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Abstract 

 

The effect of inorganic, coarse solids on emulsion layer stability and growth was investigated. 

Factors including solids type (kaolin and silica), size, concentration, and wettability were 

considered. Model asphaltene-stabilized water-in-oil emulsions were prepared from water and 

organic phase consisting of solids, asphaltenes, heptane, and toluene. In batch experiments, 

coalescence rates were determined from the change in emulsion height over time as the emulsion 

coalesced. In continuous experiments, emulsion layer growth was measured for emulsions in a 

continuous separator. A material balance/coalescence rate based model was developed and fit to 

the data. Coarse solids at low concentrations destabilized emulsions in batch separations but, above 

a threshold concentration, solids increased emulsion stability. In continuous separations, even at 

feed concentrations below the threshold, solids accumulated in the emulsion until the threshold 

was reached and stable emulsions were formed. The performance of continuous separations cannot 

be predicted from batch tests.   
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1. CHAPTER 1: INTRODUCTION 

             

 

Alberta contains large unconventional fuel deposits in the form of mineable oil sands and in situ 

heavy oil and bitumen. These oil reserves contain an estimated 168 billion barrels of recoverable 

oil and in 2016 total oil sands production reached 2.4 million barrels per day (Canadian Association 

of Petroleum Producers, 2017). One major challenge is the separation of crude oil and co-produced 

water and solids during oil sand processing or at the oilfield battery for in situ processes. This oil-

water separation usually requires heat and/or chemical treatment. In some cases, even after 

treatment, poor separation occurs when a viscous layer of emulsified water droplets stabilized by 

asphaltenes and fine solids, known as a rag layer, develops at the oil-water interface. The formation 

and growth of rag layers can be challenging to predict and costly to deal with. 

 

The recovery of bitumen from oil sands deposits consists of two major stages: extraction and froth 

treatment. Bitumen is extracted from shallow, minable oil sands deposits using the Clark Hot 

Water Extraction process, an air assisted floatation process, developed by Karl Clark in 1920 and 

commercialized in the late 1960s. The mined ore is crushed and then mixed with warm water 

and/or steam, naturally entrained air, and chemical additives (e.g., NaOH) to prepare a 40-55°C 

slurry. The slurry is conditioned as it is transported in a hydro-transport pipeline to a primary 

separator, often a large gravity-separation vessel. During transport in the pipeline, turbulence 

liberates bitumen droplets from solids particles and the droplets attach to entrained air bubbles, 

becoming aerated. In the separation vessel, the aerated bitumen floats to the top and is skimmed 

off as a bitumen rich froth. Coarse sand, fine solids, clays and a fraction of the bitumen sink to the 

bottom and are sent to tailings ponds. The middle layer is often re-aerated to recover additional 

bitumen. 

 

The bitumen froth from oil sand extraction processes is typically composed of 60% bitumen, 30% 

water, and 10% solids by mass (Kupai et al., 2013) and must be further treated to meet downstream 

process specifications. Any remaining air bubbles and free water are easily removed by heating or 

gravity drainage, but emulsified water (droplets 2-10 µm in diameter) and suspended solids (fine 



 

2 

 

clays <1-2 µm in diameter) are more difficult to remove. In addition, bitumen and water have 

similar densities; therefore, there is little driving force for the two liquids to separate by gravity 

settling or creaming. Methods to separate water droplets from bitumen froths aim to reduce the 

viscosity and density of the bitumen and flocculate water droplets to promote settling. The 

separation is typically achieved through the addition of a diluent and settling techniques that 

include separators, inclined plate settlers, and centrifuges.  

 

Deeper bitumen deposits require the injection of steam in cyclic steam stimulation (CSS) or steam 

assisted gravity drainage (SAGD) extraction processes. In CSS, steam is injected into a vertical 

well and left for a period of time to heat the oil sands to approximately 250°C. The heat reduces 

bitumen viscosity by orders of magnitude so that it can be pumped to the surface out the same 

well. The cycle of steam injection followed by oil production is then repeated. SAGD uses two 

parallel horizontal wells, with their horizontal segments drilled one above the other in the lower 

part of the reservoir, for simultaneous steam injection and bitumen production. Steam is injected 

into the upper well and the heated bitumen and condensed steam flow to the lower well, where 

they are pumped to the surface. The product from the well is a mixture of heavy oil or bitumen 

and water and is sent to a heater-treater separator to separate the oil from the water. 

 

In bitumen/water separation vessels, the accumulation of a persistent, viscous layer of intermediate 

density at the oil-water interface is commonly observed. This layer, known as a rag layer, is a 

complex fluid comprised of emulsified water and/or oil, interfacially active organic matter from 

the bitumen, and produced solids. (Saadatmand et al., 2008; Czarnecki et al., 2007; Kupai et al., 

2013). Rag layers grow when the coalescence rate of the emulsified droplets leaving the emulsion 

is slower than the settling/creaming rate of droplets entering the emulsion layer (Frising et al., 

2006). When coalescence rates are significantly reduced, rag layers can grow large enough to 

reduce separation efficiencies and cause process upset (Saadatmand et al., 2008). Gravity settling 

alone will not result in timely separation of oil and water and even heating and chemical 

demulsifying techniques are not always sufficient. 
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For oil sands bitumen and heavy oil processing, water-in-oil (W/O) emulsions stabilized by 

asphaltenes and inorganic solids are often the most problematic to treat and are likely contributors 

to rag layer formation. The presence of asphaltenes and solids in oil sands froths attribute to the 

stability of these W/O emulsions by absorbing at the oil-water interface and resisting droplet 

coalescence by hindering collisions and contact between droplets. Solids packing between adjacent 

droplets further decreases coalescence because the trapped solids prevent dispersed droplets from 

aggregating, creaming or sedimenting, and coalescing (Yan et al., 2001; Yan and Masliyah, 1993). 

The ability of solids to stabilize emulsions depends on the solids size, concentration and 

wettability, and the strong stability and formation of rag layers can be attributed to the presence of 

high concentrations of fine, oil-wet solids (Sztukowski and Yarranton, 2004). 

 

Rag layer treatment can be costly and therefore, it is desirable to develop less expensive techniques 

for rag layer destabilization. Most studies have been done as batch bench-top laboratory 

experiments. These studies can provide insight into characterizing rag materials and understanding 

the effects of rag components, such as asphaltenes and solids, on emulsion stability in batch 

separations. However, the mechanisms that trigger rag layer growth in continuous separations have 

not been investigated. Continuous systems are more complex and it is difficult to stop rag layer 

accumulation and subsequent flooding in the separator under poor operating conditions. The 

purpose of this thesis is to investigate rag layer stability and growth in asphaltene stabilized water-

in-oil emulsions in the presence of solid particles in both batch and continuous separations.  

 

1.1 Thesis Objectives 

In this thesis, the effect of coarse inorganic solids on emulsion stability and rag layer growth and 

accumulation is investigated using batch and continuous separations performed on model water-

in-oil emulsions stabilized by asphaltenes. Solids properties, such as size, concentration and 

wettability, and asphaltene concentration and source are considered and related to trends in model 

emulsion stability. The emulsions are then modeled with a material balance to evaluate the use of 

batch stability experiments as a screening test for rag layer growth and stability. The specific 

objectives are to:  
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 Measure rag layer growth in batch and continuous water-oil separations for water-oil 

emulsions with different asphaltenes, asphaltene concentrations, solvent types, drop size 

distributions, solids contents, particle size distributions, and solids wettability.  

 Model batch and continuous rag layer growth based on the coalescence rate. 

 Assess the ability to predict rag layer growth in continuous separations from batch tests 

and batch model parameters. 

 Relate emulsion stability and rag layer growth to solid properties and accumulation. 

 

Model emulsions were used to simplify the systems and to isolate the effects of solids. The first 

set of water-in-oil emulsions were prepared from an aqueous phase consisting only of water and 

an organic phase consisting of asphaltenes dissolved in toluene and heptane. These asphaltene 

stabilized emulsions were intended as baselines for solids addition. The second set of emulsions 

were prepared in the same way, but kaolin and silica were added to the organic phase with the 

asphaltenes. These emulsions were used to assess the effect of the solids on rag layer growth. 

 

Emulsion stability was measured in batch experiments and a previously developed laboratory scale 

continuous separation experiment (Khatri et al., 2011) was used to measure emulsion layer growth. 

Material balances based on the rate at which the dispersed phase in the emulsions layer exits the 

settled emulsion were adapted and used to model the experimental results and determine the 

coalescence rates, emulsion layer growth rates and other parameters.  

 

1.2 Thesis Structure 

This thesis is organized into the following chapters: 

 

Chapter 2 reviews the background concepts on emulsions: emulsion stabilization and 

destabilization and surfactants are reviewed. Previous research on the mechanisms of solid 

stabilization of emulsions and the characterization of oil sands solids is presented and the rag layer 

is defined for oil sands and in situ process separations. 

 

Chapter 3 outlines the method used to prepare the model emulsions and the procedures for the 
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batch, decay, and continuous experiments. The experiments performed to determine the wettability 

and particle size, and drop size distributions of the solids used in this thesis are also presented.    

 

Chapter 4 develops the model equations for batch, decay, and continuous experiments. The models 

are based on a material balance performed on the dispersed phase within the emulsion layer and 

are fit to the experimentally measured emulsion layer heights.  

 

Chapter 5 presents the experimental and modeling results. The effects of asphaltene source, 

asphaltene concentration, solvent type, water content, and drop size distribution are evaluated from 

both batch and continuous experiments. The predictive capability of the batch model parameters 

for determining emulsion stability in continuous separations is evaluated. A base case system is 

defined to evaluate the effect of adding solids. Kaolin and silica solids of different size distributions 

and surface properties are then added to the emulsions to determine the effect of solids type, size 

and concentration on emulsion stability in batch and continuous experiments. The predictive 

capability of the batch model parameters for determining emulsion stability in continuous 

separations is then re-evaluated. 

 

Chapter 6 summarizes the thesis conclusions and presents recommendations for future work. 
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2. CHAPTER 2: LITERATURE REVIEW  

 

     

Rag layers are an accumulation of emulsions and solids that can form during water/oil separation 

processes. In this chapter, the fundamentals of emulsions are reviewed with a focus on emulsion 

stabilization and destabilization mechanisms. The main emulsion stabilizers in heavy oils, 

asphaltenes and inorganic solids, are discussed. Demulsification processes and the modeling of the 

accumulation of emulsion layers in these water-oil separations are also discussed. The focus is on 

water-in-oil emulsions since they are usually the most problematic emulsions encountered in oil 

sands mining and heavy oil in situ operations and are likely contributors to rag layer formation. 

Finally, rag layer formation in these processes is reviewed.  

 

2.1 Emulsions 

An emulsion is a mixture of two immiscible liquids in which droplets of one liquid (the dispersed 

or internal phase) are dispersed in a second liquid (the continuous or external phase). There are 

two main types of emulsions: water-in-oil emulsions (W/O), where water droplets are suspended 

in an oil matrix, or oil-in-water emulsions (O/W) with oil droplets dispersed in a continuous water 

phase. W/O and O/W emulsions are also refered to as “regular” and “reverse” emulsions, 

respectively. Multiple emulsions such as oil-in-water-in-oil or water-in-oil-in-water can also 

occur. The type of emulsion formed depends on several factors such as the water-oil ratio, type 

and concentration of surfactants and electrolytes, and temperature. The type of emulsion can be 

determined with a dilution test because the emulsion can be dispersed in the same phase as the 

continuous phase (Kupai et al., 2013). If the emulsion is diluted with water, water is the dispersion 

medium and the emulsion is O/W type. If the added water forms a separate layer, the emulsion is 

W/O type.  

 

Emulsions can also be categorized based on the size of the dispersed droplets. Micro-emulsions 

have small droplets with diameters on the order of 1 to 100 nm. These isotropic emulsions can be 

thermodynamically stable and have very low interfacial tension. Most emulsions are macro-
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emulsions and are thermodynamically unstable. These emulsions have larger droplets with non-

zero interfacial tension. Energy, typically in the form of agitation, is required for their formation.  

 

Macro-emulsions have large interfacial areas where oil and water molecules are forced into contact 

with each other. The unlike particles at the interface have a greater interaction energy than when 

surrounded by like molecules in their respective bulk phases. In addition, the hydrogen bonding 

networks in the water phase are disrupted at the interface. Hence, the formation of an emulsion 

leads to an increase in excess energy in the form of interfacial tension (also known as surface 

energy). Droplets tend to be spherical and coalesce in order to reduce the surface area and so 

minimize the surface energy. Therefore, once formed, emulsions tend to separate back into their 

constituent bulk phases over time.   

 

2.1.1 Emulsion Destabilization 

Emulsions tend to destabilize over time through various breakdown processes such as flocculation, 

sedimentation or creaming, coalescence, Ostwald ripening, and phase inversion (Figure 2.1). 

These kinetic processes may take place simultaneously or consecutively and can result in complete 

separation of the phases. Flocculation and sedimentation/creaming result in a change in the 

location of the drops. Coalescence and Ostwald ripening result in a change in the drop-size 

distribution and number of drops. 
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Figure 2.1 Schematic representation of emulsion breakdown processes. 

 

 

Flocculation 

Flocculation is the aggregation of droplets (Tadros, 2009) and occurs when two or more droplets 

are attracted close to each other without rupturing the droplet interfacial films or changing the 

original size of the droplet. The overall process is partially reversible (Singh, 1994). Flocculation 

rates depend on the interaction energy between droplets, which are the sum of van der Waals 

attraction forces and electrostatic or steric repulsion forces (Natarajan et al., 2011). In order for 

droplets to remain as an aggregate, the attraction between the droplets must be large enough to 

overcome the thermal agitation or repulsive forces (Binks and Horozov, 2006).  Flocculation can 

then enhance settling and lead to emulsion destabilization because larger droplets settle faster and 

the probability of coalescence increases when the droplets are closer together. 
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Sedimentation/Creaming  

Sedimentation and creaming are gravity driven processes where differences in density between the 

dispersed and continuous phases result in the respective fall and rise of the dispersed droplets. 

Sedimentation occurs in a W/O emulsion where the denser water droplets sediment downwards.  

For an O/W emulsion, the less dense oil droplets cream upwards (Tadros, 2009). Both settling and 

creaming processes occur independently of droplet-droplet interactions and do not change the 

droplet size distribution of the emulsion (Binks and Horozov, 2006), but bring the droplets closer 

together. Settling and/or creaming rates can be increased by reducing the viscosity of the 

continuous phase, increasing the density difference between the two liquids or increasing the 

droplet size (Farn, 2006). High viscosities are a problem in destabilizing water-in-oil emulsions 

encountered in the petroleum industry.  

 

Coalescence  

Coalescence is an irreversible process where two droplets collide and merge to form one larger 

droplet. The droplets grow in size and eventually form free water and oil layers, leading to 

complete separation of the emulsion into two distinct phases. Emulsion destabilization by 

coalescence results in a decrease in the number of droplets (Singh, 1994) and a reduction of the 

total droplet surface area. The coalescence rate depends on the droplet encounter rate and 

interfacial properties (Binks and Horozov, 2006) and is more favourable for larger droplets where 

the contact area between droplets is greater.  

 

Coalescence takes place in three steps (Frising et al., 2006; Lobo et al., 1996; Sztukowski and 

Yarranton, 2005), as shown in Figure 2.2:  

1. Approach of two or more droplets to within the near molecular dimensions as result of 

attractive forces, fluid motion, creaming and/or flocculation. 

2. Deformation and dimpling of the droplet surface to create a planar interface between 

droplets. This is followed by the drainage of the continuous phase from the planar region, 

which thins the film and creates gaps with less interfacial material. The time taken for film 

drainage contributes significantly to coalescence rates. 
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3. Bridging between the droplets and the rupture of films, resulting in irreversible fusion of 

two droplets into a single larger droplet.  

 

 

 

Figure 2.2 Schematic representation of the three step coalescence process. 

 

 

Ostwald Ripening 

Ostwald ripening is a mass transfer process where larger droplets grow at the expense of smaller 

droplets by diffusion (Tadros, 2009). The process is driven by a concentration gradient which 

develops from differences in the solubility of the dispersed phase in the continuous phase at the 

curved surface of the droplets. Solubility increases with increasing interface curvature; therefore, 

the solubility is greater at the interface of smaller droplets and lower for larger droplets. Eventually, 

the smaller droplets disappear unless an irreversible film is present at the interface that prevents 

further shrinkage. Ostwald ripening results in a decreased number of droplets and an increased 

average drop diameter. This leads to an overall reduction of the interfacial energy due to the lower 

surface area to volume ratio of larger droplets (Binks and Horozov, 2006).  

 

Note, in asphaltene stabilized emulsions, like the ones considered in this thesis, the irreversibly 

adsorbed interfacial film retards the ripening process in small droplets so that although the drop 

size distribution changes, the total number of droplets does not change (Yarranton and Masliyah, 

1996). Since ripening is a diffusion controlled process, it usually occurs over longer time scales 

than encountered in commercial oilfield separation processes or in the experiments performed in 

this thesis. 
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Phase Inversion 

Phase inversion is a change in emulsion type where the dispersed phase becomes the continuous 

phase and vice versa. Factors such as temperature, surfactant concentration, time, or a change in 

the dispersed phase volume fraction can result in an exchange between the continuous and 

dispersed phases (Tadros, 2009). Phase inversion is not a factor in oil sand related emulsions. 

 

2.1.2 Emulsion Stabilization  

Emulsions are considered stable when there is no significant change in the number, size 

distribution, and spatial arrangement of the droplets within the given time scale. In separation 

processes, they are considered stable as long as there is no significant change in the number of 

droplets; that is, no phase separation occurs.  Most emulsions are thermodynamically unstable, but 

can be can be kinetically stable over long periods of time if a surface active component (see 

Sections 2.1.3 and 2.1.4) adsorbs at the interface. There are three main mechanisms by which a 

surface active component can stabilize the emulsion: electrostatic, steric, and mechanical 

stabilization. 

 

Electrostatic stabilization occurs when dissociated ionic groups in the molecules adsorbed at the 

water/oil interface create a surface charge. The surface charge attracts counter-ions from the bulk 

phase and repels co-ions, forming an electrostatic double layer with charge separation. If the 

counter-ion layer is diffuse, the droplets act as similarly charged spheres and repel each other, 

stabilizing the emulsion. Electrostatic stabilization is significant only for oil-in-water emulsions 

where water is the continuous phase because the electric double-layer thickness is much greater in 

water than in oil.  

 

Steric stabilization prevents the close approach between droplets when high molecular weight 

materials or solids adsorb at the oil-water interface and form a thick interfacial film. The films 

provide a physical barrier to droplet contact. Mechanical stabilization occurs if the interfacial films 

are irreversibly adsorbed. Irreversible adsorption can occur if the surfactants at the interface 

rearrange to form a cross-linked network in the film. Since coalescence reduces the interfacial area 

and the surfactant molecules are trapped at the interface, these films become compressed during 
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coalescence. The increasing film thickness and viscosity resists further compression and 

coalescence. The thickened film may also form a steric barrier to coalescence.   

 

2.1.3 Emulsion Stabilizers: Surfactants 

Surfactants, or surface active agents are molecules which, even at low concentrations, adsorb at a 

surface or interface and significantly lower the interfacial free energy. Note, an interface is defined 

as the boundary between two immiscible liquids and a surface is an interface where one phase is a 

gas or a solid. Surfactant structure is amphipathic and consists of two groups: a polar hydrophilic 

head which is orientated towards the aqueous phase and a nonpolar hydrophobic tail orientated 

towards the oil phase. The hydrophobic tail generally includes a long chain hydrocarbon. 

Surfactants are classified based on the charge of the hydrophilic head group as follows: 

1. Anionic: The surface active or hydrophilic portion of the molecule carries a negative charge 

(e.g., carboxyl (RCOO˗ M+), sulfonate (RSO3
-M+) or sulfate (ROSO3

-M+)). 

2. Cationic: The hydrophilic group carries a positive charge (e.g., quaternary ammonium 

halides (R4N
+Cl-)). 

3. Zwitterionic (or amphoteric): The hydrophile may contain both positive and negative 

charges (e.g., sulfobetaines (RN+(CH3)CH2CH2SO3
-)). 

4. Non-ionic: The hydrophile carries no apparent ionic charge, but may contain polar groups. 

(e.g., polyoxyethylene (-OCH2CH2O-), or polyol (-RX (C3H5OH)nOH-) groups).  

 

Surfactant molecules tend to orientate themselves at the oil-water interface so that their hydrophilic 

heads are towards the polar water phase and the hydrophobic tails are towards the oil phase, as 

shown in Figure 2.3a, forming a film around the droplets. These films reduce the interfacial energy 

because the interactions between the surfactant molecules and the individual phases (polar-polar 

interactions and nonpolar-nonpolar interactions) are more favorable than the polar-nonpolar 

interactions between the dispersed and continuous phases. The lower interfacial energy decreases 

the driving force for coalescence. The films can also provide a steric barrier to coalescence by 

preventing close approach and contact between droplets and increasing film thickness and 

viscosity.  
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At sufficiently high surfactant concentrations, the surfactant monomers in the bulk phase will self-

arrange to form aggregate structures with the lowest possible free energy, Figure 2.3b. The 

simplest aggregates are micelles, where the lyophilic groups form a sphere to protect the lyophobic 

groups from contacting the solvent and reduce the interactions between unlike polar and nonpolar 

molecules. Surfactant monomers may form other structures in the bulk phase, including vesicles, 

liquid crystals, and reverse micelles. The surfactant concentration at which micelles begin to form 

is known as the critical micelle concentration (CMC) and is dependent on surfactant structure and 

temperature. For pure surfactants, the CMC is marked by a sharp break in the slope of an interfacial 

tension versus concentration plot where the apparent molar mass of the solute changes. Above the 

CMC, there are no significant changes in surface properties because the concentration of surfactant 

monomers is nearly constant.  

 

 

 

 

Figure 2.3 Surfactant structures for water continuous phases below CMC adsorb as monomers at 

interface or above CMC as micelles. Adapted from Sztukowski (2005). 
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2.1.4 Emulsion Stabilizers: Solids 

Particles adsorbed at the water-oil interface can create a steric barrier between adjacent water drops 

which hinders droplet contact and collisions, film drainage and coalescence (Horozov and Binks, 

2006; Sztukowski et al., 2003; Tadros and Vincent, 1983). The nature of the barrier and the degree 

to which solids enhance emulsion stability depends on several factors such as particle size and 

distribution, shape and morphology, density, concentration, surface properties and coverage, 

wettability and interactions with surface active molecules (Sparks et al., 2003; Sullivan and 

Kilpatrick, 2002; Menon and Wasan, 1988). The strong stability and formation of rag layers has 

been attributed to the presence of high concentrations of fine, oil-wet solids (Sztukowski and 

Yarranton, 2004).  

