To overcome this sensitivity to the neighbourhood size, 

the proposed methodology utilizes a photogrammetrically-based global operation for 



77 

 

detecting sudden elevation changes. More specifically, the conceptual basis of the 

introduced methodology is that sudden elevation changes will cause relief displacements 

(i.e., leaning of vertical structures) in perspective views (Mikhail, 2001). The resulting 

relief displacement would, in turn, cause occlusions of nearby terrain points. Therefore, 

the presence of occlusions in perspective views can be used as an indication of the 

existence of occluding objects (i.e., off-terrain objects). The investigation of relief 

displacements and occlusion detection for true orthophoto generation (i.e., the angle-

based approach) was discussed in Chapter 3. The main advantage of the angle-based 

methodology proposed in the previous chapter is that the occlusion detection procedure is 

performed in the object space. In other words, with the exception of the location of the 

projection center, the occlusion detection procedure is independent of the internal 

characteristics of the involved cameras and their orientation in space. The basic concept 

of the angle-based occlusion detection approach is extended to terrain/off-terrain 

classification of LiDAR data by introducing synthesized projection centers. This 

eliminates the need to simulate perspective views; hence it is only necessary to simulate 

the locations of the projection centers. Compared to the occlusion detection procedure 

which focuses on the identification of the occluded points (discussed in Chapter 3), the 

proposed terrain/off-terrain classification procedure focuses on the identification of the 

occluding points (i.e., the points causing the occlusion), which are hypothesized to be off-

terrain points. A flow chart of the procedure is shown in Figure 4.1, and the step 

implementation details are discussed in the subsections that follow. 
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Figure 4.1: Flow chart for the terrain/off-terrain classification of the LiDAR points. 

 

4.2.1 DSM generation 

LiDAR systems deliver the 3D coordinates of points in an irregularly distributed 

cloud. The proposed occlusion detection method, however, is based on a regularly-spaced 

point cloud. Therefore, the first step of the proposed procedure is to resample the original 

point cloud onto a raster DSM. The resampling process should address two important 

issues: 1) the appropriate DSM cell size and 2) the most suitable interpolation technique. 

The cell size should be small enough to avoid loss of information during the resampling 

procedure. At the same time, the cell size should be large enough to avoid redundancy in 

the generated DSM. To satisfy these objectives, the cell size can be chosen to be 

equivalent to the average point spacing of the LiDAR point cloud. For optimal 

classification of the LiDAR data, the resampled DSM should not smooth the surface too 
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much, and should retain as well as possible the locations where sudden elevation changes 

take place. To satisfy these requirements, the nearest neighbour resampling approach is 

utilized because most of other methods (e.g., Kriging, Inverse Distance to a Power, 

Polynomial Regression, and Triangulation with Linear Interpolation) make the surfaces 

smooth without keeping abrupt changes of the elevations. The elevation at each DSM cell 

is defined as the elevation of the closest LiDAR footprint. Besides choosing the nearest 

point, the resampling procedure should consider the fact that multi-return LiDAR systems 

might provide several elevations at the same planimetric location. For instances in which 

multiple elevations are present for a given cell, the lowest elevation is picked and 

assigned to that cell. This elevation will be utilized in the final classification of the 

original LiDAR points. 

 

4.2.2 Occlusion-based off-terrain point detection in the DSM 

As mentioned in Chapter 3, the presence of a sudden elevation change in a DSM 

can be inferred by detecting the occlusion introduced by this elevation change using a 

projection center. In this procedure, occlusions can be discerned by sequentially checking 

the off-nadir angles, which are designated as “α angles”, to the lines of sight connecting 

the projection center to the DSM cells, in a radial direction starting from the object space 

nadir point. Occlusions are present wherever there is a decrease in the off-nadir angle as 

one moves in a radial direction away from the nadir point.  

In this work, detecting the presence of occlusions will be followed by identifying 

the occluding points (i.e., the points causing the occlusion), which will be hypothesized 

to be off-terrain points. The occluding points can be identified with the help of the 
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triangle formed by the first occluded point, the last visible point, and the projection center. 

The occluding DSM cells along the radial line connecting the nadir point and the first 

occluded point can be determined through a backward tracking procedure. Starting from 

the last visible point, backward tracking continues as long as the α angles of the DSM 

cells are equal to or greater than the off-nadir angle associated with the first occluded 

point. In other words, the occluding points consist of the DSM cells whose α angles are 

equal to or greater than the off-nadir angle of the first occluded point. Figure 4.2 

illustrates the procedure for identifying the occluding points along a DSM profile.  One 

should note that PC in the figure denotes perspective center.  

 

A B C D E F G

PC1 PC2

A1

A2

A3

Off-terrain points detected from PC2 only

Off-terrain points detected from PC1 or PC2

Off-terrain points detected from PC1 only

Last visible point 
from PC2

First occuded point 
from PC2

Last visible point 
from PC1

First occuded point 
from PC1

A1 A2 A3

 

Figure 4.2: Occluding point detection using multiple projection centers (PCs). 
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In this figure, the DSM cell designated as “G” is the first occluded point detected 

using PC1 since FG αα <  . Therefore, in the backward tracking process, cells F, E, D, and 

C are identified as occluding points (since the α angles for these points are larger than the 

off-nadir angle to the first occluded point – Gα ) using PC1. Once backward tracking 

from the last visible point has been completed, the procedure continues checking the α 

angles along the profile in question, starting from the first occluded point, assuming that 

it is visible. If another occlusion is detected, another backward tracking process should 

commence. It should be noted that this procedure for the extraction of occluding points is 

valid in situations in which several off-terrain objects are occluding one another. 

However, as can be seen in Figure 4.2, for relatively large off-terrain objects, a situation 

might arise in which the backward tracking procedure will not be able to entirely recover 

the object using a single projection center. For example, in Figure 4.2, when using only 

PC1, the backward tracking procedure will stop at point C, so that point B is not detected 

as an off-terrain point. To avoid such a scenario, another projection center is used (e.g., 

PC2 in Figure 4.2). Using the second projection center, the backward tracking procedure 

will identify cells B, C, D, and E as off-terrain points. The final set of off-terrain points 

will consist of the aggregation of the off-terrain points identified using PC1 and PC2.  

Having explained the concept of using synthesized projection centers to identify off-

terrain points in an interpolated DSM, the necessary number and the locations of the 

synthesized projection centers should be discussed. The locations of the projection 

centers relative to the DSM should be established in a way that maximizes the occlusions 

introduced by these projection centers (i.e., by maximizing the differences between the 

off-nadir angles associated with the last visible and first occluded points). Since the 
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magnitude of the relief displacements and corresponding occlusions are inversely 

proportional to the height of the projection center above the terrain, one should place the 

projection centers as close as possible to the DSM. In this work, the heights of the 

projection centers are chosen to be slightly higher than the highest elevation in the DSM. 

The relief displacement for a given DSM cell is also directly proportional to the 

planimetric distance between that cell and the projection center. Therefore, the 

synthesized projection centers should be located at a certain horizontal distance away 

from the DSM. This distance should be determined in a way that ensures significant relief 

displacement at the DSM boundaries. Figure 4.3(a) and Figure 4.3(b) illustrate the impact 

of the vertical and planimetric location of the projection center relative to the DSM on the 

introduced occlusions. As shown in Figure 4.3(a), the lower projection center will 

provide wider occlusion areas than those from the higher projection center. Hence, the 

possibility that one can detect off-terrain points through the backward tracking process is 

higher in the case of the lower projection center compared to that of the higher one. Also, 

Figure 4.3(b) shows that the possibility of detecting off-terrain points is higher when the 

projection center has a longer radial distance compared to that with a shorter radial 

distance. Moreover, the impact of the location of the synthesized projection center on the 

close and distant buildings will be different. As seen in Figure 4.4, the impact of the 

location of PC1 on BLD2 is not significant compared to that on BLD1 because the radial 

distance between PC1 and BLD2 is much longer than the radial distance between PC1 

and BLD1. In other word, the possibility of detecting off-terrain points on BLD2 will be 

very high regardless of the horizontal location (i.e., D in Figure 4.4) of PC1. Conversely, 

the possibility of detecting off-terrain points on BLD1 will be very high regardless of the 
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horizontal location of PC2. In summary, the location of the projection centers should be 

determined in a way that ensures a high possibility of detecting off-terrain points through 

the backward tracking process, while considering the discussion mentioned above. Also, 

the relatively lower possibility of detecting off-terrain points on the buildings near a 

projection center will be covered by the other projection centers.      
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(a)                                                            (b) 

Figure 4.3: The impact of the vertical (a) and planimetric (b) location of the 

synthesized projection center on the extent of detected off-terrain objects. 
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Figure 4.4: The different impact of the synthesized projection center on the close 

and distant buildings.  

The remaining issue that should be addressed is defining the number of projection 

centers necessary for the detection of all occluding points. In a raster DSM, each cell has 

eight neighbours, any of which might occlude the cell. Therefore, a total of eight 

projection centers should be synthesized for each DSM cell. These projection centers 

should be placed relative to the DSM cell in a way that ensures backward tracking in each 

of the eight directions from the cell to its direct neighbours (these directions will be 

denoted as “cardinal directions” and will be given the labels 1 through 8). The optimal 

configuration of the synthesized projection centers for two DSM cells is shown in Figure 

4.5. Opposite projection centers, which are located along the cardinal directions (1-5, 2-6, 

3-7, or 4-8) can be used to check the occluding points for all the DSM cells along those 

directions. Thus, checking for occluding points can be carried out for all the DSM cells 
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along one profile at a time, Figure 4.6. By checking occluding pixels along each one of 

these profiles, one can check whether a given DSM cell is occluding neighboring points 

along these directions. In summary, the configuration of the synthesized projection 

centers for a given DSM will be similar to what shown in Figure 4.7 

 

Figure 4.5: Optimal number of projection centers for two DSM cells (A and B). 
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Figure 4.6: Checking all possible occluding directions for the DSM cells one profile 

at a time. 

 

 

Figure 4.7: Chain of synthesized projection centers for a given DSM. 
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To illustrate the performance of the occlusion-based method for detecting off-

terrain points in a DSM, the surface depicted in Figure 4.8(a) is simulated. The surface is 

composed of a sinusoidal terrain with a few man-made structures. Random noise has 

been added to the heights of the surface points. Hypothesized off-terrain points, which 

are causing occlusions, are shown in white in Figure 4.8(b), while terrain points are 

shown in black. As can be seen in this figure, the man-made structures have been 

correctly classified as off-terrain points. However, one can see that false off-terrain 

hypotheses are generated in the terrain area. These false hypotheses are caused by the 

noise introduced to the terrain surface, which lead to perceived occlusions and 

consequently false off-terrain hypotheses. Similarly to the noise effect, one can expect 

that high-frequency components of the terrain (e.g., cliffs) might cause some occlusions, 

leading to additional false off-terrain hypotheses. To remove these false hypotheses, the 

proposed procedure is augmented with a statistical filter to refine the classified points, as 

will be discussed in the next subsection.  

     

   (a)          (b)                 (c) 

Figure 4.8: Simulated DSM (a), hypothesized off-terrain points (in white) before 

statistical filtering (b), and detected off-terrain points after statistical filtering (c). 
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4.2.3 Statistical filtering for the refinement of the classified points  

As was mentioned earlier, surface roughness and noise lead to false hypotheses in 

the classification outcomes of the occlusion-based procedure. As it can be seen in Figure 

4.8(b), false hypotheses are more prevalent in the hypothesized off-terrain points when 

compared with hypothesized terrain points. One might expect that the noise effect in off-

terrain and terrain points should have the same effect (i.e., false terrain hypotheses should 

exist in the building areas as well as false off-terrain hypotheses in terrain areas). 

However, the locations and the configuration of synthesized projection centers lead to 

significant occlusions at the vicinity of buildings and other high objects. Such occlusions 

ensure the reclassification of false terrain points along building roofs. In other words, the 

backward tracking process will re-identify false terrain hypotheses along building roofs 

as occluding points. Therefore, the refinement of the occlusion-based classification 

algorithm will be based on the inspection of the elevations of classified off-terrain points, 

as compared to the heights of classified terrain points. More specifically, false off-terrain 

hypotheses will be corrected using a statistical filtering procedure, after using an 

appropriate probability distribution to represent the elevations of the hypothesized terrain 

points. Since terrain is relatively smooth, it is reasonable to assume that the terrain 

elevations in local neighbourhoods are normally distributed with a mean µ and a standard 

deviation σ. The elevations of terrain points within local neighbourhoods will be used to 

derive the mean and the variance of the corresponding distribution. To ensure that there 

are enough sample points for the reliable recovery of the statistical parameters of the 

terrain elevation within a given neighbourhood, the size of the neighbourhoods will be 

expanded until a predefined number of terrain sample points is identified in the local 
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neighbourhood in question (In this work, the predefined number of terrain sample points 

was chosen to be 100).  The proposed procedure for statistical filtering is carried out as 

follows: 

1. For each DSM cell, a local neighbourhood centered at that cell is defined. The size of 

this neighbourhood is expanded until enough terrain sample points have been 

identified.  

2. The identified terrain sample points are used to derive an estimate of the statistical 

terrain parameters (µterrain and σterrain). 

3. The height of the DSM cell (Hcell), its classified point type, and the estimated 

statistical parameters are utilized in the decision of whether to keep or refine this cell 

classification, according to the following rules: 

a. If (Hcell < µterrain + 1.5 σterrain), this point is classified as a terrain point, 

regardless of its original classification. The scaling factor of the standard 

deviation (1.5) is chosen since the probability of having a terrain point 

elevation that is less than µterrain + 1.5 σterrain is 93%, which is quite high. 

b. If (Hcell > µterrain + 2.0 σterrain), this point is classified as an off-terrain point, 

regardless of its original classification. The scaling factor of the standard 

deviation (2.0) is chosen since the probability of having a terrain point 

elevation that is larger than µterrain + 2.0 σterrain is 2%, which is quite low. In 

other words, the probability of a type I error is 2%. 

c. If (µterrain + 1.5 σterrain < Hcell < µterrain + 2.0 σterrain), the original classification is 

maintained. In other words, there is no strong probabilistic basis for 

considering this cell to be either a terrain point or an off-terrain point. 
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4. The above procedure is repeated for each remaining DSM cell. 

 

The above statistical procedure has been applied to refine the classification 

resulting from the occlusion-based procedure, shown in Figure 4.8(b). The refined 

classification is shown in Figure 4.8 (c). As it can be seen in the figure, all the false off-

terrain hypotheses in the terrain area are correctly reclassified into terrain cells. The final 

stage of the proposed methodology utilizes the outcome of the statistical filtering to 

classify the original LiDAR points, as will be explained in the next subsection. One 

should note that results after the statistical filtering might be slightly different between 

one to the other according to different parameters used for the filtering process; however, 

the subsequent processes will take care of the difference of the results and end up with 

the same final products of this research.   

 

4.2.4 Classifying the original LiDAR point cloud 

So far, a procedure for the classification of points in a regularly spaced surface 

model (DSM) has been introduced. The DSM has been generated from irregularly spaced 

LiDAR points through a resampling procedure. The final stage of the proposed procedure 

uses the classified DSM points to categorize the original LiDAR point cloud into terrain 

and off-terrain points. The classification of the LiDAR points is based on their proximity 

to the classified DSM cells. In other words, if a LiDAR point lies within a given cell, then 

this point should have the same classification as that of the DSM cell.  

As was explained in the resampling section, multi-return LiDAR systems might 

produce several elevation values at the same planimetric location. It should be noted that 
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the lowest LiDAR point has been utilized to resample the DSM. Therefore, if several 

LiDAR points lie within a cell that has been classified as an off-terrain point, then these 

points should all be classified as off-terrain. If several LiDAR points lie within a DSM 

cell that has been classified as a terrain point, then the lowest of these LiDAR points is 

classified as terrain. The classification of the remaining points depends on their height 

relative to the lowest LiDAR point. If the heights of the other points are significantly 

greater than the height of the lowest LiDAR point, then these points are classified as off-

terrain points. In this work, the height difference threshold was chosen to be twenty 

centimetres.  

