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Abstract 

 

The ever improving capabilities of GNSS/INS direct geo-referencing technology 

is having a positive impact on the widespread adoption of LiDAR systems for the 

acquisition of dense and accurate surface models over extended areas. Unlike with 

photogrammetric techniques, derived footprints from a LiDAR system are not based on 

redundant measurements, which are manipulated in an adjustment procedure. 

Consequently, there are no associated measures (e.g., variance component of unit weight 

and variance-covariance matrices of the derived parameters) that can be used to evaluate 

the quality of the final product. In this regard, a LiDAR system is usually viewed as a 

black box that lacks a well defined set of quality control procedures. This research 

introduces alternative procedures for evaluating the internal quality of LiDAR data. 

However, these procedures could be used for external quality control as well. The main 

premise of the proposed methodologies is that overlapping LiDAR strips will represent 

the same surface if and only if there are no biases in the derived surfaces. Therefore, the 

quality of coincidence between overlapping strips will be used as the basis for deriving 

the quality control measures.  
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Chapter One: INTRODUCTION 

 

1.1 Problem Definition and Research Objectives 

LiDAR is known to be a fast and accurate tool for surveying wide areas within a 

short period of time. It is able to measure millions of points in a single mission. However, 

during the mission, one cannot force the system to point and shoot at a specific object 

point. Moreover, LiDAR data lacks the redundancy that can be used in a least squares 

solution to come up with a measure of the data precision. The only estimate of accuracy 

that the end users have is the predicted root mean of squares error reported by LiDAR 

companies (Optech Inc). 

 

LiDAR quality control is an important post-mission process used to verify the 

quality of the produced data. The objectives of this research are to develop new methods 

and tools for LiDAR quality control. These methods must not be time consuming, should 

not require a huge amount of post processing, and must be accurate. 

 

This chapter starts with an overview to LiDAR systems, in which, typically used 

LiDAR systems (linear and elliptical scanners) are discussed. The second part of this 

chapter discusses the mathematical model of a LiDAR system used for deriving the target 

object coordinates. 
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1.2 LiDAR Overview 

LiDAR (Light Detection And Ranging) has been recognized as a fast and accurate 

active remote sensing system. It has the capability of capturing an enormous number of 

points over a defined area within a realistic period of time, in comparison to conventional 

surveying methods. LiDAR has been around for the past thirty-five years, but it has only 

been widely commercialized in the last nine years (Faruque, 2003). 

 

A LiDAR system consists of three main segments (sensors). The first is a  

LASER scanner that provides range information from the laser beam firing point to the 

object point. The second segment is a GNSS sensor that relates the range information to 

the ground reference frame, and thirdly, an IMU unit supplies the total system with 

attitude information (Habib, et al., 2007). 

 
 

 

Figure 1.1: Examples of LiDAR system equipment: Leica Geosystems ALS 40 

(left), (Leica Geosystems), and OPTECH ALTM 3100 (right), (Optech Inc). 

 

The laser scanner is used to obtain raw range measurements from the laser beam 

firing points to the laser footprint. Measured ranges are then integrated with the GNSS 

and IMU measurements to relate them to a ground reference frame, leading to the 
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derivation of the ground coordinates of the laser footprint through a vector summation 

procedure. Figure 1.1 shows some of the LiDAR systems that are commonly used by the 

mapping industry. 

 

In addition to range data, modern LiDAR systems can capture intensity images 

over an area. As a result of advances such as this, LiDAR is being used more extensively 

in mapping and GIS applications. Figure 1.2 shows a range image (in the form of shaded 

relief) and an intensity image taken over the same area, illustrating the complementary 

information obtained from the two types of data. 

 

1.3 Laser Scanner Data Collection 

The LiDAR laser scanner emits pulses of high frequency and collects the 

reflections, obtaining a dense cloud of range measurements. These are the raw 

measurements that are used to derive the ground coordinates. Typically, a laser scanner 

 
 

Figure 1.2: Sample LiDAR imagery: range (shaded relief) image (left) and 

intensity image (right). 
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creates one of two types of footprints: a zigzag footprint, shown in Figure 1.3 or an 

elliptical footprint, shown in Figure 1.4. 

 

Figure 1.3: Zigzag laser scanner footprint, obtained via the deflection of the laser 

beam using a mirror rotating across the flying direction. 

 

Figure 1.4: Elliptical laser scanner footprint, obtained via the deflection of the laser 

beam using a mirror rotating along and across the flying direction. 

 

The energy reflected from the laser footprint is converted to a voltage profile, 

which is known as a waveform. As shown in Figure 1.5, each peak in the waveform 

received typically corresponds to a different feature or object. The peaks are 

distinguished from one another by their temporal separation; it can thus be seen that the 

cloud of red particles in the illustration are closer to the laser scanner than the yellow 

object. The range to each object is calculated as the signal traveling time multiplied by 

the speed of light, then divided by two. 
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Figure 1.5: Reflected signal strength of a LiDAR laser beam. 

 

The range measurements, together with the pointing direction of the laser scanner 

and information from the integrated GNSS and IMU units, are used to derive the ground 

coordinates of the objects in question. 

 

1.4 Mathematical Derivation of Ground Coordinates 

 Figure 1.6 shows the coordinate systems involved in the LiDAR equation (the 

ground reference frame, the IMU body frame, the laser unit coordinate system, and the 

laser beam coordinate system), and shows that the LiDAR equation can be represented as 

a simple vector summation, as in Equation 1.1 (El-Sheimy, et al., 2005). Many 

researchers have proposed different forms of equations (involving more or less 

parameters than Equation 1.1) to be used in deriving the object point. For this research, 

Equation 1.1 is used to generate the required simulation data discussed in the next 

chapter. 
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Figure 1.6: Coordinate systems and parameters involved in direct geo-referencing of 

LIDAR systems. 

 1.1 

Where: (Habib, 2007)  

 = Ground coordinates of the object point under consideration 

 = Ground coordinates of the GNSS antenna phase center 

 = Spatial boresighting offset between the laser unit and the GNSS antenna phase 

center, with respect to the laser unit coordinate system 

 = Rotation matrix that needs to be applied to the IMU coordinate system 

to make it parallel to the ground coordinate system (Equation 1.2) 

 

 

 
1.2 
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  = Rotation matrix that needs to be applied to the laser unit coordinate system to 

make it parallel to the IMU coordinate system 

 = Rotation matrix that needs to be applied to the laser beam coordinate system to 

make it parallel to the laser unit coordinate system (Equation 1.3) 

 

 
1.3 

 = Measured range between the laser beam firing point and the 

target object 

 

It should be noted that the quality of the ground coordinates derived from LiDAR 

depends on the accuracy of the involved sub-systems (i.e., laser scanner, GNSS, and 

IMU).  The presence of errors such as GNSS/IMU noise, laser beam biases, and 

boresighting biases (i.e., angular and spatial biases between the system components) will 

affect the quality of the results, as explained in Chapter Three. 

 

1.5 Thesis Outline 

Chapter Two starts with an explanation of what is meant by quality control. Next, 

a review of the previous contributions made by other researchers is presented. In Chapter 

Three, the errors associated with LiDAR systems and their analysis are described in 

detail. The methodologies used to assess the quality of LiDAR systems are discussed in 

Chapter Four. Also in this chapter, a brief description of an interface developed for 

LiDAR quality control is proposed. In Chapter Five, the experimental results of the 
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methodologies described in Chapter Four are discussed. Finally, Chapter Six concludes 

this research with a summary and discussion. 
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Chapter Two: LITERATURE REVIEW 

2.1 Introduction 

LiDAR quality control is a challenging procedure due to the challenges met when 

trying to define a similarity measure for overlapping strips. Many researchers have spent 

precious time trying to understand LiDAR systems in order to come up with optimized 

methods for system calibration, quality assurance, and LiDAR strips adjustment. The 

contributions in those fields are huge; however, there is no enough research towards the 

quality control of LiDAR systems. Therefore, the main focus of this research is to 

implement existing methods and develop new ones for the quality control of LiDAR 

systems. These methods will be also optimized and automated in a program interface 

developed through this research. 

 

Section 2.2 discusses the conceptual basis of LiDAR quality control. Section 2.3 

summarizes several contributions made by researchers during the last decade. Every 

method has its own pros and cons in terms of accuracy, level of automation, and 

prerequisites (required pre processing prior the quality control procedures). 

 

2.2 LiDAR Quality Control 

The term quality control in LiDAR is defined as “a post-mission procedure 

applied to ensure/verify the quality of collected data” (Habib, 2007).  The quality control 

can be divided into two main parts: the Internal/relative Quality Control (IQC) and the 

External/absolute Quality Control (EQC). The term IQC applies when testing for 

inconsistencies between overlapping LiDAR strips without having true knowledge about 
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their relationship with the ground reference frame. EQC is used when comparing 

different strips with regard to the ground reference frame (e.g. using ground control 

points, or patches of points with known coordinates relative to the ground reference 

frame). Quality control is an extremely important stage; it helps to assess the quality of 

the available data. 

 

Most of the current LiDAR quality control methods focus on the IQC rather than 

the EQC, due to the fact that it is still expensive and time-consuming to establish control 

points or surfaces. However, many of the IQC methods could be used for performing the 

EQC. 

 

2.3 Review of Previous Research in LiDAR Quality Control 

As mentioned early in this chapter, there is no enough research towards the 

quality control of LiDAR systems. Therefore, the main focus of this research is to 

implement existing methods and develop new ones for the quality control of LiDAR 

systems. It has been noticed that current research topics focus on the adjustment of 

LiDAR strips rather than detecting biases. The following paragraphs summarize strip 

adjustment methods suggested by other researchers. 

 

In the last decade, several quality control procedures were proposed. These 

procedures vary in terms of complexity, accuracy, and time consumption. In this section, 

the focus will be on the internal quality control methods. In other words, the methods that 
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use the output of LiDAR systems (clouds of points) in the assessment of the data quality 

will be discussed. These methods are discussed briefly in the following paragraphs. 

 

Pfeifer et al. (2005) suggested a correction polynomial to reduce the discrepancies 

between overlapping strips. This polynomial is meant to correct shift, range, and rotating 

mirror errors. The polynomial is a function of time; in other words, the polynomial 

parameters can change over time to enhance the modeling of errors in different locations. 

The simplest version of this polynomial is obtained when considering the polynomial 

parameters to be constant in the time domain. 

 

Another IQC method, based on a least squares adjustment procedure, was 

proposed by Maas (2000). This method uses a set of points from the first strip and 

generates a Triangulated Irregular Network (TIN) from the second strip. Then the least 

squares design matrix is constructed based on the point to patch normal distances. In this 

method, Least Squares Matching (LSM) is used to find the conjugate patches for artificial 

points derived from the generated TIN.  

 

Vosselman, et al. (2001) discussed the strip adjustment of LiDAR data using 

control and tie points. They suggested a nine-parameter mathematical model to be used 

when adjusting LiDAR strips. Tie points were extracted from the overlap area between 

LiDAR strips. Since a point to point correspondence is not available between LiDAR 

strips, the points had to be interpolated in order to achieve a match. In this method, field 

surveying is required to obtain ground control points. Therefore, this method is not 
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applicable in cases in which access to the study area is limited or prohibited. This is the 

case with many of the current EQC methods. 

 

A method using photogrammetrically generated Digital Surface Models (DSM) 

was proposed by Bretar et al. (2004). The concept here is to match LiDAR strips 

individually with a reference DSM generated using photogrammetric techniques. In this 

case, the adjusted LiDAR strips are consistent with the photogrammetric reference frame, 

which is a benefit for any further applications (e.g. 3D modeling, true orthophoto 

generation, virtual reality modeling). However, this method requires the availability of 

aerial photos or a previously generated DSM covering the study area, or a portion of it, 

which is not usually the case. Furthermore, errors coming from the photogrammetric 

process will be inherited in the LiDAR strip adjustment. The same benefits can be 

obtained using the current photogrammetric and LiDAR data integration techniques. 

Please refer to Ghanma, 2006 for further details. 

 

Kornus et al. (2003) suggested a block adjustment method that removes the major 

errors in the vertical direction. The assumption here is that LiDAR strips are affected by 

biases that act only in the vertical direction. Recent research proved that the amount of 

error in the vertical direction is smaller when compared to the error in the horizontal 

direction (Chapter Five). Horizontal shifts can mistakenly appear to be vertical biases, 

especially when interpolating different strips onto grids and generating difference images 

(subtracting the images from one another). This phenomenon can be seen clearly at break 

lines (e.g. building edges) 
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Rönnholm (2004) introduced a method of adjusting LiDAR strips using images 

covering the dataset area, and using human judgment to identify conjugate features 

between the images and the LiDAR strips. The adjustment process is then run 

simultaneously on all strips while measuring the conjugate features, until the estimated 

transformation parameters are no longer changing. Rönnholm argues that the human 

interference is an advantage, since the human has a greater ability to make judgments 

about features, even if the features are not perfectly clear. However, this method is not 

practical for LiDAR quality control. The process of quality control is expected to be fast 

and accurate. Moreover, due to the huge amount of data (LiDAR data) that comes out of 

a single mission, the process of quality control should be planned carefully, with the 

highest degree of optimization. 