 

Effect of Solids Wettability  

Solids stabilized emulsions were first discovered by Pickering (1907). He found that the 

stabilization potential of solids depends on their wettability. Wettability is a measure of the relative 

affinity of a solid surface to two different liquids (often oil and water) or a liquid and a gas. It 

influences the type of emulsion stabilized, the partitioning of the particles between the bulk phases 

(concentration in each phase), and the surface coverage of particles adsorbed on the dispersed 

phase droplets (Perino et al., 2013; Hannisdal et al., 2006; Aveyard et al., 2003; Bensebaa et al., 

2000; Binks and Lumsdon, 2000; Tambe and Sharma, 1993; Schulman and Leja, 1954). It is 

quantified by measuring the three phase contact angle formed between a solid and two liquids (or 

a liquid and vapor). Wettability can also be measured indirectly by critical surface tension in the 

film floatation method (Fuerstenau et al., 1991). This method can be used to quantify the relative 

hydrophilicity and hydrophobicity of solids and the standard deviation can determine the surface 

heterogeneity of the solids (Wang et al., 2015; Dang–Vu et al., 2009). 

 

A water-wet or hydrophilic solid refers to one preferentially wetted by water (contact angle less 

than 90º when measured through water) whereas an oil-wet or hydrophilic solid is more easily 

wetted by oil (contact angle greater than 90º), Figure 2.4. Solids particles are best able to stabilize 

emulsions when they position themselves at the oil-water interface. The solids that collect at the 

interface are bi-wetted, which means that the solids have both hydrophilic and hydrophobic areas 
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and have contact angles that do not largely deviate from 90º. Bi-wettable solids are in their lowest 

free energy state when adsorbed at the interface and therefore are expected to adsorb more strongly 

and produce more stable emulsions than solids with other wettabilities. Strongly hydrophilic solids 

tend to reside in the water phase instead of adsorbing at the interface and have a low attachment 

efficiency. Similarly, strongly hydrophobic particles can be readily detached from the interface. 

Such interfaces are not sufficient to provide a barrier to prevent droplet coalescence and therefore 

may not stabilize emulsions.  

 

The wettability of the solids can indicate if the solid will stabilize W/O or O/W emulsions with 

solids stabilizing emulsions of the type where the solids preferentially disperse in the continuous 

phase. Moderately hydrophobic solids stabilize water-in-oil emulsions and moderately hydrophilic 

solids tend to promote oil-in-water emulsions. Factors such as particle partitioning, surface 

coverage, and the phase in which the particle is originally dispersed must be considered in addition 

to contact angle. 

 

 

 

 

Figure 2.4 Position of spherical water-wet, bi-wettable and oil-wet solids at the oil water interface. 

 

 

 



 

16 

 

Effect of Initial Particle Location  

Some studies suggest that the phase in which the solids are dispersed prior to emulsification 

determines the type of emulsion formed (Sullivan and Kilpatrick, 2002; Binks and Lumsdon, 2000; 

Tambe and Sharma, 1993). In these studies, with the oil-water volume ratio set to one, silica 

nanoparticles of intermediate wettability originally dispersed in water yield O/W emulsions, 

whereas those initially dispersed in oil produce W/O emulsions. However, Gavrielatos et al. (2017) 

found that W/O emulsions were formed in all cases regardless of initial particle location. All 

studies agree that the initial dispersion medium has a significant impact on emulsion stability. W/O 

emulsions were less stable when the particles were initially dispersed in oil as opposed to water. 

In a W/O emulsion, it is easier for water-wet particles to stabilize water droplets when they do not 

first have to redistribute in the continuous phase before covering the droplets. Gavrielatos et al. 

(2017) found that the difference in emulsion stability decreases with an increase in the initial water 

volume fraction and the difference was insignificant at high solids concentrations. Sufficient 

mixing times also greatly diminish the difference in emulsion stability due to initial particle 

location. 

 

Effect of Solids Size, Shape, and Concentration 

Generally, emulsion stability increases with decreasing particle size and density and increasing 

particle concentration. (Gavrielatos et al., 2017; Aveyard et al., 2003; Sullivan and Kilpatrick, 

2002; Binks and Lumsdon, 2000; Yan et al., 1999; Tambe and Sharma, 1993; Gelot et al., 1984).  

Solid particles must be at least ten times smaller than the water droplets to effectively stabilize an 

emulsion (Binks and Kirkland, 2002; Tadros and Vincent, 1983; Schulman and Leja, 1954). 

 

The effect of solids concentration on emulsion stability depends on the size and positioning of the 

solids in the emulsion. The positioning of solids in an emulsion based on particle size is shown in 

Figure 2.5. Fine solids, with diameters typically less than 1 µm (Sztukowski and Yarranton, 2005; 

Yan et al., 2001; Levine and Sanford, 1985) and high surface area to volume ratios, are expected 

to stabilize emulsions at all concentrations by adsorbing at the droplet interface, with stability 

increasing with increasing solids concentration. However, maximums in emulsion stability with 

solids concentration have been found (Sztukowski and Yarranton, 2005) and partial surface 
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coverage by solids at the interface can be sufficient to stabilize emulsions (Binks and Kirkland, 

2002; Vignati et al., 2003). At very low solids concentrations, there may insufficient surface 

coverage to provide stability, whereas at very high concentrations (total surface coverage by 

solids), interfaces may not be rigid enough to maintain stability (because there is too little 

surfactant remaining on the interface). 

 

Sztukowski and Yarranton (2004) found that coarse solids, with diameters greater than 1 µm, 

destabilize water-in-oil emulsions at low concentrations, likely by acting as bridges between the 

droplets, promoting coalescence. Bridging occurs when a single layer of particle adsorbs 

simultaneously at the film interface of two droplets. Complete separation of water and oil phases 

occurred for solids concentrations below 1 kg/m³. However, as the solids concentration increased 

above a 5 kg/m³ threshold, emulsion stability began to increase. As concentration increases, coarse 

particles can form a multilayer around the droplet interface or become trapped in the continuous 

phase between adjacent water drops. Solids packed between droplets form a thick steric barrier to 

prevent aggregation among water droplets and direct bridging of solids between interfaces, thus 

reducing coalescence and increasing emulsion stability. For solids concentrations exceeding 10 

kg/m³, stable emulsions were formed. Hence, in high enough concentrations, coarse solids alone 

are sufficient to impart long term stability to an emulsion.  
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Figure 2.5 Positioning of fine and coarse solids in an emulsion. Adapted from Sztukowski and 

Yarranton (2004). 

 

 

Emulsion stability can also be affected by particle density and shape. An increase in particle 

density tends to result in a decrease in emulsion stability (Gelot et al., 1984; Schulman and Leja, 

1954). Morphology can affect the wettability of the particles, with smooth particles often being 

more hydrophobic (Yekeler et al., 2004). In addition, asymmetric particles such as bentonite clays 

can more effectively stabilize an emulsion than spherical particles, such as silica (Tadros and 

Vincent, 1983). 

 

2.1.5 Emulsion Stabilizers in Crude Oils 

Both surface active molecules and solid stabilizers are found in crude oils. Molecular surface active 

components include naphthenic acids, resins, and asphaltenes. Only asphaltenes are considered in 

this thesis. Solid stabilizers include sand, clay, and corrosion products. Only sand and clay are 

considered here. 
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2.1.5.1 Asphaltenes 

Asphaltenes are often identified as being responsible for stabilizing water-in-crude oil emulsions 

(Tchoukov et al., 2014; Sztukowski et al., 2003; Gu et al., 2002; Yarranton et al., 2000, 2007; 

McLean and Kilpatrick, 1997b). Asphaltenes are the solubility class of a crude oil which is soluble 

in toluene (an aromatic solvent), but insoluble in n-heptane (an aliphatic solvent). They are the 

most heavy, polar, and surface-active fraction of the crude oil.  

 

Asphaltenes are a mixture of hundreds of thousands of species (Podgorski et al., 2013). They are 

polyaromatic hydrocarbons made up of condensed aromatic rings, aliphatic side and bridging 

chains, and various heteroatom functional groups that include nitrogen, oxygen, and sulfur atoms 

(Varadaraj and Brons, 2007; Strausz et al., 1992). A hypothetical “average” asphaltene molecule 

proposed by Strausz et al. (1992) is shown in Figure 2.6. These asphaltene molecules have 

monomer molar masses of approximately 1000 g/mol (Yarranton et al., 2000; Powers, 2014). The 

hydrocarbon structure interspersed with polar groups means that asphaltenes are amphiphilic.  

 

Asphaltenes self-associate into nano-aggregates with average molecular weights of 4000 to 10,000 

g/mol depending on the asphaltene concentration, solvent, temperature, and source crude oil 

(Yarranton et al., 2000). The aggregation increases step-wise with increasing asphaltene 

concentration and decreases with increasing temperature (Agrawala and Yarranton, 2001; Merino-

Garcia et al., 2004). Asphaltenes appear to aggregate more as their solubility in decreases; that is, 

in a poorer solvent (Spiecker et al., 2003). A variety of aggregation mechanisms have been 

proposed including π-π stacking of the aromatic regions in the asphaltene structure (Yen et al., 

1961; Mullins, 2010), hydrogen bonding, and acid-base interactions (Gray et al., 2011).  
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Figure 2.6 Proposed archipelago structure of an asphaltene molecule with an elemental formula 

of C420H496N6S14O4V, an H/C ratio of 1.18 and a molecular weight of 6191 g/mol (Spiecker et al., 

2003). 

 

 

Asphaltene monomers and nano-aggregates are surface active and reduce the interfacial tension of 

crude oils or hydrocarbons versus water (Zhang et al., 2016). They absorb irreversibly at the water-

oil interface as an insoluble monolayer film (Shi et al., 2017; Liu et al., 2015; Rane et al., 2012; 

Spiecker and Kilpatrick, 2004; Sztukowski et al., 2003; Czarnecki et al., 2013; Zhang et al., 2005; 

Yan et al., 1999; Siffert et al., 1984). Asphaltene film properties (e.g., compressibility, crumpling, 

elasticity, interfacial tension) are governed by several factors such as solvent chemistry, asphaltene 

concentration, temperature, aging time, and interactions with other surface active components in 

the crude oil. In general, the films become more rigid and more strongly adsorbed in poorer 

solvents, higher concentrations, lower temperatures, and greater aging times (Liu et al., 2017). 

 

The irreversibly adsorbed asphaltene film mechanically, and possibly sterically, stabilize water-

in-oil emulsions. Yarranton et al. (2007) found that emulsions become more stable when the 

heptane fraction in heptol increases, the asphaltene concentration decreases, the interface aging 

time increases, and when the asphaltenes have a higher molar mass.  
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2.1.5.2 Inorganic Solids 

W/O emulsions are more stable when both asphaltenes and fine solids are present than asphaltenes 

or solids alone (Gu et al., 2002; Yan et al., 1999). The solids stabilize emulsions by competing 

with asphaltenes to adsorb at the water-oil interface, either directly or on an existing surfactant 

film, and/or packing between droplets (Sztukowski and Yarranton, 2005; Aveyard et al., 2003; 

Yan et al., 2001; Tambe and Sharma, 1993; Menon and Wasan, 1988) as shown in Figure 2.7. As 

noted previously, adsorbed solids form a steric barrier to coalescence. Tightly packed networks of 

solids trapped between droplets contribute to the mechanical rigidity and viscosity of the film when 

there are strong particle-particle interactions. (Binks and Kirkland, 2002; Tambe and Sharma, 

1994). These networks of solids suspended in the continuous phase may lower the probability of 

close contact between the droplets, reduce aggregation and creaming/sedimentation (Yan et al., 

2001), increase the overall emulsion viscosity (Yaghi et al., 2001) and reduce the chances of 

coalescence and segregation of water and oil (Yan and Masliyah, 1993). The composition, size, 

shape and wettability of solids encountered in heavy oil and oil sands operations are discussed 

below.   

 

 

Figure 2.7 Role of solids in the stabilization of water-in-oil emulsions: a) solids adsorbed on the 

interface, b) solids trapped between droplets. 

 

 

Crude oils contain natural reservoir solids and in oilfield applications, oils may also contain 

material introduced during production and processing (Zahabi et al., 2010; Jiang et al., 2011). 

Solids originating from the reservoir rock may include silicates, clays, quartz, calcite, feldspar and 

pyrite. Precipitated chemical additives and insoluble corrosion products are examples of solids that 
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can be introduced after extraction (Sztukowski and Yarranton, 2005). The solids content is an 

indicator of ore processability and potential bitumen recovery from the froth (Sparks et al., 2003). 

High concentrations of solids in low quality oil sands can result in the formation of large, stable 

rag layers. Bensebaa et al. (2000) and Kotlyar et al. (1998, 1999) have identified the solids most 

associated with oilfield emulsions as fine (<1-2 µm), bi-wettable aluminosilicate clays, with 

kaolinite being the most abundant in oil sand froths.    

 

Clays are crystalline in nature and composed of two structural units: an octahedral unit of six 

oxygen atoms or hydroxyl groups surrounding metal atoms (aluminum, iron or magnesium) and a 

tetrahedral until of four oxygen atoms (or hydroxyl groups) surrounding silica atoms. The first unit 

has an elemental composition of Al2(OH)6 or Mg3(OH)6 depending on the central atoms present. 

The second unit forms a repeating hexagonal pattern with a formula of Si4O6(OH)4. Clay minerals 

are formed from combined sheets of alternating octahedral and tetrahedral units.  

 

Kaolinite is the most abundant clay in oil sands reservoirs and has been shown to preferentially 

partition into the froth stream during oil sands processing by Kaminsky (2009). Kaolinite is a 

layered 1:1 type aluminosilicate clay mineral, with alternating sheets of tetrahedral silica and 

octahedral alumina structures linked through oxygen atoms. Each layer, consisting of one 

tetrahedral structure and one octahedral structure, is bound together by hydrogen bonding to form 

pseudo-hexagonal platy particles (Lebedeva and Fogden, 2011). This forms a rigid structure that 

does not swell in water. There is a limited capacity for cation exchange within the kaolinite sheets. 

The replacement of Si4+ with Al3+ in the tetrahedral sheet or Al3+ with Mg2+ in the octahedral sheet, 

results in a negative charge on the clay surface. 

 

Bensebaa et al. (2000) developed a conceptual model based on elemental and structural analysis 

of oilfield aluminosilicate clays where humic and asphaltene-like petroleum matter has absorbed 

onto the solids surface, Figure 2.8. The solids have a predominantly hexagonal/platelet shape with 

diameters of less than 200 nm and thicknesses of approximately 10 nm. Chen et al. (2017a) 

analyzed the fine solids in a bitumen froth using adhesion force mapping and were able to clearly 

identify platy clay particles with layer thickness of 5-6 nm which were consistent with kaolinite 
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partially covered in organic matter. The organic material was found to be polar, aromatic matter 

similar to asphaltenes. Solids in oil sand froths are hydrophobic (Kupai et al., 2013). 

 

 

 

Figure 2.8 Conceptual model of bitumen solids. Adapted from Bensebaa et al. (2000). 

 

 

Kaolin and silica particles are naturally hydrophilic. However, exposure of the solid surface to 

bitumen in the absence of water can alter the overall surface wettability, surface energy and surface 

charge of the solids (Chen et al., 2017b; Pourmohammadbagher and Shaw, 2016; Jiang et al., 

2011). Organic material, typically multi-ring hydrocarbons found in bitumen such as asphaltenes, 

can absorb onto the solid surface or onto humic matter already deposited on the particle surface 

from the surrounding soil (Wang et al., 2016; Hannisdal et al., 2006; Bensebaa et al., 2000; Standal 

et al., 1999). The adsorption of hydrophobic organic material changes the surface composition and 

increases the hydrophobicity of the clay (Wang et al., 2013; Darcovich et al., 1989), leading to 

oil-wet particles. Organic material only partially covers the clay surface (Pourmohammadbagher 

and Shaw, 2016; Wang et al., 2013; Sparks et al., 2003; Bensebaa et al., 2000), leaving some 

hydrophilic surfaces exposed. This results in particles that are overall biwettable or of intermediate 

hydrophobicity. Generally, the organic coating is thin and does not greatly alter the size or 

topography of the solid surfaces (Pourmohammadbagher and Shaw, 2016). However adsorbed 

organic matter has a high adhesion force that can act as a glue, forming aggregates of solids.  
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2.1.6 Other Factors in Emulsion Stability 

Droplet Size Distribution 

The size distribution of the emulsified droplets is another factor affecting emulsion stability. As 

the average drop size decreases, emulsion stability tends to increase. Emulsions with large initial 

diameters are likely to have a faster coalescence rate than those with smaller diameters because 

larger droplets more readily sediment and have a higher probability for collision. In addition, lager 

droplets are more likely to deform and experience film rupture upon collision, resulting in 

coalescence and reducing emulsion stability. Droplet size can also affect the viscosity of the 

emulsion: emulsions with smaller droplets and narrower drop size distributions have higher 

viscosities.  

 

The drop-size distribution is dependent on the mixing process used to prepare the emulsions. Drop 

size generally decreases with increasing mixing speed. Greater mixing intensities result in more 

stable emulsions because droplets are smaller and better dispersed. However, high speed shearing 

above a critical value, from a pump may result in demulsification. The dispersed phase droplet 

diameter also decreases both with an increasing solids concentration and a decreasing particle size 

(Aveyard et al., 2003; Tambe and Sharma, 1993; Gelot et al., 1984).  

 

Dispersed Phase Volume Fraction 

Generally, if there is a limited supply of surface active material, the stability of a W/O emulsion 

decreases with an increase in the volume fraction of the dispersed (water) phase while other 

conditions are held constant. The size of the droplets depends on the mixing conditions and the 

amount of surface active material. The mixing conditions set an initial drop size. If there is 

sufficient surface active material, the droplets do not coalesce and their size is mainly set by the 

mixing conditions. When the supply of surface active material is limited, the droplets coalesce 

until there is sufficient stabilizing material on their surface to stop the coalescence. In this case, 

their size is set by the amount of stabilizing material. The larger droplets are more likely to 

coalesce, hence an increase in the dispersed phase volume leads to less stable emulsions. 
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Phase inversion can occur when the volume fraction of the dispersed phase exceeds a critical value. 

For monodisperse spherical droplets, the maximal volume fraction of the dispersed phase is 0.74, 

which is the closest possible packing of the spherical emulsion droplets. However, the droplets of 

most emulsions are polydisperse and deformable; thus, emulsions with a dispersed phase volume 

fraction of >0.74 can be prepared (Wen et al., 2014). 

 

2.1.7 Demulsification 

Industrial demulsification processes must achieve rapid separation into water and oil phases and 

provide a clean product. Hence, the key process variables are the separation rate and the quantity 

of residual water remaining in the crude oil. Unaided gravity driven separations of emulsions are 

often ineffective. Most industrial water-oil demulsification processes require chemical, thermal, 

mechanical, or electrical treatments to increase the demulsification rate, weaken interfacial films, 

and promote flocculation and coalescence. Oilfield demulsification methods are often field 

specific due to the large variations in produced crude oils. Refinery emulsions may require more 

than one type of treatment for effective water resolution. Each treatment method is described 

below. 

 

Chemical Treatment 

In the petroleum industry, the addition of chemical demulsifiers is the most common method for 

breaking oil-water emulsions stabilized by asphaltene and solids. Demulsifiers are typically 

surface active agents of complex organic compounds that destabilizes the emulsion by increasing 

flocculation or by weakening the film, and increasing coalescence (Frising et al., 2006; Singh, 

1994). The demulsification efficiency depends on the molecular structure and composition of the 

demulsifier in addition to the solution conditions. To ensure a good separation, the demulsifier 

must effectively partition between the oil and aqueous phases and displace the existing material 

adsorbed on the interfacial film (Ortiz, 2010). The demulsifiers at the interface weaken the 

protective film without significantly reducing the interfacial tension, thus promoting droplet 

coalescence and separation of the water and oil phases. Chemical demulsifiers are often used in 

conjunction with thermal methods.  
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Thermal Treatment 

The temperature at which the emulsion is treated can effect emulsion stability. Generally, emulsion 

stability decreases with increasing emulsion temperature. Heating lowers the viscosity and density 

of the bulk emulsion and weakens the interfacial films, which increases sedimentation/creaming 

and collision rates and facilitates drainage in coalescence (Schramm, 1992; Singh, 1994). The 

effectiveness of thermal treatments are dependent on crude oil properties and are often not effective 

alone. The addition of heat may result in the loss of light end hydrocarbons, reducing the total 

volume of the oil and leaving a more dense and viscous oil upon cooling. In addition, thermal 

treatments have a high operation cost due to the high cost of fuel required to heat the emulsion.  

 

Mechanical Treatment 

Mechanical separation methods use different configurations of grids, baffles, fibrous beds, or 

membranes to put obstacles in the flow path of the emulsion. The barriers increase droplet 

collisions and therefore increase coalescence rates (Frising et al., 2006). Ultrasonication can be 

effective in breaking relatively stable petroleum emulsions at low capacities (Singh, 1995). High 

speed centrifugation is used in the oil industry for oil-water separations.     

 

Electrical Treatment 

Electrical treatments improve flocculation and coalescence in water-in-crude oil emulsions 

(Frising et al., 2006) by increasing droplet collisions and weakening interfacial films. Electric grids 

provide a high voltage electrical field that induces a dipole charge on the droplets, causing the 

droplets to polarize and align themselves along field lines. The rapid movement of droplets 

increases flocculation which in turn results in faster gravity settling. The rigidity of interfacial film 

is reduced, enhancing coalescence, because the electric field can rearrange the polar molecules at 

the interface.  

 

Electric field separations are particularly useful when space is a major concern because the 

accelerated settling rates allow for the use of small dimension vessels (Schramm, 1992). It should 

be noted that electrostatic methods are only applicable for water-in-oil emulsions. In order to be 

effective, the dispersed phase must be conductive and the continuous phase non-conductive. A 
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conductive dispersed phase is required to induce a dipole in the droplets and a non-conductive 

continuous phase is necessary to prevent large power losses. The strength and frequency of the 

field, droplet diameter, composition of crude oil, and the hydrodynamic conditions are other 

factors that must be considered for the effectiveness of separations by an electric field.  