To test the feasibility and the performance of the proposed procedure for terrain 

and off-terrain LiDAR point classification, several experiments using real data are 

conducted. A dataset including an area which has high frequency components in the 

terrain surface is selected (Figure 4.9 (a)). In detail, the dataset has complex tall buildings 

and a sudden elevation change along the terrain caused by tunnel entrances. As it can be 

seen in this figure, there are two roads extending into tunnels under the ground which are 

highlighted by ellipses in the middle and the bottom of that figure. Figure 4.9 (b) and 

Figure 4.9 (c) show the detected occluding points and classified off-terrain points after 

the occlusion-based and statistical filtering procedures. A closer look at Figure 4.9 (b) 

reveals that noise and high frequency components of the terrain (tunnel entrances) are 

causing false hypotheses of instances of off-terrain points (refer to the areas within the 

ellipses in Figure 4.9 (b) where off-terrain points are hypothesized at the tunnel 

entrances). Such false classification is expected since the high terrain points are 

occluding the low terrain points at the tunnel entrance. The statistical filtering rectified 
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this misclassification (refer to the areas within the ellipses in Figure 4.9 (c)). In other 

words, comparing the heights of the misclassified terrain points with the statistical 

properties of the neighbouring terrain points revealed the height proximity of these 

misclassified points to those associated with the correctly classified terrain points; thus 

leading to a reclassification of these points as terrain points. This result shows that the 

proposed methodology is quite successful in the classification of LiDAR point cloud 

including even high frequency components in the terrain surface. Figure 4.10 shows 

another example including complex and connected structures. Figure 4.10 (a) and Figure 

4.10 (b) shows an aerial image patch and LiDAR data that covers the same area. Terrain 

(in blue) and off-terrain points (in red) in this area are identified through the proposed 

methodology and displayed in Figure 4.10 (c). The classified off-terrain points will be 

utilized to generate building hypothesis in the next section. 

 

     

                     (a)                                            (b)                                            (c) 

Figure 4.9: A dataset with high frequency components in the terrain surface (e.g., 

tunnels): resampled DSM (a), identified occluding points (b), and resulting off-

terrain points after statistical filtering (c). 
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          (a)              (b)            (c) 

Figure 4.10: A dataset with complex and connected structures: aerial photo over the 

area of interest (a), LiDAR data that covers the same area (colors are assigned 

according to point elevations) (b), and classified terrain and off-terrain points (in 

blue and red, respectively). 

 

4.3 Building Hypothesis Generation  

Once the LiDAR point cloud has been classified into terrain and off-terrain points, 

classified off-terrain points are then used to generate building hypotheses. Recall that the 

target of this research is buildings with planar rooftops, which are bounded by straight 

lines. Figure 4.11 shows a flow chart of the procedures used to derive building 

hypotheses from off-terrain points while considering the target of this research.  
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Figure 4.11: Flow chart of building hypothesis generation using off-terrain points.  

 

Once the LiDAR point cloud has been separated into terrain and off-terrain 

points, the identified off-terrain points will be further classified into points belonging to 

planar surfaces and to rough surfaces. This classification process starts by establishing a 

spherical neighbourhood centered at each off-terrain point. Off-terrain points in this 

spherical neighbourhood are used to determine an initial fitted plane for the points in 

question, through a least squares adjustment procedure; the result is illustrated in Figure 

4.12(a). After this first plane has been derived, the normal distances between the plane 

and the associated points are computed, as illustrated in Figure 4.12(a). The inverses of 

the normal distances are then used as weights for the next iteration of the plane fitting 

procedure. In other words, the farther the points are from the plane, the lower their 

weights will be. This procedure is repeated until plane parameter convergence (i.e., the 

plane parameters do not change from one iteration to the next) or the completion of a 

maximum number of iterations. After convergence, a buffer is defined above and below 
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the final fitted plane. The size of this buffer depends on the noise level expected in the 

LiDAR data; see Figure 4.12(b). 

 

 
                           (a) 

 
       (b)  

Figure 4.12: The first fitted plane for a speherical neighbourhood centered at an off-

terrain point in question (a), and the final fitted plane derived through the iterative 

procedure using the inverses of the normal distances as weights (b). 

 

The further point classification using the neighbouring LiDAR points is based on 

the ratio of the number of points within the buffer to the total number of points within the 

spherical neighbourhood. If the ratio exceeds a pre-defined threshod, then the central 

point will be classified as a point that belongs to a planar neighbourhood; see Figure 

4.13(a). Otherwise, the point will be classified as part of rough surface; see Figure 

4.13(b). It should be noted that if the iterative plane fitting procedure does not converge, 

the central point will be classified as belonging to a rough surface.  
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                      (a)                   (b) 

Figure 4.13: Majority of the points are within the plane buffer in case that the points 

belong to planar surface (a) and a few points are within the buffer in case that the 

points belong to rough surface (b) (side view). 

 

At this stage, the most appropriate representation of plane while avoiding the 

main problem, which is the singularity of a given representation. For example, the 

equation, cbZaYX ++= , cannot be used for planes parallel to the X-axis. Since buildings 

contain various planar patches with different slopes and aspects, this research introduces 

three different formulas for plane representation: 1) cbZaYX ++= , 2) cbZaXY ++= , and 

3) cbYaXZ ++= . First, all these plane representations are considered to derive the plane 

paramters for the points within the spherical neighbourhood. Since any type of plane 

representation with large condition number cannot have reliable plane paramters, such a 

representation is not considered as an appropriate model. Afterwards, using the remaining 

plane representations, the average of the squares of the distances between the off-terrain 

neighbourhood points and their corresponding projections onto the plane, along the 

normal to the plane, are computed. The plane representation equation providing the 
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lowest value is selected as the appropriate plane model for the neighbouring points in 

question. 

So far, the identified off-terrain points are further classified into points belonging 

to planar surfaces and to rough surfaces. Afterwards, the points belonging to planar 

surfaces are grouped together according to their three-dimentional proximity.  The points 

that are found to be spatially close to one another are grouped. A pre-defined threshold of 

two or three times the average point spacing of the LiDAR point cloud is utilized to 

determine whether the points are sufficiently close together to be grouped. The area and 

the height of the resulting groups relative to neighbouring terrain points will be used for 

building hypothesis generation with the help of thresholds that define the minimum area 

and height of the buildings in the study area. Figure 4.14 shows the building hypotheses 

generated using the identified off-terrain points in Figure 4.10(c). The different colors in 

this figure indicate different building hypotheses.  

 

 

Figure 4.14: An example of building hypotheses generated through the proposed 

procedure. 
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A generated building hypothesis might be composed of several planar patches 

(e.g., compare the area in orange in Figure 4.14 and its corresponding areas in Figure 

4.10(a)). This situation occurrs when the closeness of the points on the different planes is 

less than the proximity threshold for grouping (Figure 4.15 (a)). Also, another situation 

might arise when a structure is formed by a series of connected planes with different 

slopes and aspects (Figure 4.15 (b)). Therefore, the next section proposes a segmentation 

procedures to break each building hypothesis down into a group of building primitives 

(i.e., the individual planar patches constituting a building rooftop).  

d

d < proximity threshold

LiDAR point

 

   (a)      (b) 

Figure 4.15: LiDAR points with the closeness less than a proximity threshold (a) and 

points on a structure formed by connected planes (b). 

 

4.4 Building Primitive Generation 

Building primitive generation begins with a segmentation procedure using the 

generated building hypotheses. This procedure is based on a voting scheme that keeps 

track of the point attributes, as defined by a local plane through its neighbouring points, 
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in an accumulator array. Afterwards, the modified convex hull procedure (Jarvis, 1977) is 

used to define the boundaries of the segmented planar patches. Figure 4.16 illustrates a 

flow chart of building primitive generation. Subsections 4.4.1 and 4.4.2 provide more 

detailed explanations of the segmentation and boundary generation procedures, 

respectively.  

 

 

Figure 4.16: Flow chart of building primitive generation. 
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4.4.1 Segmentation 

The segmentation method proposed will consider both the attiribute similarity and 

the spatial proximity of LiDAR points while reducing the dimension of the attribute 

space. As shown in Figure 4.16, the segmentation procedure is composed of three sub-

steps: 1) Neighbourhood definition; 2) Attribute computation; 3) Clustering of 

neighbouring points with similar attributes.  

 

Neighbourhood definition 

One should note that the attribute for a given point is defined by its neighbouring 

points and the way in which the neighbourhood of a LiDAR point is defined significantly 

affects the set of attributes computed for that point. Hence, the following paragraphs will 

discuss the appropriate neighbourhood definition to acquire useful attribute information. 

Three different types of neighbourhood definitions will be reviewed in this research. One 

way in which the neighbourhood of a point can be defined is by considering its proximity 

to other points that are projected onto the XY plane. The use of a TIN is the well known 

technique based on this neighbourhood definition. It has been used mainly for analyzing 

irregularly-distributed 3D points. However, serious drawbacks are revealed when points 

are located close to one another on the XY plane but are far from each other in the 

vertical direction. Figure 4.17(a) shows an example of neighbourhood definition using 

the TIN methodology; points on the ground and wall are considered to be neighbours of 

points on the roof. Another type of neighbourhood definition that can be used establishes 

proximity according to the Euclidian distance between points in 3D space. The points that 

are located inside a sphere of a certain radius centered at the point in question are 
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considered to be in its neighbourhood; see Figure 4.17(b). Even though three dimensional 

relationships between irregularly-distributed points are considered, points belonging to 

the wall are considered to be neighbours of points on the roof. Thus, the two 

neighbourhood definitions based on TIN and Euclidian distance in 3D space often 

include points belonging to different physical surfaces in the same neighbourhood. 

Recall that the target of this research is buildings with planar rooftops, which are 

bounded by straight lines. Hence, the neighbourhood definition should take into account 

the physical shapes of objects (especially, planes) to acquire useful attributes for the 

target. A different definition which considers both the three-dimensional relationships 

between irregularly-distributed points and the physical shapes of surfaces is introduced 

and employed in this research (Filin and Pfeifer, 2005 and 2006). The physical shapes of 

the surfaces on which associated points are located are incorporated into the 

neighbourhood definition. This means that points located on the same surface are 

considered to be possible neighbours, while taking into account the proximity of the 

points. Points on different surfaces, on the other hand, are not considered to be 

neighbours, even if they are spatially close. This definition increases the homogeneity 

among neighbours. The definition starts by determining a cylinder whose axis is normal 

to the surface in question. The axis of the cylinder will be changed according to the 

orientaton of the surfaces. It is for this reason that this definition is referred to as the 

adaptive cylindrical neighbourhood. The schematic concept of the adaptive cylinder 

method, which follows this definition, is illustrated in Figure 4.17(c). As shown in the 

figure, points on the wall are not considered to be neighbours of the points on the roof. 

This neighbourhood definition method is implemented in a similar way as the plane 
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fitting procedure that is used for point classification using its neighours in Section 4.3. 

Once the final plane is derived through the iterative plane fitting procedure, a cylinder 

will be defined by determining its axis, radius, and height. The axis will be normal to the 

final plane and the radius will be determined to include enough number of points to 

define reliable attributes. Also, the height will be determined by setting a buffer above 

and below the plane. The size of this buffer depends on the noise level expected in the 

LiDAR data. Finally, the neighbourhood will be defined by the points located inside the 

established cylinder; refer to Figure 4.12. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4.17: Different neighbourhood definition methods (side view): TIN (a), 

spherical (b), and adaptive cylinder (c). 
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Attribute computation 

Point attributes are computed based on the neighbouring points identified using 

the defined neighbourhood. After introducing an origin, a plane is defined for each point 

using its neighbouring points. As illustrated in Figure 4.18, a normal vector from the 

origin to the plane is defined.  

),,( zyx nnnn =

origin

computed plane

a certain point in question

neighborhood

),,( zyx nnnn =

origin

computed plane

a certain point in question

neighborhood

 

Figure 4.18: Vector defined from the origin to the computed plane for a given point, 

using its neighbouring points. 

 

All techniques based on attribute clustering use a voting scheme with an 

accumulator array that is constructed in the attribute space. The dimension of the 

accumulator array depends on the number of the attributes utilized in the technique in 

question. The three components of the normal vector can be used as attributes in the 

voting scheme. One should note that one normal vector defines one infinite plane; 

therefore, planes sharing the same normal vector but disconnected in the object space will 

be clustered into one group. As mentioned before, this clustering approach ignores the 

proximity among points sharing similar attributes. Hence, none of the techniques based 

on this approach can be free from this problem.  
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The segmentation technique that uses the three components of the normal vector 

partitions points into distinct regions without any segmentation ambiguity except for that 

arising from co-planarity. However, the use of these attributes requires the construction 

of an accumulator array that has three dimensions, one for each vector component. A 

voting scheme that uses a three-dimensional accumulator array is computationally 

expensive. To reduce the three-dimensional accumulator array to two dimensions, the 

slopes of the normal vector in the x and y directions can be used instead of the three 

normal vector components as attributes for the planar patch segmentation (Elaksher and 

Bethel, 2002; and Filin and Pfeifer, 2006). Even though this method reduces the 

dimension of the accumulator array, the ambiguity of segmentation is a problem. If this 

method is used, parallel planes that have the same normal vector slopes in the x and y 

directions but different offsets in the z direction will be segmented as one group. This 

problem can be resolved through either spatial analysis of the data or the introduction of a 

one-dimensional accumulator array for the offsets in the z direction, after the 

segmentation in the two-dimensional attribute space is completed. 

In this research, the magnitude of the normal vector (normal distance between 

origin and defined plane) is utilized as an attribute. One origin can be used for planar 

patch attribute computation. However, different planes with the same magnitudes of the 

normal vectors may exist. The tangent planes to a sphere centered on the origin are an 

example of this case. The points belonging to these planes will have the same attribute 

values. Therefore, two origins are introduced in this research; this significantly reduces 

the ambiguity that points belonging to planes with different slopes and aspects will have 

the same attribute values. Figure 4.19 (a) illustrate the situation that one origin is located 
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at an equal distance from the planes and the other origin is not. If one origin (origin 1) is 

located at an equal distance from the planes (i.e., 131211 nnn == ), the points belonging 

to these planes will have the same attribute values. Therefore, it would be impossible to 

separate these points into different groups in the attribute space. This problem can be 

resolved by introducing another origin (origin 2). The magnitudes of the normal vectors 

from the planes to the second origin will be different from one another (i.e., 

232221 nnn ≠≠ ). Hence, the points belonging to different planes will have different 

pairs of the attributes after introducing two different origins. These attributes will be 

utilized in the clustering procedure through the voting scheme. One should note that the 

number of origins determines the dimension of the accumulator array. If there is one 

origin for planar patch attribute computation, only a one-dimensional accumulator array 

is necessary for the voting scheme. Since two origins are introduced to reduce the 

possibility of the ambiguity mentioned above, two-dimensional accumulator array will be 

utilized in this research. Figure 4.19 (b) shows a diagram of the accumulator array for the 

points belonging to the planes in Figure 4.19 (a). All of these points are recorded in the 

accumulator array according to their attributes. As shown in Figure 4.19 (b), these points 

are recorded at the same location along the origin 1-axis. However, the points are 

recorded at the different locations along the origin 2-axis according to the planes that they 

belong to. The points belonging to the different planes will be recorded at the different 

locations in the two-dimensional accumulator array while avoiding ambiguity mentioned 

above.   
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        (a)            (b) 

Figure 4.19: Situation that one origin is located at an equal distance from the planes 

and the other origin is not (a) and the recorded votes in two-dimensional 

accumulator array (b). 

 

One should note that the utilization of two origins might still lead to ambiguities. 

Hence, the two origins should be located at positions that minimize the risk of ambiguity. 