 

Morin, 2003 researched the calibration of a LiDAR system, by developing and 

implementing a new calibration method for airborne laser scanner. In his research, 

potential error sources associated with various LiDAR systems were addressed. A 

rigorous stochastic model was provided and the need for control points in the calibration 

process was eliminated. However, the process of LiDAR calibration is still manual and 

time consuming. Moreover, the suggested method requires multiple LiDAR coverage 

with different flying configuration that does not usually exist in the normal process of 

data acquisition. Usually, LiDAR data is collected in the same manner photogrammetric 

data is measured (overlapping strips with opposite flying directions). 
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Lee et al. (2005) proposed a method based on the extraction of conjugate linear 

features from overlapping LiDAR strips. The method starts with an area that consists of 

some man-made features, and runs a clustering process in order to obtain planar patches. 

The patches are then intersected to get linear features of infinite length, which are later 

truncated using information from previously extracted patches. If the overlapping strips 

have no biases, the conjugate features should overlap nicely. However, when biases exist, 

these conjugate lines will be shifted with respect to one another in a certain direction. 

This is a very good method when the area covered by LiDAR is rich with intersecting 

patches (buildings‟ roofs). However, in areas that have no man-made features, it would 

be hard to extract the required primitives (linear features) for this method. Additionally, 

the automation level in this method is something that should be taken into consideration 

when developing algorithms for extracting linear features. 

 

Through this literature review, it has been discovered that there are no 

standardized procedures suggested for the quality control of LiDAR data. Moreover, the 

main concern of previous research is adjusting LiDAR strips, not detecting biases. Also, 

the automation and the optimization levels of the methods are not discussed, although it 

is believed that the data preparation takes the largest portion of time in the whole quality 

control procedure. The goal of this research is to develop and implement quality control 

methods/procedures that could be usable by both the data provider and the end user. 
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Chapter Three: LIDAR ERROR ANALYSIS 

 

3.1 Introduction 

In this chapter, we will be investigating the effects of biases and random noise in 

the system parameters and measurements on the quality of LiDAR output. As mentioned 

before, LiDAR consists of three main sensors positioned onboard the aeroplane. The 

GNSS unit provides position information, while the IMU unit gives attitude information.  

Due to the low frequency of the GNSS measurements, the IMU is used to fill in the gaps 

(give position information) in the GNSS data. On the other hand, the GNSS unit is used 

to model the drifts in the IMU derived position. Finally, the laser unit is used to obtain 

measurements of the object space, to feed the total system with range information. 

 

The effects of biases in the system boresighting parameters that are determined 

from a calibration procedure will be scrutinized here. In addition, the effects on the 

LiDAR output of noise in the system measurements from the integrated GNSS/IMU units 

will be investigated. In Equation 1.1, noise will be added to the vector  and to the 

rotation matrix . In this rotation matrix, noise will be added to the components 

 separately to study the effects for each component of the rotation matrix. 

Biases will be added to the vector , which represents the offset between the laser unit 

and the GNSS antenna phase center, with respect to the laser unit coordinate system. In 

addition, biases will be added to the   matrix in order to investigate the 
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significance of the calibration procedure on the accuracy of the derived object space. 

Finally, biases will be added to the range measurement . 

 

A wide range of experiments could be carried out. For instance, one might 

investigate the effects of biases on  (the rotation matrix that needs to be applied to 

the laser unit coordinate system to make it parallel to the laser beam coordinate system), 

or apply a scale error to the measured range  . Our target here is to investigate the 

influences of what are believed to be the major sources of biases in LiDAR.  Although 

the laser beam angles  are also considered as potential sources of errors, they will 

not be discussed, due to their strong correlations with the pitch and roll angles, 

respectively. 

 

3.2 Simulation of LiDAR Linear Scanner 

In order to carry out the aforementioned tests and to study precisely the effects of 

biases and noise, these tests must be held in a controlled environment. Therefore, a 

program has been designed to perform a simple simulation of LiDAR linear scanner data. 

This simulation starts with an artificially generated surface and trajectory. Then, LiDAR 

measurements and parameters are computed. After that, biases/noise are added to system 

parameters/measurements. Finally, the surface is reconstructed and compared with the 

original surface. The blue zigzag in Figure 3.1 is a visual representation of the simulated 

data. 
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The trajectory of the aeroplane is set to be along the Y-axis, and the swath angle 

of the laser beam is assumed to be  degrees. Five thousand points are generated in 

two hundred lines (swaths), and the laser beam starts from an angle of negative twenty 

degrees with respect to the nadir, and finishes with an angle of twenty degrees. The 

aeroplane travels at a speed of one hundred meters per second and an acceleration of 

zero. The attitude is set to zero for all rotation angles. 

 

 

Figure 3.1: A visual representation of the LiDAR simulation data. 

 

In the simulations, the ground is assumed to be flat, horizontal terrain in order to 

eliminate any terrain-related patterns in the generated figures. The flying height is set to 

five hundred meters above the ellipsoid (four hundred and fifty meters above the ground).  
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Another case that will be discussed is the generation of overlapping strips 

consisting of strips flown in opposite directions. An overlap of thirty percent of the strip 

width is assumed, a summary of this simulation configuration could be found in Table 

3-1. The objective was to study the behaviour of biases when flying in different 

directions, at different heights, and with different overlap ratios. Although other 

simulations were run under different configurations (e.g. different flying heights and 

different overlap amounts), we will discuss only the tests done using the configuration 

described above, due to similarity in the results. The following section elaborates on the 

noises and biases added and the analysis of their effects. 

Table 3-1: Simulated data parameters 

Parameter Value 

Terrain Slop Flat Horizontal Terrain 

Flying Height Above Ground 450 meters, 850 meters 

Scanning Angle  

Flying Direction South-North, North-South 

Flying Speed 100 meters per second 

Scanner Type Linear Scanner 

Overlap Percentage 30% 

Number of Samples in one 

Line (Forward and Backward) 
200 

Total Number of Samples 5000 per strip 

Strip Width ~225 meters, ~620 meters 

 

3.2.1 Linear Scanner & Boresighting Offset Bias  

Shifts of ten, twenty, and thirty centimetres were added to the X,Y,Z components, 

respectively, of the boresighting vector , and, as expected, the effects of this bias are 



19 

 

constant shifts in the object space. The blue zigzag in Figure 3.2 represents the ground 

truth and the pink one is the ground derived after adding the shifts. 

   

Figure 3.2: Effects of boresighting offset bias for a linear scanner 

 

Note that in the above figure, we are able to visualize biases in the Z direction 

only. A better visualization of the errors could be accomplished by subtracting the true 

surface from the biased surface (Figure 3.3). Note that the biases in the planimetric 

directions are dependent on the flying direction, while the bias in the Z direction is not.  

 

 

Figure 3.3: Surface differences resulting from biases for a single strip (left) and two 

overlapping strips (right). 
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Another way to study the effects of biases is by deriving their impacts using the 

LiDAR equation. This is accomplished by deriving LiDAR equation with respect to the 

parameter containing the desired bias. Equations 3.1 to 3.5 represent the steps done to 

derive the effects of the boresighting offset bias. For simplification purposes, the 

boresighting shift and orientation parameters are set to zero. Therefore, the matrix 

 will always be identity. Also, the attitude angles are set to zero for the same 

reason. 

 3.1 

 3.2 

 3.3 

 3.4 

 3.5 

 

It can be seen clearly now that the derived errors (Equations 3.3 to 3.5) have the 

same magnitude and direction as the added errors. This indicates that such a bias will be 

independent of the flying height and the look angle, but will be dependent on the flying 
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direction because of the contribution of the rotation matrix. As mentioned before, the 

attitude information is set to zero, but when flying in the opposite direction, the yaw 

angle is set to 180 degrees. 

 

3.2.2 Linear Scanner & Boresighting Angular Roll Bias  

In this test, a sixty second bias was added to the boresighting roll angle  

(Figure 3.4). Since we are dealing with a linear scanner and a bias acting across the flying 

direction (the flying direction is along the Y axis), the major bias is expected to be in the 

X direction. 

 

 

Figure 3.4: Bias added to the roll angle: the light blue is the original swath and the 

dark blue is the biased one (roll angle bias). 

 

The following figure shows the simulated ground object after adding the desired 

bias. It is clear that errors in the vertical direction are experienced. Figure 3.6 shows two 

strips (flown in opposite directions) generated after adding the same bias in both strips. 

Note that the direction of the biased surface changes between strips. 
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Figure 3.5: Isometric and front views of the biased and accurate surfaces (roll angle 

bias). 

 

Figure 3.6: A front view of two overlapping strips (roll angle bias). 

 

The effects of a bias in the roll angle can be seen clearly in the difference figures 

below (Figure 3.7). In the left figure, we notice that the major errors appear in the across 

flight direction, as expected. The Z direction experienced different magnitudes of error 

depending on the look angle of the laser beam (error is maximum when the beam is at the 

edges, and minimum at the nadir point). 
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Figure 3.7: Differences resulting from biases for a single strip (left) and two 

overlapping strips (right). 

 

It is obvious that in the case of this bias, the behavior of the errors is dependent on 

the flying direction. Note how the errors in the across flight and Z directions changes 

between strips. This indicates that it is possible to detect such a bias whenever we have 

overlapping strips in opposite directions (only bias in the Z direction could be detected 

when flying in similar directions). To verify these conclusions, one can derive the errors 

caused by the roll angle, as shown in Equations 3.6 to 3.11. 

Assuming that the angle  is very small, therefore  and 

. 
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 3.9 

 3.10 

Assuming , and  yeilds,  

 3.11 

Note that in Equation 3.11, the term  is nothing but the flying height „z‟ 

above the ground (simulated surface), which will always be constant. However, the term 

 is the x position of the measured point, which changes depending on the look 

angle  (Figure 3.8). Therefore, the height is expected to be constant over the whole strip, 

and the variation in x is dependent on the look angle (Figure 3.7). This x component is 

also dependent on the flying height, due to the range component. Generally speaking, the 

effect of a bias added to the roll angle is dependent on the look angle, the flying height, 

and the flying direction. 

Figure 3.8: The relationship between the range measurement and the x and z 

components of the point position 

 

  
  

  

  



25 

 

3.2.3 Linear Scanner & Boresighting Angular Pitch Bias  

In this subsection, a bias of 60 seconds is added to the pitch angle. Figure 3.9 

illustrates the added bias. The linear scanner is assumed to be looking down (blue ray), as 

shown in this side view. The bias makes look forward or backward, depending on the 

sign of the bias (red ray). 

 

Figure 3.9: Bias added to the pitch angle: blue denotes the correct laser beam and 

red is the biased one (pitch angle bias). 

 

Figure 3.10 is used to visualize the difference between the true and biased 

surfaces. The effect of this bias acts mainly along the flying direction. The resulting 

differences in the across flight and Z directions were zero, causing the X curve to overlap 

with the Z curve. This is not the case when dealing with an elliptical scanner, for which 

more error is expected to act across the flying direction. 
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Figure 3.10: Difference between the true and biased surfaces after adding a pitch 

angle boresighting bias. 

 

Similarly to what has been done in the previous subsections, the results shown in 

Figure 3.10 are verified by mathematically deriving the errors resulting from the pitch 

angle bias. Equations 3.12 through 3.17 show the flow of the derivation. Similar 

assumptions to the ones made in the previous section will be used here. 
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 3.17 

Equation 3.17 proves that this bias has no effect on either the across flight or the 

Z positions, and that there is a constant bias along the flying direction ( ), 

which is consistent with the results shown in Figure 3.10. Finally, we conclude that 

biases added to the pitch angle affect the „along flight‟ direction only. Moreover, these 

effects are independent of the laser scanner look angle, but dependent on the flying height 

and direction. 

 

3.2.4 Linear Scanner & Boresighting Angular Bias  

For this test, 60 seconds are added to the Yaw angle , and Figure 3.11 indicates 

that the effects of this bias are along the flying direction. Figure 3.12 visualizes the 

resulting difference between the true and biased surfaces. In the right part of the figure, it 

is seen that this bias is independent of the flying direction (differences for both strips are 

identical, regardless of the flying direction). This bias is still detectable in overlapping 

strips due to the differences between the overlapping areas; however, one cannot detect 

this bias when comparing strips with 100% overlap. 

 

Figure 3.11: Bias added to the boresighting yaw angle: the blue swath represents the 

original footprint and the red swath the biased one (yaw angle bias). 



28 

 

 
Figure 3.12: Difference between the true and biased surfaces after adding a yaw 

angle boresighting bias. 

 

Similar to the previous sections, Equations 3.18 to 3.23 shows the mathematical 

derivation of Yaw angle error in LiDAR equation. 
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3.2.5 Linear Scanner & Laser Beam Range Bias  

Laser range bias occurs when the laser beam gives inaccurate (biased) 

measurements. There are two possible cases; the first is a scaled bias that adds errors to 

the measurements as a function of the range, and the second is a constant bias that is 

added regardless of the range value (timing bias). The constant bias is discussed in this 

section while the other bias will not be discussed due to similarity between the results of 

both biases. The figure below shows the effects of a 50 cm bias that is added to the range 

value. Notice the smiling effect on the biased surface. 

 

Figure 3.13: Isometric and front views of the accurate surfaces and the surfaces 

affected by range bias. 