 

2.2 Emulsion Layers in Water/Oil Separation Processes 

Emulsion layers are the accumulation of settling water or rising oil droplets at the water-oil 

interface in a separation process. Emulsions layers have previously been modeled as liquid-liquid 

dispersion separations. The systems studied are generally hydrodynamic, are less stable than rag 

layers in crude oil-water separations and do not contain solids. However, the accumulation of a 

third layer of intermediate density at the interface between the pure light and dense phases is 

consistent with rag layers. Emulsion layer formation and models are presented below.  

 

2.2.1 Settling in Liquid-Liquid Dispersions 

Three main zones have been identified in the formation of a steady-state settling dispersion. These 

zones are given in Figure 2.9 and are defined as follows (Lobo et al., 1993; Barnea and Mizrahi, 

1975; Hartland and Vohra, 1980; Hartland and Jeelani, 1985; Hartland and Jeelani, 1987, 1988; 

Jeelani and Hartland, 1986a; Jeelani et al., 2005): 

I. Flocculation Zone: droplets form close aggregates but there is no change in droplet 

diameter or shape. The flocculation zone does not exist in all liquid-liquid separations. 

II. Sedimentation Zone: droplets, with a dispersed phase volume fraction varying from 

0.50 to 0.75, move relative to each other and deform and change size by binary (droplet-

droplet) collisions and coalescence.  The height of the sedimentation zone is a function 

of the binary coalescence and sedimentation rates, which in turn depend on droplet size 

and the dispersed phase volume fraction. 

III. Dense-Packed Zone: droplets, with a dispersed phase volume fraction varying from 

0.75 to 1, change size and move only through binary or interfacial coalescence. The 

height of the dense-packed zone depends on the coalescence rate. The coalescence rate 

is a function of drop size and varies with the height of the dense-packed zone since the 

magnitude of gravitational forces transferred between droplets that press down on the 

draining films increase with zone height.   



 

28 

 

At any given time, the height of the total dispersion is the sum of the sedimentation and dense-

packed zone heights and depends on the difference between the sedimentation and coalescence 

rates. Rag layers are considered dense-packed layers that form if the sedimentation rate is faster 

than the interfacial coalescence rate.  

 

 

 

Figure 2.9 Flocculation (I), sedimentation (II) and dense-packed (III) zones in a steady-state 

closed packed dispersion where the dense phase is the dispersed phase. Adapted from Hartland 

and Vohra (1980). 

 

 

Batch Dispersions 

In a batch dispersion, droplets enter the dense-packed zone by sedimentation as the droplets 

simultaneously grow due to binary coalescence. Droplets exit the dense-packed zone by coalescing 

with their bulk phase at the coalescing interface. Initially, the height of the dense-packed zone 

increases because the sedimentation rate of droplets entering the dense-packed is faster than the 

coalescence rate of the droplets exiting the dense-packed zone. Over time, sedimentation is 

completed and coalescence dominates. At this point, the height of the dense-packed zone decreases 

with time as droplets merge with the bulk phase. The sedimentation and dense-packed zone 

heights, shown in Figure 2.10, can be predicted respectively from the profiles of the sedimenting 

and coalescing interfaces (Hartland and Jeelani, 1987, 1988). When the dispersion is comprised 

only of a dense-packed zone, coalescence rates are initially rapid but then decrease over time, 
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sedimentation is controlled by holdup as opposed to drop-size control and the overall decay profile 

is exponential. 

 

 

 

Figure 2.10 Non steady-state batch dispersion containing sedimentation and dense-packed zones 

over time. Adapted from Hartland and Jeelani (1987). 

 

 

Continuous Dispersions 

A continuous dispersion separation is one where the dispersion is continuously fed into a gravity 

settler. Similar to batch dispersions, droplets entering a continuous settler first sediment to the oil-

water interface while growing in size due to binary coalescence. At the interface, the droplets 

collect in a dense-packed layer before merging with the free layer by interfacial coalescence. 

 

The height of the dispersion layer increases to a steady state height, where the sedimentation and 

coalescence rates of the droplets are equal to the specific volumetric flowrate of the dispersed 

phase entering the settler (Jeelani and Hartland, 1985; Hartland and Jeelani, 1987). For a given 

flow rate, the time a droplet occupies a given zone is proportional to the height of that zone. The 

heights of the sedimentation and dense-packed zones depend on the size distribution of the droplets 

in the dispersion feed as follows: 

I. The dispersed phase droplets in the feed are large and their volume sedimentation rate 

is greater than the dispersed phase flow rate. In this case, the height of the sedimentation 

zone is negligible and dispersion is a dense-packed zone. The interfacial coalescence 
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rate depends only on the total dispersion height and is equal to the dispersed phase 

flowrate at steady state. 

II. The droplets are small and sediment at a lower volume rate than the dispersed phase 

flow rate. The droplets coalesce immediately upon arrival at the water-oil interface and 

no dense-packed layer forms. A steady state is reached when the droplets have 

sufficiently grown through coalescence such that their sedimentation rate is equal to 

the dispersed phase flowrate.  

III. The droplets are moderately small and both sedimentation and coalescence zones exist, 

with heights of similar magnitude. The droplets move through the sedimentation zone, 

growing due to binary coalescence, and enter the dense-packed zone where the droplets 

ultimately coalesce with their bulk phase over time.  

Most liquid-liquid dispersions are described by the third case (Barnea and Mizrahi, 1975a; Jeelani 

and Hartland 1986ab; Hartland and Jeelani, 1987).   

 

2.2.2 Mathematical Models  

Liquid-liquid dispersion separations in gravity settlers have been modeled based on the two major 

separation mechanisms: sedimentation and coalescence rates (Barnea and Mazrahi, 1975; Golob 

and Modic, 1977; Hartland and Jeelani, 1986ab, 1987, 1988; Nadiv and Semiat, 1995). These 

models are mostly purely hydraulic in nature and do not account for chemical composition or 

intermolecular interactions (Khatri, 2010; Frising et al., 2006).     

 

2.2.2.1 Hindered Settling and Coalescence Model 

Hartland and Jeelani (1988) proposed the following model for a batch dispersion based on hindered 

settling and inter-drop coalescence, where the total height of the dispersion is the sum of the 

heights of the sedimentation and dense-packed zones for a constant cross-sectional area: 

ℎ𝑡 =  ℎ𝑠 + ℎ𝑝 = 𝑥 + 𝑦     Equation 2.1 

where h is height with subscripts t, s and p indicating the total dispersion, the sedimentation zone 

and the dense packed zone respectively. x and y represent the positions of the sedimenting and 

coalescing interfaces (Figure 2.10) with the free bulk phase respectively in relation to the final 

undisturbed interface between the two free liquid phases. 



 

31 

 

 

Assuming the relative volumes of the continuous and dispersed phases are proportional to x and y 

respectively, the dispersed phase volume fraction, Φ, is given as: 

Φ =  
𝑦

ℎ𝑡
      Equation 2.2 

The dispersed phase volume fraction in the sedimentation zone is assumed to be constant at the 

initial value: 

Φ𝑠 = Φ𝑠
𝑜 =

𝑦𝑜

ℎ𝑡
𝑜          Equation 2.3 

The dispersed phase volume fraction in the dense-packed zone varies with time. Initially, while 

sedimentation occurs, the volume fraction is held constant at Φp*. The volume fraction then varies 

from Φp* to near unity when there is no sedimentation. A volume fraction equal to one indicates 

that coalescence is complete. A typical value of Φp* is 0.75 for dense-packed spheres.  

 

The profiles of the sedimenting and coalescing interfaces can then be written as variations of x and 

y with respect to time, with their instantaneous position written as: 

𝑦 =  Φ𝑠ℎ𝑠 + Φ𝑝ℎ𝑝                          Equation 2.4 

𝑥 =  (1 − Φ𝑠)ℎ𝑠 + (1 − Φ𝑝)ℎ𝑝           Equation 2.5 

The height of the respective sedimenting and dense-packed zones can then be given as: 

ℎ𝑠 =  
(Φ𝑝ℎ𝑡−𝑦)

(Φ𝑝−Φ𝑠)
            Equation 2.6 

ℎ𝑝 =  
(𝑦−Φ𝑠ℎ𝑡)

(Φ𝑝−Φ𝑠)
            Equation 2.7 

The heights of the sedimentation and dense-packed zones can be determined by simultaneously 

the above material balances, if the water volume fractions and the coalescence rates are known 

over time.  

 

Coalescence Rates in Batch Dispersions 

In a batch dispersion, the decrease in the dispersion height over time per unit cross sectional area 

of the separator is equal to the droplet coalescence rate, 𝜓: 

𝑑ℎ

𝑑𝑡
= −𝜓     Equation 2.8 



 

32 

 

When the sedimentation rate is constant, the coalescence rate is drop-size controlled. Once 

sedimentation is complete, the coalescence rate is controlled by the height of the dense-packed 

zone and is independent of drop-size. In a close packed dispersion, the drops are constrained so 

that a portion of the net force pressing on each drop is transmitted to the drop below. Thus, the 

force acting on each drop increases with increasing depth and the coalescence rate increases with 

dispersion depth as: 

𝜓 =  𝑐ℎ𝑝
𝑎
      Equation 2.9 

where c and a are constants whose values are determined from a least square fit of experimental data 

for Eq. 2.8.  

 

Coalescence Rates in Continuous Dispersions 

For a continuous separator, the coalescence rate at steady state is equal to the volume flux in the 

dispersed phase: 

𝜓 =  
�̇�𝑑

𝐴
      Equation 2.10 

where Vd is the volumetric flow rate of the dispersed phase and A is the cross sectional area of the 

separator. The height of dense-packed zone in a continuous separator is then determined as: 

ℎ𝑝 = 𝑐 (
�̇�𝑑

𝐴
)

𝛼

     Equation 2.11 

where c and α are experimentally defined constants that depend on the dispersion characteristics. 

Constants used in the batch and continuous systems are not necessarily the same for a given 

dispersion. Differences in the batch and continuous coalescence constants may be due to the dense 

packed zone being continuously replenished with fresh dispersion in the continuous separator. 

 

2.2.2.2 Material Balance Model 

More recently, a material balance based model was proposed by Khatri et al. (2011) for surfactant 

stabilized oil-in-water emulsion layer decay and growth. In all cases, the emulsion layer was 

assumed to be a dense packed zone where the volume changes only through coalescence and 

compaction of the dispersed phase and not through free settling. The model is based on a mass 

balance performed on the dispersed phase (oil in this case) in the emulsion layer. The coalescence 

rate was assumed to be proportional to the volume of the dispersed phase. The model is fit to 
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experimental data by adjusting the coalescence rate constants. The model was applied to both batch 

and continuous separations. This model was adapted for use in this thesis and is presented in detail 

in Chapter 4. 

 

2.3 Rag Layers in Heavy Oil and Oil Sands Processes  

Rag layers are similar to the emulsion layers described in Section 2.2, but in addition to water 

and/or oil droplets they also contain solid particles. The droplets are stabilized by natural 

surfactants in the crude oil, typically found in the asphaltene fraction of the oil. The solids likely 

enhance the stability of the emulsion.  The high stability of rag layers makes their formation 

problematic for process operators because they cannot be readily separated by conventional 

treatment and can persist over long periods of time. Rag layers can reduce separation efficiency, 

reduce bitumen recovery with unrecovered bitumen lost to the tailings stream, lead to corrosion 

and fouling in upgrading equipment through contamination of the product stream and process 

upset.  

 

Rag layers can form in separators and heater-treaters used in in situ operations and often occur in 

the processing of bitumen froth. Most research has focussed on the rag layers from oil sand 

operations. Bitumen is extracted from minable oil sands using a water-based, air-assisted floatation 

process where the mined ore is mixed with air and hot water to form a slurry. The aerated bitumen 

floats to the top and is collected as a bitumen froth. The bitumen froth has an average composition 

of 60% bitumen, 30% water, and 10% fine solids by mass and must be further treated to remove 

water and solids. Free water remaining in the bitumen froth can be removed by heating or gravity 

drainage, but emulsified water (droplets 2-10 µm in diameter) is difficult to separate. The 

emulsified water droplets are stabilized by bitumen components such as asphaltenes and solids 

(clay solids with diameters <1-2 µm) that accumulate at the droplet interface and form a skin that 

prevents the droplets from coalescing.  

 

In froth treatment and some heavy oil processes, a hydrocarbon solvent or a paraffinic solvent is 

added to the bitumen to reduce its viscosity and density. The added diluent also contributes to the 

separation of water droplets and fine solids (McLean and Kilpatrick, 1997ab; Gafonova and 
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Yarranton, 2001). The addition of a strongly aromatic solvent reduces emulsion stability. In 

aromatic solvents (hydrocarbon solvents), the asphaltenes are in their mostly soluble state (Yang 

et al., 2004) and are more mobile; therefore, the asphaltenes will form weaker more elastic films 

and coalescence is more rapid. The addition of a paraffinic solvent promotes rapid settling. In 

paraffinic solvents, the asphaltenes are in their insoluble range and will precipitate. The 

precipitated asphaltenes flocculate and collect the water droplets and solids into relatively large 

structures that settle rapidly. 

 

There are currently two commercialized froth treatment processes in Alberta: the Syncrude process 

and Shell’s Albian process. The Syncrude process, in addition to dilution with naphtha (a 

hydrocarbon solvent that does not precipitate asphaltenes), utilizes cyclones, centrifugation or 

inclined-plate settlers to further accelerate settling. Inclined-plate settlers confine the suspension 

on an incline that establishes a circulation pattern, called the Boycott effect, where the downward 

motion of the settling water droplets and solids particles at the bottom of the plate is unimpeded 

by the upward motion of the free liquid along the top of the plate. The combination of chemical 

and mechanical treatment methods typically results in a bitumen with 1-2 wt% residual water in 

the form of small droplets with diameters of 1-2 µm and approximately 1 wt% solids remaining.  

 

The Albian froth treatment process uses a paraffinic solvent, such as pentane and hexane mixtures, 

to precipitate a fraction of the asphaltenes in the bitumen. As already noted, asphaltene 

precipitation promotes the flocculation of water droplets and solids and forms aggregates that trap 

water and solids, which enhances settling. Treatment with a paraffinic solvent and gravity 

separation results in a bitumen product with less than 100 ppm water and almost no solids or 

precipitated asphaltenes (Romanova et al., 2004). Although the Albian froth treatment process 

produces a higher quality bitumen, the high solvent to bitumen ratio increases operation costs and 

some of the bitumen is rejected as asphaltenes. Many operations use the naphtha-based froth 

treatment. In both froth treatment processes, the cleaned diluted bitumen is then sent to refineries 

for solvent removal and further upgrading to produce crude oil.  
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In the separation vessels of both froth treatment processes, material often accumulates at the oil-

water interface, forming a viscous third layer of intermediate density between the two bulk phases. 

This layer, known as a rag layer as shown in Figure 2.11, is a complex fluid comprised of 

emulsified water and/or oil, interfacially active organic material from the bitumen such as 

asphaltenes, and produced solids (Czarnecki et al., 2007; Vandaraj and Brons, 2007) that resists 

complete separation of oil and water. Saadatmand et al. (2008) described the rag layer as a close 

packed layer of water droplets stabilized by asphaltene films and oil-wet solids suspended in a 

continuous oil phase. Asphaltenes isolated from the rag layer contain twice as many heteroatoms 

(N, S, and O) and more volatiles and residues than the asphaltenes obtained from the bulk bitumen 

(Gu et al., 2007). Solids contained in rag layers are predominantly fine (<1-2 µm) oil-wet heavy 

minerals, such as kaolinite, that are highly contaminated with hydrophobic organic material in the 

bitumen (Kupai et al., 2013). Siderite, illite and pyrite (iron-bearing clays) have also been found 

to preferentially partition to the rag layer along with quartz sands. Rag layers accumulate over 

time, do not easily separate and can persist for long periods of time. Rag layer formation is known 

to be problematic in oil-sand crude oils processes, but can also occur in conventional and heavy 

oil separation processes.   

 

 

 

 

Figure 2.11 Rag layer formation in oil sand separation vessels.  
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The growth of a rag layer depends on the settling rate of the droplets dispersed in the continuous 

phases and the coalescence rate of the concentrated emulsion. Rag layers diminish in height when 

the dispersed water droplets coalesce at the free water phase interface (interfacial coalescence), 

exiting the rag layer. If the coalescence rate of the dispersed phase droplets is slow compared to 

the accumulation (settling/creaming) rate of droplets entering the rag layer or there is hindered 

settling, the rag layer will grow (Saadatmand et al., 2008; Frising, 2006). The coalescence rate 

depends on the interfacial properties of the droplets but may also depends on dynamic factors such 

as the accumulation of fine, oil-wet solid particles at the oil-water interface that form a mechanical 

barrier to coalescence and prevent droplets from crossing the interface (Hirasaki et al., 2008; 

Saadatmand et al., 2008). When coalescence is significantly reduced, the settling droplets become 

trapped in a stable network and rag layers can grow large enough to upset the process (Saadatmand 

et al., 2008) as large rag layers must be removed mechanically.  

 

In the oil sands industry, water-in-oil emulsions stabilized by natural organic constituents in the 

bitumen, such as asphaltenes and fine oil-wet solids, are the most problematic to treat and have 

been identified as contributing to rag layer formation (Sztukowski et al., 2003; Gu et al., 2002; 

Yarranton et al., 2000, 2007; McLean and Kilpatrick, 1997). Efforts to reduce rag layer volume 

involve the addition of chemical diluents and demulsifiers and agitation. Dilution of the bitumen 

prevents rag layer formation by removing fine solids and asphaltenes that act as emulsion 

stabilizers and weakening stabilizing films. Agitation and mixing can also be used to break rag 

layers (Ng et al., 2015). 

 

Sodium metasilicate (NaSiO3) has been used at the bench-scale as a demulsifier to alter the 

association of solids and organics and make the solids less oil-wet. Jiang et al. (2011, 2010) 

determined that adsorption of bitumen components onto kaolinite is dependent on the surface 

charge. Kaolinite in oil sands forth treatments (pH of approximately 8.5) has a heterogeneous 

surface charge: the basal surface of kaolinite is negatively charged, while the edges are positively 

charged. Anionic carboxylate material adsorbs onto the positively charged surfaces of the 

kaolinite, making the solids more oil-wet and stabilizing water-in-oil emulsions. The addition of 

the silicates makes the ζ-potential of the kaolinite more negative by increasing the pH of the 
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system. The more negatively charged solids are more water-wet, which enhances emulsion 

separation and minimizes rag layer formation. By adjusting the pH in the system, the surface 

wettability, dispersion and flocculation of the clay can be controlled. Chemical demulsifiers, oil 

soluble, low molecular weight compounds with high surface activity, can also be used to improve 

separation by increasing the coalescence efficiency between colliding droplets (Czarnecki et al., 

2007).  

 

2.4 Chapter Summary 

During crude oil production, the oil and co-produced water are often emulsified into water-in-oil 

emulsions. Most of the water is separated from the oil prior to transportation and upgrading at the 

oilfield battery and the remainder at a refinery. This oil-water separation usually requires heat 

and/or chemical treatment. In some cases, even after treatment, poor separation occurs when a 

viscous layer, known as a rag layer, develops at the oil-water interface. The formation and growth 

of rag layers can be challenging to predict and costly to deal with. 

 

Rag layers have been characterized as a complex fluid of intermediate density comprised of 

emulsified water and/or oil, organic matter such as asphaltenes, and produced solids. These rag 

layers grow when the coalescence rate of the emulsified phase is slower than the settling rate. In 

bitumen and heavy oil processing, water-in-oil emulsions stabilized by asphaltenes and inorganic 

solids are often the most problematic to treat and are likely contributors to rag layer formation.  

 

Asphaltenes are surface-active, amphiphilic molecules that tend to adsorb irreversibly at the 

interface to form rigid cross-linked networks that provide steric and mechanical resistance to 

coalescence. The solids most associated with oilfield emulsions are bi-wettable aluminosilicate 

clays, with kaolinite being the most abundant in the oil sands. Although kaolin and silica particles 

are naturally hydrophilic, exposure of the solid surface to bitumen in the absence of water can alter 

the wettability of the solids. Organic material, typically asphaltenes or multi-ring hydrocarbons 

found in bitumen, can absorb onto the solid surface making the particles bi-wettable or even 

hydrophobic. The bi-wettable solids then accumulate at the oil-water interface and stabilize 

emulsified droplets.  
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Solid particles can stabilize emulsions by adsorbing at the water-oil interface and/or packing 

between droplets. A steric barrier to coalescence between water drops is created when the solids 

adsorb directly on the droplet interface or adsorb on top of an existing asphaltene film. The film 

barrier reduces coalescence by hindering collisions and contact between droplets. Mechanical 

stabilization by solids can also occur if the solids form a strong network structure. Packing between 

adjacent droplets further decreases coalescence because the trapped solids prevent dispersed 

droplets from aggregating, creaming or sedimenting, and coalescing. Solids can also destabilize 

emulsions by acting as bridges between droplets and promoting coalescence.  

 

The main factors controlling the stabilizing effect of solids are their size, concentration, and 

wettability. Smaller particles and higher particle concentrations tend to produce smaller emulsion 

droplets and therefore more stable emulsions because collisions between droplets are less frequent. 

Bi-wettable solids (contact angles of approximately 90°) are in their lowest free energy state when 

adsorbed at the interface and therefore are expected to adsorb more strongly and produce more 

stable emulsions than solids with other wettabilities. The strong stability and formation of rag 

layers can be attributed to the presence of high concentrations of fine, oil-wet solids. 
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3. CHAPTER 3: EXPERIMENTAL METHODS 

 

 

This chapter presents the experimental methods used to study the effect of inorganic solids on 

water-in-oil emulsions. The methods include: preparation of the asphaltenes and solids used to 

make emulsions; preparation of model emulsions at 60°C from reverse osmosis water and an 

organic phase consisting of asphaltenes, solids, heptane, and toluene; measurement of emulsion 

stability and emulsion layer growth in batch and continuous separation experiments. The 

measurement of particle size, solids wettability, and drop size distribution are also discussed.  