Figure 4.20(a) shows an example of the ambiguity that causes the attribute vectors of 

different planes to be located at the same position in the accumulator array. The position 

of plane 1 in the attribute space is (n1, n2); n1 and n2 are the magnitudes of the normal 

vectors to plane 1 from the two origins. However, the other three planes share the same 

location in the attribute space. Although the likelihood of this ambiguity occurring in 

reality is very low, the possibility cannot be ignored. Therefore, this research suggests 

that the two origins be located such that the angle between the line connecting the two 

origins and the horizontal plane is 45 degrees; see Figure 4.20(b). This suggestion is 

based on the prior knowledge that the slopes of building roofs are less than 45 degrees, as 

most roofs are either horizontal or gently slanted. According to this assumption, planes 1 
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and 3 are almost nonexistent in reality because their slopes are greater than 45 degrees. 

By positioning the two origins in this manner, the possibility of ambiguity due to the 

locations of the origins is significantly reduced. To reinforce this statement, the 

possibility of the occurrence of ambiguity is calcuated by performing a test with a real 

dataset containining forty two building hypotheses. The ambiguity occurred with only 

one hypothesis out of the forty two (about 2%). Even though the chance of an ambiguity 

occurring is extremely low after introducing two origins at the proposed positions, further 

processing has to be suggested to remove the ambiguity thoroughly. This additional 

processing is implemented in the clustering procedure. The methodology to derive 

coplanar points using these attributes follows.  

 

              (a)                (b) 

Figure 4.20: Ambiguity from two origins (side view) (a), and the positioning of two 

origins that minimizes the possibility of such ambiguity (side view) (b). 
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Clustering 

Once the locations of the two origins are determined, the attributes for all the 

points in the dataset are computed and recorded in the accumulator array. Afterwards, 

clustering of points is conducted while considering proximity and coplanarity of the 

points. Figure 4.21 illustrates a flow chart of the clustering procedure proposed in this 

research. The points belonging to different planes in the object space are expected to 

form different accumulated peaks in the attribute space. Figure 4.22 shows an example of 

planar patch segmentation. A LiDAR dataset over a region that includes a building with 

two planar patches (e.g., gable roof) is selected; see Figure 4.22(a) and Figure 4.22(b). 

The points that belong to the patches produce two peaks in the accumulator array through 

the voting scheme; see Figure 4.22(c). 

 

 



109 

 

 

Figure 4.21: Flow chart of the clustering procedure. 
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                (a)                       (b) 

 

                                         (c)                      (d) 

Figure 4.22: Aggregation of points with similar attributes: the digital image (a), the 

Digital Surface Models over the area of interest (b), the accumulator array (c), and 

the segmented patches (d). 

 

Afterwards, the points, which contribute to the highest peak are identified. Using these 

points, plane fitting is conducted through least squares adjustment procedure. Then, the 

quality of plane fitting is evaluated by checking the average of the squares of the 

distances between the points and their corresponding projections onto the plane along its 
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normal direction. The acceptible quality of plane fitting is decided while considering the 

noise level of LiDAR data utilized. Poor plane fitting will occur when the ambiguity 

mentioned in the attribute computation procedure exists even though the possibility is 

relatively low. In other words, the points belonging to the planes with different slopes and 

aspects might contribute to the highest peak and cause the poor plane fitting result. In this 

case, the ambiguity will be resolved by introducing two new origins with different 

locations (compared to the original ones) for the points causing the problem. More 

specifically, a small accumulator array for only the points located at the peak will be 

constructed using their attributes recomputed from two new origins. This is expected to 

lead to the separation of the points belonging to the planes with different slopes and 

aspects in the accumulator array. Then, plane fitting using the points contributing to the 

highest peak will be conducted again. This process is repreated until a good quality of 

plane fitting is acquired. Afterwards, the clustering process moves to the other points 

which did not contribute to the highest peak but with similar attributes (i.e., bins 

neighbouring to the higest peak). This step is necessary to consider the inaccuracy of the 

computed attributes of certain points, which are generally either located around break 

lines or affected by noises. More specifically, an initial cluster will be first defined by 

including the points contributing to the highest peak. Then, the points registered at the 

neighbouring cells around the highest peak will be identified in the accumulator array. 

Among these points, only ones which are close (i.e., 3D proximity) to the points 

belonging to the initial cluster in the space domain will be considered as candiates. 

Normal distances between the cadidate points and the plane defined by the points in the 

initial cluster will be computed. Then, the points which have normal distances less than 
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the pre-determined threshold (computed based on the noise level of LiDAR data utilized) 

will be accepted into the cluster. This process will be implemented until no more points 

can be included into the cluster. Once this cluster growing has been completed, the points 

in the cluster will be recorded and removed from the accumulator array. Now, the second 

highest peak can be detected and the same steps implemented for the first highest peak 

will be repeated.  This process of moving from the highest peak to the next one is 

repeated until  the number of points located at the last peak is less than the number of 

points that have been pre-determined to make up the minimum detectable patch size in 

the object space. Figure 4.22(d) shows the clustered points categorized into two different 

groups using the above technique.  

One should note that this procedure provides a robust and accurate segmentation 

solution because the points are clustered while globally assessing the local attributes in 

the parameter space together with the proximity of the points in the object space at the 

same time. Moreover, it is more efficient compared to the segmentation process using 

more than two attributes in terms of computational load since the proposed process 

utilizes only two attributes. 

So far, the points belonging to different planar patches are identified and grouped 

into different clusters. In other words, building primitives (i.e., planar patches 

constituting rooftops) are derived from building hypotheses as the outcome of the 

segmentation process.  
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4.4.2 Initial boundary generation for building primitives 

One should note that the points belonging to the coplanar but disconnected planes 

can be grouped into the same cluster. This will only happen if the points contributed to 

the highest peak are from two different coplanar groups. The separation of these groups 

can be achieved by conducting a neighbourhood analysis through boundary detection of 

the clustered points. Also, the boundaries of the clusters will provide the information of 

building shape. First, the points in each cluster are used to determine a plane through a 

least squares adjustment procedure. Once all the points involved are projected onto the 

determined plane, a boundary detection algorithm is applied to the projected points. The 

modified convex hull approach (Jarvis, 1977) is adopted to determine the boundary  for 

each of the segmented clusters. Figure 4.23 illustrates the principal steps of the modified 

convex hull approach for tracing the boundary of a point cluster. As shown in the first 

row, the process starts by selecting the leftmost point (empty circle) as a boundary point. 

All points within a neighbourhood (grey circles) are selected. For LiDAR data, this 

neighbourhood can be defined as two or three times the average point spacing of the data 

in consideration. The convex hull algorithm is then used to determine the next point on 

the boundary by only considering the points within this neighbourhood. After that, the 

algorithm proceeds to this newly determined boundary point and the same procedure is 

repeated until the boundary is fully determined. The last row shows the different results 

produced by using the conventional convex hull and the modified one. Figure 4.24(a) and 

Figure 4.24(b) show the points extracted from the previous steps in the proposed 

segmentation methodology and the detected boundary of these points, respectively. 
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Figure 4.23: Steps of the modified convex hull algorithm (Sampath and Shan, 2007). 

 

  

(a) (b) 

Figure 4.24: Boundary detection: clustered points from attribute space (a), and 

detected boundary (b). 
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This boundary detection procedure is extended to deal with points from different 

patches, which are coplanar but spatially separated. Figure 4.25(a) shows an example of 

such a scenario, before applying the boundary detection algorithm. As can be seen in the 

figure, there are two large sets of points and a few spurious points. Since the boundary 

detectin process is designed to start from the left most points, the boundary for the set of 

points located at the bottom of the figure is detected first. Then, all the points located 

inside the boundary are identified and classified as one cluster. Once all these points have 

been recorded and removed from the entire dataset, the same procedure is conducted for 

the remaining points, in an iterative process; see Figure 4.25(b). 

 

  

(a) (b) 

Figure 4.25: Neighbourhood analysis via boundary detection: multiple coplanar 

patches detected from the attribute space (a), and patches separated through 

boundary detection (b). 
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One should note that a building hypothesis generated in Section 4.3 might be 

composed of several planar patches. Two situations are involved in this case. The first 

situation occurrs when the closeness of the points on the different planes is less than the 

proximity threshold for grouping. The other situation comes from a structure formed by a 

series of connected planes with different slopes and aspects. The proposed segmentation 

and boundary generation techniques identify the LiDAR points located on the same 

planar patch while considering the similarity of their attributes as well as their proximity. 

In other words, each building hypothesis is broken down into a group of building 

primitives (i.e., the individual planar patches constituting the building rooftop) with their 

initial boundaries. Figure 4.26(a) and Figure 4.26(b) illustrate the generated building 

primitives and their boundaries. The building hypotheses including the several planar 

surfaces (as shown in Figure 4.14) are separated into the several primitives.  

 

  

                                              (a)                                            (b) 

Figure 4.26: Building primitives (a), and boundaries of the building primitives (b). 
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One of the initial boundaries of the building primitives is projected onto the 

involved imagery, in Figure 4.27. As shown in the figure, the boundaries closely follow 

the trend of the building shape. However, deviations exist between the initial boundary of 

the building primitive and the precise building boundaries. As mentioned in Chapter 3, 

these deviations are mostly due to the irregular and sparse nature of LiDAR data. Chapter 

5 will propose methodologies to improve the quality of the boundaries of the building 

primitives. Moreover, the chapter will address the refined 2D and 3D visualizations once 

the enhanced surface models are acquired.  

 

 

Figure 4.27: Projected initial boundary onto the imagery for a given building 

primitive. 
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4.5 Summary 

This chapter explained the procedures necessary for building hypothesis and 

primitive generation. The proposed angle-based approach for true orthophoto generation 

in Chapter 3 was extended and applied for terrain and off-terrain classification by 

introducing synthesized projection centers. The proposed methodology is quite successful 

in the classification of LiDAR point cloud including even high frequency components in 

the terrain surface (e.g., cliffs). 

 

Afterwards, building hypotheses were generated using the classified off-terrain 

points. By checking planarity of the off-terrain points, they were further classified into 

points on planar and rough surfaces. The points belonging to planar surfaces were 

grouped according to their three-dimensional proximity. After this, building hypotheses 

were generated while considering the area and the height of the groups relative to 

neighbouring terrain points. 

 

To acquire building primitives from the generated building hypotheses, 

segmentation and boundary generation were then conducted. The adopted neighbourhood 

definition, which considers both the three-dimensional relationship between irregularly 

distributed points and the physical shapes of surface, increased the homogeneity of the 

derived attributes. Then, the increased homogeneity improved the quality of point 

clustering. An efficient and robust clustering process was designed by utilizing only two 

attributes and by globally assessing the local attributes in the parameter space together 

with the proximity of the points in the object space at the same time. Finally, initial 
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boundaries of the building primitives were acquired using the modified convex hull 

approach.  

 

Visual investigation of the projected initial boundaries onto the corresponding 

image verified that the boundaries closely follow the trend of the building shape. 

However, deviations between the derived initial boundaries of the building primitives and 

the precise building boundaries were recognized. These deviations were caused by the 

irregular and sparse nature of LiDAR data. There is need for the improvement of the 

initial boundaries of the building primitives to acquire a precise building model. Thus, 

methodologies to improve the quality of the building primitive boundaries will be 

proposed in Chapter 5 together with the refined 2D and 3D visualization.  
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Chapter 5 : Building Reconstruction and Visualizations 

 

5.1 Introduction 

In Chapter 4, the procedures necessary for building hypothesis and primitive 

generation were explained as steps in the enhancement of surface models. These 

procedures were carried out based on LiDAR data only. Through the investigation of the 

boundaries of the building primitives produced in that chapter, it was found that more 

accurate building boundaries are required in order to generate high quality building 

models, surface models, and surface descriptions. To fulfill the need for quality, this 

chapter will first address methodologies for generating enhanced building models. After 

this, the creation of enhanced surface models and surface descriptions will be discussed. 

Building model generation will be based on the integration of photogrammetric and 

LiDAR data. Stereo aerial images will be utilized for this integration.  

For precise building model generation, four different types of boundary segments 

are acquired, depending on different situations. The scenarios for different situations and 

the methods for extracting these boundary segments are explained in detail in Section 5.2. 

Once the precise building models have been generated, the quality of the digital surface 

models will be improved by combining the building models and the terrain models (using 

the terrain points acquired previously, in Section 4.2 of Chapter 4). Finally, in Section 5.3, 

high quality 2D and 3D visualizations will be produced using the enhanced surface 

models and the corresponding imagery.   
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5.2 Building Reconstruction 

Since precise building models are essential for the generation of high quality 

surface models and surface descriptions, this section focuses on methods for precise 

building model generation. Figure 5.1 shows a flow chart of the building reconstruction 

procedure proposed in this research. 
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Figure 5.1: Flow chart of the building reconstruction procedure. 
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The proposed procedure starts with precise building boundary segment generation. 

The methods of boundary segment generation are designed to take into consideration four 

different building boundary segment scenarios. For each different scenario, the 

appropriate data type (i.e., either LiDAR data or both LiDAR and photogrammetric data) 

is selected, and an appropriate method is developed. A ridge line on a gable roof, as 

shown in the area enclosed by the red dashed ellipse in Figure 5.2 (a), is one of the 

examples of the first scenario. The initial boundaries of the building primitives 

corresponding to the roof patches are projected on the corresponding image. Since the 

plane parameters of the building primitives were derived with high accuracy in Chapter 4, 

a method of boundary segment generation for this case is developed by utilizing the plane 

parameters of two neighbouring building primitives. The precise boundary segments can 

be accurately derived through the intersection of neighbouring building primitives (1 and 

2 in Figure 5.2 (a)). The second scenario includes all the boundary portions for which 

both LiDAR and photogrammetric data can be utilized. The two datasets are integrated, 

and their synergistic properties are utilized in the boundary segment generation method in 

this case. The third scenario exists when there are building primitives which share a 

vertical wall but have different elevations. In this case, a higher building primitive 

usually hide a lower one. Figure 5.2 (b) and Figure 5.2 (c) show an example of this case. 

As shown in the figures, a higher building primitive (1) is partially hiding another lower 

one (2) (in the area enclosed by the red dashed ellipse). The initial boundary of the 

building primitive (2) is projected on the corresponding stereo images (red solid lines in 

Figure 5.2(b) and Figure 5.2(c)). The boundary in the area enclosed by the red dashed 

ellipse seems to be far from the actual building boundary in the left image. Such a 
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deviation is the result of relief displacement from the higher building primitive (1). One 

should note that boundary of the building primitive (1) can be determined through the 

method using the integration of two datasets while a portion of the building primitive (2) 

cannot. For this case, the boundary segments constructed for the higher building 

primitives are utilized to generate boundary segments for lower one while considering the 

proximity of the building primitives involved. The fourth scenario involves the building 

boundary portions (for which precise boundary segments have not been detected) that 

remain after all three methods mentioned above have been considered. Figure 5.3 shows 

an example of this case. The portions of building primitive (2), which are enclosed by the 

red dashed ellipses, do not appear in either of left and right images or in both of them. In 

other words, the upper region A of building primitive (2) is totally hidden by building 

primitive (1) in the left and right images. And, the lower region B of building primitive 

(2) appears only in the left image. The initial boundaries of the building primitives are 

utilized in this case after regularization.  
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             (a)         (b)               (c) 

Figure 5.2: A ridge line on a gable roof (a) and a building primitive  hidden by 

another higher on in left (b) and right (c) images, in the areas enclosed by the red 

dashed ellipses. 

 

    

(a)               (b) 

Figure 5.3: Portions of a building primitive, which are hidden by a higher one either 

in left (a) and right (b) images or in both of the images, in the areas enclosed by the 

red dashed ellipses. 
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After producing all boundary segments for each building primitive, while 

considering all the different boundary scenarios, the segments are converted into closed-

polygons. Finally, building models are constructed using all the boundary segments of the 

closed-polygons. For the missing and erroneous boundaries, manual editing is introduced 

as a post-processing step. More detailed explanations of the building model generation 

procedures are provided in the subsections that follow.  