 

In the following figure (on the left), notice that the smiling effect appears only for 

the differences in the Z direction. However, other tests showed a slight curvature in the X 

differences as well. In the figure on the right, we notice that the errors are independent of 

the flying direction. 

 

-400
-200

0
200

400

0
200

400
600

800
49.5

49.6

49.7

49.8

49.9

50

50.1

50.2

 

x-axis

Ground Truth & Biased Surface

y-axis

 

z
-a

x
is

Ground Truth

Biased Surface

Trajectory

-200 -150 -100 -50 0 50 100 150 200
49.5

49.6

49.7

49.8

49.9

50

50.1

50.2  
Ground Truth & Biased Surface

x-axis

 

z
-a

x
is

Ground Truth

Biased Surface

Trajectory



30 

 

 

Figure 3.14: Differences resulting from the bias for a single strip (left) and two 

overlapping strips (right). 

 

A mathematical proof of this bias effect is shown in Equations 3.24 to 3.28. As 

mentioned before, the boresighting parameters and the attitude angles are assumed to be 

zero for simplification purposes. Equation 3.28 shows that there is no error component 

acting in the Y direction. Errors are mainly in the Z direction, with a maximum bias when 

the look angle is downward ). Error appears and increases across the flying 

direction as the look angle strays from the nadir direction . 
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 3.27 

Since the angle  is equal to zero for a linear scanner, and assuming  yeilds,  

 3.28 

 

As mentioned before, errors appear in the Z and across the flying (X) directions. 

The errors in the Z direction are not linear (Figure 3.14). It was mentioned also that the 

bias in the X direction is non-linear as well. The reason why the smiling effect is obvious 

in the Z curve and not in the X curve could be related to the behaviour of the sine and 

cosine curves. Figure 3.15-right shows both the sine and cosine curves. We are interested 

in the portion between -20 and 20 degrees (Figure 3.15-left), which is the rotating mirror 

rotational range. It is clear that the curvature in the cosine curve for this portion is higher.  

 
Figure 3.15: Curvature in the sine and cosine curves 
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3.2.6 Linear Scanner & Integrated GNSS/IMU Position Noise  

In this subsection, random noise with a Gaussian distribution is added to the 

integrated GNSS/IMU position information. This random noise produces random errors 

with the same magnitude in the object space, as shown in Figure 3.16. Similarly to the 

biases introduced in the boresighting shifts, this noise is independent of the flying height 

(Equation 1.1) and the look angle. 

 

Figure 3.16: The effects of noise added to the integrated GNSS/IMU position on the 

object space 

 

3.2.7 Linear Scanner & Integrated GNSS/IMU Attitude Noise  

Usually, it is expected that random noise will lead to random errors in the derived 

point cloud. Moreover, it is commonly believed that random noise will not affect the 

relative accuracy(ASPRS LiDAR Committee (PAD), 2004). However, this is not the case 

for LIDAR systems. In other words, some of the random errors might affect the relative 

accuracy of the derived point cloud. Depending on the considered parameter, the relative 

effect of the corresponding noise level might not be the same. As an illustration, Figure 
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3.17 shows that a given attitude noise in the INS derived orientation will affect the nadir 

region of the flight trajectory less significantly than off nadir regions. Thus, the INS error 

will affect the relative accuracy of LIDAR derived point cloud.  

 

Figure 3.17: Error trend resulting from the addition of random (white) noise to the 

integrated GNSS/IMU attitude. 

 

3.3 Conclusion 

As shown in this chapter, biases have different influences on the reconstructed 

surfaces; some of them are dependent on the flight direction, while others are 

independent of the flying direction. Biases might affect the accuracy in a certain 

direction, or in some cases, can act in more than one direction. In addition, these biases 

vary in terms of the dependency on the look angle and on the flying height. From such 

information, an indication of the error source might be derived. The following table 

summarizes the behavior of various errors in the derived object space resulting from 

biases and noise in the system parameters and measurements, respectively. 
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Table 3-2: Summary of the relationships between bias/noise sources and the flying 

height, flying direction, and look angle
1
. 

                                                 

1
 Assumptions: linear scanner, constant attitude & straight line trajectory, flying direction parallel to the Y 

axis, and a flat horizontal terrain. 

 Flying Height Flying Direction Look Angle 

Boresighting 

Offset Bias 

Effect is 

independent of the 

Flying Height 

Effect is independent 

of the Flying 

Direction 

Effect is 

independent of the 

Look Angle 

Boresighting 

Angular Bias 

Effect Increases 

with the Flying 

Height 

Effect Changes with 

the Flying Direction 

Effect Changes with 

the Look Angle 

(Except Across the 

Flying Direction) 

Laser Beam 

Range Bias 

Effect is 

independent of the 

Flying Height 

Effect is independent 

of the Flying 

Direction 

Effect Depends on 

the Look Angle 

(Except Along the 

Flying Direction ) 

Laser Beam 

Angular Bias 

Effect Increases 

with the Flying 

Height 

Effect Changes with 

the Flying Direction  

(Except Along the 

Flying Direction ) 

Effect Changes with 

the Look Angle  

(Except  Across the 

Flying Direction ) 

Position noise Effect is 

independent of the 

Flying Height 

- Effect is 

independent of the 

Look Angle 

Attitude noise Effect Increases 
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Chapter Four: METHODOLOGY 

4.1 Introduction 

As suggested by the LiDAR equation (Equation 1.1), there is no redundancy in 

LiDAR measurements. This is because, due to the random nature of LiDAR points, one 

cannot measure the exact same point in different passes. Therefore, unlike with 

photogrammetric data, one cannot use explicit measures to assess the quality of LiDAR-

derived positional information (e.g. the a posteriori variance component and the variance-

covariance matrix of the derived ground coordinates of LiDAR footprints). Therefore, 

alternative quality control methods are necessary for this type of data. In this chapter, 

some measures for the internal and external quality control of LiDAR data will be 

provided. 

 

The need has arisen for unconventional ways to define the correspondence 

between different strips. Lines and patches have been studied in this research, and have 

proven to work with both simulated and real data. To extract patches and lines from 

LiDAR data, a segmentation procedure must be run in order to isolate point clouds that 

belong to planar patches. Urban areas are rich with planar patches, which can be located 

on building roofs and, in general, on any manmade monuments. These patches are later 

intersected to produce the required linear features.  

 

The methods addressed in this chapter include the Iterative Closest Patch method 

(ICPatch) and the Iterative Closest Point method (ICPoint). The ICPatch method has 
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proven to work efficiently, while the ICPoint method is good only when looking for a fast 

and approximate way to qualify our data. 

 

In this research, LiDAR_QC software was designed to make the LiDAR quality 

control process as smooth and as fast as possible. LiDAR quality control using lines and 

patches is implemented in this software in both fully automated and semi-automated 

procedures. A brief description of LiDAR_QC can be found in Chapter 5. 

 

This chapter starts with a discussion of quality control using range and intensity 

images, which is proposed in Section 4.2. In Section 4.3, the quality control of LiDAR 

data using segmented planar patches will be discussed. At the beginning of the latter 

section, a brief description of LiDAR data segmentation is provided. Two methods of 

quality control using linear features (the endpoint method and the line constraint method) 

are discussed in Section 4.4. Section 4.5 describes the Iterative Closest Patch (ICPatch) 

method, and finally, the Iterative Closest Point (ICPoint) method is discussed in Section 

4.6. 

 

4.2 LiDAR Quality Control Using Interpolated Range and Intensity Images 

This approach requires both interpolated range and intensity images. The intensity 

images are used to extract similar features in overlapping strips. The range image is used 

to obtain the height values for the planimetric coordinates retrieved from the intensity 

images. Figure 4.1 shows examples of intensity (left) and range (right) images generated 

from a LiDAR point cloud. 
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Figure 4.1: Intensity image (left) and range image (right) generated from a LiDAR 

point cloud 

In this approach, the user must manually measure the points in both strips, by first 

identifying corner features in the intensity image of the first strip and then, using his/her 

judgment, decide the proper location of its conjugate in the second strip, as in Figure 4.2. 

The height data could be extracted automatically from the range image at the planimetric 

location of the identified points in the intensity images. These heights could also be 

extracted from the raw measurement using the nearest neighbour technique. 

Unfortunately, this method is time consuming due to the manual nature of the procedure. 

Moreover, the interpolation of the intensity and range images adds errors to the data and 

thus the results of this method might be unreliable and incorrect.  

  
Figure 4.2: Manual extraction of conjugate points from overlapping LiDAR strips. 

The red crosses represent the user defined locations of the conjugate features. 
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A semi-automated process using the above method was developed using the 

concept of cross correlation. Since the intensity images are registered, once a point is 

selected in the left strip, its location can be used as an origin for the cross correlation. A 

window, with a predefined size, is the search space. Then a moving matching window 

within the search space is compared with the template to define the similarity measure. 

Then, the location with the highest similarity measure represents the corresponding point 

location. 

Figure 4.3 shows the results from the cross correlation procedure. Each red cross 

in the left image represents a user defined location (manually clicked) and each red cross 

in the right strip represents the origin of the corresponding search space. Each blue cross 

is the best match to a template defined from the left strip (i.e. the location of the matching 

window with the highest correlation coefficient). Note that some of the cross correlation 

results fail to find the right conjugate point (there are ambiguities) due to the poor detail 

in the image. This problem can be reduced by increasing the template size, but on the 

other hand, doing so would lead to a greater required calculation time. Also, the careful 

selection of the reference template is necessary. 

  
Figure 4.3: Semi-automatic extraction of conjugate points from overlapping LiDAR 

strips. 
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4.3 LiDAR Quality Control Using Patches 

4.3.1 Introduction 

Conjugate planar patches in overlapping strips should be coplanar, regardless of 

the flying direction or any other parameters, unless there are biases affecting the data. 

Using this fact, planar patches can be used to qualify or detect biases in the LiDAR 

datasets. Before we discuss this method, a procedure that is used for the segmentation of 

LiDAR data (extraction of planar patches) is discussed in the following section. 

  

4.3.2 Segmentation of LiDAR Data 

A new approach for planar patch segmentation from LiDAR data was developed 

by Kim et al. (2007). This segmentation procedure begins with a neighbourhood 

definition based on the physical characteristics of the surfaces. Then the surface normals 

(which are used as attributes) are calculated from predefined origins to the computed 

planar patches. These attributes are added to an accumulator array (Figure 4.4, in a form 

of a histogram) for the purpose of clustering. Two origins are used to derive the 

aforementioned attributes for each patch, in order to avoid ambiguities. The boundaries of 

the clusters are then studied in order to disambiguate co-planar patches that represent 

different physical surfaces. Please refer to Kim, et al., 2007 for further explanation. Once 

the segmentation process is done as shown in Figure 4.5-right, LiDAR data is now 

classified into groups which are ready to be matched with other patches from different 

strips. 
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Figure 4.4: Two side views of an accumulator array used in the segmentation 

algorithm. 

 
Figure 4.5: LiDAR point cloud before the segmentation (left) and after running the 

segmentation algorithm (right); different colors indicate different planar patches. 

 

4.3.3 Patch Matching Process 

Once the segmentation of LiDAR data is done in a common area for two 

overlapping strips, it is time to start matching conjugate patches, which represent the 

same physical surface. This could be accomplished through an automatic process as 

described below: 

1. Generate the centroid for each patch in both strips; since conjugate patches 

are similar, the centroids of the conjugate patches should be very close to 

each other. Therefore, the closest centroid in one strip (or the centroids 
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that is located within a buffer from the target centroid in the other strip) 

is/are assumed to be a potential match. 

2. The angle(s) between the first patch and the potential conjugate patch(es) 

are compared to determine the degree of similarity between these platches. 

3. Once the patch with the best matching parameters is found, both patches 

are visualized to ensure the correctness of the chosen patch, and to 

determine the number of points constituting these patches; patches 

containing more points are preferred. An example of this visualization is 

shown in Figure 4.6.  

 
Figure 4.6: Top view of matched patches (left) and a side view (right) showing the 

co-planarity of the patches. 

4.3.4 Point Based Method 

Once we have obtained conjugate planar patches, the relationship between 

patches with similar characteristics must be established. Usually, LiDAR data is provided 

to the end user with an estimate of the point accuracy. The idea in this method is to 

expand or relax these points‟ accuracies along the direction parallel to the plane, while 

maintaining the original accuracy along the direction normal to the plane (Habib, et al., 

2007). Once this is accomplished, a point to point relationship could be established, even 
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if these points are not conjugate. A description of how to expand the aforementioned 

error ellipses is in the following paragraphs. 

 

Assume Figure 4.7-a is a point in the XYZ coordinate system with the error 

ellipsoid shown. The variance covariance matrix representing this error ellipse is 

transformed based on the rotation matrix R (rotation matrix between the reference frame 

coordinate system (XYZ) and the plane coordinate system (UVW), where UV are along 

the plane and W is normal to the plane parallel direction) obtained from the plane fitting 

process. The matrix is transformed into the plane coordinate system according to the law 

of error propagation, Equation 4.1, as shown in Figure 4.7-b. 

 4.1 

 

  

 
a b c 

Figure 4.7: Conceptual basis for using planar patches in a point-based approach for 

the determination of the conformal transformation parameters between two 3D 

datasets. 