 

3.1 Materials 

The emulsions were prepared with toluene, n-heptane, reverse osmosis water, asphaltenes and 

solids. ACS grade toluene of 99.5%+ purity and technical grade n-heptane of 99.9% purity were 

purchased from VWR International. Reverse osmosis (RO) water was supplied by the University 

of Calgary.  

 

3.1.1 Asphaltenes 

The asphaltenes used in this study were recovered from bitumen samples from three different 

processes: oil sand (OS) extraction, cyclic steam stimulation (CSS), and steam assisted gravity 

drainage (SAGD). The OS and SAGD bitumen samples were provided by Suncor Energy Inc. and 

the CSS sample was provided by Shell Canada Ltd. The OS bitumen had been blended with 

naphtha and centrifuged to facilitate water separation at the plant site. The added naphtha was 

removed from the final product bitumen by distillation at Maxxam Analytics, Inc. The SAGD 

bitumen had been treated in the field without chemical addition to remove most of the water. The 

CSS bitumen had no chemicals added prior to recovery from the field. Water was separated from 

this bitumen in the lab by sonicating the sample at room temperature for a minimum of 7 days and 

then settling in a separatory funnel for 5 days at 50°C. The separated water was decanted. The 

residual water content was less than 3.5 wt% in all three bitumen samples (Rocha et al., 2016). 

The asphaltene and toluene-insoluble (TI) contents of the bitumen samples are provided in Table 

3.1. 
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Table 3.1 Solids free C7-asphaltene and toluene-insoluble (TI) contents of OS, CSS, and SAGD 

bitumen. 

Sample C7-Asphaltene Content 

(wt%) 

TI Content 

(wt%)   

OS bitumen 16.2 3.55 

CSS bitumen 15.1 1.76 

SAGD bitumen 18.7 0.40 

 

 

Asphaltenes were extracted from bitumen by precipitation in n-heptane (Yarranton and Masliyah, 

1996). Heptane was added to 40 g of bitumen at a 40:1 (mL/g) ratio in a 2000 mL beaker. The 

beaker was covered with plastic wrap and aluminum foil to prevent evaporation, sonicated for one 

hour, and then let stand for 23 hours for a total contact time of 24 hours. The supernatant was then 

decanted and filtered through VWR Grade 413 (5 µm pore size) filter paper until approximately 

400 mL of solution remained. An additional 4 mL of n-heptane per gram of original bitumen was 

added to the beaker, sonicated for 45 minutes, and then let stand for 18 hours. The whole solution 

was filtered through the same filter paper. The beaker was washed with a small amount of n-

heptane and the washings poured through the same filter. The filter cake was washed with 25 mL 

of n-heptane three times daily for 5 days or until the filtrate was colorless. The filter cake was then 

left to dry until the weight was constant (4-5 days). The filter cake consisted of asphaltenes and TI 

solids such as fine clays that precipitated along with the asphaltenes.   

 

To remove toluene-insoluble inorganic solids from the filter cake, 10 g/L of the filter cake material 

(asphaltenes and TI) was added to toluene and sonicated for 30 minutes. The asphaltenes are 

dissolved and the TI dispersed in the solution. The solution was then transferred into 50 mL 

Nalgene centrifuge tubes and centrifuged at 3600 rpm for 6 minutes to settle out the dispersed TI. 

The supernatant, consisting of asphaltenes and toluene, was decanted into a beaker. The same 

centrifuge tubes were reused to sequentially centrifuge the entire solution. The TI at the bottom of 

the tube were dried in a fume hood and weighed. The TI content of the bitumen is the mass of TI 

divided by the mass of bitumen used to obtain the filter cake. The TI were not used further in this 

study. The supernatant was dried in a fume hood to recover the solids-free asphaltenes. The 

asphaltene content of the bitumen is the mass of asphaltenes divided by the mass of bitumen used 
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to obtain the filter cake. These asphaltenes were used to prepare the model water-in-oil emulsions 

and are termed C7-asphaltenes. 

 

3.1.2 Solids 

The solids used in this study were silica and kaolin. Amorphous silica was selected in two particle 

size distributions: 18-32 µm and 32-63 µm supplied by MP Biomedical and purchased from Fisher 

Scientific. Kaolin (Hydrite® UF 90) was purchased from Imerys Kaolin with an average particle 

diameter of <0.2 µm. 

 

The solids were treated by asphaltene adsorption to vary the wettability of the solids (Menon and 

Wasan, 1986 and Yan and Masliyah, 1994). To treat the solids, 10 g/L of solids was added to a 

solution of OS asphaltenes in 50 vol% n-heptane and 50 vol% toluene (50/50 heptol). The 

wettability alteration depended on the asphaltene concentration which was set between 0 and 1 

g/L. The mixture was shaken for 24 hours in a mechanical shaker to ensure contact between the 

asphaltenes and the solid particles. The solution was then filtered through VWR Grade 413 filter 

paper and the solids were air-dried before use. The wettability of the treated solids was measured 

in terms of contact angle and critical surface tension, as described in Section 3.3.2. Note that the 

size distribution of the solids can be altered by this treatment and therefore was measured after 

treatment, as discussed in Section 3.3.1.  

 

3.2 Emulsion Separation Experiments 

Emulsion layer stability and growth were examined with three types of experiments (batch, 

continuous and decay) as described by Khatri et al. (2011).  In batch separation experiments, the 

coalescence rate was determined from the change in height of the free water and oil layers in a 

beaker over time as an emulsion was left to coalesce. In continuous separation experiments, 

emulsion layer growth was measured as a prepared emulsion was continuously fed into a vertical 

separator. In decay experiments, the decrease in the emulsion layer height was measured after the 

feed into the separator was stopped. The data collected from all three separation experiments were 

the water, oil, and emulsion layer heights over time.  
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3.2.1 Apparatus 

The emulsions were prepared in a 2 L glass beaker (dimensions 125 mm diameter by 160 mm 

high, Figure 3.1d). A Teflon lid (Figure 3.1a) was fitted to the beaker and Teflon baffles 

(dimensions 11 mm wide by 160 mm high, Figure 3.1b) were positioned along the beaker 

periphery to ensure uniform mixing. The apparatus was configured with either: 1) an IKA-RW20 

digital variable speed overhead mixer with a 4-blade impeller (dimensions 10 mm wide by 8 mm 

high by 50 mm diameter, Figure 3.1c), or 2) a PRO250 homogenizer. Both mixers were positioned 

just below the oil-water interface. The beaker was immersed in a 20 L water bath fitted with a 

water circulator and temperature controller to maintain constant temperature of 60°C. The water 

bath was capable of maintaining temperatures from 20 to 80°C. 

 

The batch separation experiments were carried out in the beaker only. For continuous separation 

experiments, the apparatus used is shown in Figure 3.2. A graduated glass separator equipped with 

a glass jacket for temperature control was added. The separator had an internal volume of 250 mL 

and a cross sectional area of 10.5 cm2. The separator components and dimensions are given 

respectively in Figure 3.3 and Figure 3.4. Flow of the emulsion from the beaker to the separator 

was controlled through Viton tubing (#24, 130 cm long) with a Masterflex L/S peristaltic pump. 

The pump consisted of an economy digital drive and a Masterflex pump head (L/S Easy-Load II) 

and was capable of flow rates between 5 and 280 cm3/min. The tubing was positioned at the oil-

water interface inside the beaker, passed through the pump and then connected to the glass feed 

tube inside the separator. Recycled free water and oil were returned to the emulsion beaker from 

the separator through Masterflex tubing (Viton #36) with respective lengths of approximately 26 

cm and 62 cm. A thermostatted water circulator was used to feed the water jacket through Tygon 

tubing (8 mm diameter). Water exiting the top of the jacket was returned to the water bath with 

the same Tygon tubing.  
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Figure 3.1 Emulsion preparation apparatus: a) Teflon disc (lid); b) Teflon baffles; c) overhead 

mixer; d) beaker; e) beaker setup assembled with all parts from (a) to (d). 
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Figure 3.2 Schematic diagram of the continuous apparatus setup: 1) feed emulsion tubing; 2) 

emulsion layer; 3) oil recycle tubing; 4) separator with water jacket; 5) pump; 6) water recycle 

tubing; 7) Teflon baffle; 8) Teflon disc (lid); 9) impeller; 10) water-in-oil emulsion; 11) beaker; 

12) water bath. Adapted from Khatri, 2010. 
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Figure 3.3 Schematic diagram of the separator used in continuous experiments: 1) feed port; 2) 

separator overflow exit; 3) water jacket; 4) oil exit valve; 5) oil exit; 6) glass emulsion feed tube; 

7) feed outlet; 8) free oil phase; 9) water jacket outlet; 10) emulsion layer; 11) centerline; 12) free 

water phase; 13) water jacket inlet; 14) water exit valve; 15) water exit. 

 



 

46 

 

 

Figure 3.4 Dimensions of the 250 mL glass separator used in continuous experiments. 

 

 

3.2.1.1 Apparatus Cleaning 

In order to take accurate and repeatable measurements and to ensure there were no impurities in 

the apparatus, the following steps were taken to clean the apparatus: 

 After each experiment, the beaker and separator were rinsed with toluene, air-dried 

completely, rinsed with RO water and then air-dried again. 

 The separator was soaked with 2% Hellmanex III solution for 2 hours and then flushed 

with RO water for approximately 30 minutes and left to dry overnight after each run.  
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 After several runs, the beaker was scrubbed with Comet cleanser, rinsed with RO water 

and then sonicated/flushed repeatedly to remove any traces of the cleanser. It was found 

that three cycles of flushing with RO water for 5 minutes and sonicating for 20 minutes 

was sufficient to remove all surface active material from the glass beaker.  

 The tubing was rinsed with toluene, continuously flushed with RO water for 5-10 minutes, 

and dried after every use. The tubing was replaced after approximately 20 uses.  

 The Teflon baffles and lid were rinsed with toluene after every use and stored in RO water.   

 

3.2.2 Preparation of Bulk Phases 

Model water-in-oil emulsions of 1600 mL were prepared with 50 vol% aqueous phase and 50 vol% 

organic phase unless otherwise stated. The aqueous phase consisted of reverse osmosis (RO) water. 

Unless otherwise stated, the organic phase was 1.5 g/L of solids-free C7-asphaltenes in a solution 

of 50 vol% n-heptane and 50 vol% toluene (50/50 heptol). The asphaltenes were first dissolved in 

toluene and sonicated for 30 minutes to ensure complete dissolution. Then n-heptane was added 

and the mixture was sonicated for an additional 10 minutes to ensure homogeneity. The solids, if 

required, were added with the asphaltenes and dispersed in the organic phase. Prior to 

emulsification, the aqueous and oil phases were heated separately in a water bath for 20-25 minutes 

at 60°C.  

 

3.2.3 Batch Experiment  

The emulsions in the batch experiment were prepared in two ways: 1) using the overhead mixer 

described in the apparatus section at a speed of 1000 rpm for 10 minutes; 2) using a homogenizer 

mixing at 10,000 rpm for 10 minutes. In both cases, the impeller was placed just below the oil-

water interface and the aqueous phase was added dropwise to the top of the oil phase during 

mixing. The beaker was covered with aluminum foil to prevent solvent evaporation during heating 

and mixing.  

 

After mixing for 10 minutes, the lid and baffles were removed from the beaker and the initial 

height of the emulsion layer was recoded. Over time, the emulsified oil and water coalesced and 

separated from the emulsion layer as free oil and water. The height of the emulsion layer was 
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measured periodically until the emulsion had fully separated or there was no further change in 

emulsion layer height with time. The water volume fraction was determined at each time step 

directly from the measured layer heights as follows: 

 Φ𝑤 =  
ℎ𝑤

𝑜 −ℎ𝑤

ℎ𝑒
       Equation 3.1 

where hw
o

 is the initial height of water in the beaker before mixing, and hw and he are the height of 

the free water layer and the emulsion layer, respectively, at any given time. The height of the 

emulsion layer over time in the batch experiment was repeatable to ± 0.2 cm based on a 95% 

confidence interval. A schematic of emulsion heights over time in the batch experiments is shown 

in Figure 3.5.  

 

   

 

Figure 3.5 Batch experiment schematic of the emulsion beaker at different time steps. Adapted 

from Khatri, 2010. 

 

 

3.2.4 Continuous Experiment 

The emulsion was prepared as described in Section 3.2.2 for the batch experiment. However, after 

mixing for 10 minutes, the mixer was left on at a constant speed and the emulsion was pumped 

with a peristaltic pump at a flowrate of 20 mL/min into the vertical glass separator. The separator 

initially contained 250 mL of fluid: 50 vol% organic phase and 50 vol% aqueous phase of the same 

composition as the original emulsion mixture preheated to 60°C. As the emulsion was pumped 

into the top of the separator, material accumulated at the oil-water interface after passing through 
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the oil phase and an emulsion layer began to grow. Separated free water and oil were recycled into 

the original emulsion beaker by gravity. The emulsion layer was maintained in the middle of the 

separator by adjusting the flowrate of exiting water stream. The oil exit valve was open throughout 

the continuous experiment to allow excess free oil to return to the emulsion beaker. The height of 

the emulsion layer was measured (repeatable to ± 0.2 cm) periodically until either the layer filled 

the separator or the height did not change with time and a steady state condition was achieved.   

 

3.2.5 Decay Experiment 

Each decay experiment was started upon completion of a continuous experiment. The pump was 

turned off, the oil and water exit valves closed, and the emulsion was left to coalesce undisturbed 

in the separator. As with the batch experiment, the decrease in emulsion layer height was measured 

periodically until it remained constant with time and there was no further coalescence. The height 

of the emulsion layer over time in the decay experiment was repeatable to ± 0.2 cm. The variation 

in the emulsion layer height over time during the continuous and decay experiments is shown 

schematically in Figure 3.6.   

 

 

 



 

50 

 

 

Figure 3.6 Schematic representation of the emulsion layer height over time during the continuous 

and the decay experiment: 1) original separator; 2) continuous experiment begins with pump 

turned on and emulsion feed into separator; 3) emulsion layer growth in separator; 4) pump turned 

off at beginning of decay experiment; 5) emulsion layer coalesces into free water and oil layers. 

Adapted from Khatri, 2010. 

 

 

3.2.6 Determination of Emulsion Layer Water Volume Fraction in Continuous Separation 

The volume fraction of emulsified water in the emulsion layer was required to model emulsion 

layer growth and was measured for several emulsions using the method described by Khatri et al. 

(2011). To measure the water fraction in the emulsion layer, a series of continuous experiments at 

the same conditions were performed with the exit valves open, stopping the feed (and outlet flows) 

at a different time (3, 5 and 10 minutes) in each case. At each time, the emulsion was left to decay 

and the volume of resolved water was determined from the change in the height of the water 

column. The water volume fraction is simply the volume of water resolved divided by the initial 

volume of the emulsion layer. The water volume fraction determined from each decay experiment 

was the water fraction in the continuous experiment emulsion layer at the time the continuous 

experiment was stopped.  
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3.2.7 Determination of Solids Content in Emulsion Layer from Continuous Separations 

For solids stabilized emulsions in the continuous experiment, the solids content of the emulsion 

layer was measured by collecting the emulsion layer and drying it to recover the solids. The 

collected solids were then washed with toluene until the filtrate was colourless to remove any 

asphaltenes that were not absorbed onto the solids surface. The solids concentration in the 

continuous phase within the emulsion layer, Csolids, was then calculated as: 

 𝐶𝑠𝑜𝑙𝑖𝑑𝑠 =  
𝑚𝑠𝑜𝑙𝑖𝑑𝑠

𝑉𝑒(1−Φ𝑤)
   Equation 3.2 

where msolids is the mass of the collected solids, Ve is the volume of the collected emulsion and Φw 

is the water volume fraction in the emulsion layer. 

 

3.3 Property Measurements 

3.3.1 Particle Size Distribution 

Particle size distributions for kaolin and silica solids were measured with a Lasentec Model D600 

Particle Size Analyzer using the Focus Beam Reflectance Measurement (FBRM) method. The 

particle size analyzer provides an in-situ particle chord length distribution for particles, where 

chord length is defined as a straight line between any two points on the edge of an individual 

particle.  

 

The main component of the apparatus is a probe that rotates a 780 nm laser beam at a fixed speed 

of 4500 rpm through the suspension. As the beam scans across a particle, a portion of the light 

backscatters to the photodetector in the probe, which uses the duration of the light pulse and the 

scan speed (approximately 2 ms-1) to calculate the chord length of each particle (Heath et al., 

2002). The particle size analyzer is capable of measuring thousands of chords, which produces a 

robust chord length distribution and represents the particle population of the system (Sathe et al., 

2010). The particle number count per second was also collected. However, since the particle size 

analyzer can only measure one particle at a time and the reflection time must return to zero between 

measurements, the count does not correlate well with the actual particle concentration in the 

system.   
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The particle size analyzer calculates the number mean diameter every 30 seconds using fine 

discrimination electronics in the FBRM Control Interface (Version 6) software. The fine 

electronics provides shaper resolution and higher sensitivity on fine chords when interpreting the 

backscattered signals to detect smaller particles travelling closely together. The 30 second interval 

between data collection and updating of the current statistics and chord length distribution provides 

a trade-off between measurement precision and time resolution. The software categorizes diameter 

distributions using 90 log normal intervals over a channel range of 1 to 1080 µm. 

 

The chord length distribution is calibrated to better match the real particle diameter distribution. 

Since the chord length is measured as a random distance between two edges on the particle, a 

distribution of sizes is produced even for perfectly monodispersed solids. To calibrate the 

distribution for the irregular particles, a weight factor is introduced to the number frequency 

equation as follows: 

𝑓𝑁 = 𝑤
𝑛

𝑛𝑡
      Equation 3.3 

where fN is the calibrated number frequency, n is the number of primary chord measurements at 

that diameter interval, nt is the total number of chord measurements and w is the weighted 

calibration factor. The calibration factor is weighted to give greater importance to larger particles 

to compensate for chord length measurements which are generally shorter than the actual diameter 

and is given as follows:   

𝑤 =
𝑑𝛾

∑ 𝑑𝑖
𝛾 𝑁      Equation 3.4 

where d is the midpoint of the distribution interval, is the γ is the calibration exponent, and N is 

the total number of channels. The exponent can range from -1 to 3 according to the nature of the 

system, with a value of 0 indicating that the true diameter distribution of the particles is the 

measured chord length distribution. The selection of exponent is validated by comparison with 

micrographic distributions.  

 

The repeatability of the number mean diameter measured by the particle size analyzer was 

determined to be 8.1% at a 90% confidence interval based on three repeated measurements of 

flocculated asphaltenes in a bitumen-n-heptane mixture (Casas, personal communication, 2017). 
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The measured chord lengths were found to be reproducible, with no significant difference in the 

mean values measured for a suspension of 8.33 wt% polyvinyl chloride in water and the reference 

value at a 90% confidence interval (Casas, personal communication, 2017).  

 

To measure the particle size distribution, a solution was prepared with 10 g/L of particles in 50 

vol% toluene and 50 vol% n-heptane. The solution was sonicated for 30 minutes and then placed 

in a beaker equipped with a four-angle blade impeller situated 3 mm below the sapphire window 

of the probe. During the measurements, the solution was mixed at 275 rpm to suspend the particles 

and provide a flow of particles across the window. The size distribution was measured every 30 

seconds for a total of 10 minutes. In this work, a cubic calibration factor was used to give greater 

importance to larger particle diameters. The FBRM method appears to skew towards smaller 

diameters for irregular particles when compared to diameter distributions determined from 

micrographs. This underestimation of the particle size distribution may be due to the greater 

probability of measuring shorter chord lengths than longer ones. 

 

3.3.2 Wettability of Solids  

3.3.2.1 Contact Angle Measurement 

Contact angles were measured using the sessile drop technique on a flat surface prepared from the 

solid particles. The flat surface was formed by compacting particles into a disc using a manual 

hydraulic press (Carver Model 4350) with a 1.3 cm die at ambient conditions. Approximately 0.2 

g of solids were added to the die and a force of 24.2 kN was applied for 2 minutes under light 

vacuum. The disc was then immersed in organic solvent and a water drop was placed on the flat 

surface. The three phase contact angle through the water phase (Figure 3.7) was measured directly 

by an IT Concept (now Teclis) Tracker Drop Shape Analyzer equipped with a camera.   
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Figure 3.7 Drop shape analyzer equipped with camera measures the solid-water-heptol contact 

angle of compressed solids through the water phase. Lines are for visual reference. 

 

 

3.3.2.2 Film Flotation Method 

The critical surface tension of the solids was assessed with the film flotation method to validate 

the compressed disc contact angle measurements. In the film floatation method (Fuerstenau et al., 

1991), solids were placed on a water/methanol surface in air (Figure 3.8) and the fraction of solids 

that remains floating was determined. The experiment was repeated at different water/methanol 

ratios and therefore different surface tensions to find the point at which half the particles settled. 

The surface tension at this point, the critical surface tension, is defined as the highest surface 

tension of a liquid that completely wets the solids, causing the solids to sink. To determine the 

mass fraction of floating solids, the surface material was collected by decanting the top layer after 

1 minute of contact, dried, and weighed. The fraction that remained floating is the mass of floating 

solids divided by the initial mass of solids. Note, the film flotation method does not provide a 

quantitative contact angle, but is used to assess the relative wettability of different particles. 
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Figure 3.8 Film floatation method to measure relative wettability of coarse solids through critical 

surface tension. 

 

 

3.3.3 Drop Size Distribution 

Drop size distributions for the emulsions were determined using a Carl Zeiss Axiovert S100 

inverted microscope equipped with video camera and AxioVision software. A plastic pipette was 

used to place a sample of the emulsion on a hanging-drop glass slide for observation under the 

microscope. The continuous phase (50/50 heptol) was added to the sample to separate the droplets 

for easier viewing. A slip cover was placed over the slide cavity to prevent solvent evaporation. 

For each sample a minimum of 500 droplets were analyzed to obtain drop size distributions, giving 

an expected error of 5-10% (Dixon and Massey, 1969).  
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4. CHAPTER 4: MODELING  

 

 

This chapter discusses the methodology used to model the experimental data for the batch, 

continuous and decay experiments. The models were adapted for W/O emulsions stabilized by 

asphaltenes and solids from those developed by Khatri et al. (2011) for the growth of surfactant 

stabilized O/W emulsion layers. These models are based on a material balance of the dispersed 

phase in the emulsion layer. It was assumed that the emulsion layer is a dense packed zone whose 

volume changes with coalescence and compaction of the dispersed phase, but not through free 

settling. In each case, the models were developed for water-in-oil emulsions and the material 

balances were performed on the water phase in the emulsion layer. In this thesis, a constant 

coalescence rate and limiting height and fractional bypass terms have been introduced into the 

model. The model development and adaptations made in this thesis are presented below.  