 

5.2.1 Precise boundary segment generation through the intersection of neighbouring 
planar patches 

Since the building primitives produced earlier have accurate plane parameters, 

precise boundary segments for ridge lines (see Figure 5.2(a)) can be generated by 

intersecting the two building primitives adjacent to the ridge line. Prior to the 

implementation of the intersection procedure, neighbourhood analysis of the building 

primitives should be conducted. The neighbourhood analysis starts by defining a 3D 

adjacency table that identifies neighbouring building primitives. In the adjacency table, 

two building primitives will be deemed as neighbours if part of the initial boundary of 

one primitive is located within a buffer zone surrounding the boundaries of the other 

primitive. Figure 5.4 shows an example of 3D neighbourhood analysis for building 

primitives and a defined adjacency table. The locations of the building primitives and the 

relevant adjacency table for these primitives are shown in Figure 5.4 (a) and Figure 5.4 

(b), respectively.    
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          (a)           (b) 

Figure 5.4: Locations of building primitives (a) and the relevant 3D adjacency table 

(b). 

 

The neighbouring building primitives are selected using the constructed 3D 

adjacency table. The intersection of the building primitives that are almost parallel and/or 

coplanar is avoided by checking the angle between surface normal vectors of the 

primitives since this would lead to a weak intersection. In other words, a set of two 

primitives for which this angle is greater than a pre-defined threshold is selected and 

intersected to acquire reliable results. Since the outcome of the intersection is an infinite 

line, the segmented points in the neighbouring primitives are used to define the endpoints 

of a finite segment. More specifically, all the segmented points of the two building 

primitives are first projected onto the intersection line. After this, the normal distance 

between each point and its corresponding projected point is computed. Only the points 

whose normal distances are less than a pre-defined threshold (which is determined as a 

function of the average point spacing of LiDAR data) are considered in the next step (see 

Figure 5.5). The extreme end points on the intersection line can be used to define a finite 

line segment.  
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Figure 5.5: Segmented points in the neighbouring primitives and their projections 

onto the intersection line (top view). 

 

The gap between adjacent projected points on the intersection line (yellow dots in Figure 

5.5) is analyzed to determine whether the intersection line should be broken down into 

several boundary segments. Where there exists a gap that is greater than a given threshold 

(which is determined as a function of the average point spacing of LiDAR data and 

knowledge of building structure), it is concluded that this intersection line portion 

consists of more than a single line segment (see Figure 5.6). The extent of each boundary 

segment is defined by identifying the extreme end points on the intersection line. Once a 

boundary segment has been determined, all the boundary points that are closely located to 

the segment are identified and removed from the boundary in question. One should note 

that these points will not be considered in the other boundary segment generation 

methods. In other words, only the remaining boundary points will be utilized in later 
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sections. Figure 5.7 shows a real example of a boundary segment extracted through the 

intersection of neighbouring building primitives. The derived boundary segment (Figure 

5.7(a)) is projected onto the corresponding imagery (Figure 5.7(b)). As shown in the 

figure, the boundary segment is extracted precisely. 

 

Intersection lineSignificant gap

Boundary segment 1 Boundary segment 2

Projected point  

Figure 5.6: Boundary segment generation through the detection of significant gaps 

between adjacent projected points. 

 

    

            (a)             (b) 

Figure 5.7: Boundary segment generated through the intersection of two 

neighbouring primitives (a) and the segment projected onto the corresponding 

image (b). 
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5.2.2 Precise boundary segment derivation through the integration of LiDAR and 
photogrammetric data  

Once the boundary segments have been generated through the intersection of 

neighbouring building primitives, precise boundary segments for the remaining portions 

of the building boundaries will be derived through another method for boundary segment 

generation. Before explaining the procedures for this method, one should note that the 

initial boundaries of the building primitives produced in Chapter 4 provide overall trend 

but not accurate details of the building shape. Conversely, imagery contains richer 

building boundary information, such as edge lines and colour attributes, which provide 

more details on the shape of the buildings. To provide accurate building boundary 

segment generation results, a method based on the integration of LiDAR data and stereo 

imagery is proposed at this stage. One should note that the matching procedure is a key 

part of image-based approaches for building reconstruction. However, feature matching 

in large scale imagery over urban areas still remains to be an ill-posed problem. These 

problems come mainly from differences in scale, geometric distortions, illumination 

conditions, and relief displacements. Some researchers have tried to introduce epipolar 

geometry and cross-correlation methods to improve the performance of the matching 

procedure, using only linear features derived from imagery (Baillard and Zisserman, 

1999). However, these kinds of attempts would fail when one is dealing with straight line 

segments, which are parallel to the epipolar lines and when there are geometric and 

spectral differences between conjugate features in the left and right images due to relief 

displacement. Moreover, such matching measures do not consider the derived 

information from the LiDAR segmentation (e.g., the parameters defining the planes of 
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the building primitive in question). Hence, it was decided to incorporate LiDAR data in 

the image matching procedure as a constraint in this research. This solution will later 

provide more precise building reconstruction results compared to those derived from 

either photogrammetric or LiDAR data alone. Figure 5.8 shows a flow chart of the 

precise boundary segment generation method based on the integration of LiDAR and 

photogrammetric data. This method is carried out through several steps: 1) Warped image 

generation; 2) Straight line detection; 3) 3D line matching; 4) Grouping of matched 3D 

lines; and 5) Precise boundary segment selection. These steps will be explained in the 

following paragraphs. Briefly, warped images will be generated to relate imagery and 

LiDAR data in one step. The geometric difference along the building primitive will be 

eliminated by utilizing the warped images in the matching procedure. Since the target of 

this research is buildings with planar rooftops, which are bounded by straight lines, the 

detection of straight lines will be conducted using warped images. Matching process will 

be carried out on the LiDAR plane of the building primitive in question while utilizing 

the derived straight lines. In other words, incorporating LiDAR data in the image 

matching process will provide geometric constraints to improve the matching quality. 

Precise matched 3D lines will be acquired from this process. Afterwards, matched 3D 

lines will be divided into groups of non-overlapping line segments, which are believed to 

be competing for the same boundary segment of the building primitive in question. 

Finally, a spectral constraint will be utilized to select the precise building boundary 

segment among the members of each group.  
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Figure 5.8: Flow chart of the precise boundary segment generation method based on 

the integration of LiDAR and photogrammetric data. 

 

Warped imagery generation 

One should note that the use of warped imagery, which is a new concept in the 

integration of LiDAR data and imagery, is introduced instead of using the original 

imagery directly. This integration will eliminate geometric differences along the building 

primitive in the warped images; hence, direct comparison of spectral information between 

these images will be possible without considering geometric distortions which exist in the 

original imagery. More specifically, warped images are generated through the simple 

projection of the original images onto the plane of the relevant building primitive 

generated from the LiDAR data. The inverse concept of photography is applied to the 
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generation of warped imagery. First, the range of a building primitive is extended beyond 

the derived initial boundary while considering the resolution of the LiDAR data. Using 

the collinearity equations, each object point on the building primitive plane in question is 

projected onto the corresponding image plane. Then, the grey value at the projected 

image location is assigned to the corresponding location of the object point on the 

building primitive plane. Figure 5.9 illustrates the concept of warped imagery. As can be 

seen in the figure, the degree of similarity between the left and right warped images for a 

location on the rooftop of a building primitive will be high since the corresponding points 

in the left and right images are conjugate; refer to points D, E and F and their grey values 

on the warped images (g(dl) & g(dr), g(el) & g(er), and g(fl) & g(fr)). The degree of 

similarity for a point that does not physically belong to the building rooftop (e.g., point B 

in Figure 5.9), on the other hand, will be lower since the projected points onto the left and 

right images correspond to non-conjugate points. For example, the image points (bl) and 

(br) in Figure 5.9 correspond to the object points C and A, respectively. Hence, the grey 

values at the same location of point B on the left and right warped images will come from 

different objects on the wall and ground, respectively. In summary, the left and right 

warped images only agree with one another along the rooftop patch. 
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Figure 5.9: Concept of warped imagery. 

 

Figure 5.10 (a) and Figure 5.10 (b) show the left and right warped images 

produced using a real dataset. Also, a similarity map (Figure 5.10 (c)) is derived by 

comparing grey values at the same location on the left and right warped images. High 

similarity is represented by brighter grey values and the other way around for low 

similarity. As can be seen in the similarity map, the region along the rooftop patch 

(enclosed by red dashed line) has brighter grey values than other regions. In other words, 
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the region along the rooftop patch has high similarity; however, the other regions outside 

the rooftop patch have low similarity.  

  

            

(a)                                                                     (b) 

  

(c) 

Figure 5.10: Produced left (a) and right (b) warped images and a similarity map (c) 

derived from these images. 
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Straight line detection 

Once the concept of warped imagery has been introduced, linear features which 

are extracted directly from the warped images are utilized in this boundary segment 

generation method. Before implementing the linear feature extraction procedure, 

visibility analysis is conducted through the use of visibility maps, which were produced 

together with the true orthophotos in Chapter 3. The reason for the visibility analysis is to 

ignore the edges if they do not originate from the primitive under consideration. Figure 

5.11(a) and Figure 5.11(b) show a visibility map along one profile, and the top view of 

the map, respectively. The edge pixels in occluded/invisible areas will be ignored since 

they do not belong to the building primitive in question. Once the visibility analysis has 

been conducted, linear feature extraction is carried out using the edge detection technique.  

 

         

                                    (a)                                                                       (b) 

Figure 5.11: Visibility map along one profile (a), and top view of the visibility map 

(b). 
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Discrete edge points are first detected by applying the Canny edge detector 

(Canny, 1986) to the warped images. A buffer is defined around the initial boundary of 

each building primitive in the two warped images. Then, only the edge points that are 

inside the defined buffer zone (which is determined as a function of the average point 

spacing of LiDAR data) are utilized to extract straight lines. Following the edge 

detection, edge linking is conducted by tracking neighbouring edge points. Afterwards, 

key points in the chain generated by edge linking are detected using Douglas-Peucker 

algorithm (Douglas and Peucker, 1973). The key points usually correspond to the vertices 

of the chain. Then, the original chain is split into several small chains using the detected 

key points. After the division process has been completed, the chains of edge points are 

converted into straight lines through line fitting using a least squares adjustment 

procedure. The proximity and parallelism (or collinearity) of the straight lines are 

investigated to determine whether they belong to the same edge line. For this 

investigation, the line merging method introduced by Zuxun et al. (2004) is adopted. The 

linear features which are believed to belong to the same object line are merged in order to 

construct a single straight line through a line fitting process. Figure 5.12(a) and Figure 

5.12(b) show the straight line segments detected in the left and right warped images, 

respectively.  
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           (a)                 (b) 

Figure 5.12: Straight line segments detected in the left (a) and right (b) warped 

images. 

3D line matching 

The next step involves the matching of straight line segments detected in the left 

and right warped images. As mentioned above, feature matching is usually conducted in 

the image space. However, it fails in situations in which the linear features are parallel to 

the base line, as well as when there are geometric and spectral differences between 

conjugate features in the left and right images due to relief displacement. Moreover, the 

matching measures employed do not consider the information derived from the LiDAR 

segmentation procedure (e.g., the parameters defining the plane of the building primitive 

in question). The line segments extracted from the left and right warped images are 

matched through the use of three geometric constraints: angular deviation, normal 

distance, and presence of overlap. Two line segments (e.g., line segments, AB and CD 

from the left and right warped images, respectively) are considered to be matching 

candidates if the angle and the normal distance between these segments are smaller than 
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given thresholds; see Figure 5.13(a). If the angle and normal distance values are within 

the pre-specified thresholds, the presence of overlap between the two segments after their 

projection onto the line bisecting the space between them is checked (B′′C′′ in Figure 

5.13(b)). The pairs of line segments that satisfy the three geometric constraints are 

collected from among all the possible pairs of line segments. At this stage, one-to-many 

matching of the line segments in the left and right warped images is allowed. Afterwards, 

these pairs of line segments are ordered according to their normal distances (i.e., the first 

constraint). Among the line pairs, the one with the shortest normal distance between line 

segments is selected (let’s call the line segments in this line pair L1 and L2). Then, any 

other line pairs that contain either L1 or L2 are discarded from the list of line pairs. In the 

same manner, this process continues for the line pair with next shortest normal distance 

among the remaining line pairs in the list. Now, one-to-one matching between the line 

segments in the left and right warped images has been completed. One-to-one matching 

based on the ordering of the normal distances between line segments provides accurate 

matching results without producing a large number of similar results. After this process, 

each line pair remaining in the ordered set will define a matched 3D line by determining 

the extreme points among the projected endpoints along the line bisecting the space 

between the two segments in question (the resulting line is A′′D′′ in Figure 5.13(b)).  
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(a)     (b)                              

Figure 5.13: Matching straight line segments in warped images using angle and 

normal distance constraints (a) and the presence of overlap between straight line 

segments, and 3D matched lines (b). 

 

Figure 5.14 shows the matched 3D lines for the straight line segments in Figure 

5.12(a) and Figure 5.12(b). One should note that the technique of matching the line 

segments onto the warped imagery plane takes advantage of both the higher planimetric 

accuracy of the image-based reconstruction and the higher vertical accuracy of the 

LiDAR data. As seen in the figure, some of the matched 3D lines have significantly 

different orientations than the real boundary. Assuming that the segmentation result is 

reliable, the initial boundary of the building primitive provides a good overall building 

shape trend. Hence, the matched 3D lines are compared to the initial boundary of the 

building primitive to remove matched 3D lines that do not correspond to the boundaries 

of the building primitives.  
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Figure 5.14: Matched 3D lines for the straight line segments in Figure 5.12(a) and 

(b). 

 

The concept of the comparison of the matched 3D line under investigation to the 

corresponding initial boundary is illustrated in Figure 5.15. First, lines that are orthogonal 

to the matched 3D line, with pre-defined lengths, are spaced at regular intervals along the 

matched line (these are the dashed lines in the figure). The intersections of these dashed 

lines with the initial boundary are conducted. The closest intersection points (green 

circles in the figure) to the matched line are identified in this process. Afterwards, the 

ratio of the number of the intersection points (i.e., green circles) to the number of 

orthogonal lines (i.e., dashed lines) is calculated. For a matched 3D line that follows the 

trend of the building shape as defined by the initial boundary, this ratio will be close to 

one (Figure 5.15(a)). Conversely, the ratio for a line that does not follow the trend will be 
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much less than one (Figure 5.15(b)). Only matched 3D lines whose ratios are greater than 

a pre-defined value are kept and utilized in the following procedures. Figure 5.16 shows 

the matched 3D lines after filtering out the lines that do not follow the trend of the 

building shape as represented by the initial LiDAR boundary.  

 

Initial boundary of building 
primitive

(a)  

M
NRatio =

 

Figure 5.15: A matched 3D line that follows the trend of the initial boundary of the 

building primitive (a), and one that does not (b). 
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Figure 5.16: Filtered matched 3D lines which are obtained after the filtering process 

is applied to the matched 3D lines in Figure 5.14. 

 

Grouping of matched 3D lines 

The objective of this step is to divide the filtered matched 3D lines into groups of 

non-overlapping line segments, which are believed to be competing for the same 

boundary segment of the building primitive in question. The division is based on a 

reference line established for each of these groups. A matched 3D line will be selected as 

a reference line if it is the longest line segment among neighbouring/overlapping line 

segments and is located within the buffer surrounding the initial LiDAR boundaries of 

the building primitive in question. Based on those criteria, line segments 1, 2, 3, 5 and 7 

will be selected as reference lines when considering the initial boundary and matched 3D 

lines in Figure 5.17 (a). Once the reference lines are established, the matched line 

segments will be grouped together based on their angular deviation, proximity, and 
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overlap with the reference lines (i.e., using the same 3D line matching constraints in 

Figure 5.13). Finally, all the matched line segments in the same group are extended to the 

extreme points in that group (refer to Figure 5.17 (b) where the identified five groups 

after the extension of their members are shown). 
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(a)               (b) 

Figure 5.17: Establishing reference lines (a) and defining group members (b). 