 

Next, the variances are artificially enlarged along the direction parallel to the 

plane, which is, in this case, the UV plane, according to Equation 4.2 and Figure 4.7-c. 
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 4.2 

In the above equation, the N and M terms are user-defined, or can be set 

automatically using previous knowledge of the plane dimensions. 

 

One might argue that it would be better to multiply the expanded variances 

instead of adding them (Equation 4.3). Both equations are valid as long as we are aware 

of the special cases involved in each equation. For example, the user might input very 

small variance values that will not make the expanded values big enough. 

 

 

4.3 

Once the variances are expanded, they may be transformed back to the original 

XYZ coordinate system, as shown in Equation 4.4 

 4.4 

From here, any point in the first plane could be considered a match for any point 

in the second plane, where the only restriction is that the plane with the larger number of 

points should be truncated to have the same number of points as found in the other plane. 

A minimum of four patches (three non-parallel and one parallel) are required, in the ideal 

case, to define the datum parameters. For further explanation of the minimum 

requirement, please refer to Section 4.5 in Ghanma, 2006. 
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A 3D-Conformal Transformation is a transformation that preserves the geometry 

of the objects being transformed; it uses three translations, three rotations, and a scale 

factor. This transformation is assumed to be valid between the points from different 

patches; however, there is no assumption that the 3D-Conformal Transformation is the 

best model to be used for LiDAR error modeling. The target here is to detect any biases 

or inconsistencies in the LiDAR data. This could be done using the conformal 

transformation in the case of no biases; the 3D conformal parameters are estimated as one 

for the scale factor and zeros for the remaining parameters. However, if biases exist, the 

estimated parameters will deviate from the aforementioned values.  

 

A least squares solution is used to estimate the three rotations, three translations, 

and scale factor. Since no biases is assumed to exist in LiDAR data, initial 

approximations of these unknowns can be considered to be three zeros, three zeros, and 

one, respectively. In order to summarise the process flow of the least squares solution, let 

us define the following entities: 

 A  vector that contains the point coordinates of the first dataset;  

represents the number of points. 

 A  vector that contains the point coordinates of the second data set. 

 A  matrix that contains the variance-covariance information for each 

point in dataset 1. 

 A  matrix that contains the variance-covariance information for each 

point in dataset 2. 
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 Initial approximation of the translation along the X-axis. 

 Initial approximation of the translation along the Y-axis. 

 Initial approximation of the translation along the Z-axis. 

S Initial approximation of the scale factor between the two datasets. 

 Initial approximation of the rotation around the X-axis. 

 Initial approximation of the rotation around the Y-axis. 

 Initial approximation of the rotation around the Z-axis. 

R The  rotation matrix resulting from Equation 4.5. 

A The design matrix. 

 The  weight matrix  built for each point. 

W The  block diagonal weight matrix; each block is  and has  

subblocks of  along the diagonal. 

N The constructed normal matrix. 

L A  observation vector. 

X The estimated corrections to the unknown parameters. 

 An integer counter that represents the i
th

 row in a given matrix; i is a zero-based 

counter with a maximum value of . 

The first step is to build the rotation matrix, as shown in Equation 4.5, in order to 

build the weight matrix of each individual point. 

 

4.5 
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Now, and are merged together, after transforming  to the  

 coordinate system, as shown in the following set of equations: 

 4.6 

 4.7 

 4.8 

 

 

4.9 

The weight matrix  of each point is simply the inverse of the variance co-

variance matrix resulting from Equation 4.10. 

 4.10 

After computing  as shown in Equation 4.10, the W matrix can now be 

converted to its final form by adding the weight information for all the points in a block 

diagonal shape, as shown in Equation 4.11 

The L matrix can be computed by subtracting the points‟ values in  from 

their corresponding values in  , after applying the transformation function. Equations 

4.12, 4.13, and 4.14 represent the procedure for the X, Y, and Z values, respectively. 

 4.11 

 4.12 

 4.13 

 4.14 
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Each point yields three equations; the partial derivatives of these equations with 

respect to the parameters can be found in Appendix A. Once the formulas for the partial 

derivatives are built, they are used to build the design matrix, as shown below. 

After all the required matrices have been prepared, a least squares solution can be 

performed in order to obtain the corrections to the given initial approximations (Equation 

4.16). And the quality of the least squares solution could be estimated by calculating 

sigma a postoriori as in Equation 4.17. 

These corrections are added to the initial approximations in order to rebuild the 

matrices for a second loop of the least squares solution; this process is repeated until the 

 4.15 

 4.16 

 4.17 
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estimated sigma is not changing significantly. The following diagram shows the work 

flow for the iterative solution.  

Build A, L, W

Solve  For X

Check Sigma 

Difference 

Output 

Results

Add the 

Corrections

 

Figure 4.8: The flow of the least squares solution. 

Sometimes, numerical instability is experienced due to the huge values of  

and  used to build the N matrix. This instability occurs when trying to invert the N 

matrix, and might cause wrong results. A simple solution to overcome this problem is to 

subtract a constant value (the centroid of one of the datasets) from the given  

and  values. However, it was proven that this shift affects the estimated translation 

parameters, and that the best value for the shift is the centroid of the point cloud. A 

summary of this proof is provided below. 
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We have the following 3D-Conformal Equation, 

 4.18 

By changing the origin of the reference frame, it is expected that the 

transformation parameters will change as shown in Equation 4.19, 

 4.19 

In the above equation, is the centroid of . Now, we would like to 

investigate the relationship between  and ), 

 4.20 

 4.21 

The above equation is valid for all the points within  if and only if: 

1. . 

2. and . 

From the above points, it is concluded that changes due to the shift affect the 

translation vector only. Now, we will investigate the correctness of choosing the centroid 

coordinates as the shift. The estimated shifts in the second dataset before and after 

applying the transformation could be calculated as bellow. 

 4.22 

Now, summing all the values in  gives the following equation, 

 4.23 

Rearranging Equation 4.23 and replacing  with  and  with  

yields, 
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 4.24 

Knowing that  one yields, 

 4.25 

From the above, we conclude that the estimated shifts  is equal to the average 

shifts for all the points in the second dataset. Which happens only and only if the origin 

of the dataset is shifted to be at the centroid of the same dataset. 

 

4.4 LiDAR Quality Control Using Lines 

4.4.1 Introduction 

Lines have proven to be useful in various photogrammetric applications (e.g. 

Camera Calibration, Single Photo Resection, etc.) (Habib, A; Morgan, M; Kim, E.M; 

Cheng, R, 2004). In the same manner, lines are thought to be useful for the purpose of 

LiDAR Quality Control. 

 

Once the patches are extracted, as described in Section 4.3, lines can be obtained 

by intersecting neighbouring patches. Usually, the lines used have physical 

representations.  Virtual lines could be used as well, as long as they are not too far from 

their patches, because the reliability of the lines is  reduced if they are located far from 

their patches. Figure 4.9 shows a typical line extracted from two patches on the same 

building. Another acceptable line shape could be as shown in Figure 4.10.  
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Figure 4.9: Physical line extracted from two patches on the same building. 

 

 
Figure 4.10: Non-physical (virtual) line extracted from two neighbouring patches on 

two different buildings. 

 

When extracting the lines, it is up to the operator to decide whether the line is 

acceptable. A threshold value for the distance between the line and the patches could be 

introduced in order to automate the line extraction process. In this research, the threshold 

is set to be twice the point density. Figure 4.11 shows a case in which the line will be 

rejected. Unreliable lines result in incorrect estimates of the bias between the LiDAR 

strips. The aforementioned threshold is also used to determine the extreme points 

(endpoints) of the lines, by simply projecting all the points that fall within a certain buffer 

onto the line segment (Figure 4.12) and selecting the points farthest along the line 

segment to be the endpoints. 
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Figure 4.11: Non-physical line extracted from two non-neighbouring patches on two 

different buildings. 

 

 

Figure 4.12: Projecting points within a buffer to define the line endpoints. 

 

The matching of conjugate lines is done in a fully automated procedure. Simply, 

the following three conditions must apply in order to consider a pair of lines in 

overlapping strips to be conjugate: 

1. The average normal distance between the lines should be less than a threshold. 

The normal distance is the average of the normal distances shown in Figure 4.13. 
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2. The angle between the two lines should be small (less than 5 degrees); in other 

words, the differences between the parameters for the first line and those for the 

second line should be very small. 

3. Finally, a reasonable overlap between the lines should exist; 70% overlap is an 

example of a reasonable overlap percentage. This overlap percentage is defined as 

the shortest distance between the two lines‟ endpoints, divided by the longest 

distance between endpoints (projected at one of the lines).  Figure 4.13 shows an 

example of the overlap between two lines. 

4. Finally, after all the lines are matched, they will be visualized to the user to make 

a judgment on which lines should be included and which ones are outlayers. 

 

 

Figure 4.13: Normal distance in a line pair. 

4.4.2 Line Endpoint Method 

This method employs the same concept introduced in Section 4.3 but in this case, 

the variances are expanded along one dimension only, which is, in this case, along the 

direction parallel to the line. 

Overlap 
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Using the error propagation formula shown in Equation 4.26, the variances of the 

lines‟ endpoints are transformed to the UVW coordinate system, in which the U axis is 

parallel to the line, and the V and W axes are perpendicular to the U axis. Then, using the 

same method used in the previous expansion process, the endpoint variances are 

expanded along the line direction, as shown in Equation 4.27. 

 4.26 

 

Figure 4.14 presents the conceptual basis of using linear features with the point-

based approach for the determination of the conformal transformation parameters 

between two 3D datasets. 

 

a b c 

Figure 4.14: Conceptual basis for the use of linear features with the point-based 

approach for the determination of the conformal transformation parameters 

between two 3D datasets. 

 4.27 

Once the variances are expanded as shown in Figure 4.14-c, they can be returned 

to the XYZ coordinate system using Equation 4.28. 
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 4.28 

Now, the matrices required to perform a least squares solution can be built in a 

similar way to that discussed in Section 4.3.4. Each endpoint yields three equations (six 

equations for each line pair); the partial derivatives of the observations with respect to the 

parameters are exactly the same as the Equations shown in Appendix A. Once the 

formulas for the partial derivatives are built, they are used to build the design matrix, as 

shown in Equation 4.15. A minimum of two non-coplanar lines are needed to define the 

reference datum. 

 

After all the required matrices are prepared, a least squares solution is performed 

in order to obtain the corrections to the given initial approximations (Equation 4.16). The 

resulting corrections are added to the initial approximations in order to rebuild the 

matrices for a second loop of the least squares solution. This process is repeated until no 

significant change occurs in the computed a posteriori sigma value.   

 

4.4.3 Line Constraint Method (Collinearity Method) 

In contrast to the method in Section 4.4.2, endpoints in extracted lines are not 

used directly. The collinearity of the conjugate lines, which is defined by the lines‟ 

endpoints, is instead used to provide the necessary constraints for the definition of the 

transformation parameters. 
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Figure 4.15: Corresponding lines represented by non-conjugate endpoints from two 

different LiDAR strips. 

 

From Figure 4.15, we are able to define a constraint such that point 1 can be 

represented with respect to the line AB. Point 1, after applying the required 3D conformal 

transformation, is equal to the point A plus a scale factor multiplied by the vector . A 

mathematical representation of this constraint is shown below. 

 4.29 

Where  is the translation between the origins of the coordinate 

systems of the two LiDAR strips,  and  are scale factors, and  is an orthogonal 

rotation matrix. 

 

A similar constraint equation can be written for point 2 (Equation 4.30). It is 

worth mentioning here that it is not important to match a point from one line with the 

closest point in the conjugate line. For instance, the constraint equation for point 1 can be 

written with respect to either one of the points A and B. The scale factors  and  take 

care of either case. 
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 4.30 

 

Next, subtracting Equation 4.30 from Equation 4.29 yields: 

 4.31 

 

The three scale factors , , and can be substituted by one scale factor . After 

the substitution and rearrangement of the above equation, the following equation is 

produced: 

 4.32 

Similarly to the manipulation that is done in forming the collinearity equations, 

we divide the first two rows by the third one in order to eliminate the scale factor from 

the above equation. This will result in the following: 

 

4.33 and, 

 

These two equations contribute to the determination of the rotation 

angles . The next equations to be derived are those that contribute to the 

determination of the scale factor and the translation vector. These equations are shown 
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below. For further explanation, please refer to Section 3.4.2 in the work by Ghanma, 

2006. 

Applying the same constraint to point „1‟ in Figure 4.15 yields Equation 4.33,  

 4.34 

Where,  

  

Re-arranging the terms in the above equation, and dividing the first two rows by 

the third one to eliminate will yields Equations 4.35 and 4.36. 

 4.35 

 4.36 

Applying the same derivation above for point „2‟ in Figure 4.15 gives the 

following equations, 

 4.37 

 4.38 

Finally, dividing Equations 4.35 and 4.36 by Equations 4.37 and 4.38, 

respectively, and re-arranging the terms yields the following final equations, 

 4.39 
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and,  

 4.40 

A minimum of two non-coplanar line pairs are needed to recover the three 

translations, three rotations and scale factor.  

 

The endpoint and line constraint methods are expected to yield similar results. 

The endpoint method looks easier to derive and to apply since we are still using the 

traditional point-based least squares solution; however, this is an insignificant difference. 

The minimum requirements for both methods are the same (two non-coplanar lines). 

Therefore, the conclusions made are that both methods give similar results and that they 

have the same load in terms of processing time. 