 

4.1 Batch Model 

The batch experiment involves a water-in-oil emulsion created in a beaker and left to coalesce into 

free water and oil layers. The height of the water and oil layers were measured over time. The 

experimental heights were modeled by performing a material balance on the dispersed water phase 

in the emulsions layer, as shown in Figure 4.1, to determine emulsion stability and coalescence 

rates. Initially, all of the water phase was emulsified and was dispersed in the emulsion layer. 

Hence, the accumulation of water in the emulsion layer is given by: 

 
𝑑𝑀𝑤

𝑑𝑡
= −�̇�𝑤,𝑜𝑢𝑡   Equation 4.1 

where Mw is the mass of water in the emulsion layer at time t and ṁw,out is mass flow rate of free 

(coalesced) water exiting the emulsion layer. The mass of water in the emulsion layer is given by:  

 𝑀𝑤 = 𝐴ℎΦ𝑤(𝑡)𝜌𝑤  Equation 4.2 

where A is the cross sectional area of the emulsion layer, h is the height of the emulsion layer, Φw 

is the volume fraction of dispersed water in the emulsion layer at time t, and ρw is the density of 

water. In this case, the cross sectional area of the emulsion layer is the cross sectional area of the 

beaker. Note that the water volume fraction can vary with time if the emulsion layer compacts. 
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Figure 4.1 Material balance on the dispersed water in the emulsion layer over time in the batch 

experiment. Adapted from Khatri, 2010. 

 

 

It was assumed that the mass flow rate of water exiting the emulsion layer is equal to the bulk 

coalescence rate of water droplets within the emulsion layer. Direct coalescence between droplets 

and the free liquid phase was neglected. In this case, the coalescence rate is proportional to the 

number of droplet-droplet contacts. If the droplet size distribution is assumed to be invariant, the 

coalescence rate is also proportional to the volume of water in the emulsion layer. Hence, the flow 

rate of coalesced water exiting the emulsion layer can be expressed as follows: 

 �̇�𝑤,𝑜𝑢𝑡 = 𝑘𝐴ℎΦ𝑤(𝑡)𝜌𝑤                                            Equation 4.3 

where k is the bulk coalescence rate and is assumed to be constant. In this study, it was observed 

experimentally that the asphaltene-stabilized emulsions did not completely coalesce into free water 

and oil layers and therefore Eq. 4.3 was modified as follows:  

 �̇�𝑤,𝑜𝑢𝑡 = 𝑘𝐴(ℎ −  ℎ𝑙𝑖𝑚)Φ𝑤(𝑡)𝜌𝑤  Equation 4.4 

where hlim is the limiting height representing the portion of the emulsion which does not fully 

coalesce. The limiting height can be varied from 0 to 1, with a value of 0 indicating that the 

emulsion fully coalesces and a value of 1 indicating no coalescence. Note, a variable time 

dependent coalescence rate modeled by an exponential decay was previously used in this model 

to account for the observed decrease in coalescence over time. The use of the limiting height model 

with a constant coalescence rate was found to be simpler and required fewer additional tuning 

parameters. 
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Eqs. 4.2 and 4.4 were substituted into Eq. 4.1 to obtain:  

𝑑(𝐴ℎΦ𝑤(𝑡)𝜌𝑤)

𝑑𝑡
=  −𝑘𝐴(ℎ −  ℎ𝑙𝑖𝑚)Φ𝑤(𝑡)𝜌𝑤                         Equation 4.5 

The beaker cross sectional area and the water density are constant. Eq. 4.5 can therefore be 

simplified to obtain the following equation for the change in emulsion layer height with time: 

 
𝑑ℎ

𝑑𝑡
=  −𝑘(ℎ −  ℎ𝑙𝑖𝑚) −

ℎ

Φ𝑤(𝑡)

𝑑Φ𝑤(𝑡)

𝑑𝑡
  Equation 4.6 

The dimensionless form of Eq. 4.6, with the emulsion layer height at a given time divided by the 

initial height of the emulsion layer immediately after mixing, is given as follows:  

 
𝑑(

ℎ

ℎ𝑜)

𝑑𝑡
=  −𝑘 (

ℎ

ℎ𝑜 −
ℎ𝑙𝑖𝑚

ℎ𝑜 ) −
1

Φ𝑤(𝑡)

ℎ

ℎ𝑜

𝑑Φ𝑤(𝑡)

𝑑𝑡
  Equation 4.7 

All of the terms in Eq. 4.7 were directly measured except for the water volume fraction, the 

coalescence rate, and the limiting height. The water volume fraction was determined at each time 

step from the measured layer heights as follows: 

 Φ𝑤 =  
ℎ𝑤

𝑜 −ℎ𝑤

ℎ𝑒
       Equation 4.8 

where hw
o

 is the initial height of water in the beaker before mixing, and hw and he are the height of 

the free water layer and the emulsion layer, respectively, at any given time. Eq. 4.7 was then fit to 

the experimental batch data to determine the coalescence rate constant and limiting height.  

 

A material balance on the water in the emulsion layer can also be used to model the height of the 

free water layer as shown in Figure 4.2. The instantaneous water balance across the water layer 

where coalesced water in the emulsion layer enters the free water layer, is given by: 

𝑑𝑀𝑓𝑤

𝑑𝑡
=  �̇�𝑤,𝑜𝑢𝑡     Equation 4.9 

where Mfw is the mass of water in the free water layer and ṁw is the rate of water exiting the 

emulsion layer by coalescence as before. The mass of free water at a given time is then: 

𝑀𝑓𝑤 = 𝐴ℎ𝑤𝜌𝑤              Equation 4.10 

where hw is the height of the water layer and A is the cross sectional area of the water layer and is 

equal to the cross sectional area of the beaker.   
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Figure 4.2 Material balance on the free water in the batch experiment. Adapted from Khatri, 2010. 

 

 

Eqs. 4.4 and 4.10 were substituted into Eq. 4.9 and simplified with constant cross sectional area 

and water density to obtain the following equation for the change in the free water layer height 

with time: 

𝑑(ℎ𝑤)

𝑑𝑡
=  𝑘 (

ℎ

ℎ𝑜 −
ℎ𝑙𝑖𝑚

ℎ𝑜 ) Φ𝑤(𝑡)           Equation 4.11 

Eq. 4.11 was made dimensionless by dividing by the total height of the initial emulsion layer, ho: 

𝑑(
ℎ𝑤
ℎ𝑜 )

𝑑𝑡
=  𝑘 (

ℎ

ℎ𝑜 −
ℎ𝑙𝑖𝑚

ℎ𝑜 ) Φ𝑤(𝑡)           Equation 4.12 

Eq. 4.12 was used to model the free water layer height in the batch experiments. Similar to the 

batch model for the emulsion layer height, the water volume fraction was determined at each time 

step using Eq. 4.8 and the model was fit to the experimental data by adjusting the coalescence rate 

constant and the limiting height.  

 

4.2 Continuous Growth and Decay Model 

To model the continuous experiment, models of both the growth of the emulsion layer and its 

decay are required. Each model is developed below and then combined into a single numerical 

model. The use of a single numerical model for the continuous experiment is a unique development 

of the model for this thesis.  

 

4.2.1 Decay Model 

The decay experiments are essentially the same as the batch experiments except that, in the decay 

experiment, the emulsion layer accumulated over time in the separator instead of forming 
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instantaneously after emulsification in the beaker. It was observed experimentally that the volume 

fraction of the dispersed phase was approximately constant in the decay experiments even though 

it varied with time in the batch experiments. Therefore, a constant volume fraction was introduced 

into Eq. 4.7 to obtain the following expression for the change in dimensionless emulsion layer 

height over time in a decay experiment:  

 
𝑑(

ℎ

ℎ𝑜)

𝑑𝑡
=  −𝑘 (

ℎ

ℎ𝑜 −
ℎ𝑙𝑖𝑚

ℎ𝑜 )  Equation 4.13 

where ho is the initial height of the emulsion layer at the beginning of the decay experiment.    

 

4.2.2 Continuous Model 

The continuous experiment measures emulsion layer growth with time while an emulsion was 

continuously fed into a separator, as shown in Figure 4.3. In this case, the material balance 

performed on the dispersed phase becomes:  

𝑑𝑀𝑤

𝑑𝑡
=  �̇�𝑤,𝑖𝑛 − �̇�𝑤,𝑜𝑢𝑡                                  Equation 4.14 

where �̇�𝑤,𝑖𝑛 is the rate at which emulsified water is entering the separator from the feed. This 

influx of emulsified water to the emulsion layer in the separator is given by: 

 �̇�𝑤,𝑖𝑛 = 𝜌𝑤Φ𝑤
𝑜�̇�𝑖𝑛(1 − 𝜀)  Equation 4.15 

where Φw
 o is the volume fraction of emulsified water in the feed, �̇�𝑖𝑛 is the flow rate of the pump, 

and ε is the fractional bypass (the portion of the emulsified water that breaks into free water as the 

feed emulsion passes through the pump). This free water was assumed to rapidly reach the free 

water phase in the separator and to have negligible effect on the volume of the emulsion layer. The 

water accumulation and mass of water leaving the emulsion layer are given by Eqs. 4.2 and 4.4, 

respectively, as for the batch experiments. 

 

Eqs. 4.2, 4.4 and 4.15 are substituted into Eq. 4.14 to obtain the following expression for emulsion 

layer growth in the separator: 

 
𝑑ℎ

𝑑𝑡
=  

Φ𝑤
𝑜

Φ𝑤

�̇�𝑖𝑛

𝐴
(1 − 𝜀) − 𝑘ℎ  Equation 4.16 

All of the terms in Eq. 4.16 were measured directly except for the fractional bypass, the 

coalescence rate, and the limiting height. Note, the water volume fraction in the emulsion layer, 

Φw, was measured for a small set of emulsion layers as described in Section 3.2.6 and was found 
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to be nearly constant. The water volume fraction in the feed, Φw
 o, is held constant at 0.50, the 

initial water volume fraction in the original emulsion beaker. Eq. 4.16 is fit to the experimental 

data by adjusting the fractional bypass, the coalescence rate constant, and the limiting height. 

 

 

 

Figure 4.3 Material balance on the dispersed water in the emulsion layer in the continuous 

experiment. Adapted from Khatri, 2010. 

 

 

4.2.3 Combined Continuous and Decay Model 

To model emulsion layer growth and decay together, the continuous and decay separation 

experiments were numerically modeled explicitly as a column of layers accumulating and 

decaying over 1 minute time steps as shown in Figure 4.4. The emulsion entering the separator 

each minute constitutes one layer and a new layer is added for each minute emulsion is pumped 

into the separator. The height of each new layer after 1 minute is calculated using Eq. 4.16 for 

emulsion layer growth. The height of that layer at each subsequent time step is determined using 

Eq. 4.13 for emulsion decay. The height of all layers are then summed to obtain the total height. 

A flowchart for the numerical model is shown in Figure 4.5. The model was fit to the combined 

data by adjusting the fractional bypass, the coalescence rate, and the limiting height. 
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Figure 4.4 Division of emulsion into individual layers in combined continuous and decay model. 

The newly added layer models emulsion layer growth for the first time step and emulsion layer 

decay is modeled for all subsequent time steps in each layer. The total emulsion height is the sum 

of all layer heights.   
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Figure 4.5 Block flow diagram of the algorithm for the numerical model. 
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5. CHAPTER 5: RESULTS AND DISCUSSION1 

 

 

This chapter discusses the experimental results and modeling of the emulsion stability and growth 

experiments. Batch experiments and continuous experiments were performed on asphaltene 

stabilized emulsions with and without added solids. The objectives of the experiments without 

solids were: 1) to investigate the potential to predict rag layer growth from batch tests; 2) to 

establish a base case emulsion for the experiments with solids. Data were collected for asphaltenes 

from different sources (OS, CSS, and SAGD), with different solvents (toluene and 50/50 heptol), 

and with different drop size distributions (mean diameters of 8 and 20 µm). The objectives of the 

experiments with solids were: 1) to investigate the effect of solids on coalescence rates and rag 

layer growth; 2) to assess the potential to predict rag layer growth from batch tests when solids are 

present. The batch and continuous experiments were repeated for the base case emulsion, but with 

added solids. The effect of the type (kaolin and silica), size (mean diameters of 12, 18, and 32 µm), 

and wettability (contact angles of 50 to 125°) of the solids were considered.  

 

5.1 Asphaltene-Stabilized Emulsions  

Batch and continuous separation experiments were first run on solids-free model emulsion systems 

stabilized by asphaltenes to examine the effects of asphaltene source and concentration, solvent 

characteristics, and drop size distributions on emulsion layer stability and growth. The data were 

used to determine a base case emulsion for solids addition. The model was fit to the experimental 

data to determine if batch experimental parameters can be used to predict the behaviour of 

emulsion layers in continuous separations. Before examining the data, the approach used to fit the 

model to the data is described. 

 

5.1.1 Modeling the Experimental Data 

The collected experimental data of batch and continuous emulsion layer heights over time was 

modeled with the mass balance based model presented in Chapter 4. Model parameters of 

                                                 

1 The contents of this chapter have been accepted for publication in the Canadian Journal of Chemical Engineering. 
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coalescence rates, limiting heights, and fractional bypass values were determined by tuning the 

model to fit the data. These model parameters captured the trends in emulsion stability and were 

useful for comparing emulsion stability and growth rates at different conditions. 

 

Batch Separation Experiments  

Figure 5.1 shows the change in the dimensionless height of the emulsion and free water layers over 

time in the batch experiment where the emulsion stabilized by OS asphaltenes (no solids) was left 

undisturbed to coalesce into free oil and water phases. The emulsion was prepared with the 

overhead mixer at 1000 rpm at 60°C in toluene solvent. Both the emulsion and free water layer 

experimental heights were made dimensionless by dividing by in the initial height of the emulsion 

layer measured immediately after mixing. In this case, there was a rapid decrease in the emulsion 

layer height and increase in the free water height as the droplets settle. This period was followed 

by a slow change in the emulsion height over time and no change in the free water height as the 

settled emulsion compacts over time. 

 

 

 

Figure 5.1 Emulsion and the water layer heights over time for a batch experiment performed at 

60°C and 1000 rpm with an overhead mixer. The emulsion was prepared with an initial water 

volume of 0.50. The organic phase consisted of 1.5 g/L OS asphaltenes in toluene. 
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The dimensionless heights of the emulsion and water layers were modeled according to the 

methodology presented in Chapter 4, using Eqs. 4.7 and 4.12, respectively. First, the water volume 

fraction and its derivative were required as inputs to the model. The water volume fraction in the 

emulsion layer was calculated directly from experimental data at each time step using Eq. 4.8. The 

data were then fitted with an equation of the form: 

Φ𝑤(𝑡) =  Φ∞ + 𝑐1(1 − 𝑒𝑥𝑝(−𝑐2𝑡)) + 𝑐3(1 − 𝑒𝑥𝑝(−𝑐4𝑡))  Equation 5.1 

where Φw(t) is the fitted water volume fraction at time t, Φ∞  is the initial experimental volume 

fraction at time t = 0, and c1, c2, c3, and c4 are constants used to fit the experimental water volume 

fractions determined using Eq. 4.8 with Eq. 5.1. The derivative of Eq. 5.1 is given by: 

𝑑Φ𝑤(𝑡)

𝑑𝑡
= 𝑐1𝑐2𝑒𝑥𝑝(−𝑐2𝑡) + 𝑐3𝑐4𝑒𝑥𝑝(−𝑐4𝑡)            Equation 5.2 

The fitted water volume fractions for the data in Figure 5.1 are shown in Figure 5.2. The volume 

fraction of the dispersed phase increased over time. The initial rapid increase in water volume 

fraction corresponds to the droplet settling period. The following slow increase corresponds to the 

compaction period. The water volume fraction is required for modeling, but is not useful in 

assessing emulsion stability. Water volume fraction plots for all remaining emulsions presented in 

this chapter can be found in Appendix A. 

 

The coalescence rates and dimensionless limiting heights were then determined by fitting the 

model to the experimental height data, as shown in Figure 5.1. The limiting height was fit to the 

measured final height of the emulsion layer and is the asymptote of the model. It provides an 

indication of emulsion stability because it represents the portion of the emulsion which does not 

coalesce. The limiting height can be varied from 0 to 1, with a value of 0 indicating that the 

emulsion fully coalesces and a value of 1 indicating no coalescence. The coalescence rate dictates 

how fast the emulsion will reach the limiting height. Overall as emulsion stability increases, the 

limiting height tends to increase and the coalescence rate constant decreases. The same model 

parameters were used to fit both the emulsion and free water layer data for each emulsion and are 

presented in Table 5.1.  The model fit the data with an average absolute relative deviation (AARD) 

of 0.02. 
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Figure 5.2 Water volume fractions over time for a batch experiment performed at 60°C and 1000 

rpm with an overhead mixer. The emulsion was prepared with an initial water volume of 0.50. The 

organic phase consisted of 1.5 g/L OS asphaltenes in toluene. 

 

 

Table 5.1 Model parameters used for batch and continuous experiments for water-in-toluene 

emulsions stabilized by asphaltene extracted from OS bitumen. The measured emulsion layer 

growth rate, dh/dt, for the continuous experiment is also tabulated. 

Parameter Batch Continuous 

dh/dt, cm/min - 1.23 

ε - 0.09 

hlim/ho 0.60 0.65 

k, min-1 0.02 0.04 

 

 

Continuous Separation Experiments  

Figure 5.3 shows emulsion layer growth and decay during the continuous separation experiment 

for the OS asphaltene stabilized emulsions without solids. The initial rise in the emulsion layer 

height is the growth period. When the feed is shut-off, the rag layer no longer grows and the decay 

period begins. The decay period is equivalent to a batch experiment. 
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Figure 5.3 Continuous experiment emulsion layer heights over time for a W/O emulsion stabilized 

by OS asphaltenes at 60°C. The emulsion was prepared with an initial water volume fraction of 

0.50 and an organic phase of 1.5 g/L asphaltenes in toluene. 

 

 

The required inputs to the model are the water volume fraction in the feed and in the emulsion 

layer. The water volume fraction in the feed was set to the initial water volume fraction in the 

prepared emulsion beaker, 0.5 in all cases. Note, the water volume fraction in the prepared 

emulsion beaker may vary with time if unequal volumes of free water and oil are returned to the 

emulsion beaker from the separator. In these experiments, only water was held up in the emulsion 

layer. The maximum water volume fraction that could occur in the beaker in these experiments 

was calculated from a material balance performed on the beaker assuming no water return over the 

entire run. This maximum water volume fraction was 0.54. The change in water volume fraction 

is relatively small because the volume in the separator is relatively small compared to the total 

volume of the emulsion beaker. The actual variation is much smaller for most of each experimental 

run until the rag layer height fills a significant fraction of the separator. This variation was 

minimized by maintaining the emulsion layer in the centre of the separator by adjusting the exit 

water flowrate. Hence, the error introduced by assuming a constant water volume fraction in the 

beaker is small. 
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The water volume fraction in the emulsion layer was measured for two solids free emulsions: one 

stabilized by OS asphaltenes and the other with CSS asphaltenes. Both were prepared at 60°C and 

1000 rpm with an overhead mixer with an initial water volume fraction of 0.50 and an organic 

phase consisting of 1.5 g/L C7-asphaltenes in toluene. The emulsion layer water volume fraction 

was found to be the same in both test cases although it varied randomly over time with an average 

value of 0.68 ± 0.11 based on a 95% confidence interval. Therefore, the water volume fraction in 

the emulsion layer was assumed to be 0.68 for all runs. Note that this value is approximately equal 

to the close random packing volume fraction for monodispersed spheres. 

 

The model was then fit to the data using Eqs. 4.16 and 4.13 for respective emulsion layer growth 

and decay using the coalescence rate constant, dimensionless limiting emulsion layer height, and 

fractional bypass as fitting parameters. The limiting height and coalescence rate constant match 

the final height of the emulsion layer as the amount of emulsion that will not destabilize and slope 

of the decay curve, respectively, as in the batch experiment. The fractional bypass is specific to 

the apparatus but, is required to match the rag layer growth rate. The rag layer growth rate is 

defined as the emulsion layer growth in the continuous experiment divided by time and is the slope 

of the emulsion layer growth curve. A lower fractional bypass indicates a faster growth rate. The 

rag layer growth rate is not a model input, but is convenient for comparing the behaviour of 

different emulsions and is therefore included in Table 5.1. Overall, a more stable emulsion will 

have a higher limiting height, lower coalescence rate, and lower fractional bypass (faster growth 

rate).  

 

The fitted model parameters are presented in Table 5.1. The model fit the data with an AARD of 

0.03. Note that the decay parameters are not the same as the batch experiment parameters. The 

difference between batch and continuous coalescence rates may be due to the shear force applied 

by the pump during the continuous experiment. In addition, the continuous emulsion layer 

accumulated over time while the batch emulsion layer was formed immediately. Hence, the 

structure of the layers in each type of experiment may differ.  
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5.1.2 Effect of Experimental Variables on Emulsion Stability 

5.1.2.1 Effect of Asphaltene Source on Emulsion Stability  

Emulsions stabilized by asphaltenes extracted from three different source bitumen: OS, CSS and 

SAGD, were prepared at 60°C with a mixing speed of 1000 rpm using the overhead mixer and a 

asphaltene concentration of 1.5 g/L in toluene solvent. Figure 5.4 compares the height of the 

emulsion layers from batch and continuous experiments for OS, CSS, and SAGD asphaltene 

stabilized emulsions in the absence of solids. The fitted model parameter values are provided in 

Table 5.2. 

 

 

Figure 5.4 Emulsion layer heights for batch tests (a) and continuous tests (b) over time for W/O 

emulsions stabilized by OS, CSS, and SAGD asphaltenes at 60°C. Model emulsions were prepared 

with 50 vol% aqueous phase and 50 vol% organic phase. The organic phase was 1.5 g/L of 

asphaltenes in toluene.  

 

 

Table 5.2 Model parameters used for batch and continuous experiments for water-in-toluene 

emulsions stabilized by asphaltene extracted from OS, CSS, and SAGD bitumen. 