 

Even though one-to-one matching was conducted in the previous step, some of 

the extended members in a given group may be very close one another. Therefore, the 

close line segments in each group are merged according to the normal distances between 

these segments. The normal distance threshold for merging is defined by the Ground 

Sampling Distance (GSD) of the imaging sensor, as well as the noise level in the edge 

detection results and the established geo-referencing parameters (in this research, a 

normal distance threshold equivalent to three times the GSD has been used). Figure 
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5.18(a) and Figure 5.18(b) show the reference lines and the respective groups, established 

using the filtered matched 3D lines in Figure 5.16. 

      

(a)                                                                    (b) 

Figure 5.18: Established reference lines (a) and grouped matched 3D lines (b). 

 

Precise boundary segment selection 

The aim of this step is to select one line segment, which is believed to represent a 

precise boundary segment for the building primitive in question, from each of the 

established groups. For example, Figure 5.19 illustrates the case in which the line 

segments L1, L2, and L3 are matched 3D line segments in the same group on the left and 

right warped images.  
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        (a)     (b) 

Figure 5.19: The members of an established group on the left (a) and right (b) 

warped images. 

A spectral constraint is defined to select the precise building boundary segment 

among the members of each group. For this constraint, the similarity of the colour values 

on either side of each of the group members in the left and right warped images is 

investigated. The similarity measure at a given location along the building primitive 

plane (or warped image plane) is defined as the cosine of the angle between the Red 

Green Blue (RGB) colour vectors (Dony and Wesolkowski, 1999) at the same location in 

the left and right warped images. For example, the similarity measure at point (F) along 

the LiDAR plane in Figure 5.20 is defined by the cosine of the angle between the RGB 

colour vectors at (fl) and (fr) in the left and right images, respectively. 

For precise boundary segment determination, two average similarity measures are 

defined for each group member, one for each of the regions on either side of the 

boundary segment. The precise boundary segment will be defined as the line segment for 

which the steepest transition from high to low degrees of similarity exists. As can be seen 
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in Figure 5.19 and Figure 5.20, the matched line segments L1 and L2 will not be selected 

as precise boundary segments since the degrees of similarity on both sides of these lines 

are high. Instead, the line segment L3 will be selected as the precise building boundary 

segment since it has the largest difference between degrees of similarity on either side; 

there is high similarity on one side (i.e., within the region along the building rooftop – see 

point D in Figure 5.20) and low similarity on the other side (i.e., where the similarity 

measure is defined by the RGB colour vectors along the building wall and along the 

ground in the left and right warped images, respectively – see point B in Figure 5.20). 

More detailed explanations of the computation of the average similarity measure and 

precise boundary segment selection using these measures are provided in the following 

paragraphs.  
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Figure 5.20: Similarity measures for different locations along the LiDAR plane. 
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Regions around the line segments in a particular group are defined based on the 

line segments (refer to Figure 5.21(a)). For example, the region r2 is defined by L1 and L2. 

Also r3 is defined by L2 and L3. Additionally, two more regions, r1 and r4 are defined by 

outermost lines and pre-determined buffers. Afterwards, each line segment divides the 

region defined for the group (i.e., r1 + r2 + r3 + r4) into two parts. For example, L1 defines 

two regions, R1_In (= r1) and R1_Out (= r2 + r3 + r4), around the line, as shown in Figure 

5.21(b). For each line segment, two average spectral similarity values are computed, one 

for each of the regions, Ri_In and Ri_Out (for ith line segment), using Equation 5.1. 

Afterward, the differences between the average spectral similarity values for the regions 

on either side of each line segment are calculated. After comparing the difference values 

for the line segments in each group, the line segment with the greatest difference value 

will be selected as the precise building boundary segment for the group (Equation 5.2). 

Figure 5.22 shows the precise boundary segments established for the groups in Figure 

5.18(b). 
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  (a) 

 

                     (b)                  (c)              (d) 

Figure 5.21: Configuration of the regions around the matched 3D line segments in 

one group (a), regions on either side of the line segments L1 (b), L2 (c), and L3 (d).  
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Where: 

RASSM i _  is the average spectral similarity measure for a region on either side of line 

segment i; 

tSSM  is the spectral similarity measure for a certain point; and 

m  is the total number of points in a certain region. 

n is the total number of line segments in the same group. 

 

Figure 5.22: Established precise boundary segments for the groups in Figure 5.18(b). 

 

So far, the boundary segments for the second scenario are derived through the 

integration of photogrammetric and LiDAR data. The synergistic properties from the 

integration of both datasets are utilized in the method to acquire precise boundary 

segments.  
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5.2.3 Precise boundary segment derivation through projection and regularization 

One should note that this research focuses on the urban environments with 

complex and connected buildings. Hence, there might be significant occlusions in the 

large scale imagery. In this situation, a higher building primitive usually hides a lower 

one either partially or fully (refer to Figure 5.2 (b) and (c) and Figure 5.3). The first 

solution will be proposed for the areas including building primitives that share a vertical 

wall but have different elevations. Afterwards, the second solution will be suggested for 

the building boundary portions that remain after all other boundary segment refinement 

procedures have been considered.  

 

Boundary refinement based on hierarchical projection 

 The solution for the building primitives that share a vertical wall but have 

different elevation can be derived from the projection of the constructed precise segments 

of higher building primitives onto lower, neighbouring building primitives, if any exists. 

This will be a solution for the third scenario mentioned above. 

To do that, a 2D adjacency table that identifies neighbouring building primitives 

should be defined after the projection of their initial boundaries onto a horizontal plane. 

In the adjacency table, two building primitives will be deemed as neighbours if part of the 

initial boundary of one primitive is located within a buffer zone surrounding the 

boundaries of the other primitive. The 2D adjacency table will be utilized to find 

neighbouring building primitives for the primitive currently under consideration. Figure 

5.23 illustrates the concept of this method. The red line indicates the boundary segment 

projected from the higher/neighbouring building primitive onto the building primitive 
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currently under consideration. Then, the boundary points of the current primitive, which 

correspond to the boundary segment (i.e., red line), are projected onto the segment. The 

extreme end points among the projected points define the range of the precise boundary 

segment for current primitive, similarly to the procedure explained in Section 5.2.1 (also 

refer to Figure 5.5 and Figure 5.6). Figure 5.24 shows a real example for the boundary 

segment generation based on the projection. The constructed boundary segments of the 

higher and neighbouring building primitive are shown as white lines in Figure 5.24(a). 

These lines are projected onto the current primitive and its boundary segments defined 

through the process mentioned above. Red line in Figure 5.24(b) indicates the initial 

boundary of the current primitive. White lines in the figure indicate boundary segments 

for the current primitive which are obtained after the projection process.  

 

 

Figure 5.23: Projection of the constructed boundary segments of the 

higher/neighbouring building primitive onto the lower primitive under investigation. 
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(a)                                                                     (b) 

Figure 5.24: Constructed boundary segments of the higher and neighbouring 

building primitive (a) and precise boundary segments for the current primitive after 

projection process (b). 

 

Boundary refinement based on regularization  

Finally, the fourth scenario will be discussed for the case in which a higher 

building primitive partially or fully hides a lower, non-adjacent building primitive in the 

imagery (refer to Figure 5.3). Also, other cases with shadow effect, low image contrast, 

and non-straight boundaries can be included in this scenario. In these cases, the three 

different boundary segment generation methods mentioned above do not work properly. 

Since it is difficult to acquire useful spectral information, only the positional information 

from the LiDAR data will be utilized in this case. In other words, the building-primitive 

boundary will be reconstructed by regularizing the initial boundaries of the building 

primitives using the Douglas-Peuker and line fitting algorithms. Using the Douglas-

Peuker algorithm, the key points, which correspond to the corner points of the boundaries, 
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are detected from the boundary points. All the boundary points located between a pair of 

key points are utilized for line fitting through a least squares adjustment. Then, the 

boundary points are projected onto the corresponding line derived from line fitting 

process. The extent of each line segment is defined by the extreme end points on the line 

in question. Figure 5.25 shows a real example for the constructed boundary segments 

after regularization process. In the figure, blue lines indicate the constructed boundary 

segments.  

 

Figure 5.25: Constructed boundary segments after regularization process. 

 

5.2.4 Closed-polygon and 3D building model generation 

This procedure begins by establishing the proper sequence of the established 

boundary segments for each building primitive, by investigating their proximity to the 

ordered chain of vertices along the initial LiDAR boundary for that primitive. Figure 5.26 

shows an example of establishing the proper sequence of the boundary segments. While 

following the ordered chain of the boundary vertices, the sequence of the line segments 

will be determined as 1 → 4 → 2 → 3 → 1. To construct a closed-polygon for a given 
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building primitive, an intersection procedure is implemented to connect neighbouring 

boundary segments according to their established sequence. Figure 5.27 shows the 

closed-polygon generated from the previously established precise boundary segments in 

Figure 5.22. 

 

Figure 5.26: Establishing the proper sequence for the identified boundary segments. 

 

Figure 5.27: Closed-polygon generated from the established precise boundary 

segments in Figure 5.22. 
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The boundary refinement and closed-polygon generation procedures are carried 

out for the individual building primitives one by one. The last step in the DBM 

generation process is the automated simultaneous co-alignment of the boundary segments 

for all the building primitives. To do this, it starts by defining a 2D adjacency table that 

identifies neighbouring building primitives, after the projection of their boundary 

segments onto a horizontal plane. Projecting the boundary segments onto a horizontal 

plane is necessary in order to identify neighbouring building primitives that may have 

different elevations (i.e., those that might share a vertical wall), as shown in Figure 

5.28(a). In the adjacency table, two building primitives will be deemed neighbours if 

some of the boundary segments of one primitive are located within a buffer zone 

surrounding the boundaries of the other primitive. Then, for neighbouring building 

primitives, one investigates the proximity and the degree of parallelism of the boundary 

segments projected onto the horizontal plane. Boundary segments that meet pre-specified 

thresholds, which define the acceptable range of collinearity/parallelism, normal distance, 

and distance between the end points for two neighbouring boundary segments, will be 

merged through a straight-line fitting procedure. Finally, the merged lines are projected 

back onto their respective building primitive planes. As an illustration, Figure 5.28(a) 

shows the polygons defined for three building primitives, which are located at three 

different elevations. The boundary segments projected onto a horizontal plane are shown 

in Figure 5.28(b). Finally, the co-aligned boundaries are shown in Figure 5.28(c).  
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              (a)             (b)             (c) 

Figure 5.28: Closed-polygons for three building primitives at different elevations 

(a); boundary segments projected onto a horizontal plane (b); and co-aligned 

boundary segments (c). 

 

After the boundary alignment procedure has been carried out, a DBM wire frame 

is generated by connecting the vertices of the co-aligned boundary segments along the 

building rooftops with other versions of these boundary vertices at the terrain elevation, 

which is defined as the average elevation of the neighbouring terrain points (i.e., the 

buildings’ footprints). Figure 5.29(a) shows a DBM wire frame generated using the 

polygon in Figure 5.27. The wire frame is also converted into KML format, which can be 

directly imported to Google Earth; Figure 5.29(b). 
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                        (a)           (b) 

Figure 5.29: A generated DBM wire frame (using the polygon in Figure 5.27) (a) is 

imported to Google Earth (b). 

 

So far in this chapter, an automated procedure has been introduced for the 

utilization of LiDAR and image data in the generation of precise boundary segments for 

each of the previously identified building primitives. For some situations (e.g., relief 

displacements, shadows, and/or lack of image contrast), the results of the procedure 

might have missing and/or erroneous boundary segments. Figure 5.30 shows an example 

of a closed-polygon with erroneous segments. The segments are located in the areas (A 

and B) enclosed by white dashed ellipses. The erroneous segment in area A is caused by 

a cooling fan on top of the roof. Erroneous boundary segment in area B is caused by 

shadows and low change in the spectral similarity measure on both side of the 3D 

matched line. To compensate for these situations, a manual mono-plotting procedure is 

introduced, in which the operator interactively deletes or adds boundary segments. The 

end points for missing boundary segments are measured in one image, and a mono-

plotting procedure is used to project these measurements into the object space using the 
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established geo-referencing parameters, as well as the parameters defining the plane of 

the building primitive under investigation. It should be note that the operator does not 

need to precisely measure the end points of the missing line segments (i.e., the operator 

needs to just make sure that the measured points lie along the line segments). 

 

 

Figure 5.30: An example of closed-polygon with erroneous segments.  

 

5.3 DSM Enhancement and Visualizations 

Once the precise DBM has been produced, the enhanced surface model will be 

generated using the precise building boundary information from DBM. Two options for 

generating a new DSM can be proposed at this stage. More specifically, the new DSM 

can be generated by combining the derived DBM and either the original DSM or the 

DTM (which is generated using terrain LiDAR points separated from the original LiDAR 

points; refer to Chapter 4). Since two types of DSMs involve the derived DBM, both of 

them will have the improved surfaces around buildings. The only difference between the 

two DSMs will exist in the non-building areas. In other words, the DSM derived from the 

combination of the original DSM and DBM will still have the grid cells generated from 



159 

 

the LiDAR points scanned over small features such as cars, sculptures, and trees. On the 

other hand, the other DSM derived from the combination of the DTM and DBM will 

have changed elevations (i.e., the same level as the terrain areas) over the cells for the 

small features because the LiDAR points scanned over these features are separated from 

the terrain through the terrain and off-terrain classification process (refer to Chapter 4).  

True orthophotos will be generated for 2D visualization, using three different 

types of DSMs (i.e., original DSM, DSM + DBM, and DTM + DBM) and the imagery 

involved, through the true orthophoto generation method proposed in Chapter 3. Figure 

5.31, Figure 5.32, and Figure 5.33 show three different true orthophotos created using the 

three different types of DSMs. Also, a building (enlarged area enclosed by red box) in 

three different true orthophotos are shown in the figures. By comparing these figures, the 

qualities of the true orthophotos in Figure 5.32, and Figure 5.33 are obviously improved, 

especially for buildings, compared to the true orthophoto in Figure 5.31. 

    

        (a)                                                          (b) 

Figure 5.31: A true orthophoto created using the original DSM (a) and the enlarged 

area enclosed by red box (b). 
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                                        (a)                                                          (b) 

Figure 5.32: A true orthophoto created using a DSM obtained by adding the DBM 

to the original DSM (a) and the enlarged area enclosed by red box (b). 

 

 

    

 (a)                                                          (b) 

Figure 5.33: A true orthophoto created using a DSM obtained by adding the DBM 

to the DTM (a) and the enlarged area enclosed by red box (b). 
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Also, non-building areas in the two true orthophotos using the original DSM and a 

DSM obtained by adding the DBM to the DTM are compared in Figure 5.34. Small 

features in the true orthophotos created using the original DSM are shown in Figure 5.34 

(a). Also, same features in the other true orthophoto created using a DSM obtained by 

adding the DBM to the DTM are shown in Figure 5.34 (b). As can be seen in the figures, 

the quality of the interpretation of the small features is obviously improved in Figure 5.34 

(b).  

 

       

   (a) 

       

   (b) 

Figure 5.34: Small features in the true orthophotos created using the original DSM 

(a) and using a DSM obtained by adding the DBM to the DTM (b). 
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Through the comparison of the true orthophotos created using different types of 

DSMs, it is proved that the true orthophoto created using a DSM obtained by adding the 

DBM to the DTM provides the best quality of true orthophoto either for buildings and 

non-building features. Also, 3D visualizations of the surfaces are produced by draping the 

true orthophotos over the corresponding DSMs. The quality of 3D visualization is also 

obviously improved in Figure 5.35 (b) compared to the one in Figure 5.35 (a).  