 

4.5 LiDAR Quality Control Using Iterative Closest Patch (ICPatch) 

So far, all the above quality control methods require some form of pre-processing 

of the raw data (i.e. generating range and intensity images, segmentation, plane 

intersection). Hencke, other methods of quality control might be developed while using 

the original point cloud, or at least methods that requires minimal pre processing of the 

original data.  

The ICPatch method does not assume point to point correspondence; it assumes a 

point to patch relationship. Consider two LiDAR strips; the first strip is provided in TIN 

(Triangulated Irregular Network) form, and the second strip is given as a cloud of points. 
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For a given area, consider that the two datasets represent the same physical surface, but 

with different point distribution. Figure 4.16 presents the point to patch correspondence. 

 

Figure 4.16: Point to patch correspondence using the ICPatch method 

If we are to transform the points in to , the point  will be represented as  in . 

The transformation function is the 3D conformal function shown below: 

 4.41 

 

Theoretically, if both surfaces are representing the same object perfectly, the point 

 should belong to the triangle , , . In other words, the normal distance from  

to the triangular surface should be zero. This is the constraint that is used in this method, 

for which a mathematical representation of the constraint is shown Equation 4.42. Please 

refer to Cheng, 2006 for further details. 

 4.42 
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The final task to be done, before running a least squares solution, is to establish 

the correspondence between the patches in the first strip and the points in the second 

strip. In other words, it is necessary to determine which points in strip 2 belong to which 

patches in strip 1. To accomplish this, two conditions are set, after transforming the 

second surface to the first one using the initial approximations of the transformation 

parameters. First, we should find the patch with the shortest normal distance to the 

selected point, and second, the projection of that point onto the triangle should be located 

within the triangle. The volume of the tetrahedron shown in Figure 4.17 is minimized in 

the least squares solution, which is repeated until the estimated parameters do not change. 

Not all of the points and patches are expected to have a match; examples of non-matching 

points and patches are shown in Figure 4.18. It worth mentioning also that this method 

requires many more iterations than previous methods to converge to the right parameters; 

this will not be considered a disadvantage, however, as even with this huge number of 

iterations, the time spent is still reasonable. 

 
Figure 4.17: Volume generated by the triangle corners from the first strip and the 

red point from the second strip 
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Figure 4.18: Non-matched points (red color) and matched points (blue color) with 

the TIN generated from another strip in the overlapping area. 

 

When dealing with a huge amount of bias or when trying to calculate the 

transformation parameters between two different surfaces, good estimates of the 3D 

similarity transformation parameters are required. For further explanation of how to 

accomplish this, please refer to Habib, et al., 2001, and Habib, et al., 2006.  

 

4.6 LiDAR Quality Control Using Iterative Closest Point (ICPoint) 

This is a very simple method that can be used to roughly detect biases and errors. 

The procedure for this method requires only that the second surface be transformed to the 

first surface using the initial approximations of the transformation parameters. Then, for 

each point in the second surface, the closest point in the first surface is found and the 

points are then assumed to be conjugate (Zhang, 1994), although there is no point to point 

correspondence in overlapping LiDAR strips. This method is considered to be 

approximate, and it has issues with reliability. It is not recommended to use this method 

alone or to trust the results, due to the assumptions made. 
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In the least squares solution, the distances between the matched points are 

minimized; in the second iteration, new matches are searched for and the distances are 

minimized again. This procedure is repeated until no significant changes occur in the 

estimated transformation parameters. 

 

Figure 4.19: Point to point correspondence using the ICPoint method. 

 

4.7 Summary 

In summary, five methodologies were discussed, three of which are recommended 

to be used (using lines, using patches (point based), and ICPatches). The other two 

methods could be used, but the resulting estimated parameters will be infected by other 

sources of errors (interpolation effects in the range and intensity method, and inaccurate 

assumptions for the ICPoint method). In the next chapter, an evaluation of these five 

methods is carried out using real datasets. 
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Chapter Five: Experimental Results 

 

5.1 Introduction 

In Chapter four, five approaches for LiDAR quality control were discussed. The 

first approach was to perform quality control using range and intensity images. Then, the  

patches method was explained, after which two approaches using the lines method were 

outlined. Finally, the iterative closest patch method was explained, as well as the iterative 

closest point method. In this chapter, these methods will be tested using real data 

provided by two different sensors covering different areas. This chapter starts with an 

overview of the developed software, followed by a quick description of the sensors and 

datasets used. Then, the results from the first dataset will be shown and discussed, 

followed by the results and discussion of the second dataset. 

 

5.2 User Interface Overview (LiDAR_QC) 

When this research began, the algorithms and tools necessary to carry out quality 

control procedures were available in separate software packages. Running these programs 

separately was time-consuming, as one has to jump between different programs and 

define input and output for each piece of software. The idea of the LiDAR_QC program 

evolved for two reasons: first, to have an easy-to-use interface that groups the quality 

control methods used side by side with the data pre-processing tools, and second, to 

speed up the process of performing quality control.  
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Usually, quality control is expected to be fast and accurate. However, due to the 

large amount of data (LiDAR data) that comes out of a single mission, the process of 

quality control should be planned carefully, with the highest degree of optimization. That 

was the target when the development of this interface began. This program (LiDAR_QC) 

is capable of preparing the required features (points, lines, patches, and TIN surfaces) for 

the purpose of quality control.  It is also able to perform quality control using intensity 

and range images, lines, and patches. Figure 5.1 shows an example of an extracted area 

(left) and the same area after applying the segmentation algorithm. Figure 5.2 (left) 

visualizes the extracted lines in a certain area; the right figure shows the generated TIN 

for the same area. 

 

  

Figure 5.1: Selecting an area (left), then performing the segmentation procedure 

(right). 
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Figure 5.2: Generating linear features (left) and generating a TIN for an area (right) 

 

5.3 Sensors and Data Overview 

Table 5-1 summarizes the metadata for the datasets used. The first dataset was 

provided by LACTEC, and the second dataset was provided by the University of Calgary 

IT Center. 

For the first dataset, the following quality control methods were used: 

1. Intensity and Range Image Method 

2. Line (Point Based and Line constraint) Methods 

3. Patch Method 

4. ICPatch Method 

5. ICPoint Method 

For the second dataset, the following quality control methods were used: 

1. Line (Point Based and Line constraint) Methods 

2. Patch Method 

3. ICPatch Method 

4. ICPoint Method 
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Table 5-1: Summary of the datasets used 

 Dataset 1 Dataset 2 

Data Provider LACTEC UofC IT Center 

Survey Location Brazil UofC 

Sensor Model ALTM 2050 ALTM 3100 

Scanner Type Linear Linear 

Flying Height (m) ~1000 ~1200 

Pulse Rate (kHz) 50 50 

Ground Point Spacing (m) ~0.70 ~0.75 

Reported Vertical Accuracy (cm) 15 9 

Reported Horizontal Accuracy (cm) 50 50 

Overlap Percentage (%) ~75 ~50 

Number of Strips 3 11 

Number of Pairs 3 10 

 

5.4 The First Dataset: QC Results 

Figure 5.3 shows the intensity images generated from the first dataset, with an 

aeroplane symbol that represents the flying direction. The second and fourth strips were 

observed from the same flying direction, while the third strip was collected from the 

opposite flying direction. The intensity images were generated using commercial 

software; the pixel size was set to be 0.50 meters since the average point spacing is 

around 0.70 meters. These strips have a triple overlap that yields three pairs. 

 

 

   
Strip 2 Strip 3 Strip 4 

Figure 5.3: Intensity images generated from the first dataset with the flying 

directions shown. 
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5.4.1 Intensity and Range Image Method 

In this method, one hundred conjugate points were collected from strips three and 

four, then the differences between them in all directions were calculated. Table 5-2 

summarizes the resulting average distances and their standard deviations; for detailed 

measurements, please refer to Appendix B. 

Table 5-2: The averages and standard deviations of the estimated discrepancies 

between overlapping strips, using 100 points 

 Average (m) Standard deviation (m) 

X 0.33 0.54 

Y 0.38 0.59 

Z 0.12 0.42 

 

Figure 5.4 shows a sample of the measured points; note how hard it is to find 

conjugate features in the intensity images due to the poor detail (more samples are shown 

in Appendix B).  

 

Figure 5.4: A sample of conjugate points identified in overlapping strips. 

 

The following histograms show the difference distributions in the X, Y, and Z 

directions. Note that this method may produce blunders even if the operator is very 

careful in identifying conjugate features. Usually, identifiable features in urban areas are 

located at the break lines, where the major interpolation artefacts occur. Also, changes in 

the laser signal reflectance between overlapping strips will disturb the cross correlation 
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best match results; note how this affects the variance of the measurements in the Z 

direction.  

 

Figure 5.5: Histograms for the differences in the X,Y, and Z directions (left to right) 

 

5.4.2 Line (Point Based and Line Constraint) Methods 

 

For this method, two tests were performed. The first one was done to compare the 

results of the point based method to those of the line constraint method. Table 5-3 shows 

the resulting estimated transformation parameters using the above methods for strips 3 

and 4. Note how the results are very similar. Also note how the average normal distance 

changes after applying the transformation. This indicates that this method was successful 

in detecting and removing biases. However, the variances of the normal distances did not 

change. That is because the nature of the rigid body transformation (3D similarity 

transformation) maintains the relationships between the points (the internal angles 

between the points do not change). 
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Table 5-3: Estimated transformation parameters using conjugate linear features in 

overlapping strips, together with the normal distances between the linear features 

before and after applying the transformation. 

 
Line-Constraint 

Approach 

Line-Endpoint 

Approach 

Scale Factor 1.0006 0.9998 

XT (m) 0.75 0.77 

YT (m) -0.17 -0.17 

ZT (m) 0.05 0.06 

Ω (°) -0.0386 -0.0421 

Φ (°) -0.0125 -0.0048 

Κ (°) -0.0145 -0.0134 

Normal Distance (m) (Before) 0.49 ± 0.24 0.49 ± 0.24 

Normal Distance (m) (After) 0.18 ± 0.18 0.18 ± 0.19 

In the second test, lines were measured in the three pairs using the LiDAR_QC 

software, and the line constraint method was run to evaluate the internal quality of the 

strips. Table 5-4 shows the resulting estimated transformation parameters between the 

strips. Figure 5.6 shows a sample of the linear features used before and after applying the 

estimated transformation parameters. In the ideal case (when no biases exist) the 

transformation parameters should be one for the scale and zeros for the translation and 

rotation parameters. It is clear that biases exist in this dataset. Note also how the 

estimated bias in the X direction is dependent on the flying direction (the bias is 

estimated to be very small in strips 2 and 4, and this changes when dealing with different 

flying directions). 

Table 5-4: Transformation parameters estimated using conjugate linear features in 

overlapping strips, together with the normal distances between the linear features 

before and after applying the transformation. 

  Strips 2 & 3 Strips 3 & 4 Strips 2 & 4 

Transformation Parameter / # of Lines 24 36 24 

Scale Factor 1.0002 1.0006 1.0013 

XT (m) -0.56 0.75 0.10 

YT (m) 0.04 -0.17 -0.16 

ZT (m) 0.03 0.05 0.13 

Ω (°) 0.0205 -0.0386 -0.0147 

Φ (°) 0.0062 -0.0125 -0.0073 

Κ (°) 0.0261 -0.0145 -0.0113 

Normal Distance (m) (Before) 0.38 ± 0.22 0.49 ± 0.24 0.26 ± 0.14 
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Normal Distance (m) (After) 0.18 ± 0.19 0.18 ± 0.18 0.16 ± 0.11 

 

 
Figure 5.6: Comparison of conjugate linear features before LIDAR system bias 

removal (left) and after bias removal (right) 

 

5.4.3 Patch Method 

In this method, planar patches were collected from the three strips using the 

LiDAR_QC software. The resulting estimated transformation parameters are shown in 

Table 5-5. Note that the results are very consistent with the parameters estimated using 

the line methods in Table 5-3 and Table 5-4. 

Table 5-5: Transformation parameters estimated using conjugate planar in 

overlapping strips.  

 Strips 2 & 3 Strip 3&4 Strips 2 & 4 

Transformation Parameter / # of Patches 21 22 22 

Scale Factor 1.0000 0.9996 0.9995 

XT (m) -0.52 0.72 0.08 

YT (m) -0.13 -0.17 -0.21 

ZT (m) 0.05 0.09 0.14 

Ω (°) 0.0289 -0.0561 -0.0802 

Φ (°) 0.0111 -0.0139 -0.0342 

Κ (°) 0.0364 0.0288 0.0784 

Normal Distance (m) (After)  0.04  0.03  0.04 
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5.4.4 Iterative Closest Patch Method 

Two main objectives were met with this experiment. The first was to compare this 

method with the line and patch methods. The second objective was to use different areas 

with different point distributions to determine the significance of the sample distribution 

on the estimated parameters.  

Table 5-6 shows the transformation parameters estimated using automated 

matching of conjugate surface elements in strips 3 and 4, and using one, three, and seven 

selected areas. Figure 5.7 shows the locations of the selected areas for the registration and 

automated matching of conjugate surface elements in two overlapping strips. Figure 5.8 

shows an example of one of the extracted circles (circle three in Figure 5.7). Note that the 

results that are most similar to those of the methods in the previous sections were 

obtained when using seven areas. However, the results coming from the use of one and 

three areas are still fairly similar. 