Parameter Batch Continuous 

 OS CSS SAGD OS CSS SAGD 

dh/dt, cm/min - - - 1.23 0.94 0.51 

 - - - 0.09 0.23 0.54 

hlim/ho 0.60 0.54 0.33 0.65 0.38 0.27 

k, min-1 0.02 0.04 0.11 0.04 0.05 0.06 
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The emulsion stabilized by asphaltenes extracted from the OS bitumen was the most stable and 

SAGD the least stable in both batch and continuous experiments. The CSS asphaltene stabilized 

emulsions had an intermediate stability. These results were consistent with those from Rocha et 

al. (2016) who found that the differences in emulsion stability correlated to the mass surface 

coverage and apparent molecular weight at the interface. The higher emulsion stability of the OS 

and CSS asphaltenes was attributed to the presence of a larger number of self-associating 

aggregates with high molecular weight that adsorb on the water-oil interface and form a thicker 

film. The SAGD asphaltenes may be deficient in more polar material or large nanoaggregates, 

possibly as a result of extended exposure to high steam temperatures or adsorption of these 

components on the reservoir rock. 

 

Asphaltene Blends  

Emulsions with a range of stabilities can be obtained by blending asphaltenes from different 

sources. By combining asphaltenes from the most stable OS bitumen and the least stable SAGD 

bitumen at different ratios (with the total asphaltene concentration held constant at 1.5 g/L), the 

emulsion stability can be controlled in batch and continuous experiments as shown in Figure 5.5. 

Fitted model parameters for the emulsions stabilized by asphaltene blends are provided in Table 

5.3. Emulsions containing any amount of SAGD asphaltenes were significantly less stable (lower 

limiting height parameters and higher coalescence rate constants) than the emulsion stabilized only 

by OS asphaltenes in both batch and continuous experiments. Even small amounts of SAGD 

asphaltenes added to the system tended to destabilize the emulsion. This observation suggests that 

there may be competitive adsorption at the interface with SAGD asphaltenes, which are less 

effective emulsion stabilizers, arriving first to the interface or preferentially adsorbing. The range 

of emulsion stabilizing capabilities provides a wider range of conditions over which to compare 

the batch and continuous experiments.  
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Figure 5.5 Emulsion layer heights for (a) batch experiments and (b) continuous experiments over 

time for W/O emulsions stabilized by OS/SAGD asphaltene blends at 60°C. Model emulsions 

were prepared with 50 vol% aqueous phase and 50 vol% organic phase. The organic phase was 

1.5 g/L of C7-asphaltenes in toluene.  

 

 

Table 5.3 Model parameters used for batch and continuous experiments for water-in-toluene 

emulsions stabilized by OS/SAGD asphaltene blends. 

Parameter Batch Continuous 

 95/5 85/15 50/50 95/5 85/15 50/50 

dh/dt, cm/min - - - 0.90 0.69 0.56 

 - - - 0.25 0.28 0.46 

hlim/ho 0.48 0.42 0.15 0.42 0.30 0.12 

k, min-1 0.04 0.05 0.06 0.03 0.03 0.05 

 

 

5.1.2.2   Effect of Asphaltene Concentration 

Gafonova and Yarranton (2001) found that emulsion stability increased as the asphaltene 

concentration increased significantly up to approximately 5 g/L in 50/50 heptol and then decreased 

slightly at higher asphaltene concentrations. At low asphaltene concentrations, there were 

insufficient asphaltenes to stabilize the emulsions. Relatively large droplets were formed which 

coalesced more readily than the smaller droplets formed at higher asphaltene concentrations. 
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To evaluate the effect of asphaltene concentration, batch and continuous experiments were 

performed for emulsions stabilized by OS asphaltenes prepared with asphaltene concentrations of 

0.5 g/L to 10 g/L in toluene. To minimize the mass of asphaltenes used, the batch emulsions at 

different asphaltene concentrations were prepared with a total volume of only 50 cm³. The 

emulsions were mixed at 10,800 rpm with a CAT 520D homogenizer at 21°C. These screening 

experiments were run at room temperature instead of 60°C for convenience; a few experiments 

were repeated at 60°C and similar results were obtained. Continuous emulsions were prepared in 

the usual fashion as described in Section 3.2.4. 

 

Figure 5.6a shows the effect of asphaltene concentration on the batch emulsions stabilized by OS 

asphaltenes. The fitted model parameters are given in Table 5.4. The stability of the batch 

emulsions increased as the concentration increased to 5 g/L and there was little change in stability 

from 5 to 10 g/L. These results are consistent with the results from Gafonova and Yarranton (2001). 

Similar results were obtained for CSS and SAGD asphaltenes (see Appendix B). The emulsions 

with OS asphaltene concentrations of 0.5, 1.5, and 2.5 g/L were run in the continuous separator to 

evaluate the rag layer growth rates. Figure 5.6b shows that, in agreement with the batch results, 

the less stable emulsion at 0.5 g/L grew more slowly, but there was little difference between the 

growth rate at 1.5 and 2.5 g/L.  
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Figure 5.6 Emulsion layer height over time for W/O emulsions stabilized by OS asphaltenes: a) 

batch experiments at 21°C; b) continuous separations at 60°C. Model emulsions were prepared 

with 50 vol% aqueous phase and 50 vol% organic phase. The organic phases consisted of 0.5, 1.5, 

2.5, 5 and 10 g/L of asphaltenes in toluene. 

 

 

Table 5.4 Model parameters used for batch and continuous experiments for water-in-toluene 

emulsions stabilized by OS asphaltene at concentrations between 0.5 and 10 g/L. 

Parameter                             Batch  Continuous 

Asphaltene Concentration (g/L) 0.5 1.5 2.5 5 10 0.5 1.5 2.5 

dh/dt, cm/min - - - - - 0.70 1.23 1.27 

 - - - - - 0.42 0.03 0.01 

hlim/ho 0.70 0.76 0.78 0.86 0.90 0.55 0.65 0.75 

k, min-1 0.01 0.008 0.004 0.003 0.002 0.04 0.04 0.06 

 

 

5.1.2.3 Effect of Solvent Type 

The degree of surface activity of asphaltenes varies according to their solubility (Kiran, 2011). 

Asphaltene-stabilized emulsions tend to be more stable when the solubility of the asphaltenes in 

the continuous phase decreases, as long as there is no precipitation (Spiecker and Kilpatrick, 2004). 

As the heptane fraction in the heptol solvent increases, the asphaltenes are less soluble and the 

interactions between asphaltenes become stronger. The increase in adhesion strength and greater 
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asphaltene stacking in poor solvents (Shi et al., 2017) leads to the formation of aggregates of 

asphaltene monomers. These asphaltene aggregates have a higher affinity for the oil-water 

interface and are attributed to a more strongly adsorbed, crosslinked asphaltene film at the interface 

(Sztukowski and Yarranton, 2004). Therefore, emulsions prepared from mixtures of heptane and 

toluene are expected to be more stable than emulsions prepared from toluene alone.  

 

Emulsions were prepared in toluene (good solvent) and 50/50 heptol (poor solvent) to investigate 

the effect of the asphaltene solubility in the continuous phase on emulsion stability and emulsion 

layer growth. The results in toluene were presented previously in Figure 5.4 and Table 5.2. Figure 

5.7 shows the batch and continuous emulsion layer heights for the water-in-50/50 heptol emulsions 

stabilized by OS, CSS, and SAGD asphaltenes. The fitted model parameters for the water-in-50/50 

heptol emulsions are provided in Table 5.5. As observed in toluene, the emulsions stabilized by 

asphaltenes extracted from the OS bitumen and SAGD bitumen were the most and least stable, 

respectively. A comparison of Figures 5.7a and 5.4a shows that all of the batch water-in-50/50 

heptol emulsions were more stable than the water-in-toluene emulsions. The limiting height batch 

model parameter is higher in 50/50 heptol than in toluene and the coalescence rate constant is 

lower. The change in emulsion stability was greatest for the SAGD asphaltene stabilized 

emulsions. If OS and CSS asphaltenes are already capable of forming strongly crosslinked films 

in toluene, then the increased rigidity of the interfacial film due to solvent effects may be less 

significant than for an unstable film like that formed with SAGD asphaltenes. 

 

Figure 7.b shows that, consistent with the batch experiments, the continuous OS emulsions 

prepared in 50/50 heptol are the most stable and the SAGD emulsions are the least stable. The 

water-in-toluene (Figure 5.4b) emulsions were again consistently more stable than the water-in-

50/50 heptol (Figure 5.7b) emulsions. Overall, as expected, the emulsions in 50/50 heptol were 

somewhat more stable than in toluene with similar albeit scattered coalescence rates and 

consistently higher dimensionless limiting heights. The emulsion layer growth rate also increased 

(fractional bypass decreased) with increasing heptane content in the organic solvent.  
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Figure 5.7 Emulsion layer height over time for W/O emulsions stabilized by OS, CSS and SAGD 

asphaltenes: a) batch experiments; b) continuous separations at 60°C. Model emulsions were 

prepared with 50 vol% aqueous phase and 50 vol% organic phase. The organic phases consisted 

of 1.5 g/L of asphaltenes in 50/50 heptol. 

 

Table 5.5 Model parameters used for batch and continuous experiments for water-in-50/50 heptol 

emulsions stabilized by asphaltene extracted from OS, CSS and SAGD bitumen. 

Parameter Batch Continuous 

 OS CSS SAGD OS CSS SAGD 

dh/dt, cm/min - - - 1.15 0.84 0.67 

 - - - 0.15 0.28 0.48 

hlim/ho 0.61 0.58 0.45 0.76 0.76 0.30 

k, min-1 0.01 0.03 0.05 0.06 0.06 0.02 

 

5.1.2.4 Effect of Drop Size Distribution/Mixing Conditions 

Emulsions with smaller drop sizes are expected to be more stable than emulsions with large 

droplets because the probabilities of collision and coalescence are greater with larger contact areas 

between the droplets (Gafonova and Yarranton, 2001). The drop size distribution is partly 

determined by the mixing speed. Two cases were examined in this study: 1000 rpm with an 

overhead mixer and 10,000 rpm with a homogenizer. Figure 5.8 shows that the drop-size 

distributions were narrower when using the homogenizer. The average droplet diameters were 20.0 

± 2.5 µm and 8.0 ± 0.3 µm for 1000 and 10,000 rpm, respectively.  
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Figure 5.8 Droplet size distribution of OS asphaltene stabilized water-in-toluene emulsions 

prepared with an overhead mixer at 1000 rpm or a homogenizer at 10,000 rpm at 60°C. 

 

 

Water-in-toluene emulsions stabilized by OS, CSS, and SAGD asphaltenes were prepared at 

10,000 rpm in batch (Figure 5.9a) and continuous (Figure 5.9b) experiments and model parameters 

are provided in Table 5.6. Note, continuous tests at 10,000 rpm were not performed with the CSS 

and SAGD asphaltenes due to sample limitations. As expected, the batch emulsions with the 

smaller droplets (10,000 rpm) were more stable with lower coalescence rates and higher 

dimensionless limiting heights than at 1000 rpm. The effect of the drop size distribution was less 

pronounced in the continuous experiments where the growth rate increased as expected, but the 

dimensionless limiting height decreased slightly. It is likely that some coalescence occurred in the 

pump before reaching the separator. Hence, the emulsion in the continuous separator may have 

similar average drop sizes regardless of the drop size distribution in the original emulsion beaker. 
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Figure 5.9 Emulsion layer height over time for a) batch experiments W/O emulsions stabilized by 

OS, CSS and SAGD asphaltenes; b) continuous separations W/O emulsions stabilized by OS 

asphaltenes prepared at a mixing speed of 10,000 rpm with a homogenizer. Model emulsions were 

prepared at 60°C with 50 vol% aqueous phase and 50 vol% organic phase. The organic phases 

consisted of 1.5 g/L of C7-asphaltenes in toluene. 

 

 

Table 5.6 Model parameters used for batch and continuous experiments for water-in-toluene 

emulsions stabilized 1.5 g/L OS, CSS, and SAGD asphaltenes at a mixing speed of 10,000 rpm. 

Parameter Batch Continuous 

 OS CSS SAGD OS 

dh/dt, cm/min - - - 1.59 

 - - - 0.08 

hlim/ho 0.80 0.60 0.50 0.61 

k, min-1 0.001 0.01 0.01 0.03 

 

 

5.1.2.5 Effect of Water Volume Fraction 

The initial water volume fraction can affect both emulsion stability and the type of emulsion 

formed.  The initial water volume fraction in the batch emulsions was varied from 0.25 to 0.85 for 

water-in-toluene emulsions stabilized by 0.5 and 1.5 g/L of OS asphaltenes. For emulsions 

stabilized by 0.5 g/L asphaltenes, oil-in-water emulsions were formed for water volume fractions 

above 0.60, as determined by a dilution test. In this test, the addition of water created a more dilute 
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emulsion and a separate layer was formed with the addition of toluene, indicating that the 

continuous phase was water. Emulsions prepared with initial water volume fractions below the 

inversion point of 0.60 were water-in-oil emulsions. For emulsions stabilized by 1.5 g/L of 

asphaltenes, the inversion point increased to 0.75. Only the emulsion formed at a water fraction of 

0.85 was an oil-in-water type. All other emulsions at the higher asphaltene concentration, with 

initial water fractions below 0.75, were water-in-oil emulsions. 

 

At 0.5 g/L asphaltenes in toluene, Figure 5.10a shows a minimum in stability at the inversion point 

of 60 vol% water. Emulsion stability decreased with increasing water phase fraction until the 

inversion point was reached and then increased with increasing water phase content above the 

inversion point. In both cases, emulsion stability decreased with increasing dispersed phase (or 

decreasing continuous phase) volume fraction. The decrease in stability with increasing dispersed 

phase volume may result from the formation of larger droplets when the supply of stabilizing 

asphaltenes are limited in the continuous phase. As the dispersed phase volume increases, larger 

droplets are in closer contact, which increases the chance of collision and coalescence. Phase 

inversion likely occurs when there are insufficient asphaltenes to stabilize the large dispersed phase 

surface area. 

 

The opposite affect was observed for emulsions stabilized by 1.5 g/L asphaltenes, where in Figure 

5.10b shows an increase in emulsion stability with increasing dispersed phase content until an 

inversion point is reached at a water volume fraction of 0.75. Emulsion stability drastically 

decreased above this point and phase inversion occurs. It appears that at 1.5 g/L of asphaltenes, 

there is an excess of stabilizing material so that the drop size and emulsion stability do not change 

at difference water volume fractions. In this case, the drop size is dictated by the mixing conditions 

rather than the amount of asphaltenes. The dimensionless limiting emulsion layer height increases 

with increasing water volume fraction simply because there is a higher proportion of dispersed 

water in the beaker.   
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Figure 5.10 Batch emulsion layer height over time for W/O emulsions prepared with initial water 

volume fraction varying from 0.25 to 0.85 at 60°C for emulsions with organic phases consisting 

of a) 0.5 g/L of OS asphaltenes in toluene; b) 1.5 g/L of OS asphaltenes in toluene. 

 

 

Table 5.7 Model parameters used for batch water-in-toluene emulsions stabilized by 0.5 g/L OS 

asphaltenes and prepared with initial water volume fractions ranging from 0.25 to 0.85. 

Parameter Water Volume Fraction 

 0.25 0.40 0.60 0.75 0.85 

hlim/ho 0.37 0.15 0.03 0.07 0.13 

k, min-1 0.02 0.23 0.70   1.0 0.90 

 

 

Table 5.8 Model parameters used for batch water-in-toluene emulsions stabilized by 1.5 g/L OS 

asphaltenes and prepared with initial water volume fractions ranging from 0.25 to 0.80. 

Parameter Water Volume Fraction 

 0.25 0.40 0.50 0.60 0.75 0.80 

hlim/ho 0.56 0.74 0.80 0.83 0.95 0.27 

k, min-1 0.01 0.005 0.001 0.001   0.001 0.90 
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5.1.3 Prediction of Continuous Behaviour from Batch Model Parameters   

The relative stability of the emulsions is clear in the model parameters. Figure 5.11 shows that as 

the emulsion stability decreases (OS to CSS to SAGD), the coalescence rate increases and the 

dimensionless limiting height decreases for both batch and continuous emulsions. Figure 5.12 

confirms that the emulsion layer growth rate depends strongly on the fractional bypass which 

increases as the emulsion stability decreases. While the parameters from each type of experiment 

differ, they follow the same trends indicating that batch experiments can be used to qualitatively 

predict trends in continuous separations for asphaltene stabilized emulsions. 

 

 

 

Figure 5.11 Fitted coalescence rate (a) and dimensionless limiting height (b) for batch and 

continuous tests on W/O emulsions stabilized by OS, CSS, and SAGD asphaltenes. In legend: 

B=batch, C=continuous; the number indicates the mixing rpm. Note, continuous tests at 10,000 

rpm were not performed with the CSS and SAGD asphaltenes due to sample limitations. 
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Figure 5.12 Measured emulsion layer growth rate versus fractional bypass for batch and 

continuous tests on W/O emulsions stabilized by OS, CSS, and SAGD asphaltenes at 60°C. 

 

 

Figure 5.13 shows that the coalescence rate and dimensionless limiting height from the batch tests 

correlate well with each other. In other words, more stable emulsion have both lower coalescence 

rates and higher dimensionless limiting heights. This correspondence also means that only one 

parameter is required in the attempt to predict continuous emulsion stability. The dimensionless 

limiting height is the easier value to measure and was selected as the correlating parameter.  
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Figure 5.13 Batch model parameters coalescence rate constant and dimensionless limiting height 

for W/O emulsions stabilized by OS, CSS, and SAGD asphaltenes. 

 

 

Figure 5.14 shows the correlation of the continuous model parameters with the batch 

dimensionless limiting height. There is a strong correlation between the fractional bypass and 

emulsion layer growth rate with the dimensionless limiting height. There is a scattered but 

consistent correlation between the dimensionless limiting heights from the batch and continuous 

tests. The correlation for the coalescence rate is poor. As noted previously, the emulsion is altered 

in its passage through the pump. Fortunately, the coalescence rate is the least important parameter 

for modeling the growth and decay of the emulsion layer in the continuous separation.  

 

Overall, the dimensionless limiting heights from the batch tests provide a sound qualitative 

indicator of the emulsion stability in a continuous separation. In general, a high dimensionless 

limiting height in the batch model predicts a high limiting height and a low fractional bypass 

parameter in the continuous model. In other words, a stable emulsion in the batch experiment is 

expected to be stable in continuous separations with fast growth rates at the same conditions. This 

conclusion supports the use of bottle tests for emulsion assessment in the field, at least when no 

solids are present in the emulsion. Bottle tests measure the amount of free water resolved after a 

limited treatment of an emulsion sample (e.g., shaking for a few minutes). The fraction of free 
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water resolved is equivalent to one minus the dimensionless limiting height. Note, the model 

cannot be used to predict the time at which complete separation of the emulsion layer into free 

bulk phases will occur, because the kinematic model will always predict an emulsion layer height 

equal to the limiting height at infinite time.   

 

 

 

Figure 5.14 Correlation between continuous emulsion model parameters and batch test 

dimensionless limiting heights for W/O emulsions stabilized by OS, CSS, and SAGD asphaltenes 

in toluene, 50/50 heptol, at mixing speeds of 1000 and 10,000 rpm at 60°C. The lines are empirical 

fits to the data. 
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5.1.4 Selection of Base Case Emulsion for Solids Addition  

The main criterion for the base case emulsion is that the emulsions break neither too quickly to 

observe any emulsion layer growth nor so slowly that the separator filled too rapidly. The target 

was a 20 minute timeframe before the rag layer filled the separator. The concentration of 1.5 g/L 

was the minimum concentration that filled the separator within 20 minutes and was selected as the 

base case for all the experiments with solids performed in this study.  

 

As already noted, the stability of the asphaltene stabilized emulsions was not very sensitive to the 

type of asphaltenes, the solvent, or the mixing conditions. The OS asphaltenes were selected for 

the base case simply because more sample was available. Toluene was selected to ensure complete 

solubilization of the asphaltenes. An initial water fraction of 0.50 was selected to ensure the water-

in-oil emulsion layer was comprised only of a dense packed where creaming and/or settling of the 

emulsified droplets is negligible. The base case mixing condition was originally set as 1000 rpm 

with the overhead mixer. However, mixing at 10,000 rpm was found to be necessary for the 

continuous tests with solids and therefore both mixing conditions were considered.  

 

5.2 Solids-Stabilized Emulsions 

All solids stabilized emulsions were prepared at the asphaltene stabilized base case conditions of 

1.5 g/L OS asphaltenes dissolved in toluene at 60°C. Prior to use in emulsion experiments, the 

solids were treated, as described in Section 3.1.2, to alter their surface wettability by controlled 

adsorption of OS asphaltenes. The solids properties of surface wettability and particle size 

distribution were measured after treatment. In all cases, the treated solids were dispersed in the oil 

phase prior to mixing. Solids stabilized emulsions were mixed at 10,000 rpm with a homogenizer 

in order to produce emulsions with measurable stability in the continuous experiments.  

 

The effect of the solids on the batch and continuous emulsion tests is illustrated with 80° contact 

angle kaolin. The effect of solid type (kaolin and silica), size (12, 18, and 32 µm) and contact angle 

(75 to 125°) are evaluated with batch tests. Finally, the ability to predict continuous emulsion 

separation from batch experiments is assessed.   
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5.2.1 Solids Properties 

Properties of the treated solids, including surface wettability and particle diameters were measured 

prior to use in batch and continuous emulsion separation experiments.  

 

Surface Wettability  

The solids used in this study were treated with OS asphaltenes at concentrations from 0 to 1 g/L 

to obtain a series of wettabilities. Figure 5.15 shows the contact angles on the kaolin and silica 

solids determined from the compressed disc method and the surface tension measurements from 

the film floatation method of determining wettability.  Kaolin and silica changes from hydrophilic 

to more hydrophobic as a result of adsorption of asphaltenes. The solids were initially hydrophilic 

(water wet with contact angles less than 90°). As more asphaltenes adsorbed onto the solids 

surface, the solids became more hydrophobic or oil wet (contact angle greater than 90°) before 

reaching a plateau at 135° and 145° for kaolin and silica, respectively, at asphaltene concentrations 

of 0.5 g/L. The steep increase in contact angle with asphaltene concentration to a plateau suggests 

that the contact angle is more sensitive at a lower surface coverage of asphaltenes (Wang et al., 

2013).  