 
(a) 

  
(b) 

Figure 5.35: A 3D visualizations produced using the original DSM (a) and a DSM 

obtained by adding the DBM to the DTM (b). 
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5.4 Summary 

This chapter focused mainly on precise building reconstruction, followed by the 

enhancement of surface models and 2D/3D visualizations. Since the boundaries of the 

building primitives produced in Chapter 4 do not delineate precise breaklines, boundary 

segment refinement procedures were proposed to achieve precise building reconstruction.  

 

For precise boundary generation, the integration of photogrammetric and LiDAR 

data was utilized to take an advantage of the synergistic properties of both datasets. More 

specifically, an object-based integration process was introduced in this research. By 

utilizing warped imagery derived through the object-based integration process, the image 

matching problem was resolved, since the incorporated LiDAR data worked as a 

constraint. In addition, spectral similarity transitions over the matched line segments 

extracted from the warped imagery were investigated to select precise boundary segments.  

 

Since this research focuses on the urban environments with complex and 

connected buildings, there might be significant occlusions in the large scale imagery. The 

hierarchical projection approach was proposed to reconstruct boundary segments in the 

occluded areas. This process is designed for the building primitives that share a vertical 

wall but have different elevations. The reconstruction procedure was performed by 

projecting the boundary segments constructed for higher building primitives onto the 

lower and neighbouring ones. In addition, some of building boundary segments was 

acquired either by intersecting neighbouring building primitives or regularization process 

using the initial boundaries of building primitives. Then, all the derived boundary 
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segments were utilized to construct closed-polygons, followed by alignment. After the 

alignment procedure, a DBM wire frame was generated and utilized to produce an 

enhanced DSM. The enhanced DSM by adding the DBM and the DTM provided the best 

quality of visualizations either for buildings and non-building features.  

 



165 

 

Chapter 6 : Experiments and Results 

 

6.1 Introduction 

In the previous chapters, the methodologies within the framework for accurate 

reconstruction and visualization of urban environments were described in detail. Chapter 

3 presented the prerequisite steps (namely, photogrammetric and LiDAR quality 

assurance and quality control) for the utilization of both photogrammetric and LiDAR 

data. Afterwards, the co-registration of the two datasets was conducted to align them to a 

common reference frame. To ensure that the co-registration procedure is of optimal 

quality, the LiDAR data is used as the source of control for image geo-referencing 

through the incorporation of linear and areal features. Then, two angle-based true 

orthophoto generation methods were proposed to relate the spectral and positional 

information in imagery and LiDAR data, respectively. Since the surface models produced 

from the original LiDAR data do not sufficiently represent building breaklines, Chapters 

4 and 5 introduced a procedure to improve the quality of the surface models and 

visualizations. In Chapter 4, building hypotheses and primitives were generated using 

LiDAR data only. Afterwards, Chapter 5 focused on building reconstruction through the 

integration of photogrammetric and LiDAR data, followed by 2D and 3D visualizations. 

To validate the feasibility and evaluate the performance of the methodologies proposed in 

the previous chapters, the results of experiments using real LiDAR and image data are 

presented in this chapter. All the methods proposed in this research and other researchers’ 

methods which are utilized to be compared with the proposed ones are implemented 

through programs generated by the author in either Microsoft Visual C++ or Matlab.  
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6.2 Dataset Description 

Photogrammetric and LiDAR datasets used in this research were acquired around 

the University of Calgary campus in Calgary, Alberta, Canada. The LiDAR dataset (10 

strips) was captured by an Optech 3100 system during two mapping missions at different 

flying heights (1,000m and 1,400m). The average point spacing for the combined data is 

approximately 0.75m (about 1.3 points per square meter). The planimetric accuracy 

specifications for the two flights are approximately 50cm and 70cm, respectively, while 

the vertical accuracy is expected to be approximately 15cm. Nine photos in three strips 

(with a scale of 1:5000) were captured by an analog camera – RC30, with a focal length 

of 153.33mm – at an average flying height of 770m. The photos were then digitally 

scanned at a resolution of 12 microns, resulting in a 6cm GSD. The expected planimetric 

and vertical accuracies from the photogrammetric data are 6cm and 14cm, respectively. 

Figure 6.1 shows the configuration of the nine photos (delineated by rectangles in the 

figure) overlaid on the captured LiDAR data. Strip adjustment of the LiDAR strips is 

conducted after identifying inconsistency between the strips through the LiDAR quality 

control process. 
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Figure 6.1: Nine overlapping aerial photos overlaid on the LiDAR data. 

 

6.3 Co-registration 

Once both datasets have been acquired, the co-registration procedure is conducted 

by using the LiDAR data as the source of control for image geo-referencing. As 

explained in Chapter 3, compatible geo-referencing results are obtained using areal or 

linear LiDAR control features. Hence, the geo-referencing results obtained using linear 

features are utilized for this experiment. Fifty control lines and forty eight tie points are 

used in the geo-referencing procedure. Figure 6.2 shows the locations of the control lines 

(red lines in the figure) in the LiDAR dataset.  
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Figure 6.2: Locations of the control lines in the LiDAR dataset. 

 

A stereo-pair out of 9 aerial images and corresponding LiDAR data were selected 

over the area of interest. As an example of the geo-referencing results, the EOPs and 

variance-correlation matrices of two overlapping aerial photos (denoted as the left and 

right images) covering an area containing complex and connected buildings are shown in 

Tables 6.1, 6.2, and 6.3. As can be seen in Table 6.2 and Table 6.3, all the parameters 

have been determined with high precision and there are no significant correlations among 

them. Minimum and maximum standard deviations of the attitude are ±13 sec and ±19 

sec, respectively. Also, minimum and maximum standard deviations of the position are 

±0.049 m and ±0.099 m, respectively.  
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Table 6.1 Estimated EOPs for the left and right images 

 (deg)ω  (deg)φ  (deg)κ  )(mX o  )(mYo  )(mZ o  

Left image -0.1507 1.3902 90.8894 700663.343 5662238.902 1903.608 

Right image 0.1478 0.2004 92.5189 700656.238 5662696.694 1906.933 
 

Table 6.2 Variance-correlation matrix for the left image 

 )(sec2ω  )(sec2φ  )(sec2κ  )( 2mX o  )( 2mYo  )( 2mZ o  

)(sec2ω  (±14.20)2 -0.03 -0.08 0.01 -0.83 -0.07 

)(sec2φ  -0.03 (±15.43)2 -0.01 0.81 0.02 -0.02 

)(sec2κ  -0.08 -0.01 (±12.82)2 -0.05 0.17 -0.02 

)( 2mX o  0.01 0.81 -0.05 (±0.083)2 0.03 -0.10 

)( 2mYo  -0.83 0.02 0.17 0.03 (±0.084)2 0.07 

)( 2mZ o  -0.07 -0.02 -0.02 -0.1 0.07 (±0.049)2 
 

Table 6.3 Variance-correlation matrix for the right image 

 )(sec2ω  )(sec2φ  )(sec2κ  )( 2mX o  )( 2mYo  )( 2mZ o  

)(sec2ω  (±19.04)2 0.00 -0.03 0.04 -0.84 0.17 

)(sec2φ  0.00 (±17.30)2 -0.19 0.81 -0.02 0.01 

)(sec2κ  -0.03 -0.19 (±13.65)2 -0.45 0.11 -0.03 

)( 2mX o  0.04 0.81 -0.45 (±0.098)2 -0.08 -0.02 

)( 2mYo  -0.84 -0.02 0.11 -0.08 (±0.099)2 0.02 

)( 2mZ o  0.17 0.01 -0.03 -0.02 0.02 (±0.055)2 
 

To investigate the precision of an object point that has been reconstructed through 

the geo-referencing process, one of the tie points located among the complex and 

connected buildings is selected and its standard deviations and correlation matrices are 
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examined. One should note that these standard deviations and correlation matrices of the 

tie points are derived through the bundle adjustment process while treating these points as 

unknowns. The standard deviations of the X, Y, and Z coordinates of such a 

representative tie point are about ±6 cm, ±6 cm, and ±5 cm, respectively. The calculated 

standard deviations of the object point coordinates encompass the effects of noise in the 

Exterior Orientation Parameters (EOP), IOP, image point measurements, and LiDAR 

control lines.  

 

6.4 Building Hypothesis and Primitive Generation 

Once the co-registration process has been completed for the whole dataset, an 

area of interest that contains complex and connected buildings is selected to carefully 

evaluate the performance of the proposed methodologies, from building detection to 

visualizations. Figure 6.3(a) and Figure 6.3(b) show a portion of the image and LiDAR 

data gathered in this area. As shown in Figure 6.3 (a), this area has buildings, as well as 

some trees and mild terrain variation. The LiDAR points in Figure 6.3 (b) are assigned 

different colours according to their heights. 

  
       (a)              (b) 

Figure 6.3: Aerial photo over the area of interest (a), and LiDAR points over the 

same area (b). 
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For building detection, the LiDAR points are classified as terrain or off-terrain 

points (Figure 6.4 (a)). The points in blue and red are terrain and off-terrain points, 

respectively. Then, the off-terrain points are further classified as points belonging to 

planar or rough surfaces. Neighbouring points that belong to planar surfaces are grouped, 

and the resulting groups are used to identify instances of buildings in the LiDAR data, as 

shown in Figure 6.4 (b). Points with different colours belong to different building 

hypotheses (it should be noted that some colours are repeated due to the limited number 

of colours in the display function). Descriptions, values, and justifications for the 

thresholds used for terrain/off-terrain point classification and building hypothesis 

generation are provided in Table 6.4 and Table 6.5, respectively. 

 

   

       (a)                         (b) 

Figure 6.4: Classified off-terrain points in red (a), and generated building 

hypotheses (b).  
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Table 6.4 Descriptions, values, and justifications for the thresholds used for terrain and off-terrain point classification 

Threshold Description Value Justification Section 

DSM cell size DSM cell size 0.8m 

 
Approximately equal to the average point spacing 
of the LiDAR data 
 

Section 4.2.1 

Height of projection 
center 

Height of synthesized projection center 
Max height of 
DSM + 50m 

 
Slightly higher than the highest elevation in the 
DSM to ensure significant occlusion 
 

Section 4.2.2 

Horizontal distance of 
projection center 

Horizontal distance of projection center 
away from the DSM 

150m away 
from the DSM 
boundary 

 
Large enough distance to ensure significant 
difference between the off-nadir angle of the last 
visible point and the off-nadir angle of the first 
occluded point 
 

Section 4.2.2 

Statistical parameter for 
terrain points 

Standard deviation scaling factor of the 
terrain points for the identification of 
terrain points 

1.5 

 
Probability of having a terrain point elevation that 
is less than µterrain + 1.5 σterrain is 93%, which is 
quite high 
 

Section 4.2.3 

Statistical parameter for 
off-terrain points 

Standard deviation scaling factor of the 
terrain points for the identification of 
off-terrain points 

2.0 

 
Probability of having a terrain point elevation that 
is larger than µterrain + 2.0 σterrain is 2%, which is 
quite low 
 

Section 4.2.3 
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Table 6.5 Descriptions, values, and justifications for the thresholds used for building hypothesis generation 

Threshold Description Value Justification 
Section 

and Figure 

Search radius 
Radius of the spherical neighbourhood 
centered at a given off-terrain point 

1.5m 

 
Including enough number of points to define 
reliable attributes, “planar parameters” 
 

Section 4.3 
Figure 4.12 

Final plane buffer 
Buffer defined above and below the final 
fitted plane 

0.4m above 
and below the 
final plane; 
total 0.8m 

 
About 2 times the vertical accuracy of the LiDAR 
data (covering  95% of the LiDAR points on the 
plane) 
 

Section 4.3 
Figure 4.12 

Planarity ratio 
Ratio threshold to identify points that 
belong to a planar surface 

0.95 
 
Covers 95% of the LiDAR points on the plane 
 

Section 4.3 
Figure 4.13 

Min building area 
Minimum building area, used to discard 
small point groups 

9m2 

 
Prior knowledge about building’s size with the 
area of interest 
 

Section 4.3 

Building height threshold 
Building height threshold, used to 
discard point groups at lower heights 

4.5m 

 
Prior knowledge about building’s height with the 
area of interest 
 

Section 4.3 
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Once the building hypotheses have been generated, the segmentation procedure is applied 

to each of the hypotheses to cluster the point cloud into several groups that correspond to 

the individual planar patches (i.e., the building primitives), as shown in Figure 6.5 (a). In 

the figure, the area enclosed by a solid white ellipse contains the building primitives 

produced from a single building hypothesis. Finally, the minimum convex hull procedure 

is applied to identify the initial boundaries of the building primitives, as seen in Figure 

6.5 (b). Couple of initial boundaries of the building primitives are projected onto the 

corresponding images to illustrate deviation and closeness between the LiDAR 

boundaries and the actual boundaries in Figure 6.6. Descriptions, values, and 

justifications for the thresholds used to generate the building primitives and their initial 

boundaries are provided in Table 6.6. 

 

   

        (a)              (b) 

Figure 6.5: Clustered building primitives (a), and the initial boundaries of the 

building primitives (b). 
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Figure 6.6: Examples illustrating the deviation and closeness between the initial 

boundary of the building primitives and the actual building boundaries. 
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Table 6.6 Descriptions, values, and justifications for the thresholds used for the generation of building primitives and 

their initial boundaries 

Threshold Description Value Justification 
Section 

and Figure 

Search radius 
Radius of the spherical neighbourhood 
centered at a point 

1.5m 

 
Including enough number of points to define 
reliable attributes, “planar parameters” 
 

Section 4.4.1 

Final plane buffer 
Buffer defined above and below the final 
fitted plane 

0.4m above 
and below the 
final plane; 
total 0.8m 

Two times the vertical accuracy of the  LiDAR 
data (covering  95% of the LiDAR points on the 
plane) 

Section 4.4.1 

Coplanarity test threshold 
Threshold for testing the coplanarity of 
points at the peak of the accumulator 
array 

0.2m 
Approximately equal to the vertical accuracy of 
the LiDAR data  

Section 4.4.1 

Proximity threshold 
Maximum distance for determining the 
proximity among points in the object 
space 

1.0m 
Approximately equal to the average point spacing 
of the LiDAR data 

Section 4.4.1 

Minimum size of cluster Minimum size of a derived point cluster 9m2 

 
Prior knowledge about building’s size within the 
area of interest 
 

Section 4.4.1 

Modified Convex hull 
radius 

Radius of the neighbourhood used for 
the modified convex hull method 

Min: 2m 
Max: 3m 

 
Two to three times the average point spacing of 
the LiDAR data 
 

Section 4.4.2 
Figure 4.23 
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6.5 Building Reconstruction and Visualizations 

In the next processing phase, the initial boundaries of the building primitives are 

refined through the proposed building reconstruction procedures. The refinement of the 

initial boundaries begins with the acquisition of boundary segments through the 

intersection of neighbouring planar patches. Since the area of interest used here does not 

include gable roofs, the author does not provide the line segment results generated from 

the intersection process (Please refer to the line segment result in Figure 5.7, which was 

derived using another dataset). Descriptions, values, and justifications for the thresholds 

used for precise boundary generation through the intersection of neighbouring planar 

patches are provided in Table 6.7. 