 

Figure 5.7: Locations of selected areas for the registration and automated matching 

of conjugate surface elements in two overlapping strips. 
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Figure 5.8 A sample of the extracted points in two strips (left); TINs were generated 

from the second strip point cloud (right). 

 

Table 5-6: Transformation parameters estimated using automated matching of 

conjugate surface elements in strips 3 and 4. 

 One Building 

 (1) 

Three Building Areas  

(1,2,3) 

Seven Building Areas 

Scale Factor 0.9997 0.9998 0.9998 

XT (m) 0.85 0.56 0.75 

YT (m) -0.07 -0.26 -0.13 

ZT (m) 0.15 0.09 0.12 

Ω (°) -0.0218 -0.0200 -0.0267 

Φ (°) -0.0201 -0.0034 -0.0088 

Κ (°) 0.1239 -0.0189 -0.0003 

Average Normal Distance (m) 

(after adjustment)  

0.10 0.09 0.09 

 

In the second test, circles were extracted from the three pairs (Figure 5.3) using 

the LiDAR_QC software, and the ICPatch method was run to evaluate the internal quality 

of the strips. Table 5-7 shows the resulting estimated transformation parameters between 

the strips 
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Table 5-7: Transformation parameters estimated using the ICPatch method in three 

strips. 

 Strips 2& 3 Strips 3& 4 Strips 2& 4 

Scale Factor 0.9996  0.9998  0.9993  

XT (m) -0.55  0.75  0.19  

YT (m) -0.06  -0.13  -0.18  

ZT (m) 0.03  0.12  0.16  

Ω (°) 0.0080  -0.0267  -0.0213  

Φ (°) 0.0059  -0.0088  -0.0053  

Κ (°) -0.0009  -0.0003  0.0012  

Average Normal Distance (m) 

(after adjustment)  

0.09  0.09  0.10  

 

5.4.5 ICPoint Method 

For the ICPoint method, the resulting estimated parameters are shown in Table 

5-8. Note how the results are deviating from those of the patch, line, and the ICPatch 

methods. As mentioned in Chapter 4, this method is considered to be an approximate one, 

and it has issues with reliability. It is not recommended to use this method alone or to 

trust the results, due to the inaccurate assumptions made. However, sometimes this 

method gives reasonable results, as we will see with the second dataset. 

 

Table 5-8: Transformation parameters estimated using the ICPoint method, 

between overlapping strips. 

 Strips 2&3  Strips 3&4  Strips 2&4  

Scale Factor  0.9997 1.0002 0.9994 

XT (m)  -0.47 0.70 0.26 

YT (m)  -0.27 -0.32 -0.41 

ZT (m)  0.00 0.04 0.15 

Ω (°)  0.0132 -0.0394 -0.0302 

Φ (°)  0.0082 -0.0141 -0.0059 

Κ (°)  0.0039 -0.0007 -0.0100 

Average Distance (m)  0.51 0.51 0.60 
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5.5 The Second Dataset: QC Results 

For this dataset, the lines, patches, ICPatch and ICPoint quality control methods 

were applied to all datasets, except for two pairs (5 and 10) due to a lack of linear 

features and planar patches. The intensity and range image method was not used here due 

to the confident conclusion that it is not suitable for the quality control of LiDAR data. 

This dataset was collected in two different flight missions; the first three digits of the 

intensity image name indicate the Julian day, and the flying directions (FD) of the strips 

are indicated in the figure headings. 

 

1. Pair 1: Strips 08803 and 08804 

For the pair shown in Figure 5.9, the resulting transformation parameters are 

shown in Table 5-9. The transformation parameter values indicate that conjugate surface 

elements in this pair are coinciding with one another nicely. The reported transformation 

parameters are close to the expected values in the absence of biases. In Figure 5.9, the 

yellow circles indicate areas extracted for the ICPatch and ICPoint methods, while the red 

circles were used for the extraction of planar patches and linear features. The average 

normal distances shown in Table 5-9 were computed after applying the transformation 

parameters. Note the large average distance value resulting from the ICPoint method. In 

this case, the number indicates roughly the average point spacing only. Notice the 

consistency of the reported parameters from different methods in Table 5-9. 
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Figure 5.9: Strips 08803 (FD WE) and 08804 (FD EW) 

 

Table 5-9: Estimated transformation parameters between Strip 08803 and Strip 

08804 using four methods. 

 Estimated Transformation Parameters  

 Method S XT 

 (m) 

YT  

(m) 

ZT 

 (m) 

Omega 

(deg) 

Phi 

 (deg) 

Kappa 

(deg) 

Av_Dist 

(m) 

08803 

& 

08804 

Patch Method 1.00019 -0.02 -0.02 0.02 -0.0151 0.0023 0.0052 0.03 

Line 
Collinearity 1.00009 0.04 -0.08 0.02 -0.0132 0.0020 0.0039 0.10 

Endpoint 0.99995 0.02 -0.02 0.01 -0.0084 -0.0003 0.0068 0.08 

ICPatch 0.99990 -0.01 -0.12 0.01 -0.0023 -0.0009 0.0029 0.04 

ICPoint 0.99980 -0.08 -0.27 0.00 -0.0036 -0.0011 0.0022 0.51 

 

2. Pair 2: Strips 08804 and 08805 

For the pair shown in Figure 5.10, the resulting transformation parameters are 

shown in Table 5-10. The transformation parameter values indicate that this data pair is 

suffering from a bias in the X direction. Although this pair was collected from the same 

mission from which pair 1 was collected, biases appeared in this pair. Note how the 

results from the various methods are consistent. 

 
 

Figure 5.10: Strips 08804 (FD EW) and 08805 (FD WE) 
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Table 5-10: Estimated transformation parameters between Strip 08804 and Strip 

08805. 

 Estimated Transformation Parameters  

 Method S XT 

(m) 

YT 

 (m) 

ZT  

(m) 

Omega  

(deg) 

Phi 

 (deg) 

Kappa 

 (deg) 

Av_Dist 

(m) 

08804 

& 

08805 

Patch Method 1.00003 0.76 0.14 -0.01 0.0185 0.0060 0.0175 0.03 

Line 
Collinearity 1.00037 0.80 0.10 -0.03 0.0156 0.0022 -0.0011 0.15 

Endpoint 0.99987 0.80 0.25 -0.02 0.0164 0.0054 0.0270 0.13 

ICPatch 1.00010 0.86 0.10 -0.02 0.0039 0.0006 0.0073 0.04 

ICPoint 1.00000 0.80 -0.08 -0.04 0.0089 0.0004 0.0080 0.57 

 

3. Pair 3: Strips 08804 and 13030 

For the pair shown in Figure 5.11, the resulting transformation parameters are 

shown in Table 5-11. The transformation parameter values indicate that this data pair is 

suffering from a bias in the X direction. This pair showed a similar bias to the one in pair 

2 in terms of direction. Note that this data pair is coming from two different missions. 

 
 

Figure 5.11: Strips 08804 (FD EW) and 13030 (FD EW) 

 

Table 5-11: Estimated transformation parameters between Strip 08804 and Strip 

13030 using four methods. 

 Estimated Transformation Parameters  

 Method S XT 

(m) 

YT 

 (m) 

ZT  

(m) 

Omega  

(deg) 

Phi 

 (deg) 

Kappa 

 (deg) 

Av_Dist 

(m) 

08804 

& 

13030 

Patch Method 0.99962 0.43 0.13 -0.06 0.0132 -0.0002 -0.0238 0.04 

Line 
Collinearity 0.99997 0.41 0.13 -0.05 0.0108 0.0005 -0.0106 0.15 

Endpoint 1.00002 0.37 0.18 -0.04 0.0131 -0.0021 -0.0083 0.15 

ICPatch 1.00010 0.47 0.21 0.00 0.0104 0.0019 0.0012 0.04 

ICPoint 1.00000 0.44 0.19 0.00 0.0093 0.0019 -0.0014 0.57 
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4. Pair 4: Strips 08805 and 08806 

For the pair shown in Figure 5.12, the resulting transformation parameters are 

shown in Table 5-12. The transformation parameter values indicate that these datasets are 

nicely coinciding with one another. The reported transformation parameters are within 

the range of the system noise. 

 

 
 

Figure 5.12: Strips 08805 (FD WE) and 08806 (FD EW) 

 

Table 5-12: Estimated transformation parameters between Strip 08805 and Strip 

08806 using four methods. 

 Estimated Transformation Parameters  

 Method S XT 

(m) 

YT 

 (m) 

ZT  

(m) 

Omega  

(deg) 

Phi 

 (deg) 

Kappa 

 (deg) 

Av_Dist 

(m) 

08805 

& 

08806 

Patch Method 1.00012 0.10 0.09 -0.02 -0.0225 0.0019 0.0064 0.02 

Line 
Collinearity 1.00014 0.08 0.00 -0.02 -0.0061 -0.0020 -0.0006 0.10 

Endpoint 1.00005 0.06 0.05 -0.02 -0.0241 0.0018 0.0073 0.09 

ICPatch 0.9999 0.07 -0.10 -0.01 -0.0101 -0.0010 0.0013 0.04 

ICPoint 0.9999 0.02 -0.11 -0.01 -0.0097 -0.0014 -0.0051 0.52 

 

5. Pair 5: Strips 08806 and 08807 

For the pair shown in Figure 5.13, the resulting transformation parameters are 

shown in Table 5-13. For this pair, it was very hard to find conjugate planar patches and 

linear features. Therefore, the ICPatch and the ICPoint methods were used to detect the 

presence of biases. These methods were successful in detecting biases in the X direction. 
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Figure 5.13: Strips 08806 (FD EW) and 08807 (FD WE) 

 

Table 5-13: Estimated transformation parameters between Strip 08806 and Strip 

08807 using two methods. 

 Estimated Transformation Parameters  

 Method S XT 

(m) 

YT 

 (m) 

ZT  

(m) 

Omega  

(deg) 

Phi 

 (deg) 

Kappa 

 (deg) 

Av_Dist 

(m) 

08806 

& 

08807 

Patch Method - - - - - - - - 

Line 
Collinearity - - - - - - - - 

Endpoint - - - - - - - - 

ICPatch 1.0000 0.85 0.04 0.06 0.0036 0.0008 -0.0038 0.04 

ICPoint 0.9999 0.78 -0.04 0.05 0.0013 0.0008 -0.0020 0.55 

 

6. Pair 6: Strips 08806 and 13029 

For the pair shown in Figure 5.14, the resulting transformation parameters are 

shown in Table 5-14. Once more, biases were detected along the X direction (flying 

direction).  

 
 

Figure 5.14: Strips 08806 (FD EW) and 13029 (FD WE) 
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Table 5-14: Estimated transformation parameters between Strip 08806 and Strip 

13029 using four methods. 

 Estimated Transformation Parameters  

 Method S XT 

(m) 

YT 

 (m) 

ZT  

(m) 

Omega  

(deg) 

Phi 

 (deg) 

Kappa 

 (deg) 

Av_Dist 

(m) 

08806 

& 

13029 

Patch Method 1.00012 -0.32 -0.24 0.03 0.0140 -0.0032 -0.0124 0.03 

Lines 
Collinearity 1.00021 -0.30 -0.15 0.03 0.0017 -0.0013 0.0035 0.06 

Endpoint 1.00026 -0.27 -0.14 0.04 -0.0045 0.0015 0.0080 0.06 

ICPatch 0.9998 -0.29 0.03 0.01 0.0015 0.0001 -0.0126 0.04 

ICPoint 0.9998 -0.17 0.01 0.00 0.0033 -0.0003  -0.0170 0.58 

 

7. Pair 7: Strips 08807 and 08808 

For the pair shown in Figure 5.15, the resulting transformation parameters are 

shown in Table 5-15. The transformation parameter values indicate that these datasets are 

coinciding properly with one another. The reported transformation parameters indicate 

the absence of biases.  

 
 

Figure 5.15: Strips 08807 (FD WE) and 08808 (FD EW) 

 

Table 5-15: Estimated transformation parameters between Strip 08807 and Strip 

08808 using four methods. 

 Estimated Transformation Parameters  

 Method S XT 

(m) 

YT 

 (m) 

ZT  

(m) 

Omega  

(deg) 

Phi 

 (deg) 

Kappa 

 (deg) 

Av_Dist 

(m) 

08807 

& 

08808 

Patch Method 1.00041 0.11 -0.08 -0.01 -0.0157 0.0015 -0.0033 0.01 

Line 
Collinearity 1.00079 0.18 -0.06 -0.02 -0.0120 0.0004 0.0040 0.09 

Endpoint 1.00183 0.21 -0.08 -0.02 -0.0352 0.0032 0.0071 0.13 

ICPatch 1.0000 0.16 -0.13 -0.02 -0.0114 -0.0000 -0.0034 0.04 

ICPoint 0.9999 0.10 -0.20 -0.02 -0.0138 0.0002 0.0064 0.52 
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8. Pair 8: Strips 08807 and 13028 

For the pair shown in Figure 5.16, the resulting transformation parameters are 

shown in Table 5-16. Again, biases were detected along the X direction (flying direction).  

Note how sometimes the ICPoint method gives different results when compared to the 

other quality control methods; this is due to the inaccurate point-to-point relationship 

assumed. 

