Should Logic play a major role in CS Education?
Yes!

Prakash Panangaden
School of Computer Science
McGill University

Logic Colloquium
15th July 2014, Vienna
A “folk” saying

Logic is the calculus of computer science.
A “folk” saying

Logic is the calculus of computer science.

How true is this? Do computer scientists need logic the way physicists need calculus?
Levels of logical thinking

- Lowest level, basic programming: need to write clear specifications, need boolean logic of conditions, need to reason.
Levels of logical thinking

- Lowest level, basic programming: need to write clear specifications, need boolean logic of conditions, need to reason.
- Next level 1: understanding types, semantics, verification. Needs proof theory, model theory, modal logic.
Levels of logical thinking

- Lowest level, basic programming: need to write clear specifications, need boolean logic of conditions, need to reason.
- Next level 1: understanding types, semantics, verification. Needs proof theory, model theory, modal logic.
- Next level 2: understanding complexity and computability.
Levels of logical thinking

- Lowest level, basic programming: need to write clear specifications, need boolean logic of conditions, need to reason.
- Next level 1: understanding types, semantics, verification. Needs proof theory, model theory, modal logic.
- Next level 2: understanding complexity and computability.
- Next level 3: Software engineering: needs formal methods.
Levels of logical thinking

- Lowest level, basic programming: need to write clear specifications, need boolean logic of conditions, need to reason.
- Next level 1: understanding types, semantics, verification. Needs proof theory, model theory, modal logic.
- Next level 2: understanding complexity and computability.
- Next level 3: Software engineering: needs formal methods.
- Research:
Logic in the curriculum

- Where is it?

Some lucky students are at places that emphasize logic (Cornell, Imperial College), but at many places (e.g. McGill) no logic course is required. However, an elective course on Logic and Computation attracts the best and brightest (and repels those who “just want to implement games.”)

Panangaden (McGill)
Logic in the curriculum

- Where is it?
- Some lucky students are at places that emphasize logic (Cornell, Imperial College),
Logic in the curriculum

- Where is it?
- Some lucky students are at places that emphasize logic (Cornell, Imperial College),
- but at many places (e.g. McGill) no logic course is required.
Logic in the curriculum

- Where is it?
- Some lucky students are at places that emphasize logic (Cornell, Imperial College),
- but at many places (e.g. McGill) no logic course is required.
- However, an elective course on Logic and Computation attracts the best and brightest (and repels those who “just want to implement games.”)
Where could logic be in the CS curriculum?

- Should be incorporated in the first programming and discrete math courses.
Where could logic be in the CS curriculum?

- Should be incorporated in the first programming and discrete math courses.
- Use “games and strategies” to explain quantifiers.
Where could logic be in the CS curriculum?

- Should be incorporated in the first programming and discrete math courses.
- Use “games and strategies” to explain quantifiers.
- Encourage students to work with interactive proof-development environments: Nuprl, Coq, Agda, ...
Where could logic be in the CS curriculum?

- Should be incorporated in the first programming and discrete math courses.
- Use “games and strategies” to explain quantifiers.
- Encourage students to work with interactive proof-development environments: Nuprl, Coq, Agda, ...
- Developing programs should emphasize logical principles: e.g. search for loop invariants.
Where could logic be in the CS curriculum?

- Should be incorporated in the first programming and discrete math courses.
- Use “games and strategies” to explain quantifiers.
- Encourage students to work with interactive proof-development environments: Nuprl, Coq, Agda, ...
- Developing programs should emphasize logical principles: e.g. search for loop invariants.
- Should be junior/senior (2nd/3rd year) level courses on (a) types in programming languages (b) automated techniques for verification (c) testing and validation.
Who am I to make proposals?

- Absolutely nobody!
Who am I to make proposals?

- Absolutely nobody!
- A new ACM Special Interest Group (SIG) on Logic and Computation (SIGLOG, please come this evening!) has been formed to represent the interests of the community.
Who am I to make proposals?

- Absolutely nobody!
- A new ACM Special Interest Group (SIG) on Logic and Computation (SIGLOG, please come this evening!) has been formed to represent the interests of the community.
- Just as SIGPLAN has emphasized the role and importance of programming language theory in the ACM Curriculum, SIGLOG will advocate the importance of logic in the CS curriculum.
Who am I to make proposals?

- Absolutely nobody!
- A new ACM Special Interest Group (SIG) on Logic and Computation (SIGLOG, please come this evening!) has been formed to represent the interests of the community.
- Just as SIGPLAN has emphasized the role and importance of programming language theory in the ACM Curriculum, SIGLOG will advocate the importance of logic in the CS curriculum.
- SIGLOG has a standing committee on education which will explore these issues.
Who am I to make proposals?

- Absolutely nobody!
- A new ACM Special Interest Group (SIG) on Logic and Computation (SIGLOG, please come this evening!) has been formed to represent the interests of the community.
- Just as SIGPLAN has emphasized the role and importance of programming language theory in the ACM Curriculum, SIGLOG will advocate the importance of logic in the CS curriculum.
- SIGLOG has a standing committee on education which will explore these issues.
- If you care strongly about CS education please join us in discussing these ideas.