Once the precise boundary segments have been derived through the intersection 

of neighbouring planar patches (if any exist), the initial boundaries of the building 

primitives are refined through the incorporation of stereo-imagery. The refinement 

process (i.e., the determination of the precise boundary segments for a given building 

primitive) utilizes the initial boundaries of the primitive, the parameters of the plane fitted 

through the segmented point cloud, the image geo-referencing parameters, and the 

straight-line segments detected in the imagery. Recall that this research deals with urban 

environments with complex and connected building structures. Hence, some boundary 

portions may be missed due to occlusions caused by the presence of higher neighbouring 

buildings. The missing portions of the boundaries are reconstructed by projecting the 

boundary segments constructed for the higher building primitives onto the lower 

neighbouring ones when these primitives share common vertical walls. Afterward, the 

regularization of the initial boundaries of the building primitives is applied if any portions 
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of the boundaries are still missing. Once all the boundary segments for a building 

primitive have been generated, a closed-polygon is generated using these boundary 

segments established from the above procedures. Finally, all the boundary segments of 

the closed-polygons in the study area are aligned simultaneously. Table 6.8 provides 

descriptions, values, and justifications for the thresholds used for precise boundary 

generation through the processes of integration, projection, and regularization. 
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Table 6.7 Descriptions, values, and justifications for the thresholds used for precise boundary generation through the 

intersection of neighbouring planar patches 

Threshold Description Value Justification 
Section 

and Figure 

Angle threshold 
Angle between the surface normal 
vectors of neighbouring primitives 

20 degrees 

 
Avoids the intersection of planes that are almost 
parallel 
 

Section 5.2.1 

Normal distance threshold 

Normal distance to identify the points 
close to the intersection line; the 
identified points are projected on the line 
to detect gaps and extreme points along 
the line 

1.5m 

 
About twice the average point spacing of the 
LiDAR data 
 

Section 5.2.1 
Figure 5.5 

Gap threshold 
Gap threshold to identify significant gap 
between the adjacent projected points 
along the intersection line 

1.0m 

 
Prior knowledge of buildings and the average 
point spacing of the LiDAR data 
 

Section 5.2.1 
Figure 5.6 
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Table 6.8 Descriptions, values, and justifications for the thresholds used for precise boundary generation through the 

processes of integration, projection, and regularization 

Threshold Description Value Justification 
Section 

and Figure 

Edge detection buffer  
Size of the buffer on each side of the 
initial boundary, used for edge detection  

1.0m 
Approximately equivalent to the average point 
spacing of the LiDAR data (on each side of the 
initial boundary) 

Section 5.2.2 

Matching angle 
Acceptable angle between candidate line 
segments in the matching process 

6 degrees 
Considers the geo-referencing results and the noise 
level of the edge detection results 

Section 5.2.2 
Figure 5.13 

Matching normal distance 
Acceptable normal distance between 
candidate line segments in the matching 
process 

0.5m 
Considers the geo-referencing results and the noise 
level of the edge detection results 

Section 5.2.2 
Figure 5.13 

Ratio for filtering 
matched lines 

Ration to detect matched lines following 
the trend of the initial boundary 

0.6 
Considers the noise level of the initial boundary 
results 

Section 5.2.2 
Figure 5.15 

Matched line grouping 
angle 

Angle threshold for grouping 3D 
matched lines 

6 degrees 
Considers the geo-referencing results and the noise 
level of the edge detection results 

Section 5.2.2 
Figure 5.17 

Matched line grouping 
normal distance 

Normal distance threshold for grouping 
3D matched lines 

1.0m 
Approximately equal to the edge detection buffer 
size 

Section 5.2.2 
Figure 5.17 

Buffer for outmost 
regions  

Buffer size for reliable spectral 
similarity measure derivation in precise 
boundary segment selection 

2.0m 
Large enough to generate significant spectral 
similarity measure transitions 

Section 5.2.2 
Figure 5.21 

Normal distance  for 
regularization  

Buffer for the regularization of the initial 
boundaries(Douglas-Peuker threshold) 

1.0m 
Prior knowledge of buildings and the average 
point spacing of the LiDAR data 

Section 5.2.2 
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Figure 6.7 to Figure 6.10 show the initial and refined boundaries for four building 

primitives projected onto the left and right warped images. Also, Figure 6.8 (a), Figure 

6.9 (a), and Figure 6.10 (a) show the line segments belonging to the higher and 

neighbouring building primitives. These building primitives are selected to qualitatively 

assess the performance of the boundary refinement procedure for different levels of 

building complexity. The improvement in the boundary segments gained through the 

proposed refinement process can be verified by comparing the initial and refined 

boundaries as well as the closeness to the actual building primitive boundary. One should 

note that the boundary segments derived through the integration and projection processes 

are denoted as IL and PL, respectively. Figure 6.7 shows an example of a simple building 

primitive. All four line segments (IL1 - IL4) are extracted through the boundary 

refinement process based on the integration of the imagery and LiDAR data.  Figure 6.8 

shows an example of a building primitive with low complexity. Five line segments (IL1 – 

IL5) are extracted through the boundary refinement process based on the integration of 

the imagery and LiDAR data. In addition, three line segments (PL1 – PL3) are derived by 

projecting the boundary segments (IL1 – IL3 of BP1) of a higher and neighbouring 

building primitive (BP1 located at the right side of Figure 6.8 (a)) onto the building 

primitive in question. Figure 6.9 and Figure 6.10 provide examples of boundary 

refinement for building primitives with medium and high complexity. The building 

primitive with medium complexity (Figure 6.9) is reconstructed using 15 IL and 2 PL 

segments (projected from two different building primitives, BP1 and BP2 in Figure 6.9 

(a)). More specifically, PL1 and PL2 are derived by projecting IL1 of BP1 and IL2 of 

BP2 onto the current building primitive, respectively. On the other hand, the building 
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primitive with high complexity (Figure 6.10) is reconstructed using 8 IL and 5 PL 

segments (projected from three different building primitives, BP1, BP2, and BP3 in 

Figure 6.10 (a)). More specifically, PL1, PL2, PL3, PL4, and PL5 are derived by 

projecting IL1 of BP3, IL1 of BP2, IL1 of BP1, IL2 of BP1, and IL3 of BP1 onto the 

current building primitive, respectively. As shown in the figures, the IL boundary 

segments are detected precisely through the refinement process using the integrated 

imagery and LiDAR data. Moreover, the occlusion problem is solved by hierarchically 

projecting the building boundary segments belonging to higher primitives onto the lower 

one under investigation (i.e., creating PL segments). One should note that the use of the 

projection process for boundary segment reconstruction provides a way to overcome the 

problem of inaccurate boundary creation due to occlusions (which are particularly 

significant in urban environments). As a final product of the automated building 

reconstruction process, the DBM is generated and converted to KML format, which can 

be directly imported to Google Earth, as shown in Figure 6.11. 
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          (a)                (b) 

    

           (c)                (d) 

Figure 6.7: An example of a simple building primitive: initial boundary projected 

onto the left (a) and right (b) warped images; refined boundary projected onto the 

left (c) and right (d) warped images. 
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(a) 

 

   
(b)                   (c) 

 

    
            (d)              (e) 

Figure 6.8: An example of a building primitive with low complexity: derived line 

segments for the higher and neighbouring building primitive (a);  initial boundary 

projected onto the left (b) and right (c) warped images; and refined boundary 

projected onto the left (d) and right (e) warped images. 
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(a) 

    

               (b)                   (c)                  (d)                   (e) 

Figure 6.9: An example of a building primitive with medium complexity: derived 

line segments for the higher and neighbouring building primitives (a);  initial 

boundary projected onto the left (b) and right (c) warped images; and refined 

boundary projected onto the left (d) and right (e) warped images. 



 

 

186

 

(a) 

    

                 (b)         (c)                   (d)                   (e) 

Figure 6.10: An example of a building primitive with high complexity: derived line 

segments for the higher and neighbouring building primitives (a);  initial boundary 

projected onto the left (b) and right (c) warped images; and refined boundary 

projected onto the left (d) and right (e) warped images. 
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Figure 6.11: Initial DBM (in KML format) produced through the automated 

building reconstruction process. 

 

The DBM produced through the automated building reconstruction procedure 

might include incorrectly detected boundary segments. Several examples of the erroneous 

boundary segments are shown in Figure 6.12. The line segment in the area bounded by 

the white box in Figure 6.12(a) is produced by the edges of the shadow around the fence 

on the rooftop. Since the shadow is located on top of the building primitive, the 

probability that the line of the shadow will be detected as a boundary segment is 

relatively high. On the other hand, Figure 6.12(b) and (c) exemplifies a different type of 

erroneous boundary segment, which is caused by a weak similarity transition from one 

region to another. In other words, the difference between ASSM_RIn and ASSM_ROut is 

significantly small (check the line segment and surrounding region enclosed by the white 

dashed ellipse). The regions on either side of the line segment in question are almost 

homogeneous in the left and right warped images. Edge lines which are parallel to the 

base line (i.e., a line connecting two perspective centers) and with uniform texture on 
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both sides might cause such a problem. This will lead to the weak similarity transition 

from one side of the line segment to the other. Eventually, this weak transition makes the 

precise boundary segment selection process function inaccurately. The automatically 

established DBM includes these kinds of erroneous segments, which are handled through 

the manual editing procedure to produce the final DBM. Figure 6.13 shows the final 

DBM generated after manual editing of the initial DBM, which is established through the 

automated process. The areas with significant changes after manual editing are 

highlighted by red circles in Figure 6.11 and Figure 6.13.  

 

(a) 

 
                                                   (b)                                   (c) 

Figure 6.12: Erroneous boundary segments produced through the refinement 

process due to shadow (a) and a weak similarity transition in the left (b) and right 

(c) warped images. 
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Figure 6.13: Final DBM (in KML format) after manual editing of the initial DBM, 

which is produced through the automated process. 

 

Once the precise DBM has been acquired after the manual editing process, the 

enhancement of the DSM is done by combining the DTM and the final DBM, as shown 

in Figure 6.14. Then, a 2D visualization is produced by generating true orthophotos for 

the entire study area using the enhanced DSM and the corresponding imagery (Figure 

6.15). Afterwards, the true orthophoto is draped over the enhanced DSM for 3D 

visualization as in Figure 6.16. To compare the qualities of the true orthophotos and 3D 

visualizations before and after DSM enhancement, couple of areas are selected and 

zoomed in (Figure 6.17 and Figure 6.18). Through this comparison, the quality of the 

visualization products after DSM enhancement is obviously improved when compared to 

that before DSM enhancement.  
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Figure 6.14: The enhanced DSM produced by combining the DTM and the final 

DBM. 

 

 

Figure 6.15: A true orthophoto produced using the enhanced DSM and the imagery 

involved. 
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Figure 6.16: A 3D visualization produced by draping the true orthophoto over the 

enhanced DSM. 

       
              (a)                                               (b) 

      
                (c)                                                    (d) 

Figure 6.17: Enlarged areas from true orthophotos before (a & c) and after DSM 

enhancement (b & d).  
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(a)                                                                 (b) 

       
                                     (c)                                                               (d) 

Figure 6.18: Enlarged areas from 3D visualizations before (a & c) and after DSM 

enhancement (b & d).  

 

6.6 Quantitative Analysis 

This part of the experimental results provides a quantitative evaluation of the 

correctness, completeness, and accuracy of the proposed DBM generation process. One 

should note that only the automatically-established boundary segments are considered for 

the quantitative evaluation of the results. The correctness and completeness measures 

introduced by Heipke et al. (1997) are adopted for this evaluation. The correctness of the 
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results is defined as the ratio of the number of correctly determined boundary segments to 

the total number of established boundary segments. In other words, the correctness 

measure evaluates the percentage of erroneous boundary segments among the established 

boundary segments. The completeness of the results, on the other hand, is defined as the 

ratio of the number of correctly established boundary segments to the total number of 

boundary segments necessary to represent the buildings in the study area. More 

specifically, the completeness measure gives an indication of the percentage of boundary 

segments that are missing or erroneous (i.e., those that should be interactively established 

through the manual editing procedure). The study area has a total of 40 building 

primitives, which are represented by 291 boundary segments. The proposed procedure 

produced 311 boundary segments for all the building primitives. Among the boundary 

segments produced, 276 boundary segments were correctly established. Based on these 

numbers, the correctness and completeness ratios for this study area are 89% (276/311) 

and 95% (276/291), respectively.    

As for assessing the accuracy of the established DBM, the coordinates of the 

DBM corner points are compared with those derived manually using a photogrammetric 

reconstruction procedure. To get an idea of the quality of the manually derived 

coordinates, two operators were asked to derive the ground coordinates of the vertices of 

the building rooftops in the study area. The second column in Table 6.9 shows the means, 

standard deviations, and Root Mean Squared Error (RMSE) values for the differences 

between the coordinates derived by each of the two operators. Based on the mean values, 

one can see that there are no systematic discrepancies between the coordinates derived by 
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the two operators. The planimetric RMSE values are in the range of six pixels, which is 

mainly due to the difficulty of accurately pinpointing the corner points in the imagery.  

Having established the accuracy expected from a manual operation, the 

coordinates derived from the proposed procedure were compared with the averages of the 

coordinates determined by the two operators. The statistics derived from this comparison 

are reported in the third column of Table 6.9. It should be noted that the comparison did 

not involve any of the vertices that are partially or fully defined through the manual 

mono-plotting procedure (i.e., only corner points between automatically-established 

boundary segments were considered). The reported planimetric means, standard 

deviations, and RMSE values in the third column are quite close to the results provided 

by the two operators, which indicates very high accuracy of the derived coordinates. The 

standard deviations derived from both of the manual and automatic ways are relatively 

higher than the expected accuracies addressed in Section 6.2 due to the identification 

problem of the building corner points. The vertical measures, on the other hand, seem to 

be much worse. The reason for this deterioration is that most of the buildings in the study 

area had fences on their rooftops, as seen in Figure 6.19. The heights of these fences 

range from 0.5m to 1.0m.  The operators defined the corners of the DBM on top of the 

fences (Figure 6.19 shows the points selected by the operators), whereas the proposed 

procedure placed the corners on the rooftop plane, as defined by the segmented LiDAR 

data. Therefore, the mean comparison shows a Z-bias between the manually and 

automatically generated vertices (of almost 60cm, which is an indication of the heights of 

the fences). The standard deviation in the Z-direction reveals good compatibility between 

the manual and automated procedures.  
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Table 6.9 Statistics derived from the comparison of two manually generated sets of 

DBM vertices (second column) as well as the comparison of automatically and 

manually generated DBM vertices (third column) 

 Manual DBM Automated DBM 
No. of vertices 116 78 
Mean (X), m -0.086 -0.040 
Mean (Y), m -0.008 0.003 
Mean (Z), m -0.091 0.553 

Std_dev (X), m ±0.349 ±0.392 
Std_dev (Y), m ±0.364 ±0.407 
Std_dev (Z), m ±0.239 ±0.237 
RMSE (X), m 0.357 0.392 
RMSE (Y), m 0.362 0.405 
RMSE (Z), m 0.255 0.601 

 

 

 

Figure 6.19: A building with protruding fences with manually selected corner points. 
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6.7 Summary 

This chapter presented the experimental results from real LiDAR and imagery 

data to validate the feasibility and evaluate the performance of the proposed 

methodologies. First, the datasets utilized in the experiments were described briefly. The 

datasets include stereo images and LiDAR data over the area of interest including terrain, 

trees, and buildings (which are complex and connected). Co-registration process provided 

reliable results with high precision of EOP and without correlation among the parameters. 

Afterwards, building hypothesis and primitive generation procedures were carried out 

using LiDAR data only.  

 

The initial boundaries of the building primitives were projected onto the 

corresponding imagery to verify their quality of the products. The initial boundaries of 

the building primitives followed overall trend of building shape but did not represent 

accurate details. This is due to the irregular and sparse nature of LiDAR data. Hence, the 

boundary refinement process based on the integration of photogrammetric and LiDAR 

data was conducted to acquire precise boundary segments. Moreover, the occlusion 

problem where the higher buildings are hiding lower buildings in large scale imagery was 

resolved by hierarchically projecting the constructed boundary segments of the higher 

building primitives to the neighbouring lower ones when these primitives share common 

vertical walls. Additionally, the boundary refinement procedures based on the 

intersection between the neighbouring primitives and regularization using the initial 

building boundaries helped to acquire precise boundary segments. The descriptions, 

values, and justifications for the thresholds used for these procedures were briefly 
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addressed. The erroneous boundary segments acquired from the automated building 

reconstruction process were inspected to figure out the reasons. Shadows around the 

building boundaries and edge lines with uniform textures on both sides caused negative 

effects on the boundary determination process. The erroneous or missing boundary 

segments were corrected by manual mono-plotting process. Then, the enhanced DSM 

(created by adding the derived DBM to the DTM) together with the corresponding 

imagery were utilized to generate true orthophotos and 3D visualizations. To check the 

quality improvement, the visualization products after the DSM enhancement were 

compared with these before the DSM enhancement.  