 
 

Figure 5.16: Strips 08807 (FD WE) and 13028 (FD EW) 

 

Table 5-16: Estimated transformation parameters between Strip 08807 and Strip 

13028 using four methods. 

 Estimated Transformation Parameters  

 Method S XT 

(m) 

YT 

 (m) 

ZT  

(m) 

Omega  

(deg) 

Phi 

 (deg) 

Kappa 

 (deg) 

Av_Dist 

(m) 

08807 

& 

13028 

Patch Method 1.00018 0.44 -0.03 -0.02 0.0021 -0.0029 -0.0056 0.02 

Line 
Collinearity 1.00023 0.51 0.01 -0.00 -0.0064 0.0131 0.0281 0.11 

Endpoint 1.00015 0.45 -0.00 -0.03 -0.0057 0.0239 -0.0400 0.09 

ICPatch 1.0001 0.46 -0.05 -0.01 -0.0109 0.0017 -0.0005 0.04 

ICPoint 1.0000 0.33 -0.07 -0.04 -0.0053 0.0010  0.0004 0.56 

 

9. Pair 9: Strips 13027 and 13030 

For the pair shown in Figure 5.17, the resulting transformation parameters are 

shown in Table 5-17. The transformation parameter values indicate a large bias in this 

pair along the X direction. When dealing with large biases similar to this one, it is useful 
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to relax the thresholds used for the automated matching of lines and patches. This can be 

done when having trouble extracting existing planar patches and lines. 

 
 

Figure 5.17: Strips 13027 (FD WE) and 13030 (FD EW) 

 

Table 5-17: Estimated transformation parameters between Strip 13027 and Strip 

13028 using four methods. 

 Estimated Transformation Parameters  

 Method S XT 

(m) 

YT 

 (m) 

ZT  

(m) 

Omega  

(deg) 

Phi 

 (deg) 

Kappa 

 (deg) 

Av_Dist 

(m) 

13027 

& 

13030 

Patch Method 1.00051 1.23 - 0.39 -0.07 -0.0584 -0.0131 -0.0158  

Line 
Collinearity 1.0016 1.22 -0.35 -0.13 -0.0034 -0.0613 -0.1927 0.13713 

Endpoint 1.0020 1.19 -0.45 -0.10 -0.0258 -0.0118 -0.1038 0.09419 

ICPatch 1.0001 1.37 -0.43 -0.05 -0.0515 0.0004 -0.0050 0.04611 

ICPoint 1.0005 1.42 -0.70 -0.05 -0.0523 -0.0006 -0.0139 0.58316 

 

10. Pair 10: Strips 13029 and 13030 

For the pair shown in Figure 5.18, the resulting transformation parameters are 

shown in Table 5-18. The transformation parameter values indicate a large bias in this 

pair along the X direction, but with a different magnitude when compared to that of pair 

9, although both pairs have the same flight configuration (same flying direction for the 

first and second strips). 
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Figure 5.18: Strips 13029 (FD WE) and 13030 (FD EW) 

 

Table 5-18: Estimated transformation parameters between Strip 13029 and Strip 

13030 using four methods. 

 Estimated Transformation Parameters  

 Method S XT 

(m) 

YT 

 (m) 

ZT  

(m) 

Omega  

(deg) 

Phi 

 (deg) 

Kappa 

 (deg) 

Av_Dist 

(m) 

13028 

& 

13029 

Patch Method - - - -  - - - 

Line 
Collinearity - - - -- - - - - 

Endpoint - - - - - - - - 

ICPatch 1.0002 -1.21 0.28 -0.00 0.0380 -0.0006 0.0026 0.04781 

ICPoint 1.0002 -1.15 0.21 -0.00 0.0353 0.0000 0.0155 0.69023 

 

5.6 Conclusion 

To conclude this chapter, it has been proven that the quality control methods 

discussed in this thesis are all capable of detecting biases in LiDAR data pairs (except for 

the intensity and range image method), with different degrees of confidence in the 

estimated transformation parameters. The line methods, patch method (point based 

method), and ICPatch method had high compatibility in their results. 

 

As shown early in this chapter, using intensity and range images for quality 

control yields biased results. The ICPoint method gave results that were more consistent 

with the parameters estimated using the line, patch and ICPatch methods. However, the 
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results from the ICPoint method cannot be fully trusted due to the inaccurate assumption 

of point-to-point correspondence in overlapping LiDAR data. 
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Chapter Six: Conclusion 

6.1 Conclusion 

LiDAR quality control is an important post-mission process used to verify the 

quality of the data produced. As mentioned in the introduction chapter, the main 

objectives of this research were to develop new methodologies and tools for LiDAR 

quality control. After the quick introduction to LiDAR and the literature review in 

Chapter 2, the errors associated with LiDAR systems were discussed in Chapter 3. 

Chapter 4 discussed the suggested quality control methods and their implementation. In 

Chapter 5, experiments were done and the results were discussed for the verification of 

the quality of the suggested methods. 

 

In Chapter 3, it was concluded that different LiDAR system biases have different 

effects on the reconstructed surfaces; some of them are dependent on the flight direction, 

while others are independent of the flying direction. Biases might affect the accuracy in a 

certain direction, or in some cases, can act in more than one direction. In addition, these 

biases vary in terms of their dependency on the look angle and on the flying height. From 

such information, an indication of the source of each bias may be derived. For example, 

the behavior of the boresighting offset bias is independent of the flying height and the 

laser unit look angle, but dependent on the flying direction, for the planimetric 

coordinates. On the other hand, the effects of the boresighting angular bias are 

proportional to the flying height, and dependent on the flying direction and the look 

angle. In the same manner, noise in LiDAR systems can be analyzed. For example, the 
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impact of the positioning noise in the integrated GNSS/IMU unit is independent of the 

flying height and of the laser scanner look angle. 

 

In Chapter 4, five categories of methodologies were discussed, among which four 

were recommended. The first methodology suggests using conjugate linear features from 

overlapping LiDAR strips as a measure of the data quality; the conceptual basis of this 

method is that conjugate linear features from different strips should overlap in the 

absence of biases. The second method uses planar patches; conjugate patches in 

overlapping strips should be coplanar in the ideal case (absence of biases). The third 

method is called the ICPatch method and uses a Triangulated Irregular Network 

generated from raw LiDAR data; it assumes a point-to-patch correspondence. Finally, the 

ICPoint method, which assumes a point-to-point correspondence and does not require any 

pre-processing, is discussed. The range and intensity image method is not recommended 

due to the inconsistency in the results when compared with those of the first four 

methods. In this chapter, a user-friendly interface was also developed in Microsoft Visual 

C#, to prepare the required data and to perform the procedures for the aforementioned 

quality control methods. 

 

 The fusion of the aforementioned methods in single software will yield a 

practical quality control bundle that has many options. Also, it will give the capability to 

perform quality control checks in various areas (urban areas, rural areas.. etc). For 

example, urban areas are usually rich of linear features and planar patches, therefore the 

lines and patches methods could be used. On the other hand, line and patches cannot 
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usually be found in rural areas, but still, the terrain variation will make it possible for the 

ICPatch and ICPoint methods to work. Even on places that has no features or terrain 

variation (e.g., airport runway), one could still evaluate part of the transformation 

parameters (Z shift, pitch and roll angles). Moreover, if biases exist in the undetermined 

parameters will not have any impact on the available surfaces (e.g., horizontal biases still 

lead to the same surface). 

 

It has been proven, in Chapter 5, that the quality control methods discussed in this 

thesis (except for the intensity and range image method) are all capable of detecting 

biases in LiDAR data pairs, with differing degrees of confidence in the estimated 

transformation parameters. The line methods, patch method (point based method), and 

ICPatch method had highly compatible results. As shown early in this thesis, using 

intensity and range images for quality control yields inconsistent results. The ICPoint 

method gave results that were more consistent with the parameters estimated using the 

line, patch and ICPatch methods. However, the results of the ICPoint method cannot be 

fully trusted due to the inaccurate assumption of point-to-point correspondence in 

overlapping LiDAR data. The following table summarizes the various methods in terms 

of the required pre-processing, the time efficiency, and the reliability of the results, based 

on the experience gained from this research. Note that more stars indicate a better rank. 
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Table 6-1: Qualitative Evaluation of Quality Control methods 

 

It has been mentioned that the purpose of this research is not to model biases; the 

target here is to detect biases. Therefore, the 3D similarity transformation was suggested 

as a mathematical model. However, experiments proved that it is possible to use the 3D 

similarity transformation in the relative adjustment of LiDAR strips; the following figure 

shows an example of the adjustment of LiDAR strips based on the parameters estimated 

using the quality control methods. 

 

 

Figure 6.1: LiDAR point clouds for two buildings before (top) and after (bottom) the 

adjustment, note that each color indicates a different strip. 
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6.2 Recommended Future Work 

 

Although the quality control methods suggested in this thesis have been carefully 

investigated and tested using multiple datasets, more testing is still required in order to 

ensure the reliability and practicality of these methods. These tests must also be 

performed by other researchers in order to gain neutral judgment regarding the sequence 

of the suggested workflow, and to generate ideas for potential enhancements that will act 

towards improving the performance of our program. It is also highly recommended to 

offer this product to industry in order to get feedback regarding the possibility of 

standardizing this software for commercial use. 

 

More potential future work would be to relate the biases detected through the 

quality control procedures with their sources. This will have a positive impact on the 

processes of quality assurance and system calibration. Currently, the end user does not 

have access to the raw measurements from LiDAR systems, which has a negative impact 

on the understanding of LiDAR systems and, as a result, on the process of quality 

assurance.  

 

A guideline is needed to make the output of the quality control process 

meaningful for the end-user. In other words, it is recommended to come up with a 

definition of what amount of biases is accepted to appear in the data what ones are 

rejected. This guideline should be updated in parallel with the enhancements achieved in 

the LiDAR quality assurance research field. 
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As mentioned earlier in this thesis, the quality control methods discussed could be 

used for absolute/external quality control; it is recommended to perform testing in this 

area in order to study the feasibility of this process. It is recommended to use Real Time 

Kinematic (RTK) GNSS techniques in the collection of surfaces for the ICPatch and 

ICPoint methods. The current generation of RTK receivers contain interfaces that enable 

the automatic logging of data at intervals of a certain time or distance. For the line- and 

patch-based methods, it is recommended to use a reflectorless-capable Total Station to 

collect planar patch data (building roofs). 
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APPENDIX A: PARTIAL DERIVATIVES OF THE 3D CONFORMAL 

EQUATION 

The following are the partial derivatives of the unknowns with respect to the parameters 

for the 3D conformal equation shown below. 

 

The partial derivatives: 
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APPENDIX B: DATA FOR INTENSITY AND RANGE IMAGE METHOD 

B.1. A Sample of The Measured Points 

A few samples of the points used for the intensity and range image method are shown 

below, with tables indicating the extracted points coordinates and the differences between 

these coordinates between strips. 

 
Figure 6.2: Measuring point number 9 

  Strip 3 Strip 4 Difference 

  X Y Z X Y Z DX DY DZ 

9 22676315.79 7188693.49 911.98 22676316.76 7188693.49 910.06 -0.97 0.00 1.92 

 

 
Figure 6.3: Measuring point number 18 

  Strip 3 Strip 4 Difference 

  X Y Z X Y Z DX DY DZ 

18 22676235.97 7188812.57 926.93 22676236.75 7188812.36 926.88 -0.79 0.22 0.05 



98 

 

 

Figure 6.4: Measuring point number 27 

  Strip 3 Strip 4 Difference 

  X Y Z X Y Z DX DY DZ 

27 22676154.85 7188600.29 916.61 22676154.46 7188599.38 916.76 0.39 0.90 -0.15 

 

 

Figure 6.5: Measuring point number 79 

  Strip 3 Strip 4 Difference 

  X Y Z X Y Z DX DY DZ 

79 22676381.56 7188594.41 912.78 22676381.48 7188594.60 914.13 0.08 -0.20 -1.35 

 

 



99 

 

 

Figure 6.6: Measuring point number 87 

 

  Strip 3 Strip 4 Difference 

  X Y Z X Y Z DX DY DZ 

87 22675767.42 7188329.09 925.15 22675769.07 7188330.20 924.52 -1.65 -1.11 0.63 

 

 

Figure 6.7: Measuring point number 93 

  Strip 3 Strip 4 Difference 

  X Y Z X Y Z DX DY DZ 

93 22675954.58 7188503.34 917.65 22675955.36 7188503.26 917.68 -0.78 0.08 -0.03 
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B.2. Points Used for the Range and Intensity Image Method (manually collected) 

In this subsection, the table below shows all the extracted points and the squared 

differences in their coordinates between strips. The red color flags points with huge 

biases caused by the interpolation effect occurring at the break lines. 