 

It is not obvious that the wettability of the compressed disc is the same as the wettability of the 

particles. Therefore, the compressed disc data were compared with the critical surface tensions 

from the film flotation method. The surface tension of the liquid where 50% of the solids sink is 

taken as an indicator of wettability and follows the same trend as the compressed disc data. The 

good correspondence validates the compressed disc wettability measurements.  
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Figure 5.15 Measured contact angles for (a) kaolin and (b) silica solids after treatment with OS 

asphaltenes in a 50/50 heptol solution. 

 

 

Particle Size Distribution  

The particle size distributions of the treated kaolin and the larger silica particles are shown in 

Figure 5.16. The average particle diameters were 12 µm and 54 µm respectively for kaolin and 

silica. The measured kaolin particle diameter is well above the manufacturers specifications of 

<0.20 µm. This discrepancy may be due to the particles clumping together and forming aggregates 

an order of magnitude greater than the individual particle size. The aggregates could not be broken 

up by sonication and were therefore assumed to act as individual larger particles.  

 

An average particle diameter of 54 µm for the larger silica particles falls within the range specified 

by the manufacturer of 32-63 µm. Insufficient quantities of the smaller silica particles were 

available to measure the particle size distribution in the lab, therefore the particles are assumed to 

be in the manufacturer specified 18-32 µm particle size range. At these size distributions, all solids 

considered in this thesis are considered coarse solids with average diameters greater than 1 µm.  
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Figure 5.16 Particle size distribution of treated kaolin and silica measured in 50/50 heptol solution. 

 

 

5.2.2 Effect of Solids Addition in the Batch Experiment 

Figure 5.17 shows the effect of adding kaolin (12 µm, 80° contact angle) to the base case batch 

experiment. The fitted model parameters are provided in Table 5.9.  Note that a total volume of 

only 50 mL was used at kaolin concentrations above 5 g/L in order to minimize the amount of 

kaolin consumed in each experiment. The emulsions were otherwise prepared as previously 

described. The presence of solids had a significant impact on the emulsion stability. At solids 

concentrations below 5 g/L (Figure 5.17a), emulsion stability decreased with increasing solids 

concentration until a threshold was reached. At solids concentrations above 5 g/L (Figure 5.17b), 

the trend reversed and emulsion stability began to increase with increasing solids concentration. 

At kaolin concentrations of 20 g/L, the produced emulsions are more stable than those without 

solids. Batch model parameters: limiting height and coalescence rate constant are plotted against 

the concentration of kaolin added to the base emulsion in Figure 5.18. Figure 5.18a confirms that 

a minimum in the dimensionless limiting heights occurred between 1 and 5 g/L of kaolin. Figure 

5.18b shows that a maximum in the coalescence rate also occurred at 5 g/L.  
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The above trends are consistent with the observations and interpretation from Sztukowski et al. 

(2005) on the impact of coarse solids on emulsion stability. At low solids concentrations (less than 

1 g/L), the interface is dominated by asphaltenes and the few solids available to adsorb at the 

interface as a single layer act as bridges between the droplets, promoting coalescence and resulting 

in unstable emulsions. At high solids concentrations (greater than 5 g/L), the solids pack in the 

continuous phase and accumulate around the droplets forming a steric barrier that prevents contact 

and coalescence between droplets. Stable emulsions form when solids concentrations are sufficient 

to form a multilayer around all droplets to prevent bridging.  

  

 

 

Figure 5.17 Batch separation experiment emulsion layer heights over time for W/O emulsion 

stabilized by OS asphaltenes with added kaolin with an 80° contact angle at 60°C: a) at low kaolin 

concentration b) at high kaolin concentration. The emulsions were prepared with 50 vol% aqueous 

phase and 50 vol% organic phase. The organic phase was 1.5 g/L of OS C7-asphaltenes dissolved 

in toluene plus added kaolin. Low solids concentration emulsions were prepared with a total 

volume of 1600 mL and 10,000 rpm mixing speed. High solids concentration emulsions were 

prepared with a total volume of 50 mL and 10,800 rpm mixing speed. 
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Table 5.9 Model parameters used for batch experiments for water-in-toluene emulsions stabilized 

1.5 g/L OS asphaltenes and 12 µm kaolin particles (contact angle of 80°) at solids concentrations 

from 0.05 to 20 g/L. 

Parameter 
Kaolin Concentration (g/L) 

0.05 0.25 1 5 10 15 20 

hlim/ho 0.50 0.25 0.04 0.07 0.72 0.78 0.80 

k, min-1 0.03 0.40 1.00 2.40 2.00 1.80 1.60 

 

 

 

Figure 5.18 Batch and continuous (a) dimensionless limiting height and (b) coalescence rate 

constant and for W/O emulsions stabilized by OS asphaltenes and kaolin (80° contact angle) in 

toluene and mixed at 10,000 rpm at 60°C. 

 

 

5.2.2.1 Effect of Solids Type, Size, and Contact Angle  

Additional batch tests were performed with the base case emulsion and the following added solids: 

12 µm kaolin with contact angles of 50 and 125° (Figure 5.19), 32 µm silica with contact angles 

of 75 and 115° (Figure 5.20), and 18 µm silica with a contact angle of 75° (Figure 5.21). All batch 

tests were performed with a total volume of 50 mL to conserve solids, and mixed at 10,800 rpm 

with a CAT 520D homogenizer at 60°C in toluene solvent. The corresponding model parameters 

are provided in Tables 5.10 to 5.14.  
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Figure 5.19 Batch separation experiment emulsion layer heights over time for W/O emulsion 

stabilized by OS asphaltenes with added kaolin (12 µm) with measured contact angles of 50° 

(closed symbols) and 125° (open symbols) at (a) low concentrations and (b) high concentrations. 

Emulsions were prepared with 50 vol% aqueous phase and 50 vol% organic phase with a total 

volume of 50 mL and 10,800 rpm mixing speed. The organic phase was 1.5 g/L of C7-asphaltenes 

dissolved in toluene plus added kaolin.  

 

 

Table 5.10 Model parameters used for batch experiments for water-in-toluene emulsions stabilized 

1.5 g/L OS asphaltenes and 12 µm kaolin particles (contact angle of 50°) at solids concentrations 

from 1 to 20 g/L. 

Parameter 
Kaolin Concentration (g/L) 

0.05 0.25 1 5 10 15 20 

hlimlho 0.70 0.57 0.21 0.05 0.40 0.73 0.84 

k, min-1 0.01 0.02 0.15 1.0 2.5 1.8 1.6 

 

 

 

Table 5.11 Model parameters used for batch experiments for water-in-toluene emulsions stabilized 

1.5 g/L OS asphaltenes and 12 µm kaolin particles (contact angle of 125°) at solids concentrations 

from 0.05 to 20 g/L. 

Parameter 
Kaolin Concentration (g/L) 

0.05 0.25 1 5 10 15 20 

hlim/ho 0.70 0.60 0.26 0.07 0.60 0.70 0.80 

k, min-1 0.005 0.02 0.14 1.40 1.60 0.80 3.00 
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Figure 5.20 Batch separation experiment emulsion layer heights over time for W/O emulsion 

stabilized by silica (32-63 µm) with  measured contact angles of 75° (closed symbols) and 115° 

(open symbols): a) at low silica concentration; b) at high silica concentration. The emulsions were 

prepared with 50 vol% aqueous phase and 50 vol% organic phase with a total volume of 50 mL 

and 10,800 rpm mixing speed. The organic phase was 1.5 g/L of OS C7-asphaltenes dissolved in 

toluene plus added silica. 

 

 

Table 5.12 Model parameters used for batch experiments for water-in-toluene emulsions stabilized 

1.5 g/L OS asphaltenes and 32 µm silica particles (contact angle of 75°) at solids concentrations 

from 0.05 to 20 g/L. 

Parameter 
Silica Concentration (g/L) 

0.25 1 5 10 15 20 

hlim/ho 0.62 0.28 0.07 0.07 0.32 0.45 

k, min-1 0.02 0.03 1.6 2.0 1.65 0.80 

 

 

Table 5.13 Model parameters used for batch experiments for water-in-toluene emulsions stabilized 

1.5 g/L OS asphaltenes and 32 µm silica particles (contact angle of 115°) at solids concentrations 

from 0.25 to 20 g/L. 

Parameter 
Silica Concentration (g/L) 

0.25 1 5 10 15 20 

hlim/ho 0.70 0.32 0.10 0.13 0.33 0.50 

k, min-1 0.01 0.02 1.00 2.00 3.00 3.20 
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Figure 5.21 Batch separation experiment emulsion layer heights over time for W/O emulsion 

stabilized by OS asphaltenes with added silica (18-32 µm) with a 75° contact angle; a) at low 

concentrations, b) at high concentrations. The emulsions were prepared with 50 vol% aqueous 

phase and 50 vol% organic phase with a total volume of 50 mL and 10,800 rpm mixing speed. The 

organic phase was 1.5 g/L of C7-asphaltenes dissolved in toluene plus added silica.  

 

 

Table 5.14 Model parameters used for batch experiments for water-in-toluene emulsions stabilized 

1.5 g/L OS asphaltenes and 18 µm silica particles (contact angle of 75°) at solids concentrations 

from 0.05 to 20 g/L. 

Parameter 
Silica Concentration (g/L) 

0.25 1 5 10 15 20 

hlim/ho 0.68 0.67 0.20 0.30 0.50 0.65 

k, min-1 0.001 0.05 0.15 2.00 1.50 0.46 

 

 

Rather than comparing the data versus time in all of the above figures, the batch limiting height 

parameter can be used as an indicator of emulsion stability at each solids concentration. A higher 

limiting height value indicates a more stable emulsion. Figure 5.22 shows that, in all cases, the 

results were similar to the 80° kaolin case described above. The dimensionless limiting height 

decreased as the solids were added up to a threshold between 5 to 10 g/L and then increased as 

more solids were added. Some differences were observed with the different solids as noted below.    
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Figure 5.22 Batch dimensionless limiting height for W/O emulsions stabilized by OS asphaltenes 

and solids in toluene and mixed at 10,000 rpm at 60°C: a) kaolin (K) with contact angles of 50, 

80, and 125°; b) 18 µm silica (S18) with a contact angles of 75°and 32 µm silica (S32) with contact 

angles of 75 and 115°. 

  

 

Effect of Solids Type 

The type of solids has relatively little effect on the destabilization of the emulsions at low solids 

concentrations. It seems that any coarse particle in the range of wettabilities considered in this 

study is capable of bridging and coalescing the water droplets.  The threshold concentration where 

emulsion stability increases shifts to a higher concentration of approximately 10 g/L for silica from 

the 5 g/L threshold for kaolin particles. Kaolin forms a more effective barrier to coalescence than 

silica at solids concentrations above the threshold. The kaolin aggregates are likely more irregular 

and pack less efficiently than the spherical silica particles and therefore may create a thicker barrier 

at the same solid concentration. 
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Effect of Particle Size 

At all concentrations, the 18 µm silica particles produced more stable emulsions than the 32 µm 

silica particles. In addition, the threshold concentration at which the emulsions became more stable 

was lower with the smaller particles, approximately 5 g/L versus 10 g/L. Fine particles are 

expected to stabilize emulsions and it follows that smaller coarse particles are less likely to 

destabilize emulsions as observed at low solid concentrations. At higher solids concentrations, the 

smaller particles appear to make a more effective steric barrier. 

 

Effect of Solids Wettability 

The effect of contact angle was not strong although the oil-wet solids (high contact angle) produced 

more stable emulsions at intermediate solids concentrations. The wettability appears to have little 

effect on the bridging coalescence mechanism that destabilizes the emulsions at low 

concentrations. It is possible that the wettability only becomes a significant factor for fine solids 

which typically act as emulsion stabilizers. At intermediate solids concentrations, the contact angle 

appears to have an effect on the ability the solids to form an effective barrier to coalescence. For 

kaolin, the intermediate wettability solids form the most effective barrier. This effect is not 

observed with the silica particles possibly because they are more uniform particles. Note that the 

reported wettabilities of the solids are the initial wettabilities before contact with the continuous 

phase. It is possible that the wettability of the solids is altered by contact with the asphaltene 

toluene solution during emulsion preparation. 

 

5.2.3 Effect of Solids Addition in the Continuous Experiment 

Figure 5.23 shows the emulsion layer height versus time when kaolin (12 µm, 80° contact angle) 

was added to the continuous experiment at 0.05, 0.25, 1, 5 and 10 g/L concentrations. Figure 5.24 

shows the continuous results when silica (32 µm, 75° contact angle) was also added at 0.25, 1, 5, 

10 and 15 g/L concentrations. The model parameters are provided in Tables 5.15 and 5.16 for 

kaolin and silica solids addition, respectively.  
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Figure 5.23 Continuous experiment emulsion layer height over time for OS asphaltene stabilized 

W/O emulsions with added kaolin (80° contact angle) at 60°C. The emulsions were prepared with 

50 vol% aqueous phase and 50 vol% organic phase with a 10,000 rpm mixing speed. The organic 

phase was 1.5 g/L of OS asphaltenes dissolved in toluene plus added kaolin.  

 

 

 

Figure 5.24 Continuous experiment emulsion layer height over time for OS asphaltene stabilized 

W/O emulsions with added silica (32 µm, 75° contact angle) at 60°C. The emulsions were prepared 

with 50 vol% aqueous phase and 50 vol% organic phase with a 10,000 rpm mixing speed. The 

organic phase was 1.5 g/L of OS asphaltenes dissolved in toluene plus added silica.  
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Table 5.15 Model parameters from continuous experiments for water-in-toluene emulsions 

stabilized by 1.5 g/L OS asphaltenes and 12 µm kaolin particles with a contact angle of 80°. 

 

 

 

 

 

 

 

Table 5.16 Model parameters from continuous experiments for water-in-toluene emulsions 

stabilized by 1.5 g/L OS asphaltenes and 32 µm silica particles with a contact angle of 75°. 

 

 

 

 

 

 

 

Rather than comparing the data versus time in all of the above figures, the model parameters can 

be used as an indicator of emulsion stability at each solids concentration. Figure 5.25 shows that 

the emulsion growth rate followed a trend similar to the trend of the batch experiments. For added 

kaolin, at solids concentrations below 1 g/L, the emulsion layer growth rate decreased with 

increasing solids concentration, but the trend reversed at solids concentrations above 5 g/L. For 

added silica, emulsion layer growth rates initially decreased and then increased for solids 

concentration above 10 g/L. In both cases the solids concentration at which the trend reversed from 

decreasing emulsion layer growth rate to increasing growth rate with increasing solids 

concentration was at the same concentration threshold for emulsion stability in the batch 

experiments. However, Figure 5.18 showed that the emulsion stability (limiting height and 

coalescence rate) in the continuous experiment was significantly different than the batch test. In 

the continuous tests, stable emulsions were formed at all solids concentrations. The coalescence 

rate remained relatively low and the dimensionless limiting height was relatively high at all solids 

concentrations. 

Parameter 
Kaolin Concentration (g/L) 

0.05 0.25 1 5 10 

dh/dt, cm/min 0.49 0.31 0.08 0.42 1.05 

ε 0.67 0.81 0.92 0.69 0.20 

hlim 0.96 1.00 1.00 0.92 0.90 

k, min-1 0.02 0.01 0.01 0.07 0.10 

Parameter 
Silica Concentration (g/L) 

0.25 1 5 10 15 

dh/dt, cm/min 1.37 0.79 0.12 0.33 0.55 

ε 0.01 0.44 0.90 0.75 0.54 

hlim 0.15 0.82 1.00 0.99 0.92 

k, min-1 0.01 0.06 0.07 0.05 0.02 
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Figure 5.25 Effect of solids content on continuous experiment emulsion layer growth rate for OS 

asphaltene stabilized W/O emulsions with added kaolin (80° contact angle) and silica (75° contact 

angle) at 60°C. The emulsions were prepared with 50 vol% aqueous phase and 50 vol% organic 

phase with a 10,000 rpm mixing speed. The organic phase was 1.5 g/L of OS asphaltenes dissolved 

in toluene plus added solids. 

 

 

Emulsions containing solids were found to form stable emulsion layers in the continuous 

experiment at all initial solids concentrations. These stable emulsions were observed even at low 

solids concentrations that produced very unstable emulsions in the batch separation experiment. 

The dimensionless limiting heights in the continuous experiments are near unity, equivalent to 

almost no coalescence. This observation suggests that solids are accumulating in the residual 

emulsion layer and preventing coalescence even at low initial solids concentrations. To investigate 

this hypothesis, the solids content of the emulsion layer at the end of the continuous experiment 

was measured. The calculated solid concentrations in the emulsion layers are provided in Table 

5.17 using Eq. 3.1. The solids concentrations in the emulsion layer are higher than the initial 

concentration used to prepare the emulsion and above the threshold concentration of 5 g/L for 

kaolin and 10 g/L for silica for stable emulsions found in the batch experiments. Hence, solids are 

accumulating in the emulsion layer and forming stabilized emulsions in the decay experiment. 

Only the addition of 0.25 g/L silica resulted in an unstable emulsion in the decay experiment. In 

this emulsion, the final solids concentration in the emulsion layer, while greater than the initial 
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concentration, did not exceed the threshold concentration; thus the emulsion containing 0.25 g/L 

silica remained unstable as in the batch experiment.  

 

 

Table 5.17 Calculated kaolin concentrations in the continuous phase of the emulsion layer (using 

Eq. 3.1) for the continuous experiment water-in-toluene emulsions stabilized by 1.5 g/L OS 

asphaltenes and 12 µm kaolin particles with a contact angle of 80° or 32 µm silica particles with a 

contact angle of 75°. 

Initial Solids 

Concentration 

(g/L) 

Kaolin Concentration in 

Emulsion Layer 

(g/L) 

Silica Concentration in 

Emulsion Layer 

(g/L) 

0.25 6.5 6.9 

1 13.2 13.2 

5 16.3 15.3 

10 30.1 19.8 

 

 

5.2.4 Prediction of Continuous Behaviour from Batch Parameters in the Presence of Solids  

For asphaltene-stabilized emulsions, relative trends in emulsion stability and growth in the 

continuous experiment could be predicted from batch model parameters. In the presence of solids, 

this is no longer the case. Not surprisingly, the accumulation of solids in the continuous 

experiments compromises the ability to predict the height of the emulsion layer from batch test 

data. Figure 5.26 shows that while the batch test provides a potential correlation for the growth 

rate of the emulsion layer, it completely fails to predict the dimensionless limiting height of the 

continuous emulsion layer. The emulsion layer growth rate in these experiments is not significantly 

impacted by the dimensionless limiting height, but rather by the fractional bypass. The fractional 

bypass is generated during continuous flow through the pump where accumulation is not a factor. 

In a field application, where the emulsion layer will reside in the separator for much longer time 

frames, the amount of emulsion that does not break (the dimensionless limiting height) will be the 

key factor. The batch experiments cannot predict the continuous layer height because the 

accumulation of solids creates a steric barrier that accumulates over time. Hence, batch tests, such 

as bottle tests, are likely to be unreliable when solids are present in the emulsion. 
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Figure 5.26 Effect of solids on correlation between continuous emulsion model parameters and 

batch test dimensionless limiting heights for W/O emulsions stabilized by asphaltenes in toluene 

at 60°C. 
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6. CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

 

In this thesis, the effect of solids on emulsion stability and emulsion layer growth for asphaltene-

stabilized water-in-oil emulsions was investigated by measuring emulsion layer stability in batch 

separation experiments and emulsion layer growth in continuous separation experiments. Model 

emulsions prepared with different asphaltenes, asphaltene concentrations, solvent types, drop size 

distributions, solids contents, particle size distributions, and solids wettability were studied. Both 

batch and continuous emulsion separation data for water-in-oil emulsions stabilized by asphaltenes 

and inorganic solids were modeled with a mass balance based on the rate at which the dispersed 

phase in the emulsions layer exits the settled emulsion. The model was used to determine 

coalescence rates, limiting height, and fractional bypass parameter values, which were used to 

compare emulsions at different conditions and predict emulsion layer behavior in continuous 

separations from batch model parameters.   

 

6.1 Asphaltene-Stabilized Emulsions  

For experiments performed in the absence of solids, water-in-oil emulsions were prepared from an 

aqueous phase consisting of water and an organic phase consisting of asphaltenes dissolved in 

toluene and heptane. Asphaltenes from three sources were examined.  In these asphaltene-

stabilized emulsions, emulsion stability increased with increasing asphaltene concentration, 

increasing fraction of heptane in the solvent (decreasing solubility of the asphaltenes in the 

solvent), increasing mixing speed (decreasing drop size distribution) and decreasing dispersed 

phase volume content in both batch and continuous separations.   

 

When the emulsions were stabilized by asphaltenes alone, the continuous separation parameters 

correlated well with the dimensionless limiting height obtained in the batch tests.  Stable emulsions 

were found to have high limiting height parameters, and low coalescence rate constants. Low 

fractional bypass parameters correlated with fast emulsion layer growth rates in the continuous 

experiment. A high batch limiting height parameter predicted a high continuous limiting height 

and a low continuous fractional bypass parameter. In other words, an emulsion that is stable in the 
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batch experiment has similar relative stability in the continuous experiments and more stable 

emulsions have faster growth rates. Hence, simple batch separations such as bottle tests are good 

qualitative evaluation tools for this type of emulsion.  

 

6.2 Solids-Stabilized Emulsions 

When solids are present in the organic phase, they destabilized the water-in-oil emulsions at 

concentrations below a threshold ranging from 5 to 10 g/L solids. At low concentrations the solids 

act as bridges between droplets, promoting coalescence. Above the threshold, the emulsions 

became more stable with increasing solids concentration. At sufficient concentration, the solids 

form a steric barrier between the droplets preventing further coalescence. The solids tend to 

accumulate in the emulsion layer formed in a continuous separation preventing effective long term 

coalescence. In this case, the batch tests are poor predictors for long term emulsion layer build up. 

Note, only coarse solids with average diameters ranging from 12 to 32 µm were considered. 

 

Both the batch and continuous separations were less sensitive (compared with the sensitivity to the 

solids content) to the asphaltene source, solvent type, and emulsion drop size distribution as well 

as the solid type, size, and contact angle. The asphaltenes that most strongly stabilized batch 

emulsions also led to faster emulsion layer growth in continuous experiments. Both batch and 

continuous experiment emulsions were more stable in solvents that more weakly solubilized the 

asphaltenes, with smaller droplets, and with smaller solids. Kaolin formed a more effective barrier 

to coalescence than silica. 