 

Finally, qualitative and quantitative evaluations were carried out for the 

experimental results derived from the automated building reconstruction procedures 

(without involving manual mono-plotting procedure). Qualitative evaluation for the 

performance of the proposed building reconstruction procedures was conducted by 

visually inspecting the constructed boundary results for four building primitives with 

different levels of building complexity. The visual inspection proved that the proposed 

building reconstruction procedure works well for complex and connected buildings. 

Quantitative analysis was also carried out based on the completeness, correctness, and 

RMSE analysis for 40 building primitives which are represented by 291 boundary 

segments. The correctness and completeness ratio for the study area were 89% and 95%, 

respectively. Also, the coordinates of the DBM corner points were compared with those 

derived manually using a photogrammetric reconstruction procedure for assessing the 

accuracy of the established DBM. The RMSE values for planimetric accuracy were quite 
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close to those results derived manually. However, discrepancy of vertical accuracies 

between the automated and manual ways was detected. The reason was that most of the 

buildings in the study area had fences on their rooftops.  
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Chapter 7 : Conclusions and Recommendations for Future Work 

 

7.1 Conclusions 

Rapid urban growth is one of the important worldwide issues currently, as the 

United Nations predicted that roughly 62% of the estimated global population will dwell 

in urban areas in 2030. To successfully control social and environmental situations that 

might arise from this rapid urbanization, accurate and up-to-date geo-spatial information 

should be provided to decision makers in various fields. There is, hence, a growing need 

for tools to assist these decision makers by providing accurate and realistic 3D 

visualizations of urban environments. Although 3D visualizations are available using 

well-known tools, such as Google earth, NASA’s World Wind, and Microsoft Virtual 

Earth, their level of accuracy is not high enough for urban planning, urban management, 

and other applications. For example, the accurate geo-spatial information is essential for 

sidewalk construction, enforcement of right to light, visibility analysis for military 

operations, line of sight analysis for telecommunication, and control information for geo-

referencing of images from various data sources (e.g., a camera mounted on a Unmanned 

Aerial Vehicle (UAV), cell phone camera, surveillance camera, etc). To be truly useful 

for the applications mentioned above, an accurate and realistic 3D visualization of a real-

world area should allow a civil engineer or land surveyor to be able to make on-screen 

measurements from one building corner to another, without having to visit the actual site. 

For this reason, the aim of the research presented here is to develop a new framework for 

the accurate reconstruction and visualization of urban environments. The procedures used 

to reach this goal encountered many difficulties due to the complexity of urban 
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environments and the nature of the datasets utilized (e.g., the irregularity and sparseness 

of LiDAR data and the ill-posed matching problem with photogrammetric data). This 

research provided solutions for these issues and accurate final products. This chapter will 

summarize the problems that this research encountered, the solutions developed for the 

problems, and relevant contributions of the research.  

 

To produce accurate visualizations, two main concerns should be considered: 1) 

the correct relation of LiDAR positional information and imagery spectral information 

and 2) the completeness of the surface models. As prerequisite steps, quality assurance 

and quality control procedures were carried out for the photogrammetric and LiDAR data 

to ensure the high quality of the datasets utilized. Once the quality assurance and control 

of the photogrammetric and LiDAR data have been conducted, both datasets can be used 

with confidence for this research. Then, the co-registration of the two datasets was 

carried out by utilizing the LiDAR data as the source of control for photogrammetric geo-

referencing, and highly reliable results were attained.  

 

Once the photogrammetric dataset has been aligned to the reference frame of the 

LiDAR data, the image spectral information and LiDAR positional information from the 

two datasets are ready to be linked to one another in the true orthophoto generation 

process. Two angle-based true orthophoto generation methods were proposed to relate the 

image spectral and LiDAR positional information correctly. The proposed methods 

overcome problems, such as false visibility and false occlusions that arise from the use of 

the Z-buffer method. Moreover, these methods do not require the incorporation of the 
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internal characteristics and attitude of the imaging sensor for visibility analysis. In other 

words, only the position of the perspective center and the object space (i.e., DSM) are 

necessary for this analysis without involving any other information related to the image 

space. In addition, their performance does not depend on the relationship between the 

DSM cell size and the GSD of the imaging sensor. For 2D visualization, true orthophotos 

were produced using the angle-based methods. Then, the true orthophotos were draped 

over the DSM to create a 3D visualization. The degradation in the quality of the products, 

especially near building boundaries and small features above ground, was reported. 

Regardless of which true orthophoto generation method is used, the results are affected 

by the quality of the surface model, in terms of the representation of features. The 

irregular and sparse nature of LiDAR data leads to a lack of representation of certain 

features in surface models. Since the degradation in the visualization products occurred 

mainly along the building boundaries, there was a need to enhance the surface models 

through the introduction of precise building models.  

 

DBM generation is usually performed in two steps: 1) building detection and 2) 

building reconstruction. At this stage, the target of this process was buildings with planar 

rooftops, which are bounded by straight lines. Since elevation data is acquired directly by 

a LiDAR system, the degree of automation in building detection using this type of data is 

higher when compared to that using imagery (Brenner, 2005). Hence, building detection 

was carried out through the manipulation of LiDAR data only. Building hypotheses and 

primitives (i.e., the individual planar patches constituting each building rooftop) were 

generated through the building detection process. Building hypothesis and primitive 
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generation begins with terrain and off-terrain classification of LiDAR data. The proposed 

angle-based approach for true orthophoto generation was extended to create this 

procedure. In contrast to the occlusion detection procedure, which focused on the 

identification of occluded points, the proposed terrain/off-terrain point classification 

procedure focused on the identification of occluding points (i.e., the points causing the 

occlusions), which were hypothesized to be off-terrain points. Synthesized projection 

centers and a tracking procedure were introduced in order to identify occluding points. In 

addition, false off-terrain hypotheses arising from the noise and high frequency 

components of the surface (e.g., cliffs and tunnels) were corrected using a statistical 

filtering procedure. Building hypotheses were then produced by further classifying the 

off-terrain points as points belonging to planar surfaces and those belonging to rough 

surfaces. Neighbouring points belonging to planar surfaces were grouped according to 

their three-dimensional proximity. The resulting groups were then used to identify 

instances of buildings (i.e., building hypotheses) by considering the area of each group 

and the heights of the groups relative to neighbouring terrain points. Once the building 

hypotheses have been generated, a segmentation procedure is applied to each of the 

building hypotheses to cluster its point cloud into several groups corresponding to the 

individual planar patches comprising the building (i.e., the building primitives). The 

segmentation procedure was designed based on a voting scheme. A neighbourhood 

definition that considers both the three-dimensional relationships among the LiDAR 

points and the physical shapes of the surfaces was adopted to increase the homogeneity of 

the derived attributes. After introducing two origins, the magnitudes of the two normal 

vectors from the origins were utilized as attributes. The level of efficiency, in terms of 
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computational load, of the process was increased more by introducing two origins than 

the increase attained by using more than two attributes in other methods. However, the 

utilization of two origins might lead to ambiguities when points belonging to different 

planes have the same attribute values. The proposed segmentation method sought to 

avoid ambiguities by moving the locations of the origins whenever ambiguities arose. 

After resolving the ambiguity problem, the clustering process was conducted by assessing 

the local attributes of all the points in the parameter space, together with the proximity of 

the points in the object space, simultaneously. After this segmentation procedure had 

been carried out, each cluster represented a building primitive. The initial boundaries of 

the building primitives were then generated using the points belonging to the primitives 

by adopting the modified convex hull algorithm. The quality of the initial boundaries 

produced was investigated by comparing them to the actual building boundaries. The 

irregular and sparse nature of the LiDAR data led directly to the generation of irregular 

initial boundaries. Hence, the need for improvement in the quality of the initial 

boundaries arose at this stage.  

 

The building reconstruction procedure, which refines the initial boundaries of the 

building primitives, begins by intersecting neighbouring planar patches to represent ridge 

lines, if any exist. For this scenario, the plane parameters computed through the building 

primitive generation process and the 3D adjacency analysis of the primitives were 

utilized to produce precise boundary segments. A different boundary segment refinement 

procedure, on the other hand, was proposed for use with all the remaining boundary 

portions for which both LiDAR and photogrammetric data can be utilized. The two 
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datasets were integrated and the resulting synergistic properties were utilized in the 

procedure. Warped imagery, a new concept in the integration of LiDAR data and imagery, 

was introduced instead of using the original imagery. The warped imagery was used to 

relate the LiDAR data and imagery in one step. This was carried out through the simple 

projection of the original images onto the corresponding building primitive planes 

generated using the LiDAR data. This integration eliminated geometric differences 

between the warped images along the building primitive; hence, the direct comparison of 

the spectral information in these images was made possible without analyzing the 

geometric distortions that exist in the original imagery. It is for this reason that this 

integration is referred to as the object-based integration. Since the target of this research 

is buildings with planar rooftops, which are bounded by straight lines, straight lines were 

derived directly from the warped images. The matching process was carried out on the 

LiDAR plane (i.e., warped image plane) of each building primitive using the straight 

lines derived. The matching problem (i.e., the ill-posed nature of the image matching 

problem, particularly for large scale imagery over urban areas) was solved by 

incorporating the LiDAR data as a constraint in the matching process. The matching 

process provided precise matched 3D lines. These matched 3D lines were then divided 

into groups of non-overlapping line segments that were believed to be competing for the 

same boundary segment of the building primitive in question. Finally, a spectral 

similarity measure was used to select the precise building boundary segment from the 

members of each group. At this stage, one should note that this research focuses on urban 

environments with complex and connected buildings, while utilizing large scale imagery 

acquired through traditional photogrammetric data acquisition mission (i.e., 20% sidelap 
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and 60% overlap). Hence, there might be significant occlusions in the imagery. In this 

case, conjugate features cannot be derived from the occluded areas; the matching process 

cannot be applied for this case. As a result, portions of the affected building boundary 

will be missing. A solution for this problem was provided through the projection of the 

boundary segments constructed for higher building primitives onto lower, neighbouring 

primitives with shared vertical walls. Even after these three different boundary 

refinement approaches have been applied, some portions of building boundaries may still 

be missing. This situation arises when part of a building primitive is hidden by another 

building primitive in either one or both warped images. In this case, boundary segments 

corresponding to the missing boundary portions were derived by regularizing the initial 

boundaries of the building primitives. Then, building reconstruction was finalized by 

producing closed-polygons using all the derived boundary segments, followed by the 

simultaneous alignment of all the closed-polygons. So far, an automated boundary 

refinement procedure has been carried out using LiDAR and image data. For situations in 

which there is weak image contrast, shadow, and/or uniformity of texture around line 

segments, the results of the procedure may have missing and/or erroneous boundary 

segments. To compensate for these situations, a mono-plotting procedure was introduced, 

in which the operator interactively deletes or adds boundary segments.  

 

Once the building models were acquired through the proposed building 

reconstruction procedure, the enhanced DSM was generated by combining the 

corresponding DTM and DBM. To avoid the decrease in quality of the visualization 

products around small features above ground, it was decided to add the DBM to a DTM 
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instead of to the original DSM. 2D and 3D visualizations were produced by relating the 

spectral information from the corresponding imagery and the positional information from 

the enhanced DSM.  

 

To verify the performance of the proposed methodology, qualitative and 

quantitative analyses were then carried out for the experimental results derived through 

the automated building reconstruction procedures (without involving the manual mono-

plotting procedure). Qualitative analysis was performed by visually inspecting the 

constructed boundary results for four building primitives with different levels of building 

complexity. The visual inspection proved that the proposed building reconstruction 

procedure performs well for complex and connected buildings. Quantitative analysis was 

also carried out based on the completeness, correctness, and RMSE analysis derived for 

40 building primitives, which were represented by 291 boundary segments. The 

correctness and completeness ratios for the study area were 89% and 95%, respectively. 

In addition, the coordinates of the DBM corner points were compared with those derived 

manually using a photogrammetric reconstruction procedure to assess the accuracy of the 

established DBM. The RMSE analysis found that the DBM produced was quite close to 

the results obtained manually. The qualitative evaluation of the final visualization 

products also showed that this research provided more realistic and more appealing 

visualization products for buildings and small features above ground, respectively. In 

summary, this research provided a new framework for the accurate reconstruction and 

visualization of urban environments. The major contributions of this research are 

summarized as follows: 
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Contribution 1:  

This research takes advantage of the integration of photogrammetric and LiDAR data, 

and an object-based integration process was proposed. By utilizing warped imagery 

derived through the object-based integration process, the image matching problem was 

resolved, since the incorporated LiDAR data worked as a constraint. In addition, spectral 

similarity transitions over the matched line segments extracted from the warped imagery 

were investigated to select precise boundary segments.  

 

Contribution 2:   

The hierarchical projection approach was proposed to reconstruct boundary segments in 

the occluded areas. This approach successfully worked for the building primitives which 

share a vertical wall but have different elevations. The reconstruction procedure was 

performed by projecting the boundary segments constructed for higher building 

primitives onto the lower and neighbouring ones.  

 

Contribution 3:  

Two angle-based true orthophoto generation methods were developed to overcome 

problems, such as false visibility and false occlusions that arise when the current, 

commonly used methodology is employed. These methods do not require the 

incorporation of the internal characteristics and attitude of the imaging sensor for 

visibility analysis. Furthermore, the performance of the proposed methods does not 

depend on the relationship between the DSM cell size and the GSD of the imaging 

sensor.  
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Contribution 4:  

A terrain and off-terrain LiDAR point classification procedure was developed by 

extending the angle-based occlusion detection approach, which was utilized for true 

orthophoto generation. For the segmentation procedure, which is based on a voting 

scheme, two attributes derived from two origins were introduced to increase the level of 

efficiency, in terms of computational load. Reliable segmentation results were obtained 

by assessing the similarity of all point attributes in the parameter space, and the proximity 

of the points in the object space, simultaneously.  

 

7.2 Recommendations for Future Work 

Recommendations for future work include the alleviation of the effects of shadow 

on the selection of precise boundary segments. In other words, more investigation into 

the removal of shadow effects caused by fences around building boundaries should be 

conducted. On the other hand, the precise boundary segment selection procedure does not 

work properly when there are uniform textures on both sides of a boundary segment. 

Future work should investigate solutions for this problem. The areas that need to be 

edited manually by an operator should also be investigated further to improve the 

correctness and completeness of the DBM products. Also, when the building 

reconstruction procedure is expanded to incorporate more than two images, the matching 

and the precise boundary selection procedures will have to be modified to handle 

multiple images. The warped imagery generation procedure can also be extended beyond 

the use of aerial photos to utilize satellite imagery.  
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Another approach, based on region growing in the warped imagery using colour 

segmentation, will be considered here to solve the fence problem and the non-matching 

problem. Figure 7.1 illustrates the concept of roof region detection based on region 

growing using colour segmentation. Each of the warped images generated over a building 

with high fences on its rooftop will contain rooftop areas that are partially hidden because 

of the fences. In this case, the full rooftop area can be acquired by aggregating the region 

growing results obtained from the two warped images. As for visualization, the missing 

texture on the walls should be recovered by utilizing oblique/terrestrial images or 

artificial texturing. Also, the addition of street furniture will improve the quality of the 

3D visualization, especially when small features such as cars, trees, and light poles are 

added (see Figure 7.2). The proposed research focused on planar rooftops bounded by 

straight line segments. This approach will be extended to manipulate non-straight lines 

and/or non-planar surfaces. More testing and evaluation will be conducted with various 

datasets.  
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Figure 7.1: The concept of roof region detection based on region growing using 

colour segmentation. 

 

 

Figure 7.2: Samples of the street furniture available in ArcGIS. 
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