X Y Z X Y Z DX2 DY2 DZ2

1 22675553.35 7188404.80 927.46 22675554.14 7188403.17 927.55 0.63 2.63 0.01

2 22675590.92 7188365.13 926.02 22675591.37 7188364.70 926.13 0.20 0.19 0.01

3 22675668.15 7188353.92 928.80 22675669.85 7188353.27 928.96 2.89 0.42 0.03

4 22675813.99 7188331.05 946.00 22675815.77 7188330.79 946.07 3.17 0.07 0.00

5 22676064.24 7188460.49 910.91 22676064.55 7188459.56 911.00 0.09 0.86 0.01

6 22676194.98 7188677.95 909.53 22676195.23 7188676.34 909.51 0.06 2.59 0.00

7 22676240.71 7188702.98 909.85 22676240.56 7188701.87 909.86 0.02 1.23 0.00

8 22676277.82 7188682.27 909.81 22676277.52 7188681.30 909.92 0.09 0.94 0.01

9 22676315.79 7188693.49 911.98 22676316.76 7188693.49 910.06 0.94 0.00 3.69

10 22676342.11 7188661.56 912.32 22676343.05 7188661.10 912.39 0.88 0.20 0.00

11 22676367.57 7188658.54 912.42 22676367.81 7188658.82 912.53 0.06 0.08 0.01

12 22676292.49 7188663.28 909.77 22676292.38 7188662.25 909.72 0.01 1.07 0.00

13 22676325.28 7188737.50 913.91 22676325.90 7188737.68 914.34 0.39 0.03 0.18

14 22676315.36 7188736.63 920.58 22676315.24 7188736.54 920.97 0.01 0.01 0.15

15 22676380.51 7188674.07 912.32 22676381.15 7188672.91 912.45 0.41 1.33 0.02

16 22676319.67 7188733.18 916.83 22676319.05 7188732.73 917.35 0.39 0.20 0.27

17 22676352.90 7188622.29 912.37 22676353.34 7188622.24 912.44 0.19 0.00 0.00

18 22676235.97 7188812.57 926.93 22676236.75 7188812.36 926.88 0.62 0.05 0.00

19 22676295.51 7188813.00 925.15 22676295.43 7188813.50 924.50 0.01 0.24 0.42

20 22676210.51 7188820.34 916.51 22676211.23 7188819.59 916.51 0.52 0.55 0.00

21 22676483.63 7188893.26 923.72 22676484.01 7188892.36 923.55 0.14 0.80 0.03

22 22676553.10 7188924.32 928.93 22676552.97 7188923.98 928.83 0.02 0.12 0.01

23 22676055.61 7188652.93 917.11 22676056.55 7188651.96 917.01 0.88 0.93 0.01

24 22676149.24 7188768.99 934.65 22676149.89 7188768.54 934.43 0.42 0.20 0.05

25 22676174.27 7188644.73 913.77 22676175.03 7188644.34 913.88 0.59 0.15 0.01

26 22676132.41 7188608.05 923.20 22676132.75 7188608.15 923.15 0.11 0.01 0.00

27 22676154.85 7188600.29 916.61 22676154.46 7188599.38 916.76 0.15 0.81 0.02

28 22675952.49 7188499.32 913.68 22675952.16 7188499.19 913.70 0.11 0.02 0.00

29 22675930.92 7188395.77 921.03 22675930.82 7188395.18 921.51 0.01 0.35 0.23

30 22675969.32 7188391.89 921.33 22675970.45 7188391.37 921.23 1.27 0.27 0.01

31 22676073.30 7188424.25 922.84 22676073.31 7188424.51 922.67 0.00 0.07 0.03

32 22675912.79 7188437.19 919.84 22675912.16 7188437.47 920.40 0.41 0.08 0.31

33 22675966.30 7188418.21 917.66 22675966.26 7188418.42 917.89 0.00 0.04 0.05

34 22675970.18 7188404.40 921.09 22675971.21 7188403.94 921.33 1.06 0.21 0.06

35 22675976.65 7188397.49 924.39 22675976.54 7188397.84 924.33 0.01 0.12 0.00

36 22675932.64 7188431.15 935.77 22675932.35 7188430.23 935.85 0.09 0.85 0.01

37 22675925.31 7188467.39 917.30 22675925.11 7188467.56 917.88 0.04 0.03 0.34

38 22675951.63 7188428.13 914.61 22675951.78 7188428.70 914.67 0.02 0.33 0.00

39 22675980.97 7188409.14 914.72 22675981.11 7188408.89 914.86 0.02 0.06 0.02

Delta SquaredStrip 3 Strip 4
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40 22675974.06 7188401.38 922.33 22675974.64 7188400.89 922.43 0.33 0.24 0.01

41 22675913.23 7188400.95 917.20 22675913.30 7188401.65 917.29 0.01 0.50 0.01

42 22675861.45 7188417.77 920.75 22675861.87 7188417.27 920.88 0.17 0.25 0.02

43 22675824.34 7188451.86 920.46 22675824.53 7188451.56 920.10 0.03 0.09 0.13

44 22675806.22 7188435.03 920.79 22675807.00 7188434.80 920.94 0.61 0.05 0.02

45 22675722.51 7188454.88 928.44 22675723.19 7188454.23 928.23 0.45 0.42 0.04

46 22675612.49 7188399.22 929.52 22675611.94 7188400.13 928.94 0.30 0.83 0.34

47 22675675.48 7188378.51 924.86 22675675.18 7188378.41 924.70 0.09 0.01 0.03

48 22675669.44 7188352.19 922.86 22675669.09 7188352.13 923.49 0.13 0.00 0.40

49 22675630.18 7188384.98 923.72 22675630.99 7188384.89 923.81 0.66 0.01 0.01

50 22675769.11 7188330.18 926.40 22675768.52 7188330.03 926.60 0.35 0.02 0.04

51 22675744.52 7188345.29 925.30 22675744.90 7188345.65 925.31 0.15 0.13 0.00

52 22675737.62 7188296.96 927.17 22675737.66 7188296.50 927.42 0.00 0.21 0.06

53 22675582.72 7188261.58 939.31 22675582.22 7188261.07 938.81 0.24 0.26 0.25

54 22675555.10 7188403.54 927.24 22675555.17 7188402.80 927.34 0.00 0.55 0.01

55 22675566.75 7188430.29 926.43 22675566.98 7188429.85 926.83 0.05 0.19 0.16

56 22675543.88 7188384.98 928.15 22675544.89 7188384.51 928.32 1.00 0.22 0.03

57 22675592.21 7188365.57 929.79 22675592.13 7188364.70 929.81 0.01 0.75 0.00

58 22675625.86 7188361.68 939.08 22675626.80 7188359.75 939.12 0.87 3.75 0.00

59 22675687.57 7188334.50 922.72 22675687.76 7188334.60 922.85 0.04 0.01 0.02

60 22675704.39 7188261.15 930.49 22675704.14 7188261.07 930.67 0.06 0.01 0.03

61 22675647.44 7188252.95 928.15 22675647.75 7188252.69 928.32 0.10 0.07 0.03

62 22675639.67 7188243.46 940.27 22675639.37 7188244.69 940.40 0.09 1.51 0.02

63 22675669.44 7188278.84 926.76 22675669.47 7188278.60 926.89 0.00 0.06 0.02

64 22675542.37 7188445.38 935.73 22675542.39 7188444.83 935.62 0.00 0.30 0.01

65 22675507.57 7188473.10 935.86 22675507.70 7188472.59 936.03 0.02 0.27 0.03

66 22675499.31 7188460.72 935.82 22675499.02 7188461.02 935.84 0.08 0.09 0.00

67 22675554.76 7188454.82 935.78 22675555.12 7188454.66 936.08 0.13 0.02 0.09

68 22675518.78 7188485.49 936.05 22675518.68 7188484.73 936.33 0.01 0.58 0.08

69 22675495.77 7188519.70 937.49 22675494.98 7188520.01 937.73 0.64 0.09 0.06

70 22675576.00 7188529.73 937.99 22675576.51 7188529.26 938.06 0.27 0.22 0.00

71 22675607.85 7188479.00 930.15 22675608.32 7188478.95 930.18 0.22 0.00 0.00

72 22675655.63 7188424.73 926.90 22675655.16 7188424.59 927.85 0.22 0.02 0.90

73 22675660.94 7188553.33 928.40 22675660.36 7188553.55 928.22 0.33 0.05 0.03

74 22676175.25 7188636.16 913.06 22676175.61 7188635.66 913.25 0.13 0.25 0.04

75 22676217.01 7188684.66 928.60 22676217.25 7188684.24 929.20 0.06 0.18 0.36

76 22676135.96 7188585.20 918.19 22676136.29 7188585.93 918.11 0.11 0.54 0.01

77 22676280.86 7188576.60 912.04 22676280.86 7188576.10 912.58 0.00 0.25 0.29

78 22676345.95 7188594.41 913.58 22676346.78 7188594.03 913.04 0.70 0.15 0.29

79 22676381.56 7188594.41 912.78 22676381.48 7188594.60 914.13 0.01 0.04 1.82

80 22676409.19 7188607.30 912.86 22676409.24 7188607.90 912.98 0.00 0.36 0.01

81 22676207.18 7188823.43 916.37 22676206.84 7188823.60 916.45 0.12 0.03 0.01

82 22676315.25 7188737.47 920.77 22676314.98 7188736.86 921.09 0.07 0.37 0.10  
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83 22676345.95 7188755.89 910.43 22676345.63 7188754.79 910.40 0.10 1.21 0.00

84 22676296.83 7188805.62 922.70 22676297.63 7188805.10 922.93 0.64 0.27 0.05

85 22676476.73 7188729.49 918.53 22676476.90 7188729.92 918.63 0.03 0.19 0.01

86 22676609.97 7188739.92 920.88 22676609.90 7188739.75 921.00 0.00 0.03 0.01

87 22675767.42 7188329.09 925.15 22675769.07 7188330.20 924.52 2.71 1.22 0.40

88 22675791.83 7188403.13 918.13 22675792.20 7188404.16 918.10 0.14 1.06 0.00

89 22675872.03 7188456.67 915.74 22675872.67 7188456.83 915.60 0.40 0.03 0.02

90 22675951.12 7188499.89 913.77 22675951.82 7188499.28 913.70 0.49 0.36 0.00

91 22675956.31 7188494.27 913.69 22675957.13 7188493.54 913.83 0.68 0.54 0.02

92 22675946.37 7188498.59 917.53 22675946.96 7188497.96 917.45 0.35 0.40 0.01

93 22675954.58 7188503.34 917.65 22675955.36 7188503.26 917.68 0.61 0.01 0.00

94 22675794.24 7188481.30 918.38 22675794.39 7188481.15 918.31 0.02 0.02 0.00

95 22675805.91 7188434.63 920.87 22675806.33 7188434.28 920.95 0.18 0.12 0.01

96 22675798.99 7188428.58 920.86 22675798.82 7188428.53 920.91 0.03 0.00 0.00

97 22675921.73 7188464.88 915.39 22675922.19 7188464.35 915.52 0.21 0.28 0.02

98 22675920.00 7188433.33 936.06 22675920.87 7188433.84 936.17 0.75 0.26 0.01

99 22675930.81 7188396.59 920.55 22675930.60 7188396.25 920.71 0.05 0.12 0.03

100 22675889.32 7188390.11 922.29 22675889.03 7188390.50 922.20 0.08 0.15 0.01

Avg 0.33 0.38 0.12

STD 0.54 0.59 0.42

 

 

 

 

 


	20259.pdf
	Department of Geomatics Engineering
	Mohannad M. Al-Durgham
	September 2007


	al-durgham_LiDAR_QC4Department.pdf
	UNIVERSITY OF CALGARY
	A THESIS
	Abstract
	Acknowledgement
	Dedication
	Table of Contents
	List of Tables
	List of Figures and Illustrations
	List of Symbols, Abbreviations and Nomenclature
	INTRODUCTION
	Problem Definition and Research Objectives
	LiDAR Overview
	Laser Scanner Data Collection
	Mathematical Derivation of Ground Coordinates
	Thesis Outline

	LITERATURE REVIEW
	Introduction
	LiDAR Quality Control
	Review of Previous Research in LiDAR Quality Control

	LIDAR ERROR ANALYSIS
	Introduction
	Simulation of LiDAR Linear Scanner
	Linear Scanner & Boresighting Offset Bias
	Linear Scanner & Boresighting Angular Roll Bias ∆𝜱
	Linear Scanner & Boresighting Angular Pitch Bias ∆𝜴
	Linear Scanner & Boresighting Angular Bias ∆𝜿
	Linear Scanner & Laser Beam Range Bias
	Linear Scanner & Integrated GNSS/IMU Position Noise
	Linear Scanner & Integrated GNSS/IMU Attitude Noise

	Conclusion

	METHODOLOGY
	Introduction
	LiDAR Quality Control Using Interpolated Range and Intensity Images
	LiDAR Quality Control Using Patches
	Introduction
	Segmentation of LiDAR Data
	Patch Matching Process
	Point Based Method

	LiDAR Quality Control Using Lines
	Introduction
	Line Endpoint Method
	Line Constraint Method (Collinearity Method)

	LiDAR Quality Control Using Iterative Closest Patch (ICPatch)
	LiDAR Quality Control Using Iterative Closest Point (ICPoint)
	Summary

	Experimental Results
	Introduction
	User Interface Overview (LiDAR_QC)
	Sensors and Data Overview
	The First Dataset: QC Results
	Intensity and Range Image Method
	Line (Point Based and Line Constraint) Methods
	Patch Method
	Iterative Closest Patch Method
	ICPoint Method

	The Second Dataset: QC Results
	Conclusion

	Conclusion
	Conclusion
	Recommended Future Work

	References