 

6.3 Recommendations  

Some recommendations for future work are to: 

1) Repeat some experiments using the original bitumen samples to ensure that the model 

emulsions are representative of those encountered in the field. In addition, run experiments 

at the conditions encountered in production facilities, such as higher temperatures, to 

determine if there are any changes in emulsion layer stability or accumulation behavior. 

2) Repeat the solids-stabilized emulsion experiments using fine solids (average diameters <1-

2 µm), also considering different wettability, size, and type of solid. Only coarse solids 
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were considered in this thesis; however, solids most often identified as being contributors 

to stable rag layers in oil sands processes are fine solids. Iron bearing clays, such as siderite 

and pyrite should also be considered.   
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8. APPENDIX A 

EMULSIFIED WATER VOLUME FRACTION IN THE EMULSION IN LAYER 

DURING BATCH EXPERIMENTS 

 

 

Figures A.1 to A.12 show the emulsified water volume fraction in the emulsion layer over time for 

all batch separation experiments presented in Chapter 5. The markers represent the calculated 

water volume fractions at a given time from experimental data using Eq. 4.8 and the solid lines 

represent the fitted water fractions over time using Eq. 5.1. 

 

 

Figure A.1 Batch separation emulsified water volume fractions over time for W/O emulsions 

stabilized by OS, CSS, and SAGD asphaltenes at 60°C. Model emulsions were prepared with 50 

vol% aqueous phase and 50 vol% organic phase. The organic phase was 1.5 g/L of asphaltenes in 

toluene. 
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Figure A.2 Batch water volume fractions over time for W/O emulsions stabilized by OS/SAGD 

asphaltene blends at 60°C. Model emulsions were prepared with 50 vol% aqueous phase and 50 

vol% organic phase. The organic phase was 1.5 g/L of C7-asphaltenes in toluene. 

 

 

 

Figure A.3 Batch water volume fractions over time for W/O emulsions stabilized by OS 

asphaltenes at 21°C and a total volume of 50 mL. Model emulsions were prepared with 50 vol% 

aqueous phase and 50 vol% organic phase. The organic phases consisted of 0.5, 1.5, 2.5, 5 and 10 

g/L of asphaltenes in toluene. 
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Figure A.4 Batch water volume fractions over time for water-in-50/50 heptol emulsions stabilized 

by OS, CSS and SAGD asphaltenes at 60°C. Model emulsions were prepared with 50 vol% 

aqueous phase and 50 vol% organic phase. The organic phases consisted of 1.5 g/L of C7-

asphaltenes in 50/50 heptol. 

 

 

 

Figure A.5 Batch water volume fractions over time for W/O emulsions stabilized by OS, CSS and 

SAGD asphaltenes prepared at a mixing speed of 10,000 rpm with a homogenizer. Model 

emulsions were prepared at 60°C with 50 vol% aqueous phase and 50 vol% organic phase. The 

organic phase consisted of 1.5 g/L of C7-asphaltenes in toluene.  
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Figure A.6 Batch water volume fractions over time for W/O emulsions stabilized by OS 

asphaltenes prepared with initial water volume fractions from 0.25 to 0.85. Model emulsions were 

prepared at 60°C with 50 vol% aqueous phase and 50 vol% organic phase. The organic phases 

consisted of a) 0.5 g/L; b) 1.5 g/L of C7-asphaltenes in toluene.  

 

 

 

Figure A.7 Batch water volume fractions over time for W/O emulsion stabilized by OS 

asphaltenes with added kaolin with an 80° contact angle (a) low kaolin concentrations and (b) high 

kaolin concentrations. The emulsions were prepared with 50 vol% aqueous phase and 50 vol% 

organic phase. The organic phase was 1.5 g/L of OS C7-asphaltenes dissolved in toluene plus 

added kaolin.  
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Figure A.8 Batch water volume fractions over time for W/O emulsion stabilized by OS 

asphaltenes with added kaolin (12 µm) with a measured contact angle of 50° at (a) low 

concentrations and (b) high concentrations. Emulsions were prepared with 50 vol% aqueous phase 

and 50 vol% organic phase with a total volume of 50 mL and 10,800 rpm mixing speed. The 

organic phase was 1.5 g/L of C7-asphaltenes dissolved in toluene plus added kaolin. 

 

 

Figure A.9 Batch water volume fractions over time for W/O emulsion stabilized by OS 

asphaltenes with added kaolin (12 µm) with a measured contact angle of 125° at (a) low 

concentrations and (b) high concentrations. Emulsions were prepared with 50 vol% aqueous phase 

and 50 vol% organic phase with a total volume of 50 mL and 10,800 rpm mixing speed. The 

organic phase was 1.5 g/L of C7-asphaltenes dissolved in toluene plus added kaolin.  
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Figure A.10 Batch water volume fractions over time for W/O emulsion stabilized by silica (32-63 

µm) with a measured contact angles of 75°: a) at low silica concentration b) at high silica 

concentration. The emulsions were prepared with 50 vol% aqueous phase and 50 vol% organic 

phase with a total volume of 50 mL and 10,800 rpm mixing speed. The organic phase was 1.5 g/L 

of OS C7-asphaltene dissolved in toluene plus added silica.  

 

 

 

Figure A.11 Batch water volume fractions over time for W/O emulsion stabilized by silica (32-63 

µm) with a measured contact angles of 115°: a) at low silica concentration b) at high silica 

concentration. The emulsions were prepared with 50 vol% aqueous phase and 50 vol% organic 

phase with a total volume of 50 mL and 10,800 rpm mixing speed. The organic phase was 1.5 g/L 

of OS C7-asphaltenes dissolved in toluene plus added silica. 
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Figure A.12 Batch water volume fractions over time for W/O emulsion stabilized by OS 

asphaltenes with added silica (18-32 µm) with a 75° contact angle. The emulsions were prepared 

with 50 vol% aqueous phase and 50 vol% organic phase with a total volume of 50 mL and 10,800 

rpm mixing speed. The organic phase was 1.5 g/L of C7-asphaltenes dissolved in toluene plus 

added silica.  
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9. APPENDIX B 

EFFECT OF ASPHALTENE CONCENTRATION ON EMULSION STABILITY FOR 

CSS AND SAGD ASPHALTENE-STABILIZED EMULSIONS  

 

 

Batch water-in-toluene emulsions stabilized by CSS and SAGD asphaltenes were prepared with a 

total volume of 1600 mL and mixed at 1000 rpm with the overhead mixer at 60°C and are shown 

in Figure B.1. The CSS asphaltene-stabilized emulsions were prepared with asphaltene 

concentrations of 0.5 to 2.5 g/L and the SAGD asphaltene-stabilized emulsions were prepared with 

asphaltene concentrations of 1.5 to 5 g/L. The emulsified water volume fractions in the emulsion 

layers are provided in Figure B.2. Model parameters used to fit the data are provided in Table B.1. 

For both cases, emulsion stability increased slightly with increasing asphaltene concentration. This 

result is consistent with the OS asphaltene-stabilized emulsions presented in Section 5.1.2.2.   

 

 

Figure B.1 Emulsion layer height over time for W/O emulsions stabilized a) CSS and b) SAGD 

asphaltenes for batch experiments at 60°C. Model emulsions were prepared with 50 vol% aqueous 

phase and 50 vol% organic phase with a total volume of 1600 mL and were mixed a 1000 rpm. 

The organic phases consisted of 0.5, 1.5, 2.5, and 5 g/L of C7-asphaltenes in toluene.  
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Figure B.2 Batch water volume fractions over time for W/O emulsions stabilized by (a) CSS and 

(b) SAGD asphaltenes at 60°C. Model emulsions were prepared with 50 vol% aqueous phase and 

50 vol% organic phase. The organic phase was 0.5, 1.5, 2.5, and 5 g/L of C7-aspaltenes in toluene.  

 

 

Table B.1 Model parameters used for batch experiments for water-in-toluene emulsions stabilized 

by CSS and SAGD asphaltene at concentrations between 0.5 and 5 g/L. 

Parameter CSS Asphaltenes 

 (g/L) 

SAGD Asphaltenes 

(g/L) 

 0.5 1.5 2.5 1.5 2.5 5 

hlim/ho 0.50 0.54 0.60 0.33 0.45 0.50 

k, min-1 0.04 0.04 0.01 0.11 0.10 0.30 

 

  



 

126 

 

10. APPENDIX C 

ERROR ANALYSIS 

 

 

This appendix provides sample error analysis for emulsion layer height in batch continuous and 

decay experiments, solids contact angle, water volume fraction in the emulsion layer during 

continuous experiments, mean particle diameter and mean droplet diameter. For repeat 

measurements made at one experimental condition, confidence intervals were established based 

on the standard deviations of the sets of repeated measurements using the Student’s t-distribution. 

A 95% confidence level was set for the error assessment for all experiments.   

 

C.1 Error Analysis Theory  

C.1.1 Error in Repeated Measurements  

The sample mean, 𝑦 ̅, of several repeated measurements made at a single experimental condition is 

defined as: 

�̅� =  
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
      Equation A.1 

Where yi is the ith measured value and n is the number of repeated measurements. The sample 

standard deviation, s, describes the variability of the data and is defined as: 

𝑠 =  √
∑ (𝑦𝑖−�̅�)2𝑛

𝑖=1

𝑛−1
        Equation A.2 

It was assumed that the distribution of error was the same for each set of repeated measurements. 

The confidence interval is then determined as follows: 

�̅� − 𝑡
(

𝛼

2
∗𝑣)

𝑠

√𝑛
≤ 𝜇 ≤ �̅� + 𝑡

(
𝛼

2
∗𝑣)

𝑠

√𝑛
    Equation A.3 

Where v is the degrees of freedom in the system equal to n-1, and α is the confidence level equal 

to (1-%confidence interval/100). In this study a 95% confidence interval has been selected, 

therefore α = 0.05. 
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C.1.2 Average Absolute Relative Deviation 

The average absolute relative deviation (AARD) of the fit of a model to experimental data is 

assessed with the following equation: 

𝐴𝐴𝑅𝐷 =  
∑ |

𝜇𝑓𝑖𝑡−𝜇𝑒𝑥𝑝

𝜇𝑒𝑥𝑝
|𝑛

𝑖=1

𝑛
    Equation A.4 

where µfit is the predicted model measurement, µexp is the experimental measurement and n is the 

number of measurements.  

 

C.2 Error in Emulsion Layer Height  

C.2.1 Batch Experiment 

Asphaltene-Stabilized Emulsions  

The sample error analysis is presented for water-in-50/50 heptol emulsions stabilized by CSS 

asphaltenes and summarized in Table C.1. The emulsions were prepared from 50 vol% aqueous 

phase and 50 vol% organic phase mixed at 1000 rpm at 60°C, where the organic phase was 1.5 

g/L CSS asphaltenes in 50/50 heptol. Four repeat experiments were used, therefore n = 4 and there 

are 3 degrees of freedom (v = n -1 = 3), for a t-distribution value of 3.182.  At a 95% confidence 

interval the final height of the emulsion layer was 7.5 ± 0.2 cm.  
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Table C.1 Error analysis for emulsion layer height in the batch experiment for a water-in-50/50 

heptol emulsion stabilized by 1.5 g/L CSS asphaltenes, mixed at 1000 rpm at 60°C. 

Time, 
min 

Emulsion Layer Height, cm Standard 
Deviation, 

cm Run 1 Run 2 Run 3 Run 4 Mean 

2 8.6 9.0 9.1 9.3 9.00 0.29 

3 8.1 8.5 8.6 8.8 8.50 0.29 

4 8.1 8.3 8.4 8.6 8.35 0.21 

5 7.9 8.2 8.2 8.3 8.15 0.17 

7 7.7 8.0 7.9 8.1 7.93 0.17 

8 7.7 8.0 7.9 7.9 7.88 0.13 

10 7.6 7.8 7.7 7.8 7.73 0.10 

12 7.6 7.8 7.7 7.8 7.73 0.10 

15 7.6 7.8 7.6 7.7 7.68 0.10 

20 7.3 7.6 7.5 7.6 7.50 0.14 

25 7.3 7.6 7.5 7.6 7.50 0.14 

30 7.3 7.6 7.5 7.6 7.50 0.14 

40 7.3 7.6 7.5 7.6 7.50 0.14 

50 7.3 7.6 7.5 7.6 7.50 0.14 

60 7.3 7.6 7.5 7.6 7.50 0.14 

 

 

 

 

 

 

 

 

 

 



 

129 

 

Solids-Stabilized Emulsions  

The sample error analysis is presented for water-in-toluene emulsions stabilized by kaolin and 

summarized in Table C.2. The emulsions were prepared from 50 vol% aqueous phase and 50 vol% 

organic phase mixed at 10,000 rpm at 60°C, where the organic phase was 1.5 g/L OS asphaltenes 

plus 0.25 g/L kaolin (80° contact angle) in toluene. Four repeat experiments were used, therefore 

n = 4 with 3 degrees of freedom and t = 3.182.  At a 95% confidence interval the height of the 

emulsion layer was on average repeatable to ± 0.11 cm.  

 

 

Table C.2 Error analysis for emulsion layer height in the batch experiment for a water-in-toluene 

emulsion stabilized by 0.25 g/L kaolin (80° contact angle), mixed at 10,000 rpm at 60°C. 

Time, 
min 

Emulsion Layer Height, cm Standard 
Deviation, 

cm 
Run 1 Run 2 Run 3 Run 4 Mean 

2 0.6 0.5 0.4 0.5 0.50 0.08 

3 0.6 0.5 0.4 0.5 0.50 0.08 

4 0.6 0.5 0.4 0.5 0.50 0.08 

5 0.6 0.5 0.4 0.5 0.50 0.08 

7 0.6 0.5 0.4 0.5 0.50 0.08 

8 0.6 0.5 0.4 0.5 0.50 0.08 

10 0.6 0.5 0.4 0.5 0.50 0.08 

12 0.6 0.5 0.4 0.5 0.50 0.08 

15 0.6 0.5 0.4 0.5 0.50 0.08 

20 0.6 0.5 0.4 0.5 0.50 0.08 

25 0.5 0.5 0.4 0.5 0.48 0.05 

30 0.5 0.5 0.4 0.5 0.48 0.05 

40 0.5 0.5 0.4 0.5 0.48 0.05 

50 0.5 0.5 0.4 0.5 0.48 0.05 

60 0.5 0.5 0.4 0.5 0.48 0.05 
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C.2.2 Continuous Experiment  

The sample error analysis is summarized in Table C.3 for kaolin-stabilized water-in-toluene 

emulsions. The emulsions were prepared from 50 vol% aqueous phase and 50 vol% organic phase 

mixed at 10,000 rpm at 60°C, where the organic phase was 1.5 g/L OS asphaltenes plus 0.25 g/L 

kaolin (80° contact angle) in toluene. Three repeat experimental runs were used, therefore n = 3. 

At a 95% confidence interval the emulsion layer height was repeatable to ± 0.2 cm (or the emulsion 

layer volume was repeatable to ± 2 mL). 

 

Table C.3 Error analysis for emulsion layer height in the continuous experiment for a water-in-

toluene emulsion stabilized by 0.25 g/L kaolin (80° contact angle), mixed at 10,000 rpm at 60°C. 

Time, min Emulsion Layer Volume, cm Standard 

Deviation, 

cm 
Run 1 Run 2 Run 3 Mean 

1 0.2 0.2 0.2 0.2 0 

2 0.2 0.2 0.4 0.3 0.14 

3 0.8 0.6 0.8 0.7 0.14 

4 0.8 0.8 0.8 0.8 0 

5 0.8 0.8 0.6 0.7 0.14 

6 0.8 1.0 0.6 0.8 0.28 

7 1.0 1.0 0.8 0.9 0.14 

8 1.4 1.2 1.0 1.1 0.14 

9 1.4 1.4 1.4 1.4 0 

10 1.4 1.4 1.4 1.4 0 
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C.2.3 Decay Experiment  

The sample error analysis is presented in Table C.4 for kaolin-stabilized water-in-toluene 

emulsions. The emulsions were prepared from 50 vol% aqueous phase and 50 vol% organic phase 

mixed at 10,000 rpm at 60°C, where the organic phase is 1.5 g/L OS asphaltenes and 0.25 g/L 

kaolin (80° contact angle) in toluene. Three repeat experiments were used, therefore n = 3 and 

there are 2 degrees of freedom. At a 95% confidence interval the height emulsion layer was 

repeatable to ± 0.2 cm.  

 

 

Table C.4 Error analysis for emulsion layer height in the decay experiment for a water-in-toluene 

emulsion stabilized by 0.25 g/L kaolin (80° contact angle), mixed at 10,000 rpm at 60°C. 

Time, min Emulsion Layer Height, cm Standard 

Deviation, 

cm 
Run 1 Run 2 Run 3 Mean 

1 1.0 1.2 1.1 1.1 0.1 

2 1.0 1.2 1.1 1.1 0.1 

3 1.0 1.2 1.1 1.1 0.1 

5 1.0 1.2 1.1 1.1 0.1 

8 1.0 1.2 1.1 1.1 0.1 

10 1.0 1.0 0.8 0.93 0.11 

15 1.0 1.0 0.8 0.93 0.11 

20 1.0 1.0 0.8 0.93 0.11 

30 0.9 1.0 0.8 0.93 0.11 

40 0.9 1.0 0.8 0.9 0.1 

50 0.9 1.0 0.8 0.9 0.1 

60 0.9 1.0 0.8 0.9 0.1 

70 0.9 1.0 0.8 0.9 0.1 

80 0.9 1.0 0.9 0.93 0.05 

100 0.9 1.0 0.9 0.93 0.05 
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C.3 Error in Solids Contact Angle Measurements 

The contact angles of the treated kaolin and silica particles were measured directly by a Drop 

Shape Analyzer equipped with a camera. To measure the contact angle a water drop was placed 

on the flat surface of a compacted disc of the treated solids immersed in a 50/50 heptol solution. 

Measurements were repeated on the same disc.   

 

Kaolin 

The error analysis for the three phase contact angle measurements of kaolin-50/50 heptol-water 

systems are summarized in Table C.5. In this work, the contact angles were measured through the 

water phase after the solids had been treated with OS asphaltenes at concentrations between 0.02 

and 1 g/L, dried and then compressed into flat discs. 

 

 

Table C.5 Error analysis for contact angle measurements for kaolin-50/50 heptol-water systems, 

where the kaolin has been treated with 0.02-1 g/L OS asphaltenes. 

Asphaltene 

Concentration, 

g/L 

𝑦̅, ° s, ° n t 𝑡
(

𝛼

2
∗𝑣)

𝑠

√𝑛
, ° 

0.02 50.42 3.04 3 4.30 7.55 

0.05 80.34 2.00 4 3.18 3.18 

0.10 114.13 0.29 4 3.18 0.45 

0.15 123.13 3.36 4 3.18 5.34 

0.20 126.04 1.81 5 2.78 2.25 

0.50 133.27 1.76 4 3.18 2.80 

1.00 135.82 2.95 3 4.30 7.32 
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Silica 

The error analysis for the three phase contact angle measurements of silica-50/50 heptol-water 

systems are summarized in Table C.6. In this work, the contact angles were measured after the 

solids had been treated with OS asphaltenes at concentrations between 0.02 and 1 g/L. 

 

Table C.6 Error analysis for contact angle measurements for silica-50/50 heptol-water systems, 

where the silica has been treated with 0.02-1 g/L OS asphaltenes. 

Asphaltene 

Concentration, 

g/L 

𝑦̅, ° s, ° n t 𝑡
(

𝛼

2
∗𝑣)

𝑠

√𝑛
, ° 

0.02 74.69 2.06 7 2.45 1.91 

0.05 84.27 1.04 5 2.78 1.30 

0.10 109.27 4.81 6 2.57 5.05 

0.15 115.17 0.51 5 2.78 0.63 

0.20 124.82 1.88 7 2.45 1.74 

0.50 134.01 3.49 6 2.57 3.67 

1.00 141.17 1.56 4 3.18 2.49 

 

C.4 Water Volume Fraction in the Emulsion Layer during the Continuous Experiment 

The error analysis for the determination of the water volume fraction in the emulsion layer during 

the continuous experiment is summarized in Table C.7. Water volume fractions were measured at 

three time intervals (3, 5 and 10 minutes) at two experimental conditions: 1.5 g/L OS and CSS 

asphaltenes in toluene mixed at 1000 rpm at 60°C. The average water volume fraction was 0.68 ± 

0.11 between the two data sets.  

 

Table C.7 Error analysis for the water volume fraction in the emulsion layer. 

Experimental Condition  𝑦̅ s n t 𝑡
(

𝛼
2

∗𝑣)

𝑠

√𝑛
 

CSS Asphaltenes 0.67 0.15 3 4.30 0.37 

OS Asphaltenes 0.69 0.02 3 4.30 0.05 

Overall 0.68 0.096 6 2.57 0.11 
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C.5 Particle Size Distribution 

The particle size distribution of the treated kaolin and larger silica particles was measured using 

FBRM methods in the lab, giving average particle diameters of 11.93 ± 0.02 µm and 53.84 ± 1.71 

µm respectively. The error analysis for the particle size distributions are summarized in Table C.8. 

 

Table C.8 Error analysis for the particle size distributions. 

 𝑦̅, µm s, µm n t 𝑡
(

𝛼

2
∗𝑣)

𝑠

√𝑛
, µm 

Kaolin 11.93 0.07 59 2.00 0.02 

Silica 53.84 4.57 30 2.04 1.71 

 

 

C.6 Droplet Size Distribution.  

Droplet size distributions were measured water-in-toluene emulsions stabilized by OS asphaltenes. 

The emulsions were prepared at two mixing speeds: 1000 rpm with an impeller and 10,000 rpm 

with a homogenizer. The error in the drop size distributions is summarized in Table C.9, with 

average droplet diameters of 20.3 ± 2.5 µm and 8.0 ± 0.3 µm for emulsions mixed at 1000 rpm 

and 10,000 rpm respectively.  

 

Table C.9 Error analysis for the droplet size distributions. 

 𝑦̅, µm s, µm n t 𝑡
(

𝛼

2
∗𝑣)

𝑠

√𝑛
, µm 

1000 rpm 20.25 30.73 575 1.96 2.51 

10,000 rpm 7.95 5.17 939 1.96 0.33 

 


